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ABSTRACT

When a continuous time control law is implemented using a digital computer, the
closed loop system may not have the same stability properties as the system with a true
continuous controller due to delay and digitization errors. Using a Lyapunov analysis,
this paper shows that, for linear systems and a class of nonlinear systems with discretized
feedback, some stability properties can be preserved if the sampling frequency is prop-
erly chosen. In particular, we propose a variable sampling interval scheme for linear sys-
tems. This scheme is desirable when (1) computer resources are tightly shared by many
tasks or (2) power consumption is critical. The effect of truncation error is also studied.
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1. Introduction

The discretization of linear systems is well understood (for example, see [1] [2]). z-domain analysis
is certainly the best way of designing a controller if this controller is to be implemented using a digital
computer. However, in some cases z-domain analysis may result in an impractical design. An example of
such a design is the dead beat controller which, theoretically, can bring the state from any location in the
state space to the origin in n steps where n is the dimension of the system. It is clear that, unless the sam-
pling frequency is very low or the state variable is always close to the origin, the required control effort can
be unreasonably high. On the other hand, a computer simulated continuous time controller can perform
very close to a system with a true continuous time controller if the sampling frequency is properly chosen.
For a linear system, we proposed a variable sampling interval scheme which cannot be obtained by z-
domain analysis. This scheme is desirable when computer resources are tightly shared by many tasks or
when power consumption is critical (such as in space applications), since the power consumption of some
integrated circuits is proportional to the system clock rate. With this variable sampling interval scheme, the
system clock (or sampling frequency) can be slowed down or sped up as needed.

Continuous time control of nonlinear systems has been studied very extensively recently [3,4,5]. Itis
not surprising that this design methodology usually leads to a control law which is a nonlinear function of
the plant output. Except for some extremely simple cases, this nonlinear control law must be implemented
using a digital computer which, of course, does not provide the instantaneous response that is required to
realize a continuous time function. Unlike a linear system, most nonlinear systems can not be easily
discretized. A great deal of work has been done in the analysis of sampled data non-linear systems. The
emphasis has been on obtaining a state space model for the non-linear system after sampling as a power
series in the sampling interval (see e.g.[6,7,8]). However, the behavior between samples is somewhat more
difficult to understand. Thus, we take the position that we will construct a discrete controller as a sampled
version of a continuous controller with a appropriate sampling frequency. It is intuitively clear that, if the
sampling frequency is high enough, the performance of the closed loop system with a digital computer in
the loop will be close to the performance of the system with a true continuous time controller. Using
Lyapunov analysis, this paper shows that, this intuition is correct for a class of nonlinear systems. The
effect of truncation error is also studied.

2. Definition of Discretized Feedback
Consider the system represented by the state equation

x=f(&)+gkulx) @1
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where u (x) is a stablizing state feedback. In practice, this term is usually generated by a digital computer at
discrete times and is held constant between samples. We represent this discretized feedback system by the
following equation.

£=f(x)+gxulx) 22)

Before we define the function x;, we must first examine the timing sequence in a typical digital com-
puter based controller. In such a system, the central processor unit (CPU) is interrupted by various service
requests. A service request is granted if the CPU is idle or is running a lower priority service routine. Usu-
ally, a real time control service request has a relatively high priority and is initiated by a timer which gen-
erates a request at a fixed interval.

T T
. Cm—— P — —P —
Time tk tk 1 tk 2
+ ’ +:
| | | | |

C%'Ltz’;titler —ulXx,,) —+——-— U(Xk) —4 u(xXy,)

CPTa.s:k that calculate |idle or | calculate |idle or
U is running u(x,) (t)aﬂsll? u(x,,) (t)at\shlir
CPU samples
stateag;p 1 ! 1
CPU output 1 1
control at
Figure 1

Figure (1) shows the sequence of events in a control cycle. At time 7, the CPU starts to execute the
control routine in response to the request generated by the timer. In the control routine, the CPU first reads
the current state and, after some time p required to execute the control algorithm, the CPU outputs the con-
trol u (x;) to the plant and this u (x,) is held constant between time 4+p and #;,+p while the CPU is either
idle or running other tasks.

X;; can now be defined as follows:

0 fortg<t <ty+p
x () 2

x() forg+p<t<f +pandk #0 @3

Due to the computer delay we just described, we need the following assumption on the uncontrolled sys-
tem:

y=f@) 24)
Let A denote the region of attraction of the equilibrium O of system (2.4).

(Al) Given a closed set B, and a bounded open set B, and B, c B, c A, there exists a s (B4, B,) >0 such
that, if the initial condition y(t,) € B,, then the trajectory of (24) y(t,+t) € B,, for all
t <5(B,,B)).

Without this assumption, the uncontrolled system may escape out of the attraction region before the first

control output u (x¢) can be generated by the computer.
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In the following sections, we will investigate the effect of such discretization and delay on the feedback
loop.

3. Linear system with discretized feedback

This section gives an upper bound on the sampling interval. If the sampling interval is lower then this
bound, the system with discretized feedback remains exponentially stable provided that the system with a
continuous time controller is exponentially stable.

Consider the following linear system
X =Ax +Bv @3.1)

where v=Fx is the stabilizing state feedback. The following theorem shows that if v=Fx, (as defined in
(2.3)) and if p is so small that it can be neglected, the system remains stable for some properly chosen sam-
pling interval PR 1

We propose two methods of estimating the sampling interval. The first method takes advantage of
the fact that a linear differential equation has a closed form solution. The second method uses an approach
which is similar to that described in section 4.
Theorem: (1)

Consider system (3.1) with v=Fx is exponentially stable and computation time p =0. Then, there
exists a T >0 such that, if #,,, = ¢, <T for all k, the system with discretized feedback represented by

x =Ax + BFx; G2
is exponentially stable.
Proof of theorem 1 : (Method 1)
Since A+BF is exponentially stable, given Q>0, there exists a P>0 satisfying the following
Lyapunov equation
(A+BF)'P + P(A+BF)=-Q (3.3)
Let
V(e)=xT(t)Px(1) G4
be a Lyapunov function for system (3.1). Then,
V() =-xT(6)Qx(e) + x(¢)" (P+PT)BF (x;~x (1)) @3.5)
Between time ¢, and ¢, x(¢) can be expressed as
t—t,
x(t)=er""y, + oj‘ et BFy, ds 4 G() x, (3.6)
where T2 t—t, and G (%) is defined as
G() 2 A+ I eA®BF ds X))

Substituting equation (3.6) in (3.5), we get
V(t) =—xIG (©)T QG )x; + xTGT ®)[P+PT1BF -G (0)Ix: (3.8)



2 xT0(m
where J (7) is defined as
0 2 G®TQG () + GT()IP+PTIBF I-G (v)]. (3.9)

It is clear that Q (0)=Q. In fact, by the continuity of a solution of a differential equation, there exists
a T, such that, for all 1<T,, O@)is positive definite. Therefore, if the sampling interval is kept less
than T, and x;, #0, then V<0, and using the fact that V' is bounded below by 0, this implies that
‘li_r.n”V(t)=c where ¢ is a non-negatiye constant. Suppose c#0, then from (3.4), we have

'l_i_mmll x(®)|Zc/|P]>0 and it follows from (3.6) that, for any fixed 7,<T,,
‘li_m’_ | xell >c/() G 2| P )2e>0. From (3.8), 'li_l"n“‘}<—de<0 where § is defined as the
minimum singular value of J(t,). This contradicts the hypothesis that limV (¢)=c>0. Therefore,
}i_l)an (¢)=0 and, hence, system (3.2) is asymptotically stable.

To show that the system is exponentially stable, we need G (t) to be invertible. It is clear that
G (0)=I.. Thus, there exists a T, such that, for all T<T,, G}(t) exists. From equation (3.6) and (3.8),
for a given t,<min {T,,T, }, we have

V(@) =—x"Gx,)" 0G(t,)x <—af x| 2

where o is defined as the minimum singular value of G-Y(t, )’ §G~!(z,). Now, V is bounded above
by a negative quadratic function of | x [| . By Lyapunov theorem [11], system (3.2) is exponentially
stable.

QED

In the above proof, for asymptotic stability, we limit the sampling interval to stay below an upper
bound T, to insure the positive definiteness of . In fact, our variable sampling interval scheme is based
on whether x/{ Q (x>0 (i.e. V<0 ) for each x; rather than the positive definiteness of Q (). The unit ball
ie. { x | x| =1) is divided into segments. Then, a table is generated that records the minimum <", cver
each segment, of the maximum 7 satisfying x7 J (t)x>e>0. At time f,, the sampling interval between ¢, and
ti41 is determined depending on the segment which x,/|| x| belongs to. Here we use the fact that if
G/ | 2] TG @)/ || x || )>0, xT @ (x)x>0. The following is an example of this approach.

Example:
Consider the system
: 01 1 [o
*1]_ Xy
H _ [ X 4] [ [2] u 6.10)
with the state feedback u
=[5 ][]
The pair
10 [ 1.5881 0.0143
=lo01 P= | 00143 0.0405

satisfies the Lyapunov function (3.3). In figure 2, the radius at angle tan™!(x,/x,) represents the
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maximum 7 such that [x, ;Z]Q (t)[x;,x,)72e>0. For example, suppose x,=[—3,5] (as shown in figure
2), the sampling interval [t 4 ,,] can be extended to 0.29 second.

From figure 2, we see that, if the sampling interval is kept below 0.07 second, V is guaranteed to be
negative. With the table look up scheme, the sampling interval may vary from 0.07 second to 0.7 second
and still guarantee asymptotic stability. Figure (3) shows the response of the system with a square wave
function input. Figure (4) shows the sampling clock. Note that the sampling interval varies from 0.07 to
0.25 second. In this set point control simulation, the state variable is [x,~v(t), x,]7 where v(t) is a square
wave function and x,~v (¢) is the set point error.

Proof of theorem 1 (Method 2)

The same Lyapunov function (3.3) is used in this approach. Let T, be such a number that, for all
T <T,, G (1) (defined in (3.7)) is invertible, If we choose T < T,, we have

Gy x(t) =x, (3.11)
and

Ie@™ -1 1 x()] 2] x-x@®)l (3.12)
Since|| G (t)™! —I || —0 as t—0, there exists a §>0 such that

-1 - 9q 1
lG@*-1| < TP+PTEF] forallt<3d (3.13)

where ¢=] Q71{| 7! ie. the minimum singular value of Q. Now, take T = min(3,T,) . By equation
(3.5), (3.12) and (3.13), for 4, <t < £y, we have

V@) <—q [ x| 2+] x@)] | @+PTIBF || | ~x(0)] (3.14)
<~(g-|P+PTBF| | G@)-1] )] x@®)]?
2 -Alx@)) 2
where A is defined as
A2 g-|P+PTBF| |G@)'-1I] >0 (3.15)

Hence, V is bounded above by a negative quadratic function of || x || . By Lyapunov theorem [11],
system (3.2) is exponentially stable.

QE.D.
The second method gives a more conservative bound on the sampling interval. For the example

given earlier (3.10), the maximum sampling interval given by method 2 is 0.008 seconds compared with
0.07 second given by method 1.

Consider the case that p #0 i.e. the time required to execute the control algorithm is not zero. At
t=t,, we can exactly predict the state at ¢, +p by the following equation.

P
x(t+p) =e*Px; + [ e BFx, , dt (3.16)
[

2 D)

Then, after sampling x; at ¢, the control u can be generated as F ®(x,_y,x; )=Fx (1, +p) and this control is
output to the plant at exactly ¢=t,+p. The following theorem can be proved by either method suggested



earlier and, therefore, is omitted.
Theorem: (2)
Assume system (3.1) with v=Fx is exponentially stable. There exists a T>0 such thatif #, ,;, -, <T
for all k£, the system with discretized feedback represented by
i = Ax + BF ®(x1.%;)
is exponentially stable.

4. Non-linear systems with discretized feedback
As mentioned in the section (1), an exact discretization of a general nonlinear system does not exist.
Consequently, one way of designing a nonlinear controller is to, first, ignore the fact that the control law
will be implemented in a discretized fashion and, then choose a sampling frequency so that this system will
behave similar to the system with a true continuous time controller. In this section, for a class of nonlinear
systems, we give a lower bound on the sampling frequency to maintain stability.

In the proof of the following theorems, we required a Lyapunov function for the system with true
continuous time controller i.e. system (2.1) which is assumed to be stable in some sense. For this system, a
Lyapunov converse theorem [11] guarantees the existence of a Lyapunov function but does not provide it -
in an explicit form. If the system (2.1) is proved to be stable using a Lyapunov function in the first place,
this same function can be used in our analysis. Furthermore, one of the popular design approaches 3] [9] is
to exactly linearize system (2.1) by state feedback. Then a controller is designed based on this linearized
system. In this case, a Lyapunov function is ready obtained from the linearized system. An example of
such a design approach is the computed torque controller [10] for a mechanical manipulator. Nevertheless,
the converse theorem is quoted in the following proofs.

A Lyapunov converse theorem states that, for every asymptotically stable equilibrium point, there
exists a V() such that V(x) and -V (x) are positive definite over some region containing the equilibrium
point. In the case of an exponentially stable equilibrium point, V (.) has the following properties.

Vx)S-da| x| 2 forsomea >0 @.1)
[ %,'ﬂ sb| x|l for some b >0 @.2)

We need the following lemma in the proof of theorem (3)
Lemma: (1)

For a given x, €R"*, we define the set B as

B 2 {x lllxo—x" Sc“xz'p" }
where ¢ is a fixed constant and O<c <1. Then, there exists a d such that
dlx|l 2 x,—x|

for all xe B and d(c)—0 as ¢ —0.

Proof:

It is obvious that (1-c)x, =argmin {| x| | xeB}ie. (1-¢c)x, is the minimum norm element in B.
Therefore,

lxll 2@-c) x| for all xeB.
Take d=c/(1-c), then, for all xeB,



dlx| = (lfc) Ixll 2zclxl 2} x-x]

QE.D.

The following theorem can be thought of as a generalization of theorem (1).
Theorem: (3)

Let O be a exponentially stable equilibrium point of system (2.1) with attraction region A and let V()
be a Lyapunov function for 0. Assume that assumption (A1) and the following conditions are
satisfied.

A2) Equations (4.1) and (4.2) are satisfied in a region B.

A3) f () has Lipschitz constant F inB.

Ad)] g(x)] <G forallxeB.

AS) u(.) has Lipschitz constant U in B .

Then, there exists a T, P such that, if #, ,,—#,<T and p<P , Then, system (2.2) has one of the follow-
ing properties.

I) If A=B=R", there exists T, P such that if, #,,—<T and p<P; 0 is the globally exponentially
stable equilibrium point.

II) If B#R", for any set in B A that can be expressed as {x |V (x)<)A} for some A>0, there exists

T, P such that if, 4,4~ <T and p<P, {x [V (x)<A)} is contained in the attraction region of 0 of sys-
tem (2.2).

let V be a Lyapunov function such that equations (4.1) and (4.2) are satisfied. Consider the I}(t)
along the trajectory of system (2.2),

VO =220 Gralme)) .
= 3—:[f(x)+8(X)u(x) 1+ %g(x)[u(xk)-u(x)]

<-allx| 2+b6GU || x|l | x|

where a and b are as defined in (4.1) (4.2). Between £, +p and £, ,;+p, x(¢) can be expressed as

Ltp t
x(t)=x¢+ [ [F g m)lde+ [ If Ceyrg edue)ld @4
4 L+p

hence,
L+p

1@ =l = [l @@l de+ [ [ gG)u0n -l d
[ b
+ 1 £ @l do+ [Il £ G)f )l do
[ [
S(T+P)GU| x| +PGU || xp=xi |

t
+(T+P)F | x || + [F | x(ty=, | d~.
[



Suppose
I xe=xes ] <Ml @.5)
This 1 will be determined later in the proof. Then we have

| 2@)x || <UT+PYGU+F#PGUNI 2| + [F || x(t)x | d-.
h

By the Bellman-Gronwall inequality, we have
I %)= SUT+PYGU+F}PGUN]e™ || x| (4.6)
£ c@P xl
Suppose T', P are so chosen that ¢ (T ,P m)<1. By lemma (1), there exists a d (7,P ,n) such that
Ix@yxl <d@PIx@] . @7

Note that the above equation is equivalent to equation (3.12) and to ask ¢ <1 (so lemma 1 is satisfied)
is similar to ask G () to be invertible in (3.12). From the above equation and (4.3), we have

V<[-a+bGUd ]| x| 2 @.8)

Since, for any constant 1|, d (T ,P ;n)=-lf—c-—)0 as P, T—0, we shrink T, P further, if necessary, such
that
a
. 4.

2GU >d 4.9)
Then, with this T, P, V along the trajectory of system (2.2) is bounded above by a negative qua-
dratic function of || x | . This implies that system (2.2) is global exponentially stable. Now, the ques-
tion is whether such a n exists. Consider the state x(¢) in the first sample interval i.e. t& [¢4,1,].

tetp ]
xO)=x@+ [ f&x)t+ [ flerrgxuxodt
te totp

Similar to the argument given earlier (between (4.4) and (4.6)), by choosing sufficiently small P, T,
we have the following relation,

“ Xg—%y " Sno(P’T)“ xl" (4-10)
With this ), , we can shrink T, P further, if necessary, such that

0<d(T.P1,)< min{n,, Zg—u}

With this T, P, equation (4.5), (4,7), and (4.9) are satisfied simultaneously.
The proof for property (II) is similar.

QE.D.
As mentioned earlier, if the system is asymptotically stable (instead of exponentially stable) the

Lyapunov converse theorem does not guarantee equation (4.1) and (4.2). The following theorem gives a
local convergence property without assuming the exponential stability of the original system.



Theorem: (4)

Consider a nonlinear system represented by equation (2.1). Let O be the globally asymptotically
stable equilibrium point of the system. Assume that assumptions (A1), A(5) are satisfied. Given
B,,B,,0eBcB, and B, is bounded. There exists a T > O such that, if £, ,,~#, < T, all the trajectories
of system (2.2) starting from B, converge to B;.

Proof:
Let V be a Lyapunov function of system (2.1). For given B, B,, we construct sets L, and L, as fol-

low. OeL;={x|V(x)<c}cB;, for some ¢>0. L,={x1V(x)<d}>B, where
d= suBV(x). andlet W = {x | V(x) <e} where e >d. For system (2.2), V(x) can be represented
p {-¥.7%

by the following equation.
Vix)= %x‘i:e @.11)

= 3—:0' @) +gxulx)+ g—Zg () - u(x))

The first term of the above equation is a negative definite function. Let

-aé " o-—g{-(f(x)+g(x)u x)<0 4.12)
B2 su % g 4.13)

and
§2 sl fEx)+gGum)]. (4.14)

Let u be the Lipschitz constant of u (.) over W. Now choose T such that

T< min{ ;‘ggg,s} @.15)

where 8 >0, a.— 3> 0 and s(L,,W) is as defined by (A1). We now show that, with this T, the sys-
tem indeed has the property claimed in the theorem.

Between time ¢,+p and ¢, ,,+p, x (¢) can be expressed as

x(@O)=x + [ f g dr (4.16)
h

where

u(xk-l) if [k S T< tk+p
uM=1 , ()  ifn+pLt<tg+p

Then, from equation (4.11), (4.15), (4.16) and the relation T+P <2T, we have

VeE) < IE¢ () + 8@t +BU [ 20~ @1
< @)+ gem@) +BUfI £ &) + s @] d

<-0+BUET +P) ifx(t)e W-L,
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<-8 ifx(t)eW-L,

The last inequality implies that, for any trajectory starting from B,-L,, eventually reaches L, and
trajectories starting from L, stay in L,.

QE.D.
5. Non-linear System with discretized dynamical feedback
Consider a nonlinear plant with nonlinear dynamical feedback represented by
x=f(x)+g(x)z G.1)
y=h@)+joWx)
z=p(x.y)

where the last two equations are the controller. There are many numerical integration methods that can be
used to implement such a dynamical control law. But, by far, the easiest and most popular numerical
integration method is the forward Euler method. The following theorem states that, by using the forward
Euler method, the closed loop system represented by

i=f(x)+8(x)z (5.2)
Ye=At [h Oe-1) +Jj Qp-1v (xk-l)] + Y1

2, =p (X1 0)

has properties similar to theorem (4). For simplicity, we assume p=T i.e. x(f,) is read at , and the control
2,41 is the output at exactly 1, ,,. This is the case when a CPU is dedicated to the real time control task.

We use the following notation in the following theorem where V(x,y) is a Lyapunov function for the
asymptotically stable system (5.1). Note that the state variable of (5.1) is (x y).

VaGrma) = Il | £ G0 0P (52

VyE1209)= - KO W OI )

Hxy)=V.(xx,y)+V,(xx,y)
Theorem: (5)

Let 0 denote the globally asymptotically stable equilibrium point of system (5.1) and let V(x,y) be a
Lyapunov function for 0 and, hence, V, ~V are positive definite. Assuming that the following condi-
tions are satisfied.

(A6) V,(xy,x5,y) has Lipschitz constant /,(W) in (x, x,) over any given bounded set W.
(A7) V, (x),x2,y) has Lipschitz constant /5(W) in x; over any given bounded set W.

Given B,, B,, 06 B,cB, where B, is bounded. Then, there exists a T such that, if £~ <T, all the
trajectories of system (5.2) starting from B, converge to B,.

Proof:
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We construct W, L, L, exactly the same way as in in the proof of theorem (4) i.e.
Li={GNVxy)<c)
Ly={Gxy)V(xy)<d)
W={GaIViEy)<e}

where e >d>c and L cB,cB,cL,. Define

A
E= (xsdu)gw(f (x)+g (x)u(y))

-o 8 H(x
xyleW-L, ()
Since V is a Lyapunov function of 0 of system (5.1), V=H isa negative definite function. Hence,
o>0. Consider the function V (.) along the trajectory of system (5.2).

Vk+l - Vk 1 fin
= & [V A + Y Graden) =V i)
&

.

ha
= 2] [Vttt + St h R O Gl + 0.8

ln
J| Vet ae100) + Sl ORI O 1)) e + O 0%

[y

i
R|=

bn han
1
= A JH (e e )dt + I Ve (8 X-1:Ye )=V (B X o) + Vo (R X oY)
I [

“-

=V, (o xe i)t + 0 (M%)} (5.3)

From the above equation, if (x, y, )e W-L,, then

Vk+l - Vk

AL S—o+ ]| Gexe)-Gex) | + Ll xen—x | +0(A2)

S—o+ | x=xe | + 1] x| + ] Xpr—xe | +0(A2) (54

where V¥ 2 V(x(t,).0), 1;=1,(W), and 1,=1,(W). Furthermore, if (x, y,)e W—L,, then

ha

I x=xell =J 1 £ )+ g Iu@)l de <EAr =0(ar) (5.5)

b

and, hence,
| X2 | =0(Ar) (5.6)
I xeer=xi | = O (AL). 3D
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From (5.6), (5.7), and (5.4), we conclude that, if (x, y,)e W—L,, then

Vk-!-l - Vk

Y, <-0+0(Ar)

The above inequality implies that if (x(t).y.)e W—L,, for sufficiently small Az, V* is a strictly
decreasing sequence and, hence, (x(t;),y;) € L, for some i . Now it remains to show that

(1) IEf(x(to), thenypeB,, (x(t).y)e W forall ¢, k.

(@) Once (x(¢)y:) reaches L,, then (x(t).y,) stays in B, there after.
Proof(1): Assumption (Al) guarantees the existence of a T such that, if (x(¢g).yo)€B2
(x(t1).y e W. However, between ¢, and ¢,, V can increase. From (5.5) and (4.2), we see that, by
choosing a sufficiently small T, we can keep || x(¢)-x(¢,)[| so small that V (x(¢),y )~V (x(¢)y1) <
e=V (x(¢1),y,). This implies that (x(¢),y,)e W for all te€ [¢,,t,]. Since V(x(£),y2) <V (x(t1).y1), the
same choice of T will guarantee that (x(t),y,)eW for all te[t,,t5]. Similarly, we can show that
(x(@)y)eW forallz, k.
Proof(2): As shown in the proof(1), V(x(¢) -V (x (tx)y:) (¢ €[t ,2:41]) can be kept as small as
necessary by keeping T small if (x,y,)e W. Therefore, if necessary, we can shrink T and/or L, to
make sure that, once (x(¢;).y:)€L, (x(¢).y:) will stay in B,. Note that it is possible, for some j>i,
(x(¢;).y;) does not belong to L, (but belong to B,). In this case, the sequence VE k=j,j+1, -+ will
keep decreasing until (x(¢),y,)eL, again.

QE.D.

6. The Effect of Truncation Error
Truncation error is unavoidable in a digital computer due to finite word length. We represent system
(2.2) with the consideration of truncation error as
x=f(x)+g@)i(%) ©.1)
where %, is the digitized version of x; and # is the function with truncation error due to computation. To
simplify the analysis, we lump all these digitization errors into ¥}, i.e.
x=f(x)+gxu(%) 6.2)
where
I % -x| <e (6.3)
The following theorems shows that all the theorems in the earlier sections suffer from the truncation
error.
Theorem: (6)

Assume that system (3.1) with v=Fx is exponentially stable. If p =0, there exists a T>0 such that, if
L1 — 4 < T for all £, all the trajectories of system (6.2) converge toaballB =(x ||| x| <c]} for
some ¢ > 0.

Proof:
Similar to equation (3.6), the following equation represents x(¢) for f; <t < tp.;.

=
x(@)=e""x, + [ ACBFE, dr 6.4)
0
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—~4
=W [ AR dif % + eV (x, - %)
0

=G ()% +e* ™ (x, - %)

where G (¢) is defined by equation (3.7). For the same reason stated earlier, G (¢) can be kept from
becoming singular. So we have

G 'x(t) =%, + G eV, - 5,) 6.5)
and
(G -Dx(t)- G'eA ™M, - 5) =% —x(1) (6.6)

We now chose T exactly the same way as described in the proof (method 2) of theorem (1). From
the above equation and similar to equation (3.14), we have

V@ys-Alx]2+8] x| ©.7)
where A is defined as in (3.15) and { is defined as

C=31 @+PIBF | [ GeA“ ) [ 5, - 5] 68)

Equation (6.8) implies that V(x) <Oforx € (x [ x| < —%} and this implies that all the trajectories
converge to B=(x || x| <||P]| -;i-}. More precisely, all the trajectories converge to the set

{x 1 xTPx < %}.

QE.D.

The above theorem can also be proven using method 1 as in section 3. The following theorem shows
that, with truncation error, the discretized feedback system we studied in theorem (3) is no longer exponen-
tially stable.

Theorem:(7)

With truncation error, all the trajectories of system (2.2) in Theorem (3) converge to a region which
contains the equilibrium point of the original system (2.1).

Proof:

Similar to equation (4.7), we have

V<[-a+bGUd ]| x| 2+b6GU | x| &
Since the first term eventually dominates the second term as || x || —eo, this inequality implies that all
trajectories converge to a neighborhood of the original equilibrium point.
Q.E.D.

The following theorem shows that, with the truncation error, theorem (4) is no longer valid for arbi-

trary B, B, unless the € (as defined in (6.3)) can be assumed to be sufficiently small. But, € is not a design

variable. Hence, there may or may not exist such a T that guarantees the property claimed in the theorem.
In the proof of the following theorem, we show that, by sacrificing the ‘size* of the attraction region
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B, - B,, we increase the ‘chance’ of existing sucha T.
Theorem: (8)

The theorem (4) is true for sufficiently small €.
Proof:

Similar to equation (4.15), we take

0<T<m\n{2§ BU e),s}. 6.9)

Then, similar to equation (4.17),

VGO S 22¢ @)+ ema) +BU | 20)- 51
< ¢ @) +8@ueN+BU 1 200~ 5]l +BUe
<-a+BUET +P)+e) ifx(t)e W-L,

<=8 ifx(t)eW-L,

It is clear that inequality (6.9) can be satisfied by some T only if
o-9
g< BU
which is always possible if € can be assumed sufficiently small. In this case, this theorem can be
proved by using the same argument as in the proof of theorem (4). Furthermore, the above inequality

is "easier’ to satisfy if the ratio % is bigger which means that B, become smaller and/or B, become

larger i.e. the attraction region B, — B is smaller.

QE.D.

7. Summary
We have shown that, a system with a discretized feedback and with a properly chosen sampling fre-
quency
(C1) is exponentially stable if the system is linear (theorem (1,2)).
(C2) is asymptotically stable if the system is nonlinear and satisfies some assumptions (theorem (3)).
(C3) is locally stable in the sense that, all the trajectories starting from a bounded area converge to a small
neighborhood of the equilibrium point if the system satisfies some assumptions (theorem (4,5)).

We also show that, with the consideration of truncation error, a linear closed loop system, regardless
of the choice of the sampling frequency, is no longer exponentially stable. Instead, a weaker form of stabil-
ity is proved (theorem 6). In the nonlinear case, theorem (7) showed that, if we can assume the truncation
effect to be sufficiently small, the closed loop system will have property (C3). Otherwise (this is usually the
case), no stability is guaranteed.
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