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Abstract

In this paper, we outline a synthesis procedure which beginning from a State Transition
Graph description of a sequential machine produces an optimized fully testable logic implementa
tion. This logic-level implementation is guaranteed to be testable for all single stuck-at faults and
the test sequences for these faults can be obtained using combinational test generation techniques
alone.

All single stuck-at faults in the synthesized logic-level automaton can be tested without
access to the memory elements using these test sequences. Thus, the testing time required is
smaller than that using a Scan Design methodology. The area penalty incurred due to the con
straints on the optimization are small. The performance of the synthesized design is usually better
man a unconstrained design optimized for area alone.

The relationship between combinational logic optimization and combinational test generation
is well known. In this paper, we show mat an intimate relationship exists between state assignment
and the testability of a sequential machine. We propose a procedure of constrained state assign
ment and logic optimization which guarantees testability for both Moore and Mealy machines.
We present results which illustrate the efficacy of this procedure - the area/performance penalties
in return for 100% testability are negligible.
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L INTRODUCTION

Test generation for sequential circuits has long been recognized as a difficult task [1]. A

popular approach to solving the this problem is to make all the memory elements controllable and

observable, i.e. Complete Scan Design [2] [3]. Scan Design approaches have been successfully

used to reduce the complexity of the problem of test generation for sequential circuits by

transforming it into a combinational one which is considerably less difficult The design rules of

Scan Design also constrain the sequential circuits to be synchronous so that the normal operation of

the sequential circuit is free of races and hazards. However, there are situations where the cost in

terms of area and performance of Complete Scan Design is unafxbrdable. Also, the testing time

associated with Scan Design is very high because values have to be sequentially scanned into and

out of the memory elements one clock cycle at a time.

Several approaches [4] [5] [6] [7] [8] [9] have been taken in the past to solve the problem of

test generation for sequential circuits. They are either extensions to the classical D-Algorithm or

based on random techniques [5] [8]. When the number of states of the circuit is large and the tests

demand long input sequences, they can be quite ineffective for test generation.

The relationship between combinational logic synthesis and test generation is well known. In

[10], a synthesis procedure which guaranteed fully testable irredundant combinational logic circuits

was proposed. Equally intimate relationships between the more complicated problems of sequential

circuit synthesis and test generation have been envisioned.

In this paper, we outline a synthesis and optimization procedure which, beginning from a

State Transition Graph description of a Moore or Mealy finite automaton, produces a 100% testable

logic-level implementation of the machine. The test sequences for all single stuck-at faults in the

machine can be derived using test generation algorithms on the combinational logic blocks of the

machine. All single stuck-at faults in the synthesized logic-level automaton can be tested without

access to the memory elements using these test sequences. Thus, the testing time required is

smaller than that using a Scan Design methodology. The area penalty incurred due to the con-



straints on the optimization are small. The performance of the synthesized design is usually better

than a unconstrained design optimized for area alone.

We show that a strong relationship exists between state assignment, logic optimization and

testability of a sequential machine. We outline a procedure of constrained state assignment and

combinational logic optimization which ensures 100% testability for both Moore and Mealy finite

state machines. Results obtained on benchmark examples show that the area penalties incurred due

to the constraints imposed during state coding and logic optimization are small The performance

of the resulting circuits is better than that of unconstrained designs optimized for minimum area (

This is because one of the constraints imposed requires combinational logic partitioning in the

machine ).

Basic definitions and terminologies used are given in Section 2. In Section 3, we state the

necessary conditions required for a fully testable Moore machine. Extensions to Mealy machines

are made in Section 4. In Section 5, we discuss how an existing state assignment algorithm can be

modified to produce a constrained encoding satisfying the testability criterion. Results obtained

thus far are presented in Section 6.

2. PRELIMINARIES

A variable is a symbol representing a single coordinate of the Boolean space (e.g. a). A

literal is a variable or its negation (e.g. a oi a). A cube is a set C of literals such that xeC

implies xtC (e.g., [a,b,c~] is a cube, and {aja) is nota cube). A cube represents the conjunction

of its literals. The trivial cubes, written 0 and 1, represent the Boolean functions 0 and 1 respec

tively. An expression is a set/ of cubes. For example, {[a},{&,c}} is an expression consisting

of the two cubes {a} and {b,c~}. An expression represents the disjunction of its cubes.

A cube may also be written as a bit vector on a set of variables with each bit position

representing a distinct variable. The values taken by each bit can be 1, 0 or 2 (don't care), signify

ing the true form, negated form and non-existence respectively of the variable corresponding to that

position. A minterm is a cube with only 0 and 1 entries.



The distance between two minterms is defined to be the number of bit positions they differ

in.

A finite state machine is represented by its State Transition Graph (STG), G(V£,W(E))

where V is the set of vertices corresponding to the set of states 5, where I \S I \=NS is the cardi

nality of the set of states of the FSM, an edge (v, ,vy) joins v,- to vj if there is a primary input that

causes the FSM to evolve from state V; to state v,-, and W(E) is a set of labels attached to each

edge, each label carrying the information of the value of the input that caused that transition and

the values of the primary outputs corresponding to that transition. In general, the W(E) labels are

Boolean expressions.

Given n inputs to a machine, 2" edges with minterm input labels fan out from each state. A

STG where the next state and output labels for every possible transition from every state is defined

to correspond to a completely specified machine. An incompletely specified machine is one

where at least one transition edge from some state is not specified.

A starting or initial state is assumed to exist for a machine, also called the reset state. A R-

reachable finite state machine has a STG such that for every possible state, q, in the STG an input

sequence exists which when applied to the machine, initially at the reset state, places the machine

in q. Thus every state is reachable from the reset state. Note that requiring a machine to be R-

reachable is a less stringent condition man requiring it to be strongly connected - a strongly con

nected machine is R-reachable but not vice versa.

The fault model assumed is single stuck-at A finite state machine is assumed to be imple

mented by combinational logic and feedback registers. Tests are generated for stuck-at faults in the

combinational logic part

A combinational logic network is said to be irredundant if all the faults in the network are

testable.

To detect a fault in a sequential machine, the machine has to be placed in a state which can

then excite and propagate the effect of the fault to the primary outputs. The first step of reaching



the state in question is called state justification. The second step is called fault excitation-and-

propagation.

An edge in a State Transition Graph of a machine is said to be corrupted by a fault if either

the fanout state or output label of this edge is changed because of the existence of the fault A

path in a State Transition Graph is said to be corrupted if at least one edge in the path has been

corrupted

3. FULLY TESTABLE MOORE MACHINES

A general model for a Moore finite state machine is shown in Figure 1. It is realized by two

logic blocks, the Output Logic (OL) block and the Next State Logic (NSL) block, and feedback

registers. In a Moore machine, the outputs depend only on the present state of the machine.

Given n latches in the machine, the machine has 2" possible states. However, the number of

states in a State Transition Graph (STG) description of a machine need not necessarily be an

integer power of 2.

Pi

Fig. 1: General Moore Machine Model



We first prove the following result

Theorem 3.1: Given a n-latch logic-level implementation of a Moore machine (shown in Figure 1),

if (1) the combinational logic blocks OL and NSL are irredundant (2) the machine is R-reachable

Le. all 2" states are reachable from the reset state and (3) all the 2" states have distinct outputs, the

machine is fully testable for all stuck-at faults in OL and NSL.

Proof. Consider a fault F, in the OL block. Since the block is irredundant (Condition 1), a state,

s, exists which detects F. This state, s, can be reached from the reset state, R, of the machine via

an input sequence, /, because the machine is R-reachable (Condition 2). State s will be reached on

applying / from R regardless of F since F is in the OL block. Therefore, a sequence exists,

namely /, which can detect F.

Now consider a fault F in the NSL block. Again, since NSL is irredundant a state, s, and

an input i exist which propagate the effect of this fault to the next state lines. Instead of obtaining

the true next state, q, we obtain a faulty next state qF. q and qF have distinct outputs (Condition

3). Therefore, at the next clock cycle the effect of F is propagated to the primary outputs. We

however, have to reach s from R. A path exists from s to R (Condition 2). However, this path

may or may not have been corrupted by F. If the path has not been corrupted, we can detect F

after reaching s and applying input /. If the path has been corrupted, it means that for some edge

in the path, the next state reached was different due to F. In this case, the fault is detected even

before reaching s, since two different states were reached in the faulty and fault-free machine.

Q£J>.

We now analyze the implications of each of the conditions of Theorem 3.1. (1) is an essen

tial condition. Obviously, a redundant fault in NSL or OL cannot be. detected in the sequential

machine. Redundancies are sometimes introduced for performance reasons, but mostly they are due

to unoptimized logic [10]. An irredundant logic network would have minimum area. With recent

advances in multi-level logic optimization, large networks can be made irredundant. If



redundancies are required in the combinational logic for performance reasons, the proposed pro

cedure will still guarantee testability and produce tests for all combinationaUy irredundant faults.

In general, State Transition Graph specifications of machines have reset states and are R-

reachable. However, as mentioned previously, a STG specification of a machine need not neces

sarily have Ns = 2* states, k = 1,2... Given the number of encoding bits to be used, n (

n £ log(A^) ), the number of states in a STG can be raised to 2". We have to ensure that these

new states are reachable from the reset state to satisfy the R-reachability condition. Given a single

unspecified transition edge (minterm or cube) from a single state in the original STG, edges can be

added to the STG so as to ensure that all the added states are reachable ( If the machine is com

pletely specified, an extra input has to be added ). Most STG's encountered in practical design

have a large number of transitions that are not specified.

Condition 3 is obviously unacceptable, since if the STG specification does not satisfy it it

cannot be made to do so without changing the functionality of the machine. This condition is now

relaxed.

Consider the logic-level implementation of the Moore machine shown in Figure 2. The NSL

block has been realized as n distinct single-output circuits or partitions. The following theorem

shows that a constrained state assignment can ensure a fully testable circuit

Theorem 3.2: Given a n -latch logic-level implementation of a Moore machine (shown in Figure 2),

if (1) the combinational logic blocks OL and NSLiy i = 1, 2 „ n, are irredundant (2) the machine is

R-reachable and (3) if the state encoding of the machine is such that each pair of states asserting

the same output has codes of distance-2 from each other, the machine is fully testable.

Proof. The faults in the OL block are detected as before in Theorem 3.1. Consider a fault F in the

NSL block. Without loss of generality, assume that F is in the first partition. The effect of the

fault when detected is to produce a 0 (1) instead of a 1 (0) at the NSL^. In either case, the faulty

next, state produced, qF, will differ from the true state, q, in at most one bit Since state assign-



8

ment has guaranteed that all states asserting the same outputs have been assigned distance-2 codes,

q and qF assert different outputs. This means that F is detected in the next clock cycle.
QJED.

A realization ofamachine like the one shown in Figure 2implies that logic cannot be shared

between next state lines. Thus, acertain area penalty may be associated with such an implementa

tion. The performance of the circuit does not suffer due to logic partitioning ( and in fact may be

improve ). However, the implementation shown is an extreme case and can be generalized. Apar

tition may contain more than one NSLi. This means that the logic between these lines can be

shared.

The number ofNSL partitions required relates to the number ofstates asserting the same out

put in the original STG. We first show that the state assignment constraint (Condition 3 of

Theorem 3.2) can be satisfied quite easily.

Lemma 3.1: Given a State Transition Graph, if at most half the number of states assert the same

output a state assignment satisfying adistance-2 constraint between states with the same outputs

Fig. 2: Partitioned Moore Machine Model



can be found.

Proof. Given k bits, we have 2* possible codes. These codes can be split into 2 sets each of cardi

nality 2*"1, such that codes within each set are of distance-2. Given a STG with Nt states, we add

states to raise the number of states to 2' '. The number of states in a distance-2 set is

[W)|-i Ns_
Z * 2'

We now prove the following result which gives us the required number of partitions of the

NSL lines as a function of the number of states with the same output

Theorem 33: If at most k states exist in a State Transition Graph which produce the same outputs,

\log(k)~\ + 1 separate partitions suffice to obtain a fully testable machine.

Proof. In the worst possible case, if we have 2" states in the machine, we have a situation where

2"
sets of states exist the states within each set asserting the same output

We need to ensure for each set that no two of these k states are ever produced as a fault-free

faulty pair due to a fault in NSL. This means that the codes assigned to any two of these states

must differ in at least two next state lines belonging to two distina partitions. By Lemma 3.1, the

number of bits required to generate 2 sets of 2P~1 distance-2 codes is p. To generate 2 sets of k

distance-2 codes, we require [tog(fc)l + 1 partitions. We now have n -( \log(k)\ +1) bits

remaining. This means we can have

>n -1

y-M)1-lx2s *"" • x2 =
2''<>«(*) I

2"

k

sets each with k codes which differ in two next state lines belonging to two distinct partitions.

QJBD.

There are thus three steps in producing combinational logic specifications for OL and NSL

blocks from a State Transition Graph description. These steps are (1) raising the number of states
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in the State Transition Graph to 2", where n is the number of latches (2) obtaining constraints for

the state assignment on the basis of state outputs and (3) state assignment obeying the constraint

relations generated. A straightforward solution exists for Steps 1 and 2, however the optimality of

the eventual implementation depend on the choices made during these steps. For example, in Step

1, transition edges connecting original states in the STG to the new states can be added in a variety

of ways. The new states can be connected in a chain or separately connected from the original

states. Similarly, if the number of required partitions is less than the number of next state lines,

choices exist as to which next state lines to group together. Next state lines which can share logic

maximally should be placed in the same partition. In Step 3, an optimal state assignment which

minimizes combinational logic while meeting the distance constraints has to be found. This step is

further discussed in Section 5.

After obtaining the combinational logic specifications, logic optimization algorithms which

can ensure an irredundant logic network (e.g. [10] ) can be applied. If redundancies are required in

the logic, this synthesis procedure ensures that all combinationally irredundant faults are sequen

tially irredundant as well.

To generate tests for the sequential machine, tests vectors are generated for all stuck-at faults

in the OL and NSL combinational circuits. Then, justification paths are obtained from the STG

using simple breadth-first search. It is guaranteed (by the theorems proved in this section) that

these paths concatenated with the test vectors applied to the primary inputs of the sequential

machine will detect all possible faults in the machine so as to be observable at the primary outputs.

4. FULLY TESTABLE MEALY MACHINES

A general model for a Mealy finite state machine is shown in Figure 3. It is realized by a

single logic block and feedback registers. The output logic and the next state logic are both real

ized by one block. In a Mealy machine, the outputs depend on both the present state as well as the

primary inputs. A model for a Mealy machine with each next state line realized as a separate cir

cuit and with the output and next state logic separated is shown in Figure 4.
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PI-* ^PO

Fig. 3: General Mealy Machine Model

We prove a theorem in direct correspondence to Theorem 3.2 for Mealy machines. First we

define the notion of O-equivalence between two states in a Mealy machine.

Definition 4.1: Two states in a Mealy machine are said to be O-equivalent if each pair of fanout

edges on the same input from these states produces the same output

Theorem 4.1: Given a n -latch logic-level implementation of a Mealy machine (shown in Figure 4),

if (1) the combinational logic blocks OL and NSLit i = 1,2 .. n, are irredundant (2) the machine is

R-reachable i.e. all 2" states are reachable from the reset state and (3) if the codes of states of the

machine are such that each pair of O-equivalent states have codes of distance-2 from each other,

the machine is fully testable.

Proof. Consider a fault in the OL block. There exists a state, s and input / which detects this fault

by Condition 1. R-reachability and the fact that F is in the OL block imply that state s can be

reached from R. F can thus be detected.

Consider a fault F in the NSL block. Without loss of generality, assume that F is in the first

partition. Since this partition is irredundant a state s and an input i\ exist which can propagate the
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effect of the fault to the next state line. The effect of the fault when detected is to produce a 0 (1)

instead of a 1 (0) at the NSLi. In either case, the faulty next state produced, qF> will differ from

the true state, q, in at most one bit Condition 3 guarantees that q and qF are not O-equivalent

since all O-equivalent states have distance-2 codes. This means that an input *2> exists which will

produce a different output in the faulty machine (which is in qF) from the fault-free machine

(which is in q). We, however, have to reach s from R. A path exists from s to R (Condition 2).

However, this path may or may not have been corrupted by F. If the path has not been corrupted,

we can detect F after reaching s and applying input i\ followed by z2- If the path has been cor

rupted, it means that for some edge in the path, the next state reached was different due to F. We

have a fault-free/faulty pair (q' ,q,F) By the argument above, an input /3 which produces a

different output for q' and q'F exists, thus detecting F. QJED.

The synthesis procedure for obtaining a fully testable Mealy machine is the same as the pro

cedure outlined for the Moore machine in Section 3. To generate tests for the machine, as before,

all the combinational logic tests for the OL and NSL blocks are generated. The justification path

to the state detecting the fault concatenated with the primary input part of the combinational test

vector and the differentiating input vector (for the fault-free/faulty next state pair) constitutes the

test sequence for a given fault

5. CONSTRAINED STATE ENCODING

State assignment is the process of assigning binary codes to the internal states of a finite

automaton. The problem of optimal state assignment is to find an encoding of states which minim

izes the combinational logic part of the sequential machine.

The combinational logic part of the sequential machine can be implemented using a Pro

grammable Logic Array (PLA) or using multi-level logic. State assignment techniques targeting

both these implementations have been proposed (e.g. [11] [12]). The program MUSTANG [12]

produces a state assignment mat heuristically minimizes the number of literals in the combinational

logic after multiple-level logic optimization.
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Fig. 4: Partitioned Mealy Machine Model

The technique used by MUSTANG is based on maximizing common factors in the logic in

an effort to reduce the area of the network. A weighted graph whose nodes represent each state of

the machine is constructed. The weights between the edges in the graph reflect the "gains" in cod

ing the corresponding states with uni-distant codes.

An embedding algorithm is used to assign binary codes to the states (nodes in the graph) so

as to maximize the overall gain. The algorithm iteratively selects groups of states to be encoded.

These states are given minimally-distant codes from the unassigned codes.

For our problem, the graph construction part remains the same. During embedding, when a

group of states is selected, they are checked for distance-2 constraints. A minimally-distant set of

codes satisfying these constraints is assigned to the states.

6. RESULTS

Results obtained on four State Transition Graphs from the MCNC 1987 Logic Synthesis

Workshop benchmark set are given in Table 1. First, the machines were encoded and optimized

disreeardine testability. The number of Kates in the machine, the fault coverage obtained and the
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was accomplished using an efficient test generation algorithm that was recently proposed [13].

Then, each of the machines were synthesized using the procedure described in Sections 3 & 4.

Again, the number of gates, fault coverage obtained and the test generation time are given.

Sequential test generation for these circuits was faster because combinational test generation and

breadth-first search suffice to produce the test sequences. The example scf'is a Moore machine, the

others Mealy machines.

The area penalties incurred are due to three reasons : (1) the constraints imposed during state

assignment (2) the addition of extra edges to the STG to obtain R-reachability and (3) logic parti

tioning constraints. Empirical evidence has shown that (3) is easily the most significant factor -

the next state lines may have to be realized as separate circuits. Additionally, for a Mealy

machine, unlike in an unconstrained design, the next state and the output logic have to be

separated.

Logic partitioning is extensively used to gain higher performance. A Mealy machine with

separate next state and output logic blocks can be clocked faster man a machine with a single

lumped block of logic. This is the case in the example designs of Table 1 as well. Thus, the fully

testable machines produced by logic partitioning may well represent a more desirable point in the

area/performance trade-off curve.

The number of gates in a circuit is, in general, indicative of the area required to implement

the circuit However, in some cases, this measure of area may not be very accurate. To obtain

accurate estimates of circuit areas, the synthesized examples of Table 1 were placed and routed

using the TimberWolf standard cell placement androuting package [14]. The areas of the resulting

designs after place and route for the unconstrained and constrained cases are given in Table 2. For

each example, the areas of the designs have been normalized to that of the unconstrained design.

In Table 2, some constrained designs are about the same size or smaller than the correspond

ing unconstrained ones. Logic partitioning, in these cases, has decreased routing complexity in the

circuit to the extent of nullifying the increase in the numberof logic gates. The cost function used
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EX #inp #out #states #lat I - OPTIMIZE n- TESTABLE

#gates fault

cov.

tpg
time

#gates fault

cov.

tpg
time

sse 7 7 13 4 91 84.57 69.9s 129 100.0 52s

tbk 6 3 16 4 181 98.57* 72.1s 231 98.57* 4.1s

scf 27 54 97 7 502 96.14 83.1m 541 100.0 71s

dfile 2 1 24 5 124 96.94 104s 144 100.0 2.0s

planet 7 19 48 6 417 98.82 373s 449 100.0 i 14s

s is CPU-seconds, m is CPU-minutes on a VAX 11/8650 running ULTRIX
* OL block was not combinationally irredundant

Table 1: Synthesis for Testability Results

EXAMPLE I-OPT1QMIZE H - TESTABLE

#eates area #eates area

sse 91 1.0 129 1.34

tbk 181 1.0 231 1.10

scf 502 1.0 541 1.01

dfile 124 1.0 144 0.98

planet 417 1.0 449 0.86

Table 2: Areas of Standard Cell Designs

in multi-level logic optimization is the number of literals ( transistors ) in the circuit [15], and is

sometimes is a poor estimate of the circuit area.

The number of test sequences required varied between 30-70 for these examples. The

number of test sequences can be reduced by applying combinational test compaction strategies after

generating all the test vectors for the combinational logic blocks. The average length of each

sequence was "5. Since the test vectors only access the primary inputs and only the primary out-
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puts are observed, each vector can be applied in one clock cycle.

7. CONCLUSIONS

We have described a synthesis procedure that produces an optimized fully testable logic

implementation of a sequential machine from a State Transition Graph description of the machine.

This logic-level implementation is guaranteed to be testable for all single stuck-at faults. No access

to the memory elements is required. The test sequences for these faults can be obtained using

combinational test generation techniques alone.

We have shown that an intimate relationship exists between state assignment and the testabil

ity of a sequential machine. A procedure of constrained state assignment and logic optimization

can guarantee a fully testable machine.

The testing time required in this method is smaller than that using a Scan Design methodol

ogy. Experimental results have shown that the area penalty incurred due to the constraints on the

optimization are small The performance of the synthesized design is usually better than a uncon

strained design optimized for area alone.
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