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Abstract

Stability of the unity-feedback interconnection of a linear and a nonlinear subsytem is con

sidered. If the linear subsystem has a left-coprime factorization, the nonlinear subsystem is shown

to have a specific normalized right-coprime factorization. If the linear subsystem also has a nor

malized right-coprime factorization, we obtain a parametrization of the set of all stabilizing non

linear subsystems; this parametrization can be interpreted as: i) that of all stabilizing nonlinear

compensators for a given linear plant or ii) that of all nonlinear fractional perturbations of a pos

sibly nonlinear plant stabilized by a given linear compensator.

Research sponsored by the NASA Grant NAG2-243 and the National Science Foundation Grant

ECS-8500993. These results were presented at the 26th CDC in Los Angeles on Dec. 9,1987.
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L Introduction

The problem of characterizing all linear time-invariant compensators which stabilize a

linear time-invariant plant in the unity-feedback configuration has been solved using tools of

algebraic control theory; the characterization is obtained by finding solutions of certain Bezout

identities [You.l, Des.l, Vid.1,2]. A generalization of this approach to linear input-output maps

can be found in [Fei.l]; see [Man.l] for the time-varying continuous-time case. In [Kha.1], the set

of all stabilizing discrete-time possibly nonlinear time-varying compensators for a discrete-time

linear time-invariant plant is obtained using periodic compensators and two-step compensation

schemes. In [Des.2,3], the set of all stabilizing compensators for an incrementally stable non

linear plant (e.g. stable linear plant) is obtained. In [Ham.l], using left and right factorizations of

a class of causal nonlinear discrete-time plants, a complete parametrization of the set of all stable

solutions U , V of the equation UN +VD =M is given.

In this paper, we consider the nonlinear unity-feedback configuration where one of the two

subsystems (either the plant or the compensator) is specified by a linear (not necessarily time-

invariant) map. Since the plant and the compensator appear symmetrically in the stability analysis

of the unity-feedback system, we choose to derive the results for a fixed linear plant Assuming

that the linear plant has a "generalized" left-coprime factorization, we show that all nonlinear sta

bilizing compensators have normalized right-coprime factorizations which satisfy a Bezout-like

identity. In the case where the linear plant also has a normalized right-coprime factorization, we

obtain the set of all solutions satisfying the identity; in fact, we obtain a parametrization of the set

of all nonlinear stabilizing compensators. Interchanging the roles of the plant and the compensa

tor, this result gives the set of all nonlinear plant perturbations which maintain feedback system

stability for a given linear compensator.
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n. Notation

(e.g. [Win, Saf.l, Des.4]) Let X c R and let V be a normed vector space. Let

C:= {F IF :X-»V } be the vector space of V-valued functions on X. For any T e X, the

„ y [ F(t) t£T , f € X
projection map nr :£-»£ is defined by IIrF(f) v=< q f>r ?e T where 6^ is the

zero element in £. Let A c £ be anormed vector space which is closed under the family of

projection maps { nT }Te x- For any F e A, let the norm II n(.)F II : X -» R+ be a nonde-

creasing function. The extendedspace Ae is defined by

Ae :={Fe£ I VleX, TLTF e A}.

A map F : Atf -> Ae is said to be ouaa/ iff, for all T e X, nr commutes with UTF;

equivalently, nTF =TLTFTlT.

In the following we will be considering two function spaces closely related to Ae . The

superscripts i and o refer to "input" and "output", respectively. Let A£ and A°e be extended

function spaces analogous to Ae except that their functions take values in the normed spaces

V* and V° , respectively; the associated projections nr areredefined accordingly.

A causal map H :A^ x Aj -> Ae is said tobeS-stable [Des.3] iff there exists acontinuous

nondecreasing function $# : IR+ -» R+ such that

V(MlfM2)e A° xA1", IIH0ilvii2)ll ^ ♦ir(N«ill+ll««2|l )•

An S-stable map need not be continuous. Note that the composition and the sum of S-stable

maps are S-stable.

A feedback system is said to be well-posed iff, for all allowed inputs, all of the signals in the

system are (uniquely) determined by causal functions of the inputs.

A well-posed (nonlinear) feedback system is called S-stable iff, for all allowed inputs, all of

the signals in the feedback system aredetermined by causal S-stable maps.

A causal (nonlinear) map P :AJ -»A°e is said to have a right factorization

(Np ,Dp;Xp) iff there exist causal S-stable maps Np , Dp , such that
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(i) Dp :Xp c a£ -> Aj is bijective and has acausal inverse,

and(ii) Np :Xp ->A°e ,with Np[Xp]=P[K],

and (Hi) F =Np Dp'1 [Vid.3, Ham.2].

Xp iscalled the factorization space ofthe right factorization (Np ,Dp;Xp) [Ham.2].

(Np ,Dp ;Xp) is said to be anormalized right-coprimefactorization of P :Ale -> A* iff

(i) (A/p ,Dp \Xp) is aright factorization of P ,

and (ii) there exist causal S-stable maps Up :A°e-*Xp and Vp :AJ -*Xp such that

^pJVp +vpDp -h,»where IXf denotes the identity map on Xp .
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m. Main Results

We consider the unity-feedback configuration S(P,C) shown in Figure 1: the linearplant

is given by a causal linear (not necessarily time-invariant) map P : AJ -» A°e and the compen

sator is given bya (possibly nonlinear) causal map C : A°e -» AJ . We assume that the the linear

map P has a "left-coprime factorization".

Assumption 3.1: The causal linear map P : A« -» A°e has the following properties:

1) There exist causal linear S-stable maps N : AJ -» A* and D ; A% -» A°t , where

D is bijective and has a causal inverse, such that

P=D~lN . (la)

2) There exist causal S-stable (not necessarily linear) maps U : A°e -> Ale and

V :A°e -*A°e suchthat

NU +DV =/A. . (lb)

»2

+

yi + 1
&+ N »-l 2i

Figure 1 The unity-feedback system S(P,C)

Theorem 3.2: ( S-stability of S(P,C)) Consider the unity-feedback system S(P,C) in

Figure 1,where the causal linear map P : AJ -> A°e satisfies Assumption 3.1; then S(P,C) is

well-posed and S-stable ifand only ifthe causal (not necessarily linear) map C : A°e -» AJ has a

normalizedright-coprime factorization (N^, Z)cr; X c A°e) such that

NNr+DDcr^Ix (2)

Proof:

"If"

Let (NcrtDc'tX cAJ) be a normalized right-coprime factorization of C : A°e -+Ale

From the summing node equations in Figure 1, we obtain
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«l=^cr§c="l-y2 (3a>
Dy2 = N(u2+yi) = N (u2^Ncr%c ) , (3b)

where ^ e X . From equations (3a-b), using the linearity of N and 5 and equation (2), we

obtain

?c =[d -*] "1

"2
(4)

Equation (4) determines a causal S-stable map {u\%u2) \->%c ; since Ncr and Der are S-

stable, the map (ult u£ h» (et, ^2) is S-stable,hence S(P,C) is well-posed and S-stable.

"only if"

By well-posedness and S-stability of S(P,C), C has a right factorization

(NetDe; A°e ); namely Ne=C(I +PC)"1 , De =(/ +FC)"1. Using the right factorization

(Wc,De; A* ) of C in the summing node equationsof 5 (F, C) and using linearity of N and

D , we obtain

(A^+DD.&^D -tf] "l

"2
(5)

where ^ e A« . By well-posedness of S(PtC) and theexistence of thecausal inverse Dc_1 ,

there exists a causal map («1( m2) l-» 5c (which need not be S-stable even if S(P,C) is).

Choose inputs by

"i

"2

V

(6)

where v e A°e . Substituting equation(6) in (5) andusing equation (lb), we obtain

(NNe+DDe)^=v , (7)

which determines a causalmap v h^. Hence the inverse map

(NNc+DDcrl:A°e->A°e
is defined on A°e and is causal. Solving equation (7) for £c and recalling that e^D^ and

yl=Nc%e , we obtain

ex=Dc{NNe+DDcTxv , (8a)
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yi=Nc(NNe+DDc)-lv . (8b)

ByS-stability of S(F, C), equations (8a) and (8b) determine causal S-stable maps v h» ex and

v Kyi i respectively. Hence

(Nc(NNe +DDC r1 , Dc(NNe +DDC T1 ; A% )

is a right factorization, which is in fact a normalized right-coprime factorization of C , since

N [Ne(NNc+DDcTl]+D [De(NNc +6Derl]=U% •

•

In the following lemma, we give the set of all solutions ofequation (2), where the causal S-

stable linear maps N and D are given.

Lemma 33: Let the causal linear map F : AJ -» A°e satisfy Assumption 3.1. Suppose also

that (NtD;Xr cAJ) is a normalized right-coprime factorization of F (hence

F =ND~l=D_1 N , N and D need notbe linear maps); under these conditions the setof all

causal S-stable solutions

tf^iXcA^AJ , (9a)
Der:X-*A°e (9b)

ofthe equation

is given by

NNcr+DDer=Ix (2)

Ncr=U+DQ (10a)

D„=V -NQ (10b)

where Q :X -> Xr is a causal S-stable not necessarily linear map.

•

Comment: Note that the S-stable maps U , V , N , D and Q are nor required to be

linear.

Proof of Lemma 33: Any pair A^ , D^ specified by equations (lOa-b) is a solution of

equation (2). Substituting (lOa-b) in equation (2) and using linearity of N and D , we obtain

NNcr+DDcr=NU +DV +(DN-ND)Q . (11)



Using equation (lb) and

DN=ND (12)

in equation (11), equation (2) is satisfied.

Now suppose that there exist causal S-stable maps N^ , Dcr as in (9a-b), satisfying equa

tion (2), then by equation (lb),

NNcr+DDcr=Ix=NU +DV . (13)

Using the linearity of N and 6 and equation (12) inequation (13), we obtain

ND^Ncr-U )=V -Da. . (14)
Let

Q:=D-\Ncr-U ) :X-*Xr . (15)

Qearly, the map Q defined in (15) is causal. Since (N,D;Xr) is a normalized right-coprime

factorization of F , there exist causal S-stable maps U :A°e -*Xr and V : AJ -> Xr such that

UN+VD^Ix, . (16)

Then by equations (14), (15) and (16), we obtain

Q=(UN+VD)Q

= UNQ+VDQ

= J/(V -Dcr) +V(iVcr-t7) . (17)

Hence the map Q definedin (15) is S-stable; moreover from equations (14) and (15) we obtain

equations (lOa-b).

D

Theorem 3.4: ( All stabilizing compensators ) Let the causal linear map F : AJ -> A^

satisfy Assumption 3.1. Suppose also that (N,D; Xr c Ag) is a normalized right-coprime fac

torization of F ( N and D need not be linear); under these conditions the set of all causal sta

bilizing compensators C in the feedback system S(P,C) is given by

{C =(U +DQ)(Y -NQT1 \ Q.X -*Xr causal S-stable , (V -NQ)~l causal } ;(18)

moreover, the map Q \-*C in (18) is bijective.



Comment: When the linear plant F has atransfer matrix representation with entries inaprin

cipal ring [see e.g. Vid.2], Assumption 3.1 holds, moreover F has a normalized right-coprime

factorization.

Proof of Theorem 3.4: FromTheorem 3.2 andLemma3.3, we concludethat (18) holds; more

overthe map Q h»C is surjective. Wenowshow that the map Q KC is also injective:

It suffices to show that

(U +DQO(V -NQiT^iU +DQ2)(V -NQ2)~l (19)

implies Q\=Q2. Using the linearity of N and 5 and equations (lb)and (12), we obtain

N(U +DQO + D(V -NQO = IX . (20a)

N(U + DQ2) + D(V -NQ2) = IX . (20b)

Composing equation (20a) on the right with the nonlinear map ( V - NQ j )_1 and using equa

tions (19) and (20b), we obtain

(V -NQ{f\V -NQ2)=IX . (21)

Using equation (21) in (19), we obtain

DQi=DQ2t (22)

hence Qi = Q2 since D isbijective.

•

When we interchange the roles of F and C , that is when a linear compensator C

satisfies Assumption 3.1 and has anormalized right-coprime factorization ND~l, then the set of

all causal stabilizable plants F in the feedback system S(P,C) are given by

[P=(U +DQ)(Y -NQT1 I Q:X ->Xr causal S-stable , (V -NQ)"1 causal } .(23)

If V is assumed to have a causal inverse, for Q =U(0) + V(0), equation (16) shows that

F =UV~l, hence by (23) S(UV~X,C) is S-stable; then (23) gives a parametrization of the

class ofall S-stable fractional perturbations ofthe nominal (not necessarily linear) plant U V~l,

which result in an S-stable unity-feedbacksystemfor the given linear compensator C .
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IV. Conclusion

The factorization approach has been extremely useful in the analysis and synthesis of linear

time-invariant feedback systems since individual subsystems haveright- and left-coprime factori

zations. Although a direct generalization of such properties to nonlinear maps seems intractable, a

right factorization approach to nonlinear unity-feedback system stability analysis seems to be

naturalsince the existence of right factorizations is a necessarycondition for stable feedback sys

tems. The motivation of this paperwas to investigatethe effect of right- andleft-coprime factori

zation propertiesofthe linear subsystem on the nonlinear stable unity-feedback system.

In Theorem 3.2, assuming only a left-coprime factorization of the linear subsystem, a spe

cial normalized right-coprime factorization of the nonlinear subsystem becomes a necessary and

sufficient condition for closed-loop stability. In Theorem 3.4, assuming that the linear subsystem

has also a normalized right-coprime factorization, the set of all special normalized right-coprime

factorizations is derived.

With respect to Theorem 3.4, it is interesting to note that the set of all stabilizing nonlinear

compensators (for a given linear plant) (or interpreted differently, the set of all stable nonlinear

fractional perturbations of a nonlinear plant, stabilized by a given linearcompensator) is precisely

of the form well-known for the linear case except that certain maps including the free stable

parameter Q are nonlinear.
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