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ABSTRACT

When a continuous time control law is implemented using a digital computer, the
closed loop system may not have the same stability properties as the system with a true
continuous controller due to delay and digitization errors. Using a Lyapunov analysis,
this paper showsthat, for linear systemsanda classof nonlinear systems with discretized
feedback, some stability properties can be preserved if the sampling frequency is prop
erlychosen. In particular, we propose a variable sampling interval scheme forlinear sys
tems. This scheme is desirable when (1) computer resources are tightly shared by many
tasks or (2) power consumption is critical.The effect of truncation error is also studied.
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1. Introduction

The discretization of linear systems is well understood(for example, see [1] [2]). z-domain analysis

is certainly the best way of designing a controller if this controller is to be implemented using a digital
computer. However, in some cases z-domain analysis may result in an impractical design. An example of
such a design is the dead beat controller which, theoretically,can bring the state from any location in the

state space to the origin in n steps where n is the dimension of the system. It is clear that, unless the sam
pling frequency is very low or the statevariable is alwaysclose to the origin, the requiredcontroleffort can
be unreasonably high. On the other hand, a computer simulated continuous time controller can perform
very close to a system with a true continuous time controller if the sampling frequency is properlychosen.
For a linear system, we proposed a variable sampling interval scheme which cannot be obtained by z-
domain analysis. This scheme is desirable when computer resources are tightly shared by many tasks or
when power consumption is critical (such as in space applications), since the power consumption of some
integrated circuits is proportional to the system clock rate. With this variable samplingintervalscheme, the
system clock (or sampling frequency) can be slowed down or sped up as needed.

Continuoustime controlof nonlinear systems hasbeen studiedvery extensively recently [3,4,5]. It is
not surprisingthat this design methodology usually leads to a control law which is a nonlinear function of
the plant output Except for some extremely simple cases, this nonlinear control law must be implemented
using a digital computer which,of course, does not provide the instantaneous response thatis required to
realize a continuous time function. Unlike a linear system, most nonlinear systems can not be easily
discretized. A great deal of work has been done in the analysis of sampled data non-linear systems. The
emphasis has been on obtaining a state space model for the non-linear system after sampling as a power
series in the sampling interval (see e.g.[6,7,8]). However, the behavior between samplesis somewhatmore
difficult to understand. Thus, we take the position thatwe will construct a discrete controller as a sampled
version of a continuous controller with a appropriate sampling frequency. It is intuitivelyclear that,if the
sampling frequency is high enough, the performance of the closed loop system with a digital computer in
the loop will be close to the performance of the system with a true continuous time controller. Using
Lyapunov analysis, this paper shows that, this intuition is correct for a class of nonlinear systems. The
effect of truncation error is also studied.

2. Definition of Discretized Feedback

Consider the system representedby the stateequation

x=f(x) + g(x)u(x) (2.1)

* Researchsupportedin partby NSF under PYI grant DMC84-51129.
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where u (x) is a stablizing state feedback. In practice, this term is usually generated by a digital computer at

discrete times and is held constant between samples. We represent this discretizedfeedback system by the
following equation.

x=f(x) + g(x )u(xk) (2.2)

Before we define the function xk, we must first examine the timing sequence in a typical digital com

puter based controller. In such a system, the central processor unit (CPU) is interrupted by various service

requests. A service request is granted if the CPU is idle or is running a lower priority service routine. Usu

ally, a real time control service request has a relatively high priority and is initiated by a timer which gen

erates a request at a fixed interval

Time
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Figure 1
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Figure (1) shows the sequence of events in a control cycle. At time tkt the CPU starts to execute the

control routine in response to the request generated by the timer. In the control routine, the CPU firstreads

the current state and, after some time p required to execute the control algorithm, the CPU outputs the con

trol u(xk)lo the plant and this u(xk)is held constantbetween time tk+p and ft+1+p while the CPU is either
idle or running other tasks.

xk can now be defined as follows:

0 for fo^ t < to+ p

x (tk) for k+p < t < f*+i+p and k * 0xk(t) £ - (2.3)

Due to the computer delay we just described, we need the following assumption on the uncontrolled sys

tem:

y=/C). (2.4)

Let A denote the region of attraction of the equilibrium 0 of system (2.4).

(Al) Given a closed setB xand a bounded open set fl2 and5[C52cA, there exists 2ls(Bx,B£>Q such

that, if the initial condition y(/e)eJJ1, then the trajectory of (2.4) y(t0+t)e B2, for all
tZsiBiftj).

Without this assumption, the uncontrolled system may escape out of the attraction region before the first

control output u (x0) can be generated by the computer.
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In the following sections, we will investigate the effect of such discretization and delay on the feedback
loop.

3, Linear system with discretized feedback

This sectiongivesan upperboundon thesampling interval. If the samplingintervalis lower then this
bound, the system with discretized feedback remains exponentially stableprovided that the system with a
continuous time controller is exponentially stable.

Consider the following linear system

x =Ac +Bv (3.1)

where v=Fx is the stabilizingstate feedback. The following theorem shows that if v=Fxk (as defined in
(2.3)) andif p is so smallthat it can be neglected, thesystem remains stablefor someproperly chosen sam
pling interval tk+l-tk.

We propose two methods of estimating the sampling interval. The first method takes advantage of
the fact thata lineardifferential equation hasa closed form solution. Thesecond method usesan approach
which is similar to that described in section 4.

Theorem: (1)

Consider system (3.1) with v=Fx is exponentially stable and computation time p =0. Then, there
exists a 7>0 suchthat,if tk+l - tk < T forallk, thesystem with discretized feedback represented by

x=Ax+BFxk (3.2)

is exponentially stable.

Proof of theorem 1: (Method 1)

Since A+BF is exponentially stable, given g>0, there exists a P>0 satisfying the following
Lyapunov equation

(A+BF)TP +P(A+BF) =-Q (3.3)

Let

V(t)=xT(t)Px(t) (3.4)

be a Lyapunov function for system (3.1). Then,

V(t) =-xT(t)Qx(t) +x(t)T(P+PT)BF(xk-x(t)) (3.5)

Between time tk and tk+l, x (t) can be expressedas

x(t) =eA(f^xk + J eA(f^r')BFxk ds £ G(x)xk (3.6)
o

where x= t-tk and G (x) is defined as

X

G(x) £ eAx +jeMv-3)BF ds (3.7)
o

Substitutingequation (3.6) in (3.5), we get

V(t) = -xkTG(x)TQG(x)xk +xkTGT(x)[P+PT]BF[I-G(T)]xk (3.8)
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where Q (x) is defined as

Q(x) £ G(x)TQG(x) + GT(x)[P+PT]BF{I-G(x)l (3.9)

It is clear that Q(0)=Q. In fact, by the continuity of a solutionof a differential equation, there exists
a Ta such that, for all x<Ta, (J(x) ispositive definite. Therefore, if the sampling interval iskept less
than Ta and xk*0t then V<0t and using the fact that V is bounded below by 0, this implies that

limV(f)=c where c is a non-negative constant Suppose c*0, then from (3.4), we have

lim [] jc(r)(l ^c/H /»[| >0 and it follows from (3.6) that, for any fixed xa<ra,

lim|| jcfc [| >c/(i G(xa)\\2\\ P i)£e>0. From (3.8), hmV<-qe<0 where tf is defined as the

minimum singular value of (5(xa). This contradicts the hypothesis that limV(r)=c>0. Therefore,

limVft)=0 and, hence, system (3.2) is asymptotically stable.

To show that the system is exponentially stable, we need G(x) to be invertible. It is clear that
G(0)=/. Thus, there exists a Ts such that, for all x<r„G_1(x) exists. From equation (3.6) and (3.8),
fora given x0 <min {Ts Ja}, we have

V(t)=-xTG-\x0)TQG~\x0)x <-<xB x || 2

where a isdefined as the minimum singular value of G~\x0)TQG~l(x0). Now, V isbounded above
by a negative quadratic function of Jx ] . By Lyapunov theorem [11], system (3.2) is exponentially
stable.

Q.E.D

In the above proof, for asymptotic stability, we limit the sampling interval to stay below an upper
boundTa to insure the positive definiteness of Q. In fact, ourvariable sampling interval scheme is based
on whetherxkQ(x)xk>0 (i.e. V<0 ) for eachxk rather than the positivedefiniteness of Q (x). The unit ball
i.e. { x 11| x || =1} is divided into segments. Then, a table is generated that records the minimum x*, over
each segment, of the maximum x satisfying xT& (x)jc£e>0. Attime tk, the sampling interval between tk and
tk+l is determined depending on the segment which jcjt/|I x \\ belongs to. Here we use the fact that if
(x/1| x J )TQ (x)(x/1| x || )>0, xTQ (x)x >0. The following isan example of this approach.
Example:

Consider the system

with the state feedback u

The pair

Q =

X\

x2
=

0 1

0-4
Xl

Xl
+

0

2

1 0

0 1

u=[-35 -A ]

p =

*1

*2

1.5881 0.0143

0.0143 0.0405

(3.10)

satisfies the Lyapunov function (3.3). In figure 2, the radius at angle tan"1(x2/jc1) represents the



maximum xsuch that [xjx^{x)[xxx^^s>0. For example, supposext=[-3,5] (as shown infigure
2), the sampling interval [tk,tk+l] can be extended to 0.29 second.

From figure2, we see that, if the samplingintervalis kept below 0.07 second, V is guaranteed to be
negative. With the table look up scheme, the sampling interval may vary from 0.07 second to 0.7 second
and still guarantee asymptotic stability. Figure (3) shows the response of the system with a square wave
function input Figure (4) shows the samplingclock. Note that the sampling interval varies from 0.07 to
025 second. In this setpoint control simulation, the state variable is [xi-v(t), xjr where v(t) is a square
wave function and x j-v (t) is the set point error.

Proof of theorem 1 (Method 2)

The same Lyapunov function (3.3) is used in this approach. Let Ts be such a number that, for all
x <r,, G (x) (definedin (3.7)) is invertible. If we chooseT < Ts, we have

G(xTlx(t)=xk (3.11)

and

iGC^-ZUxCO! *ii**-*(Oll (3.12)

Since || G(x)""1 - /1| -»0 asx-»0, there exists a 8>0such that

l|G(tr'-7|l<n(P+fVn foraUx<8 (3-13)
where $=|| Q~l | _1 i.e. the minimum singular value ofQ. Now, take T- min(8,r#) . By equation
(3.5), (3.12)and (3.13), for tk £ t < tk+lt we have

V(t) Z-q || x(O0 2+ll *<Ol II (P+PT)BF || || xk-x(t)\\ (3.14)

Z-iq-HP+P^Fl [GCx)-1-/! )||x(r)||2

£-Mx(t)\\2

where X is defined as

\£q-\\ (P+PT)BF || || G{xTl-/ || >0 (3.15)

Hence, V is bounded above by a negative quadratic function of || x || . By Lyapunov theorem [11],
system (3.2) is exponentially stable.

Q.E.D.

The second method gives a more conservative bound on the sampling interval. For the example
given earlier (3.10), the maximum sampling interval given by method 2 is 0.008 seconds compared with
0.07 second given by method 1.

Consider the case that p ^0 i.e. the time required to execute the control algorithm is not zero. At
t-tk, we can exactly predict the state at tk+p by the followingequation.

p

x(tk+p) =eApxk +Je^^^BFx^ dx (3.16)
o

£ ofow*)

Then, after samplingxk at tky the control u can be generatedas F<J>(xJk_1^cJk)=Fx(rJk+p) and this control is
output to the plant at exacdy t=tk+p. The following theorem can be proved by either method suggested
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earlier and, therefore, is omitted.

Theorem: (2)

Assume system (3.1) with v=Fx is exponentiallystable. There exists a T>0 such that if tk+x -tk<T
for all k, the system with discretized feedbackrepresented by

x=i4x+BFO(xJk_1^)

is exponentially stable.

4. Non-linear systems with discretized feedback

As mentioned in the section (1), an exact discretization of a general nonlinear system does not exist
Consequently, one way of designing a nonlinearcontrolleris to, first ignore the fact that the control law
will be implemented in a discretized fashion and, then choose a sampling frequency so that this system will
behave similar to the system with a true continuous time controller. In this section, for a class of nonlinear

systems, we give a lower bound on the sampling frequency to maintainstability.

In the proof of the following theorems, we required a Lyapunov function for the system with true
continuous time controlleri.e. system (2.1) which is assumed to be stable in some sense. For this system, a
Lyapunov converse theorem [11] guarantees the existenceof a Lyapunov function but does not provideit
in an explicit form. If the system (2.1) is proved to be stable usinga Lyapunov function in the first place,
this same function canbe used in ouranalysis. Furthermore, oneof the popular design approaches [3] [9] is
to exactly linearize system (2.1) by state feedback. Then a controller is designed based on this linearized
system. In this case, a Lyapunov function is ready obtained from the linearized system. An example of
sucha designapproach is the computed torque controller [10] fora mechanical manipulator. Nevertheless,
the conversetheoremis quotedin the following proofs.

A Lyapunov converse theorem states that for every asymptotically stable equilibrium point, there
exists a V(.) such that V(x) and -V(x) are positivedefinite over some regioncontaining the equilibrium
point In the caseofan exponentially stable equilibrium point, V(.) hasthe following properties.

V(x) £ -a|| x || 2 for some a > 0 (4.1)

|| -~|| <>b I jc|| forsome* >0 (4.2)

We need the following lemma in the proof of theorem (3)

Lemma: (1)

For a given x0 e R*, we define the set B as

B£ {xl||x„-x|| <c||xj|}

where c is a fixed constant and 0<c < 1. Then, there exists a d such that

d\\x\\ >\\x0-x\\

for all x eB and d(c)->0 as c -»0.

Proof:

It is obvious that(l-c)x0 =argmin {|| x || I xeB} i.e. (l-c)x0 is the minimum normelement inB.
Therefore,

||x|| S>(l-c)||xJ forallxe*.

Take d=c /(1-c ), then, for all x eB,



(l-c)

Q.E.D.

The following theorem can be thought of as a generalizationof theorem (1).

Theorem: (3)

Let 0 be a exponentially stableequilibriumpoint of system (2.1) with attraction region A and let VQ
be a Lyapunov function for 0. Assume that assumption (Al) and the following conditions are
satisfied.

A2) Equations (4.1) and (4.2) are satisfiedin a regionB.
A3) / (.) has Lipschitz constant F in B.

A4)||s(x)|| £Gforallxe5.

A5) u (.) has Lipschitz constant U in B.

Then, thereexists a T, P such that if tk+x-tk<T and p<P,Then, system (2.2) has one of the follow
ing properties.

I) If A=B=RB, there exists T,P such that if, tk+x-tk<T and p<P; 0 is the globally exponentially
stable equilibrium point

II) If B*Rn, for any set in B (~\A thatcanbe expressed as (x IV(x)<X) for some X>0, thereexists
T,P such that if, tk+l-tk<T and p<P, {x IV(x)<X) is contained in the attraction regionof 0 of sys
tem (2.2).

Proof:

let V be a Lyapunov function such that equations (4.1) and (4.2) are satisfied. Consider the V(t)
along the trajectory of system (2.2),

V\O=|j(/0c)+s(*)"Cc*)) (4.3)
=̂ U(x)+g(xMx)] +̂ g(x)[u(xkyu(x)l
Z-a\\x\\2+bGU\\x\\\\xk-x\\

wherea andb areas definedin (4.1) (4.2). Between tk+pand ft+1+p, x(0 canbe expressed as

<*+p t

x{t) =xk + J \f(x)+g{xMxk-l)]dx+ J \f(x)+g(x)u(xk)]dx (4.4)
«* i*+p

hence,

II *(')-** II =J|U(x)«(x,)|Ux+ J \\ gixXuix^huQcM dx
h u

t t

+j\\f(xk)\\dx+j\\f(xyf'(xk)\\dx

<(r+/>)Gtf||xfc|| +PGU1 x,-x^ ||

+(r+p)F||xt|| +Jf || x{ty-xk\dx.
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Suppose

II **-**-! II SHI*!- (4.5)

This T) will be determined later in the proof. Then we have

t

||x(r)-^|| <[(T+PXGU+F)+PGUr\nXk\\ +JF \\ x(tyxk\\ dx.
h

By the Bellman-Gronwall inequality, we have

|| x(tyxk || £ [(T+P)(GU+F)+PGUT\]eFT || xk | (4.6)

£c(TJPMxki

Suppose7\ P areso chosen thatc(TJ> ,T0<1. By lemma(1), thereexists a d (TJ> ,tj) such that

l*(/)^I * day .to l*&)ll. (4.7)

Note that the above equationis equivalentto equation (3.12)and to ask c <1 (so lemma 1 is satisfied)
is similar to ask G(x) to be invertible in (3.12). From theaboveequation and(4.3),we have

V£[-a+bGUd]ix\\2 (4.8)

Since, forany constant t\, d(TJ>,T0=-r—»° asp J*-»0,we shrink 7\ P further, if necessary, such
1—c

that

—— > d. (4.9)
bGU v• }

Then, with this T,Pt V along the trajectory of system (2.2) is bounded above by a negative qua
dratic function of || x || . This implies that system (2.2) is global exponentially stable. Now, theques
tion is whether such aT) exists. Consider thestatex(t) in the first sample interval i.e. te [f0,f J.

x(0=*<W>+ J/(*)**+ jf(x)*g(x)u<xddx

Similarto the argument given earlier (between (4.4) and(4.6)), by choosing sufficiendysmall P, 7\
we have the following relation.

Hxtf-xJ SiUCP.DlUill (4.10)

With this t^ , we can shrinkT, P further, if necessary, such that

0<d(TJ>,r\o)<miiAvotj^[
With this T, P, equation (4.5), (4,7), and (4.9) are satisfiedsimultaneously.

The proof for property (II) is similar.

Q.E.D.

As mentioned earlier, if the system is asymptotically stable (instead of exponentially stable) the
Lyapunov converse theorem does not guarantee equation (4.1) and (4.2). The following theorem gives a
local convergence property without assuming the exponentialstabilityof the originalsystem.



Theorem: (4)

Consider a nonlinear system represented by equation (2.1). Let 0 be the globally asymptotically
stable equilibrium point of the system. Assume that assumptions (Al), A(5) are satisfied. Given

B !^2» 0££ icB2 andB2 is bounded.There exists a T > 0 such that, if tk+l-tk < T, all the trajectories
of system (2.2) starting from B2 converge to B t.

Proof:

Let 7 be a Lyapunov function of system(2.1). For givenBlt B2,we construct setsL xandL2 as fol
low. 0eLi = {x I V(x)<c}cBl for some c>0. L2= {x I V(x)<d] dS2 where
d =supV(x). and let W={x IV(x) <e} where e >d. For system (2.2), V(x) can be represented

by the following equation.

V(x) =̂ x (4.11)

=f(f(r) +8(x}u(x))+̂g(x)(u(xk)-u(x))
The firstterm of the above equationis a negative definite function. Let

~ai x^o^(fix)+8(xMx))<° (4*12)
P= surj||-^g(x)|| (4.13)

and

5« sug||/(x)+g(x)u(x)||. (4.14)

Let u be the Lipschitz constant of u (.) over W. Now choose 7 such that

.J a-5
r<mbt^7'7 (4'15)

where 8 >0, a-5>0and j(L2,W) is asdefined by (Al). We now show that, with this 7\ the sys
tem indeed has the property claimed in the theorem.

Between time tk+p and tk+l+p, x (0 can be expressedas

t

x(t) =xk +jf(x)+g(xMx)dx (4.16)
k

where

fu(xk.x) \£tk£x<tk+p

u(T) =| u(xk) if tk+p <x<tk+l+p-
Then, from equation (4.11), (4.15), (4.16) and the relation T+P£lTt we have

V(x(t))<ij£(f(x) +g(x)u(x)) +VU\\x(t)-xk\\ (4.17)

Z^(f(x) +8(xMx))+$u]l\f(x)+g(x)u(x)\\dx

<-a+$UZ,(T+P) ifx(f)e 17 -Lx
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<-5 ifx(t)eW-Lx

The last inequality implies that for any trajectory starting from B^r-L^ eventually reaches Lx and
trajectories starting fromLx stay in Lx.

Q.E.D.

5. Non-linear System with discretized dynamical feedback

Consider a nonlinear plantwith nonlinear dynamical feedback represented by

x=f(x) + g(x)z (5.1)

y=h(y)+j(y)v(x)

z=p(x,y)

where the lasttwo equations are thecontroller. There are many numerical integration methods that can be
used to implement such a dynamical control law. But, by far, the easiest and most popular numerical
integration method is the forward Euler method. The following theorem states that, by using the forward
Eulermethod,the closedloop systemrepresented by

x=f(x) + g(x)zk (5.2)

yk =&t[h(yk„d+j(yk.x)v (x^)] +yk_x
** =/K**-iJ*)

has properties similar to theorem (4). For simplicity, we assume p=7 i.e.x(tk) is read at tk andthecontrol
zk+l is theoutputat exactly tk+l. This is thecasewhena CPU is dedicated to the real time control task.

We use the following notation in the following theorem where V(xy) is a Lyapunov function for the
asymptotically stable system(5.1). Note that the state variable of (5.1) is (x o>).

Vxixxjctf) =-jk l(xlJ)[/(JCi)+g(xl)p(x2,y)]

Vy(xi*2>y) =̂ l(?lj)[h(y)+j(y)v(x2)\
H(x,y) =Vx(xjc,y) + Vy(xjcty)

Theorem: (5)

Let 0 denote the globally asymptotically stable equilibrium pointof system (5.1) and let V(x,y) be a
Lyapunov function for 0 and, hence, K, ~V are positive definite. Assuming thatthe following condi
tions are satisfied.

(A6) Vx(xl,X2.y) hasLipschitz constant lx(W) in (xltX2) overany given boundedset W.

(A7) Vy (x1^2»y) has Lipschitz constant l2(W) inxx over any given bounded setW.

Given Blt B2, OeBxcB2 whereB2 is bounded. Then, there exists a T such that, if tk+l-tk<T, all the
trajectories of system (5.2) starting fromB2converge toBi.

Proof:
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We constructW,LUL2 exactly the same way as in in the proof of theorem (4) i.e.

£i={(*oOin*oO<c}

W={(xj)\V(x,y)<e)

where e>d>c andLi<zBlcB2czL2. Define

%£ sup (f(x)+*(x)K(y))

£ sup ff(xoO
QcjyeW-Lt

-a£

Since 7 is a Lyapunov function of 0 of system (5.1), V=H is a negative definite function. Hence,
coO. Considerthe function V"(.) alongthe trajectory of system (5.2).

Vr*+1 - vk 1

At = Af JVx{x*k-\dk)& +V(xMyM)" V(xk+lyk)

J_
A/

At

_1_
Af

}Vx(x*k-iJk)dt +̂ \(^yk)[h(ykyj(yk)v(xk)]At +O&t2)

av^(x^^c*)+-jr- ife+lj4)(A0'*)t/(y*)v(^)) <fc +0(Af2)

«H» «*«

\U{xkyk)dt + Jvx(xtxk_l,yk)-Vx(xkjck,yk) +Vy(xk+l*k,yk)

-Vy(xkjckyk)dt+0(At2)}

From the aboveequation, if (x, yk)e W-Llt then

V*+1 - V"*

A/
S-a +MKx^M**,**)! + /2II ***-** II +0{At)

SJ-a+Zjx-xJ +/il|xJfc.1-xt|| + /2ll**+i-**ll +0(At)

rkAwhere V* ZV(x(tk),yk), l^l^W), and /r=/20*0. Furthermore, if (x, yk)eW-L u then

and, hence,

fc.i

II *-**|| =J1 /0O +*CO«(y*)I * <^Af =0(Ar)

x^r-xj =0(A/)

**+i-**ll = 0(A/).

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)
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From (5.6), (5.7), and (5.4), we conclude that, if (x, yk)e W-Lx, then

V*+1 _ vk
y A v £-a+fl(Af)

At

The above inequality implies that if (x(tk)yk)eW-Lit for sufficiendy small A/, V* is a strictly
decreasing sequence and, hence, (x(ri),y1) e Lt for some i. Now it remains to show that

(1) If (x(f0).meny0)s£2,(*(O.yJk)eWp forallf,*.

(2) Once (x(t)yk) reaches Llt then (x(/)«%) stays in B xthere after.

Proof(l): Assumption (Al) guarantees the existence of a T such that if (x(t^,y0)eB2,

(x(ti),yx)eW. However, between tx and f2» V can increase. From (5.5) and (4.2), we see that by

choosing a sufficiendy small T, we cankeep|| x(f)-x(f j)|| so small thatV(x(t)tyi)-V(x(f i),yi) <
e-V(x(ri),y1). This implies that (x(0»yi)e W for all te [f^J. Since V(x(f2).y2) < V(*(*i)ji), the
same choice of T will guarantee that (x^y^eW for all te[t2it3]. Similarly, we can show that

<x(.t)yk}eWfotallttk.

Proof(2): As shown in the proof(l), V(x(t)yk)-V(x(tk)yk) (te[tkjk+l]) can be kept as small as

necessary by keeping T small if (xtyk)e W. Therefore, if necessary, we can shrink 7 and/or L\ to

make sure that once (x(ti)ji)eLlt (x(t)tyk) will stay in B\. Note that it is possible, for some j>i,
(xfy)^) does not belong toLx (but belong \oBx). In this case, the sequence Vkk=j,j+1, ••• will
keep decreasing until (x(t),yk)eLl again.

QJE.D.

6. The Effect of Truncation Error

Truncation error is unavoidable in a digital computer due to finite word length. We represent system

(2.2) with the consideration of truncation error as

i =/(*) +*C*)*C4) (6.D

where xk is the digitized version of xk and u is the function with truncation error due to computation. To

simplify the analysis, we lump all these digitization errors into x'k i.e.

x=f(x) + g(x)u(x-k) (6.2)

where

U-*I<e. (6-3)

The following theorems shows that all the theorems in the earlier sections suffer from the truncation
error.

Theorem: (6)

Assume that system (3.1) with v=Fx is exponentially stable. If p =0, there exists a T>0 such that if

f*+i - ?* <7 for all ife, all the trajectories of system(6.2) converge to a ballB = { x 11| x || £ c} for
some c > 0.

Proof:

Similar to equation (3.6), the following equation representsx(0 for tk < t < tk+l.

t-k

x(0=e^^xt + J «A<Mr*tafc dx (6.4)
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t-k

M*-k) + J eMt-^BF dx
o

xk+eMt'%k-x-k)

=G(0^ +eA(,-°(xt-xt)

where G(0 is definedby equation (3.7). For the same reason stated earlier, G(t) can be kept from
becoming singular. So we have

G'lx(t) =x'k +G-leAif'h\xk -xk) (6.5)

and

(G"1 -I)x(t)-G-1eA^\xk -xk) =xk -x(t) (6.6)

We now chose T exacdy the same way as described in the proof (method 2) of theorem (1). From
the above equation and similar to equation(3.14), we have

ViOZ-Uxp+Qxl (6.7)

whereXis definedas in (3.15) and £ is defined as

C=}l (P+PTW1 1G-V"-4'! |xt -A1 (6.8)
Equation (6.8) implies that V(x) <0for x e [x 11| x || <-£-} and this implies that all the trajectories

converge to B={x 11| x || £|| P || -J-}. More precisely, all the trajectories converge to the set
.rD„ ^ JL[x lxiPx<-^}.

Q£.D.

The above theoremcan alsobe provenusing method 1 as in section3. The following theorem shows
that with truncation error, the discretized feedback systemwe studiedin theorem (3) is no longerexponen
tially stable.

Theorem:(7)

With truncation error, all the trajectories of system (2.2) in Theorem (3) converge to a region which
contains the equilibrium pointof the original system (2.1).

Proof:

Similar to equation (4.7), we have

V Z [-a+bGUd ]|| x || 2+ bGU || x || e.

Sincethe first termeventually dominates the second term as|| x || -»°°, this inequality impliesthat all
trajectories converge to a neighborhoodof the original equilibrium point

Q.E.D.

The following theorem shows that with the truncation error, theorem (4) is no longervalid for arbi
traryBX,B2 unless the e (as defined in (6.3)) can be assumed to be sufficiendy small. But £ is not a design

variable. Hence, there may or may not exist such a T that guarantees the property claimed in the theorem.
In the proof of the following theorem, we show that, by sacrificing the 'size* of the attraction region
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B2- B i, we increasethe 'chance4 ofexisting sucha T.

Theorem: (8)

The theorem (4) is true for sufficiendy smalle.

Proof:

Similar to equation (4.15), we take

0<T<mini ^<^T-E)' T (6'9)"4^1
Then, similar to equation (4.17),

V(x(t)) <f£(fOO +*(x)«(x))+pr/1| x(0-x* II
*^(f(x) +g(x)u(x)) +$UU(t)-xk\\ +$Ut

^-a+pc/(^(r+P) +£) ifx(r)e W-L!

<-5 ifx(/)e^-L1

It is clear thatinequality (6.9) canbe satisfied by someT onlyif

which is always possible if 6 can be assumed sufficiendy small. In this case, this theorem can be
proved by using the same argument as in theproofof theorem (4). Furthermore, the above inequality

is 'easier' to satisfy if theratio — is bigger which means that 5 2become smaller and/or Bxbecome

larger i.e. the attraction regionB2-Bxis smaller.

Q.E.D.

7. Summary

We have shown that a system witha discretized feedback and with a properly chosen sampling fre
quency

(CI) is exponentially stableif the system is linear (theorem (1,2)).

(C2) is asymptotically stable if the system is nonlinear andsatisfies some assumptions (theorem (3)).

(C3) is locally stable in the sense that all the trajectories starting from a bounded area converge to a small
neighborhood of the equilibrium pointif the systemsatisfies someassumptions (theorem (4,5)).

We also show that with the consideration of truncation error, a linear closed loop system, regardless
of the choiceof the sampling frequency, is no longer exponentially stable. Instead, a weaker form of stabil
ity is proved (theorem 6). In the nonlinear case, theorem (7) showed that if we can assume the truncation
effect to be sufficiendysmall, theclosed loop systemwillhave property (C3). Otherwise (this is usually the
case), no stability is guaranteed.
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