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ABSTRACT

In this paper, we derive the kinematics of rolling contact for two surfaces of
arbitrary shape rolling on each other. Applying these kinematic equations to two
planar multifingered hands manipulating some object of arbitrary shape, a
scheme is presented for the control of these hands, which is in fact a generaliza-
tion of the computed torque method of control of robot manipulators. In imple-
menting the control, we require that all applied forces lie within the friction cone
of the object so that sliding does not occur. We illustrate the theory with graph-
ics simulations of the control law applied to the system dynamics for two exam-

ples.

+ Research supported in part by NSF under PYI grant DMC84-51129, the Schlumberger Foundation, and the Berkeley
Engineering Fund.



1. Introduction

An important feature of multifingered hands is their ability to perform fine motion manipu-
lation, especially when the manipulator operates in a crowded environment. Most current control
schemes for multi-fingered hands , for example [4], assume the contact type between the fingertip
and the object to be of the point contact with friction type.

In this work, we consider the manipulation of objects of arbitrary shape by multi-fingered
hands, where the contact between the object and the fingers are rolling contacts, i.e. the fingertip
rolls without slipping on the surface of the object. The kinematics, prehensility, dynamics, and
control of these systems are developed in-this paper.

Previous work on rolling contacts, to our knowledge, can be found in Kerr [1], Montana [2],
and Cai and Roth [3]. Kerr discusses how to compute the movement of the fingers in order to
produce a given displacement of the object. Kinematic equations are derived from the constraint
that the fingertip and object velocities are equal at the point of contact. Control of such a hand is
not considered. Montana [2] studies the kinematics of contact from a geometric point of view.
He does not, however, study the effects of the kinematics of a finger attached to the fingertip. Cai
and Roth [3] study the roll-slide motions between two curves under planar motion. The
kinematic equations for the contact point evolution are derived. To our knowledge, there has

been no previous work on the control of multifingered hands with rolling contacts.

A brief outline of the paper is as follows: In Section 2 we derive the kinematics of rolling
in R3 using velocity constraints and normal constraints between the surfaces; the developement
closely parallels that of [1]. In Section 3 we derive relationships between the joint torques and
velocities of the fingers and the net force and velocity of the body being manipulated. Section 4
gives the control scheme along with a proof of its convergence. Section 5 presents simulation

results for the application of our control law to two kinematically different planar hands.

2. The Kinematics of Rolling

When one surface rolls on top of another, the trajectory of the contact point on each surface
depends in an essential way on the geometry of the surfaces. In this section, we derive the dif-
ferential equations that specify the evolution of the point of contact. Since our eventual goal is to
apply the theory to the manipulation of objects by multi-jointed fingers with rolling contacts, we
will refer to one of the bodies in contact as the object and the other as the finger.



Figure 2.1

Consider a finger in contact with an object as shown in Figure 2.1. Denote by C, a coordi-
nate frame attached to the center of mass of the object, and by Cy one attached to the finger.
Parameterize the object and the fingertip surface (locally) in C, and Cyr, as c,(€,) and cr &)
respectively. Note that &,,&,eR? if the .surfaces in question are in IR, We will also be
interested in the manipulation of objects in the plane (IR?), in which case &, ,&s€R. Further, let
C} be an inertial base frame. Define x, ,x,eR3 to be the positions of the origins of C,,,C in the
' base frame, and R, ,Ry € SO (3) (the group of 3x3 orthogonal matrices with positive determinant)
to be the rotation matrices giving the orientations of C, ,Cy in the base frame C,,, respectively. It
follows from elementary considerations that a point on the object with coordinate ¢, (&,) in the
object frame has (base) coordinates given by

X, +R,c,E,). : ' ‘ 2.1)

Frames C, and C; both move relative to the base frame C, so that x,, Xr, Ry, and Ry are all
functions of time. The velocity of the origin of frame C, has a translational component v, e R3
given by

Vo (8)=x,(t) (2.2)
and a rotational component ®, = (6, ,®,2,®,3) € R such that

0 —W3 M2
R, =, xR, =| @,5 0 -w,|R,. 2.3)
W2 ®,; O



Note that the matrix Ro R,,T is skew-symmetric because R, (¢) is orthogonal. The matrix in (2.3) is
referred to as (®,X) since its action on a vector y e IR? is precisely 0, x y. Similarly, Vs and @

are the translational and rotational components of velocity for the fingertip.

The act of one surface rolling without slipping on top of another, yields three constraints on
certain parameters relating the two bodies: the position of the contact, the velocity of the point of
contact, and the surface normals at the point of contact. We use these constraints to determine
the evolution of the contact point. First, since we assume that there is no slipping at the point of
contact, the velocity of the point of contact on the object must equal the velocity of the point of
contact on the fingertip (with reference to the base frame), i.e.,

v, + W, XR,c, =V +(Df><Rf Cr . 2.4)

Equation (2.4) may be rewritten as

=U; [(‘;ff] 2.5)
where
u, 4 [1 —(R,c,,x)] LUy & [1 -(R,c,x)] .

Equation (2.5) represents the two different expressions for the velocity of the point of contact
between the body and the fingertip.

Next, since the fingertip and object stay in contact, we may express the coordinates of the
point of contact in two ways, i.e.,

%, (8) + Ry (£)c, (8) =% (1) + Ry (1), (1) . 2.6)
Differentiating (2.6) yields (using (2.3))
Vo (£) + @, ()XR, (8)C, (2) + Ry ()C, () = v (8) + @p (1)XRy (8)cy (1) + Rp (8)Cs (). (2.7)
Subtracting equation (2.4) from (2.7) yields
R,(#)c, () =Ry (e)Cr (2). 2.8)
To show the dependénce of ¢, and ¢y on the surface parameters €, and &, respectively, equation

(2.8) may be rewritten as

ac, . B ' dcy .
R,(t )Eéo =R (¢t )ng . (2.9)



In R3, equation (2.9) represents three equations in the four unknowns &0 , &f. Equations (2.8) and
(2.9) may be interpreted as a constraint on the tangent vectors of the contact curves on the finger-
tip and object. .

Finally, since the two surfaces touch at the point of contact, they must have equal and oppo-
site outward unit normal vectors. Thus, with 7, and 7 being the outward unit normal vectors to

the surface of the object and fingertip, respectively, at the point of contact, we have
Roﬁo =—Rfﬁf . (2.10)

Differentiating (2.10) yields (again using (2.3))

A aﬁa " A
W, %R, n, +Ro¥§o +meanf ,+Rf 8§
0

Equations (2.6) - (2.11) above correspond to equations (6.8) - (6.13) of [1].

on; .
"; & =0. @.11)

Combining equations (2.9) and (2.11) yields

R oc, -R S

% MEARI T 0 0 (e

o o Ay [gf] =[(Ror'iox) (Rfﬁfx)] [mf] : 2.12)
o, ok

Equations (2.12) represent six equations which may be solved for &0 and &f given ®, and of.
While it appears that there are more equations than unknowns in (2.12), it may be verified that the

equations are internally consistent.

2.1. Simplification to the Planar Case

It is of particular interest to specialize and simplify the preceding development to the case
where rolling occurs in a plane (see Figure 2.2). Then C,, C; represent planar coordinate
frames, v,,v,€R?, 0,,0;€R, and c,(,).c;(€;) are now parameterized by &,,E;€R. Then
U, eR?3 in equation (2.5) is given by

U, = [1 : [?B]Roco] (2.13)

and similarly for U;. When ¢, and ¢, are plane curves parameterized by arclength with the same
orientation (eg., & increases as the curve is traversed counterclockwise), equation (2.9) reduces to
an arc length constraint. Since the tangent vectors (of unit length for an arc length parametriza-

tion) are just a rotated copy of the unit outward normal vectors and planar rotation is a



Figure 2.2

commutative operation, the normal constraint (2.10) also implies a constraints on tangents:

%o _ 24 2.14)
R, daE, T T aE, ‘
. a dcf . .
Then, since at, and —— & are nonzero vectors, (2.14) can be used with the tangency constraint
(2.9) to obtain

&, =-¢, (2.15)
a derivative form of the arc length constraint which holds for planar manipulation.

To simplify (2.11), let 11,, N be the angles (i.e., the orientation) of 4, , 7y with respect to

the frames C,, Cy, respectively. Then we may write the normal constraint as (see Figure 2.2)
N, +6, =My +8; +km (2.16)

for some k, an odd integer. Differentiating (2.16), using (2.15) and the fact that éo =@, and
8 = ay, yields

[ dno dnf

dE. d§ } g, =0 —Q, . 2.17)

no dnf
aE, " aE;

From differential geometry (see [S]) and straightforward calculations, may be



seen to be the curvatures of the object and fingertip, respectively, at the point of contact when &,

and &, are arclength parameters.

3. Grasping and Manipulability

We will study the grasping and manipulability of an object being contacted by m fingers,
each with a rolling contact. Let the m finger frames be Cfl, sz, S Cﬁ,,, and let the contact
points have coordinates (in each finger frame) cfy, cf2, * -, Cpn, respectively. Let the
corresponding points on the body be given by ¢, 1, ¢,2, ** s C,m With respect to the body frame,
C,. Using the notation of Section 2, the matrices U,;, i = 1,...,m map the velocity (v,],0))T of

the object frame C, to the velocities of the contact points, ¢,;, i =1,...,m, that is

Vo
w,| "’

where v,; denotes the velocity of the i th contact point. Stacking the U,;s, we get

Vei = Uy

Vel Uoi
Ve2 U2

b5

vo
mo] 3.1

vcm UOI'I

T| Vo
¢ M |

Note that GTe R¥>6, A dual relation to (3.1) is obtained by considering the effect of forces,

>

Fetr- -+ femeIR?, applied at the points c,;, on the body at the origin of the frame C,. Using the
principle of virtual work, the desired transformation is found to be

fcl
[{::] =q|” 2| (3.2)
fem

The origin of the body frame C, is frequently chosen to be the center of mass of the body. G
depends both on the location of the contact points and the current body orientation. The matrix
GeR¥3™ is referred to as the grasp matrix: forces in the null space of G correspond to those
forces that can be exerted at the contact points without causing a net force-moment on the body.
These are referred to as internal forces. Equations (3.1) and (3.2) provide valid relations if the

fingers remain in contact with the object and there is no slipping between the two surfaces. Such



a condition will occur only if the contact forces lie in a friction cone at each contact point -- i.e.,
the tangential component of the contact force is less than or equal to the coefficient of friction, jt,
times the normal component of the contact force. Let FC; <R denote the friction cone at the i th
contact point, i.e., if fZ and f;; are the normal and tangential components of f;, then

FC; ={fci€R3 el sl £3 } . (3.3)

Define FC =FCx - - - XFC,,.
For the purpose of grasping, we would like to have the ability to withstand any disturbance
force-moment pair on the object. The mathematical characterization of this ability is
G(FC)=RS, (3.4)

i.e., the grasp map should map the friction cone onto RS, so that a given force-moment on the
body can be achieved by an appropriate choice of contact forces lying in the friction cone. This
property of a grasp has been called grasp stability [6] or force closure [7]. In this paper, we refer

to condition (3.4) as the force closure condition.

Figure 3.1

Internal forces represent the ability to apply tension and compression to an object. In order
to be able to firmly grasp an object, it is desirable that the internal forces lie in the interior of the
friction cone. Mathematically, this condition may be stated as



NGINFC = D (3.5)

where FOC is the interior of the friction cone and T|(-) denotes the null space of a matrix. Figure
3.1 shows an example of a grasp in which the internal or grasping force (indicated by the arrows)
lies outside the friction cone (the dotted lines), so that the applying this force to the object will
result in sliding or slipping at one or more contact points. When condition (3.5) is satisfied, we
can bring any given vector of contact forces into the friction cone by adding a sufficiently large
force in the null space of G. In this paper, we refer to condition (3.5) as the prehensility condi-
tion. One application of prehensility is as follows: let f.y, . . ., fom be a set of contact forces that
results in a certain net force and moment to the body. Consider the case where f, €FC, thereby
rendering the possibility of the contacts slipping. Then if condition (3.5) is satisfied, one can

o
choose a large enough grasping force, f g €TV(G)NFC, so that the sum of f, and f, results in the

same net body force and moment and provides a feasible, non-slipping contact.

Thus far, we have discussed the kinematics of rolling contact without any mention of the
kinematics of the manipulator attached to the rolling fingertip. In a multi-fingered hand, each
finger is, in effect, a manipulator. Consider a multi-fingered hand with rolling contact at the
fingertips. Let the ith finger have n; joints and let ¢;e R™ denote the generalized (linear and
rotational) coordinates of the links of the manipulator. Then, by differentiating the forward
kinematic map of the manipulator, one obtains the following relationship between ¢§; and the
velocity (v1,])T of the i th finger coordinate frame

[ :)fi] =Ji(q:)q: - (3.7
Here J;(g;)e R%* js the Jacobian matrix of the ith manipulator (finger). As in Section 2, we
may express the velocity of the point of contact for finger i as
vei = UpJiq; (3.8)
A Jig;.
The matrix J ,-elex"‘ maps the joint velocities ¢; to the velocity at the point of contact. Dual to

the relationship (3.8) is the relationship between the fingertip contact force f; and the vector of
torques T;e IR™ at the joints of fingeri:

=jt:rfci . 3.9)



Aggregating the relationships (3.8), (3.9) fori =1, ...,m yields

ve = Jq
v = I, (3.10)

with J =block diag(J 1,J 3, ... ,J n)eR™ @+ "#=)  When J is square (each finger has 3
degrees of freedom) and invertible (the m manipulators are not in a singular configuration), we
can invert (3.10) to get

fe=UNk. (3.11)

In turn, the force and moment applied to the object are given by

[i} =Gf, =GJ x. (3.12)

The singular values of GJ “Te R®®” measure how easy it is to apply forces and moments to the
body using the joint torques. Also, since

- _ 5-1~T| Yo
4 =G [%J (3.13)

and the singular values of J"'GT are the same as those of GJ T, the same singular values provide
a measure of the joint velocities required to produce a given body velocity. The largest singular
value of GJ -T may be referred to as a force closure index and the smallest as a manipulability
index.

4. Dynamics and Control

In this section, we consider the problem of controlling the position and orientation of an

object in IR? by the appropriate application of torques at the finger joints. Thus, we specialize the
development of the preceding sections to the planar case. Denote by X = [’e‘] the position
(xeIR?) and orientation (8 R) of the object frame C, relative to the palm or base frame. Then
X= [("')] is the velocity (linear and angular) of the body frame. The dynamics of the body are

expressed as
M,X =F, 4.1)

where M, =diag(m,,m,,j,) is the mass-inertia matrix of the body and F, =(fJ.t,) is the
force and torque applied at the origin of the object frame. This, in tum, is related to the forces
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applied by the fingers at the respective contact points by
F, =Gf, 4.2

where £, =(f.1, ..., fen) € R¥" is the vector of components of each of the m forces exerted
by the fingers at their respective contact points. Combining equations (4.1) and (4.2), the contact
forces needed to generate the body acceleration X are given by

f.=G*M,X +f; @4.3)

where G*=GT(GG™)™! is the pseudo-inverse of G (assuming force closure of the grasp G ) and
Sf11is an internal force (belonging to the null space of G). The dynamics of each finger have the

form

M;(g:)q;: +Ni(g:,4:) =7 =T f i 4.4)
where M;(g;)eR™™ is the positive definite moment of inertia matrix for the ith finger,
Ni(q;,4;)eR™ is a vector of gravity, coriolis, and friction terms, and 't,-.e R™ is the vector of
input joint torques. (Note that the term —J ;Tf; in (4.4) is the torque, given by equation (3.9),
due to the force — f; that the object is applying to the fingertip). In this section, we will make
the added simplification that there are only two joints per finger (i.e., there are as many joints as

there are independent forces that can be applied at the contact points). For m fingers, the equa-
tions (4.4) may be aggregated to give

M(g)j +N(q.§)=t-Jf, “s)
with '
M (q) =block diagM 1(qy), . . . , M, (q,,) )e RO " +rmPlact " nn)
N@,9)=WN1q1qD% . ... Np(@mGm) ) TeR M+
and

t=@f, ..., e RO* =)
Combining equations (4.3) and (4.5), we get
M@q)i +N@q.§)=1-JTG*M, X +f). @.7)
Also, using equations (3.1) and (3.8), we get the velocity constraint

Jg=G"Xx. 4.8)
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Differentiating (4.8), we obtain the acceleration constraint
Jg+I§=GX +G™X . 4.9)
Note that the grasp map G is a time varying map since the contact points change as the fingers
move on the object. Now, provided that the system does not go through a singular configuration,
J~! will exist so that
§=JGX +G™ -7q). (4.10)
Using this in (4.7) yields
MIGT+TG*M, )X =1-MIWG™X -F§)-TTf;-N . 4.11)
The control problem is to get X () to track a given desired trajectory X, (¢) asymptotically. The
constraint on the contact forces at the fingertips is that they lie within a friction cone so that there

is no sliding and contact between the fingers and the object is maintained. The proposed control
law for this purpose has three terms:

(1) A non-linearity cancellation term of the form
N +MIYG™X -Tg).
(2) Proportional and Derivative Error feedback terms to give the system linear error dynamics
MI'GT+J7G*M, (X, + K,E +K,E)
where K, =k, 1, K, =k,I with k,, k, scalars chosen such that s2+k,s +k, is Hurwitz.
Also E & X, —X sothat E =X, -X.
(3) A tem of the form JTf x, with £ N chosen in the null space of G so as to keep the contact
forces within the friction cones at each point of contact.
The following is the main result of this section.
Theorem 4.1. Consider an object being manipulated in the plane by m fingers each having 2
degrees of freedom with dynamics given by (4.7). Consider the control law

t=MI'GT+JTG*M, )X, +K,E +K,E)+N @12
+MINGTX =T +T .

with f belonging to the null space of G. If the grasp maintains force closure and each of the

fingers avoids singularities over the entire trajectory, then the tracking error and the tracking error

rate converge to zero. Further, if the prehensility condition (3.5) is satisfied, f  can be chosen so
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as to keep the contact forces within the friction cone at the points of contact.
Proof. - Since the trajectory does not take the system through any configuration singularities, J!
exists and the control law (4.12) is well defined over the entire trajectory. Using (4.12) in (4.11)
yields
MIT'GT+JTG*M,)E +K,E +K,E)=T(f 1~ ). 4.13)
Premultiplying (4.13) by GJ T yields |
M, +GI™MI'GT\(E +K,E +K,E)=0 4.14)
since GG* =1 and f; — fy lies in the null space of G.
Now, M, is positive definite and GJ ""™MJ ~1GT is semi-definite (positive definite, in fact, since
G is onto) so that (4.14) implies that .
E +K,E +K,E =0. (4.15)
Appropriate selection of K, K, implies that E, E 0.
The force f y in the null space of G is chosen to guarantee that the contact force for each finger,

fi» remains within the friction cone using the prehensility condition. O

5. Simulations

In this section, we present simulations of two planar hands manipulating an object, using
the control law of equation (4.12). In these simulations, all rolling constraints are strictly
enforced without checking that the resulting forces lie in the friction cone. The simulation can
then be analyzed to see where the friction cone requirement is violated and note what range of

grasping forces will be necessary to place the contact forces in the friction cone.

A graphics package has been developed to show the motion of the fingers and object
through time in a stick-figure movie. We have included several frames for each example showing
the configuration of the hand-object system. Additionally, the contact force at each contact point
is drawn as a line segment showing both magnitude and direction. Viewing these pictures, it is

easy to see when the forces stray from the friction cone.

. .
To find a grasping force in T}(G )NFC, we have tried the following heuristic: Let f,,,na b€
the force such that each contact point force has unit magnitude in the direction of the object

inward normal. Set fy to the projection of f .o OnNto the null space of G. This projection is



13

accomplished using the projection operator
I -G*G).

If the resulting force has a nonzero component at each contact point which lies within the friction
cone, we can bring arbitrary contact forces into the friction cone by adding a sufficiently large

multiple of fy to the contact force. This procedure is only a heuristic. The general problem of

o
finding a force in T|(G)NFC as well as determining when the prehensility condition (3.5) is

satisfied is the subject of ongoing research.

(1) Elliptical fingertips on an elliptical object

A planar two-fingered hand was considered. Each finger consists of two links of unit length with
revolute joints and an elliptically-shaped fingertip rigidly attached to the end of the second link.

The object to be manipulated is also elliptical in shape. The matrices used in the velocity con-

straint equation (4.8) are given as follows:
Each elliptical curve has the form c (€)= [‘;g?ns((g)) (&, here, is not arc length). Thus, J
=diag(J,, J) with

: —Si12—Si2 N2
= _ | —bpsin(Gp)| [ cip+eiz €in )
Ti=Usli = [’ | apcosEs) - ¥

1 1

02

UF[ ;! -bosin(a.,.-)] ey

U,
where ;15 = 5in (8;1 + 6;),ci2 = c0s(8;,), etc. Also,GT = [ U’ 1] , where

A\

l 2, cos(éo‘-)

The control law (4.12) was used to control the corresponding dynamic system and a number of
frames from the resulting simulation are shown. The desired trajectory of the object center of
mass is a circle while the orientation varies as a sinusoid. Figure 5.1 shows frames from the
simulation with grasping force, f , set to zero. Note that the contact forces often stray from the
friction cone. This would normally result in sliding or loss of contact. Figure 5.2 contains
frames from the simulation run again with the grasping force, f N, determined using the heuristic
described above. Now, the contact forces remain within the friction cone so that the same result

might have been achieved by a real system.
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(2) Circular fingertips on an elliptical object
We also considered the control of a planar 3-fingered hand, made up of 3 circular revolute

fingertips which can translate linearly along a rail rigidly fixed to a platform. The three rails ori-

ginate from a common point and are separated by Z?n in orientation. We fix the base frame, C,,,

at the common center point. In this case, J= diag(f 1, J 2, J 1), where

inE, +0,) cos(o;) O
T _ | —TrSin fi + i .

where o; is the orientation of the i th rail with respect to frame C,. The grasp matrix is
G=( UolT UoZT UoST ]

where U,;, i =1,2,3 are as given in example 1.

The control law (4.12) was again used to control the finger-object dynamic system. The
desired trajectory of the object center of mass is a figure 8 with the orientation varying as a
sinusoid. Figure 5.3 shows frames from thg: resulting simulation with gras;}ing force, f . set to
zero. Again, the contact forces often stray from the friction cone which might allow the fingers to
slip or slide. Figure 5.2 contains frames from the simulation run again with the grasping force,
f n» determined using the heuristic described above. The contact forces now remain within the

friction cone so that this trajectory could have been produced by a real system.

6. Conclusion .

In this work, we have considered the manipulation of objects of arbitrary shape by multi-
fingered hands, where the contact between the object and the fingers are rolling contacts. The
kinematics, prehensility, dynamics, and control of these systems have been developed in this

paper. Simulations were provided to show the effectiveness of the control scheme.
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