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ABSTRACT

In this paper we derive several graphical 17-Hurwitz tests for certain classes of polynomials. The

classes may be defined in terms of linear equality and inequality constraints on the polynomial

coefficients, and the undesirable set U may be any closed subset of the complex plane. The analysis is

motivated by the proof of Kharitonov's StabilityTheorem.
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1. INTRODUCTION

Li 1978 V. L. Kharitonov [1] published astability theorem for classes ofpolynomials defined by let

ting each coefficient vary independently in a specified (but arbitrary) interval. This remarkable result
states that the whole class ofpolynomials isHurwitz ifand only iffour special, well-defined polynomials

are Hurwitz. The original proof has been considerably simplified and extended by many authors; [2] pro

vides a goodstarting point, with additional references provided there.

Inthis paper, we use the analytical methods used in [2], together with some convexity arguments, to

prove a vast generalization of Kharitonov's Theorem. The class of polynomials is generalized to

polytopes in coefficient space, so that arbitrary linear dependencies canbeconsidered. The setof accept

able polynomial zeroes is generalized to arbitrary open subsets of C, which allows various stability and

performance criteriato be considered, forbothcontinuous time anddiscrete timesystems. The results are.

non-conservative.

The drawback is that the tests are no longer finite (compare with Kharitonov's four polynomials!).

Indeed, we provide two graphical tests. The first is a root locus type test, while the second is a Nyquist

type test Finally, we extend the root locus type result to provide a method for determining precisely the

domain of polynomial zeroes for the polytopic class ofpolynomials mentioned above.

The key idea in the proofs is to consider the image of polynomials under the evaluation map; that is,

to consider the codomain of polynomial functions. Thus we explore the relationship among three spaces:

the coefficient space of polynomials, the space <C of possible zero locations (the domain of polynomial

functions), and the space <E of polynomial evaluations (the codomain). This analytical method was first

applied to the Kharitonov problem by Dasgupta [3], and was used extensively in [2].

2. THEORETICAL RESULTS

We denote byPn the «+l dimensional space ofn'h order polynomials

p(s) = ansH +flll_,5""1+ ••• +axs +a0

parameterized by coefficients. Given a finite set of polynomials K = [k!(•),..., i^,()}c P", we consider

the class N of polynomials which are convex combinations of *i() km(); i.e. N=co(K). We

denote by Ed(N) the edges of the polytope N. We restrict our attention to polytopes N which do not

intersect thesubspace ofP* defined byan =0; that is,we consider only sets K ofpolynomials whose nlh

degree coefficients all have the same sign.



Remark: In particular, N might be a parallelepiped, so that each coefficient is allowed to vary indepen-

dendy ina fixed interval. But N may actually be any polytope inRn+1 (the coefficient space);

i.e. any bounded set defined by a finite numberof linear equality and inequality constraints- so

long as an±0 on N. Thus affine dependency of coefficients is allowed.

Forall s e<C wedenote theevaluation map from Pn to<Cbye,();i.e. es(p)=p(s) Vp eP\ Since

es(p) = ansn +an.lslt"1 + •••+axs +a0

we see that es is linear (in the coefficients ofpi;)). Finally, we define His):=esiN)={pis):peN}.

Because es is linear, es (•) and co() commute (as setmaps), and we have

#(j)=e,(co(0=co(e,(Ar))=co{*i(s) km(s)).

So His) is aconvex polygon in <C. The following technical lemma may be obvious from geometric intui

tion, andthe proof is left to the Appendix.

Technical Lemma: dHis)c es(Ed(N )).

The result says that any complex number in an edge of the polygonal image ofN is the image of a
polynomial in an edge of N (see Figure 1). (ft certainly does not say that every polynomial in Ed(iV)
maps into dHis), nor that es"\dHis)) contains only edges.)

Finally, we consider closed subsets Uof the complex plane which are "undesirable" or "forbidden"
sets of polynomial zero locations. Thus we say that a polynomial pi) is y-Hurwitz if and only if
pis)*0 Vse U. The main result isthe following theorem.

Theorem: Suppose 1/cC with dUcU (i.e. Uclosed), and with AT, Ed(AO and His) as defined above.
Thenthe following three conditions areequivalent:

1. A/ is U -Hurwitz;

2. (a)Ed(AO is U-Hurwitz, and

(b) in each component of dU there is some s with 0«H0);

3. (a)0* His)\tsedU,md

(b) there is some p e N with p (•) U-Hurwitz.

Proof: !=>2and3: Suppose N is Hurwitz. Clearly 2(a) and 3(b) are satisfied. Now if sedU and
0e//(5), then there is apolynomialp(•)e Nwithp(y)=0. ThuspO has azero in dUcU and
is not U-Hurwitz, which contradicts the assertion that N is U-Hurwitz. ThusO* His) VsedU.

2=>3; First we note that His) moves continuously with s (i.e. *,($) is continous, and

His^coiktis),.. .,kmis)}). Considering any component Cof dU, from 2(b) there is an s in



C withO*tf(j). SinceC is connected, ifOe # is) for some s in C, then there must be some
s in C with Oe dH(J) c e,(Ed(N)), so that Ed(AO is not U-Hurwitz, contradicting 2(a). Thus

no such s exists.

3=>1: 3(b) provides au-Hurwitz peJV. N is clearly pathwise connected, and the zeroes of a
polynomial vary continuously with respect to its coefficients when the leading coefficient is

bounded away from zero. So suppose peN withp (•) not U-Hurwitz. Then on any path in N

connecting p (•) and p(•), there is another polynomial p ()e N with a zero indU, say ats. But

this implies thatp is )=0 so thatOeHis ), which contradicts 3(a).

Although thecondition 2(b) is easy enough to check forreasonable choices of U, 2(b) can beelim

inated if U is pathwise connected and unbounded. Theproposition below is proved by constructing a set

U*cU which satisfies 2(a) and 2(b). The details are relegated to the Appendix.

Proposition: Suppose f/cC is closed, pathwise connected and unbounded. Then condition 2(a) in

the Theorem is equivalent to 2(a) and 2(b) (and thus is equivalent to 1 and 3).

3. VERIFICATION OF U -HURWITZ PROPERTIES - GRAPHICAL TESTS

Condition 2 of the Theorem, or the subsequent Proposition, immediately yields a reduced test for

checking that N is (/-Hurwitz. Instead of searching the whole (possibly n -dimensional) polytope N for a

non-U -Hurwitz polynomial, we search only its one-dimensional edges.

In addition to reducing the computational requirement to perform the test, we obtain a testing pro

cedure which essentially indicates to the engineer when she has checked "enough" polynomials; namely,

she can plot the zero-locus of each edge, checking to see if it crosses into U. She can continue filling in

points until the locus "looks" continuous, and all the successive increments are much smaller than the dis

tance of the locus to dU.

Of course, N may have very many edges (a it-dimensional parallelepiped hasn2n~\ for instance),

so unless the process is at least partially automated, the test can be quite tedious.

We now turn our attention to Condition 3 of the Theorem to develop a more computationally

efficient and much less tedious test, and we consider the example where U is the complement of the open

unit disk (the discrete time stability problem). Condition 3 indicates that, after checking any one polyno

mial for the {/-Hurwitz property, we need to verify that 0* co[kxiej\... ,kmieJ*)} V6e[0,27c]. To

perform this test, we use the nearest point function:

mS) = argmin{\\s\\)
seS



defined for any S c <C. In particular, when 5 is the convex hull of a finite number of points (as His) is),

there are very efficient finite algorithms for calculating Nr(5).! In fact, for m reasonably large, the major

computational requirement in calculating Nrico[kiis),... ,k„is)}) should be in evaluating

kiis),...tkmis).

Now we state as fact that Nr(co{*i(j),... ,kmis))) is a continuous function of s. We propose to

plot the locus ofrfr(9) ^Nrtco^e'8),...,M^'9)}) for 0£9<2rc. There are two possibilities: either

rfr(9)=0 for some 9e[0,271} or tfr(9) circles the origin n times without intersecting the origin. The

engineer can continue to fill inthe locus until she's confident that one of the two conditions has been met,

in much the same spirit as the Nyquist stability test, where we also count encirclements and look for zero

intersections. If the locus touches the origin, N isnot £/-Hurwitz and anon-U -Hurwitz polynomial inN

has been demonstrated. If the locus circles the origin n times without intersecting the origin, then N

must be {/-Hurwitz.

Remark: Instead of plotting the complex number rfr(9), we could just as easily plot the real number

Irfr(9) I as acontinuous function of9. We would simply check to see if the graph ever hits
zero, filling in the plot as necessary to get aconfident answer. We prefer the complex plane
test, however, as counting encirclements adds one more degree ofconfidence that the user has
tested enough points, and we simply aren't aware ofany disadvantage of this test. Another
benefit of the complex plane test has to do with its (somewhat esoteric) resemblance to the
Nyquist criterion-the engineering community may except it more readily as astability analysis
tool since it"feels" more familiar. For whatever reasons, our limited experience in presenting
these results to practicing engineers does indicate adefinite preference for the complex plane

test.

It should be clear that the test generalizes to arbitrary closed Uc <C. After checking any one polyno
mial, one notes which components of Ue contains azero. There are at most n such components. Then
the loci ofNKco^Ci). ....*•.&)}> ™st be plotted for each component of dU which is contained in the
boundary of one of the components of Uc that contained azero of the test polynomial. In general, this
reduced set of components of dU may still be infinite, although such strange choices of Uare of littie
engineering interest. If Ue, the set of acceptable polynomial zeroes, is aunion of simply connected sub
sets of <E (connected sets without holes), then there will be at most nloci to plot Of course, each of these

1We refer, for example, to the two point method (see [4]) and the method ofWolfe 15].
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n components ofdU will have to be appropriately parameterized.

Finally, we note that one application of this test which has generated some interest involves putting
asmall disk around some orall ofthe zeroes ofa given nominal polynomial to generate avariety ofsen

sitivity analyses. The components ofdU are easily parameterized for this case.

4. DOMAINS OF POLYNOMIAL ZEROES

We now return to condition 2 of the Theorem to address a more fundamental question than the one

addressed in the previous section. Given the polytope N ofpolynomials as previously defined, without

having anapriori "desired" subset ofzero locations toconsider, can we determine precisely the domain

D of zeroes of polynomials in N*> The solution we propose does notprecisely determine D, butcomes

sufficiendy close in the following sense: we find a setD* =>£> such thattheboundary ofD* is contained

in the boundary of D. In this sense, the set obtained is not conservative. However, D mayhave "holes"

in it that D* does not share. For most engineering applications, this is of little consequence. As with the

Proposition of Section 2, we restrictour attention to polytopes N whichdo not containpolynomials with

vanishing leading coefficient; i.e. an±0 VpeN.

The concept is quite simple. As in Section 3, we propose to plot the zero loci for every edge ofN.

Let E denote the total locus of edge zeroes; i.e. E :={s:p(s)=Ofpe Ed(tf)}. E is bounded since N is

bounded and an is bounded away firom zero. Consider the set Ee=<E\E. Ec can have only one

unbounded component which we denote C. We defineD* := Cc. So D* is the union of E with all of the

bounded components ofEc. An engineer with the zero locus (i.e. E) in front of him would simply shade

in every enclosed region to display D*.

It is clear that dD*c£, so that every ote dD* is a zero of some polynomial in N, which justifies

the claim of non-conservatism made above. Of course, we still must show that DcD*\ i.e. that p(s)±0

Vs€ C, \/pi')&N. So supposese C andp e N withp (?)=0. Since C is connectedand unbounded, we

can find a closed set U which contains s; indeed, a path from s to infinity will suffice.2 Now U and N

satisfy the hypotheses of the Proposition of Section 2, so N is U-Hurwitz. Thus pis)$0, which contrad

icts the assertion.

2 Since C is unbounded, there is asequence of points SnG C with IS„ I—*». Since C is connected,
wecan connect S toS j and S^ toJ4+i, k=1,2,3,.... Theunion of all these paths is thedesired path.
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Figure 1(a):
His ) is the image of N.

Inthis case theinverse image of each point indH is) consists
ofone polynomial inN, an edge polynomial, but not every edge

polynomial inN maps into dU.

*3Q^r

Tim {/>(*)}

Figure 1(b):

In this case the inverse image of one edge ofHis ) contains
a whole face ofN, and the inverse image of each point in that
edge(exceptthe endpoints) contains two edgepolynomials.



6. APPENDIX

Technical Lemma: dHis)ces(EdiN)).

Proof: Choose cce dHis). The proofproceeds by inductioa

Inductive Hypothesis: Suppose *>1 and there is some p(-)e e,"!(a) in aA-dimensional outer surface of
N. (For *=n, this should be interpreted as pi)eN.) Then there is some

p (•)€ eV^ot) ina(*-l)-dimensional outer surface oftf.

Proof: Ifp(•) is inthe boundary ofthe k-dimensional outer surface, S, then choose p (>=p (•) and we're

done. So suppose p(•) is in the interior ofS. We consider the boundary ofdS, and note that dS
is a connected (since *>1) subset of S "surrounding" pi). Thus, given Pii)e dS, we define

p2()e dS as the opposite edge of aline segment f through p(•) and pxi). So es (7) is aline seg
ment (possibly degenerate) inHis) containing a, with endpoints plis) and p2is ). Since es (•) is

linear, either *,(/) isdegenerate (a single point, namely a) or a lies inthe interior of the segment

e,(7). Since a is on an edge of the convex polygon His), the line segment esil) must be con

tained in the same edge. Since p:i) was an arbitrary polynomial in dS, we see that the whole

boundary dS (and, in fact, all ofS) maps into the edge containing a. Thus esidS) is aline seg

ment contained in that edge, and since p^s) and p2is) lie onopposite sides of a (or are both

equal to a), es(35) contains a; i.e. es(p)=a for some p(•)€ dS. Sop(•) is the desired polyno

mial.

Now we complete the proof ofthe Lemma. Since ae His)=esiN), there is some/>„(•)€ N with/?„($)=a.

We deduce inductively for k=n v... v1that there issome/?*(•) insome *-dimensional outer surface ofN

withpkis)=OL We end up withpii) in a 1-dimensional outer surface of N; that is, p](*)eEd(AO. So

ae e,(Ed(AO). H

Proposition: Suppose 1/cC is closed, pathwise connected and unbounded. Then condition 2(a) in
the Theorem isequivalent to2(a) and 2(b) (and thus isequivalent to 1and 3).

Proof: Since an±0 VpQe N and N is compact, an is bounded away from zero; \an I is also bounded
above. For 1*1 large andp()e N,pis)=ans*(1+0(1/5)). SoH(j) goes to infinity with uniform angle

as lsl-*» 0-e. arg(p!(j))-arg(p2(s))-»0 as \s\-**> Vpii), p2(:)^N, uniformly). In particular,
0* HiS) for \s\ sufficiendy large. So, since U was assumed to be unbounded, there is some s* in U

with 0* His*).

Now suppose condition 2(a) is satisfied, but that p(? )=0 for some peN,seU. We will show that

this leads to a contradiction.



Since U is pathwise connected, we can find abounded, simply connected U*cU (so dU* is con

nected) with s e U* and s*e dU* (any path from S to s* will suffice). Now U* satisfies 2(a) and 2(b),

implying that N is U* -Hurwitz. In particular, p(•) is U* -Hurwitz, which contradicts the assertion that

p(S)=0. B

Remark: We canextend the Proposition to sets U which are not necessarily connected, but everycom

ponent of U is pathwise connected and unbounded; i.e. U is "pathwise connected to infinity."

However, we do not forsee anyuseful applications for such anextension.
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