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ABSTRACT

In this paper, we derive the kinematics of rolling contact for two surfaces of

arbitrary shape rolling on each other. Applying these kinematic equations to two

planar multifingered hands manipulating some object of arbitrary shape, a

scheme is presented for the control of these hands, which is in fact a generaliza

tion of the computed torque method of control of robot manipulators, hi imple

menting the control, we require that all applied forces lie within the friction cone

of the object so that sliding does not occur. We illustrate the theory with graph

ics simulations of the control law applied to the system dynamics for two exam

ples.

t Research supported in partby NSF underPYI grant DMC84-51129, the Schlumberger Foundation, andthe Berkeley
Engineering Fund.



1. Introduction

An important feature of multifingered hands is their ability to perform fine motion manipu

lation, especially when the manipulator operates in a crowdedenvironment Most current control

schemes formulti-fingered hands, forexample [4], assume thecontact type between the fingertip

and the object to be of thepointcontact withfriction type.

In this work, we consider the manipulation of objects of arbitrary shapeby multi-fingered

hands, where the contact betweenthe object and the fingers are rolling contacts, i.e. the fingertip

rolls without slipping on the surface of the object. The kinematics, prchensility, dynamics, and

control of these systems are developed in this paper.

Previous work on rolling contacts, to our knowledge, can be found in Kerr [1], Montana [2],

and Cai and Roth [3]. Kerr discusses how to compute the movement of the fingers in order to

produce a given displacement of the object. Kinematic equations are derived from the constraint

that the fingertip and object velocities are equal at the point of contact. Control of such a hand is

not considered. Montana [2] studies the kinematics of contact from a geometric point of view.

He does not, however, study the effects of the kinematics of a finger attached to the fingertip. Cai

and Roth [3] study the roll-slide motions between two curves under planar motion. The

kinematic equations for the contact point evolution are derived. To our knowledge, there has

been no previous work on the control of multifingered hands with rolling contacts.

A brief outline of the paper is as follows: In Section 2 we derive the kinematics of rolling

in R3 using velocity constraints and normal constraints between the surfaces; the developement

closely parallels that of [1]. In Section 3 we derive relationships between the joint torques and

velocities of the fingers and the net force and velocity of the body beingmanipulated. Section4

gives the control scheme along with a proofof its convergence. Section 5 presents simulation

results for the application of our control lawto twokinematically different planarhands.

2. The Kinematics of Rolling

Whenone surface rolls on top of another, the trajectory of the contactpoint on each surface

depends in an essential way on the geometry of the surfaces. In this section, we derive the dif

ferential equations thatspecify theevolution of thepoint of contact. Since oureventual goal is to

apply the theory to the manipulation of objects by multi-jointed fingers withrolling contacts, we

will refer to one of the bodies in contact as the objectand the other as the finger.
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Figure 2.1

Consider a finger in contact with anobject as shown in Figure 2.1. Denote by C0 a coordi

nate frame attached to the center of mass of the object, and by Cf one attached to the ringer.

Parameterize the objea and the fingertip surface (locally) in C0 and C/, as c0(^) and cf(&f)
respectively. Note that £0,§/€R2 if the surfaces in question are in R3. We will also be

interested in the manipulation ofobjects in the plane (R2), in which case ^.^eR. Further, let
Cb be an inertial base frame. Define x0 ,xfeR3 to be the positions ofthe origins ofC0, Cf in the
base frame, and RotRfeSO(3) (the group of 3x3 orthogonal matrices with positive determinant)

to be the rotation matrices giving the orientations ofC0,Cf in the base frame Cb, respectively. It

follows from elementary considerations that a point on the object with coordinate c0(^0) in the

object frame has(base) coordinates givenby

Xo+RoCo&o). (2.1)

Frames C0 and Cf both move relative to the base frame Cb so that x0, xf, RQ, and Rf are all
functions of time. The velocity of the origin of frame C0 has a translational component v0eR3

given by

vo(0=xo(t) (2.2)

and arotational component <d0 =(<*>„ i,a><,2»G>o3)Te R3 such that

R0=a>0xR0 =

0 -a>o3 <oo2

®o3 0 -*>oi

-«>*2 <»*1 0

R, (2.3)



Note that the matrix R0Rg is skew-symmetric becauseR0(t) is orthogonal. The matrix in (2.3) is

referred to as (co^x) since its action on avector yeR3 is precisely <o„ x y. Similarly, vf and coy-
arethe translational and rotationalcomponents of velocity for the fingertip.

The act of one surface rolling without slipping on top of another, yields three constraints on

certain parameters relating the two bodies: the position of the contact, the velocity of the point of

contact, and the surface normals at the point of contact. We use these constraints to determine

the evolution of the contact point First, since we assume that there is no slipping at the point of

contact, the velocity of the point of contact on the objea must equal the velocity of the point of

contaa on the fingertip (with reference to the base frame), i.e.,

v0 +®0xR0c0 =vf +GtfxRfcf .

Equation (2.4) may be rewritten as

tf„
©„

= Uf

where

(2.4)

(2.5)

Equation (2.5) represents the two different expressions for the velocity of the point of contact

between the body and the fingertip.

Next, since the fingertip and object stay in contact, we may express the coordinates of the

point ofcontaa in two ways, i.e.,

x0(t)+ R0(t)c0(.t)=xf(t) + Rf(t)cf(t). (2.6)

Differentiating (2.6) yields (using (2.3))

v„ (r) +©0 (t)xR0 (t)c0 (r) +R0 (t)c0 (t)=vf(0 +ay(t)xRf (t)cf(t)+Rf (t)cf(r). (2.7)

Subtracting equation (2.4) from (2.7) yields

R0(t)c0(t)= Rf(t)Cf(t). (2.8)

To show thedependence of c0 and cy onthe surface parameters %0 and 5/ respectively, equation

(2.8) may be rewritten as

3c dcf
/?o(r)aF^=/?/(0a&"^/ (2.9)



hi R3, equation (2.9) represents three equations in the four unknowns 4o. 4/• Equations (2.8) and
(2.9) may be interpreted as a constraint on the tangent vectors of the contact curves on the finger

tip and object

Finally, since the two surfaces touch at the point of contact, they must have equal and oppo

site outward unit normal vectors. Thus, with h0 and hf being the outward unit normal vectors to

the surface of the object and fingertip, respectively, at the point of contact, we have

R0h0 =-Rfnf. (2.10)

Differentiating (2.10) yields (again using (2.3))

<0oxKal

R,

R,

dc

35.

*

*K i . . „ d«/>K +R0 -jjfc-5, +(OfXRfnf +Rf^-Z>f =0.

Equations (2.6) - (2.11) above correspond to equations (6.8) - (6.13) of [1],

Combining equations (2.9) and (2.11) yields

• -*.%-
dnf

a RfW
4/

0 0

(R0n0x) (RfhfX) CO*

(2.11)

(2.12)

Equations (2.12) represent six equations which may be solved for %0 and 4/ given co0 and coy.
While it appears that there aremore equationsthan unknowns in (2.12), it may be verified that the

equations are internally consistent.

2.1. Simplification to the Planar Case

It is of particular interest to specialize and simplify the preceding development to the case

where rolling occurs in a plane (see Figure 2.2). Then C0, Cf represent planar coordinate

frames, v^.Vy-eR2, co^coyeR, and c„(50),C/(5/) are now parameterized by 50.?/€R. Then
U0 e R2^ inequation (2.5) is given by

".-['![?oM (2.13)

and similarly for Uf. Whenc0 and cy are plane curves parameterized by arclength with the same

orientation (eg., \ increases as the curve is traversed counterclockwise), equation (2.9) reduces to

an arc length constraint Since the tangent vectors (of unit length for an arc length parametriza-

tion) are just a rotated copy of the unit outward normal vectors and planar rotation is a
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commutative operation, the normalconstraint (2.10) also implies a constraints on tangents:

dcn dC4
Rn ~7z— = —R*d\o f d\f (2.14)

_ , dc0 dcf
Then, smce -r^— and —£- are nonzero vectors, (2.14) can be used with the tangency constraint

(2.9) to obtain

L =4/ . (2.15)

a derivative form of the arclength constraint which holds for planar manipulation.

To simplify (2.11), letT|0, i\f be the angles (i.e., the orientation) of na, hf with respect to

the frames C0>Cf, respectively. Then wemay write the normal constraint as (see Figure 2.2)

rio+9o=TV+0/+*rc (2.16)

for some k, an odd integer. Differentiating (2.16), using (2.15) and the fact that % = ©0 and

6y =(fly, yields

dr\0 dx\f

d\o d\f
io=(0f-(0('/ ~™o (2.17)

dX\0 dT[f
From differential geometry (see [5]) and straightforward calculations, Jfc and ,K may be

d\0 d\f



seen to be the curvatures of the object and fingertip, respectively, at the point of contact when ^

and £,/ are arclength parameters.

3. Grasping and Manipulability

We will study the grasping and manipulability of an objea being contacted by m fingers,

eachwith a rolling contaa. Let the m finger frames be Cfh Cf2, •••, C^, andlet the contact

points have coordinates (in each finger frame) Cf\, Cf^ •••, c^, respectively. Let the

corresponding points on the body be given by c0l, co2» ***»com with respect to the body frame,

C0. Using the notation of Section 2, the matrices Uoi, i = l,...,m map the velocity (v/,©J)T of

the object frame C0 to the velocities of the contact points, coi, i = 1,..., m, that is

v«=^,-
©.

where vci denotes the velocity of the ith contact point Stacking the Uois, we get

"Vcl" 'u0;
V?2 V92 vc

vcm U'om
©0

i G
©,

(3.1)

Note that GT€R3/wx6. A dual relation to (3.1) is obtained by considering the effect of forces,

fc i» •••»fcm e R3» applied at the points coi, onthe body at the origin ofthe frame C0. Using the

principle of virtual work, the desired transformation is found to be

'fci
"/•"

%
= G

fc2

J cm

(3.2)

The origin of the body frame C0 is frequently chosen to be the center of mass of the body. G

depends both on the location of the contaa points and the current body orientation. The matrix

GeR6x3m is referred to as the grasp matrix: forces in the null space of G correspond to those

forces that can be exerted at the contact points without causing a net force-moment on the body.

These are referred to as internal forces. Equations (3.1) and (3.2) provide valid relations if the

fingers remain in contaa with the object and there is no slipping between the two surfaces. Such



a condition will occur only if the contact forces lie in a friction cone at each contact point ~ i.e.,

the tangential componentof the contaa force is less thanor equal to the coefficientof friction, ji,

times thenormal component of thecontact force. LetFCt <zR3 denote the friction cone atthei th

contaapoint, i.e., if /£ and/i are thenormal and tangential components of fci, then

FCi =\ /CI<=R3 :|| /i|| <n|| /a (3.3)

Define FC=FClx- xFCm.

For the purpose of grasping, we would like to have the ability to withstand any disturbance

force-moment pairon the object The mathematical characterization ofthis ability is

G(FC) =R6, (3.4)

i.e., the grasp map should map the friction cone onto R6, so that a given force-moment on the

body can be achieved by an appropriate choice of contact forces lying in the friction cone. This

propertyof a grasphas been called grasp stability [6] orforce closure [7]. hi this paper,we refer

to condition (3.4) as the force closure condition.

Figure 3.1

Internal forces represent the ability to apply tension and compression to an object In order

to be able to firmly grasp an object, it is desirable that the internal forces lie in the interior of the

friction cone. Mathematically, this condition may be stated as



T|(G)nFC*0 (3.5)

o

where FC is the interior of the friction cone and T]() denotes the null space of a matrix. Figure

3.1 shows an example of a grasp in which the internal or grasping force (indicated by the arrows)

lies outside the friction cone (the dotted lines), so that the applying this force to the object will

result in sliding or slipping at one or more contaa points. When condition (3.5) is satisfied, we

can bring any given vector of contact forces into the friction cone by adding a sufficiently large

force in the null space of G. In this paper, we refer to condition (3.5) as the prehensility condi

tion. One application of prehensility is as follows: let/cl,... ,fcm be a set of contact forces that

results in a certain net force and moment to the body. Consider the case where fc &FC, thereby

rendering the possibility of the contacts slipping. Then if condition (3.5) is satisfied, one can
o

choose alarge enough grasping force, fgeT|(G )nFC, so that the sum of fg and fc results in the

same net body force and moment and provides a feasible, non-slipping contact.

Thus far, we have discussed the kinematics of rolling contaa without any mention of the

kinematics of the manipulator attached to the rolling fingertip. In a multi-fingered hand, each

finger is, in effect, a manipulator. Consider a multi-fingered hand with rolling contact at the

fingertips. Let the /th finger have «,- joints and let fteR* denote the generalized (linear and

rotational) coordinates of the links of the manipulator. Then, by differentiating the forward

kinematic map of the manipulator, one obtains the following relationship between qx and the

velocity (vj,©J)T ofthe ith finger coordinate frame

vfi =Ji(<H)4i- (3.7)

Here //^OeR60" is the Jacobian matrix of the ith manipulator (finger). As in Section 2, we

may express the velocity of the point ofcontact for finger i as

v«- = ^//ft (3.8)

The matrix Jte R3xBi maps the joint velocities qt to the velocity at the point of contact. Dual to

the relationship (3.8) is the relationship between the fingertip contact force fci and the vector of

torques x-t e R* at the joints of finger i:

*,• =JJfd • (3.9)



Aggregatingthe relationships (3.8), (3.9) for i = 1,... ,m yields

vc = Jq

x = Pfc (3'10)

with J =block diag(J ltJ2 ;ffl)eR3mx(Bl+'"+',-). When J is square (each finger has 3
degrees of freedom) and invertible (the m manipulators are not in a singular configuration), we

can invert (3.10) to get

/c=(/"1)Tx. (3.11)

hi turn, the force and moment applied to the object are given by

to
= G/C=GJ_TT. (3.12)

The singular values ofGJ Te R6x3m measure how easy it is to apply forces and moments to the

body using the joint torques. Also, since

q mJTkGT o

©
(3.13)

and the singular values ofJ~lGT are the same as those ofG/~T, the same singular values provide

a measure of the joint velocities required to produce a given body velocity. The largest singular

value of GJ"1 may be referred to as aforce closure index and the smallest as a manipulability

index.

4. Dynamics and Control

In this section, we consider the problem of controlling the position and orientation of an

object inR2bythe appropriate application oftorques atthe finger joints. Thus, we specialize the

development of the preceding sections to the planar case. Denote by X = 5 the position

(xeR2) and orientation (6eR) of the object frame C0 relative to thepalm or base frame. Then

X = „ is the velocity (linear and angular) of the body frame. The dynamics of the body are

expressed as

M0X=F0 (4.1)

where M0 =diag(m<,,m0,./<,) is the mass-inertia matrix of the body and FQ =(/0T,x0)T is the

force and torque applied at the origin of the object frame. This, in turn, is related to the forces
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applied by the fingers at the respective contact points by

F0=Gfc (4.2)

where fc =(fc\,..., / J,)Te R2"1 is the vector of components of each of the m forces exerted

by the fingers at their respective contaa points. Combining equations (4.1) and (4.2), the contact

forces needed to generate the body acceleration X are given by

where G+ =GT(GGT)~l is the pseudo-inverse of G (assuming force closure of the grasp G) and

fi is an internal force (belonging to the null space of G). The dynamics of each finger have the

form

Miiqdiji +Ni(qitqi) = xi -JiTfci (4.4)

where Af1-(^)6R"iXBi is the positive definite moment of inertia matrix for the zth finger,

ty-Oft^eR* is a vector of gravity, coriolis, and friction terms, and T/eR"1 is the vector of

input joint torques. (Note that the term -7,T/ci m (4-4)is the torque, given by equation (3.9),

due to the force -fci that the objea is applying to the fingertip). In this section, we will make

the added simplification that there are only two joints per finger (i.e., there are as many joints as

there are independent forces that can be applied at the contact points). For m fingers, the equa

tions (4.4) may be aggregated to give

M(q)q +N(q,q) =x-Ffc (4.5)

with

M(<7) =blockdiag(M1(^1X.... MjyjelR^-*""^-^,

N(q,q) = (Nl(qltqlf,..., N^q^ffeTR**' "+n~ ,

and

Combining equations (4.3) and (4.5), we get

M(q)q +N(q,q)=X-P(G+M0X +/x). (4.7)

Also, using equations (3.1) and (3.8), we get the velocity constraint

Jq=GTX. (4.8)
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Differentiating (4.8), we obtain the acceleration constraint

Jq +Jq =GTX +GTX. (4.9)

Note that the grasp map G is a time varying map since the contact points change as the fingers

move on the object Now, provided that the system does not go through a singularconfiguration,

7"1 will exist so that

q =J-\GTX +GTX -Jq). (4.10)

Using this in (4.7) yields

(MJ-lGT+PG+MoyX =x-MJ-\GTX -Jfr-Ff^N . (4.11)

The control problem is to get X(t) to track a given desired trajeaory Xd(t) asymptotically. The

constraint on the contact forces at the fingertips is that they lie within a friction cone so that there

is no sliding and contact between the fingers and the objea is maintained. The proposed control

law for this purpose has three terms:

(1) A non-linearity cancellation term of the form

N+MJ-\GTX-Jq).

(2) Proportional and Derivative Error feedbackterms to give the system linear errordynamics

[MJ-lGT+JTG+M0](Xd +KVE +KpE)

where Kv =£y/, Kp =kpI with kyf kp scalars chosen such that s2 +kvs +kp is Hurwitz.
Also E k Xd-X sothat E =Xd -X.

(3) A term of the form 7t/n» with /n chosen in the null space of G so as to keep the contact

forces within the friction cones at each point of contact

The following is the main result of this section.

Theorem 4.1. Consider an object being manipulated in the plane by m fingers each having 2

degrees of freedom with dynamics given by (4.7). Consider the control law

X=[MJ-lGT+JTG+M0]QCd +KVE +KpE)+N
+MJ-\GTX-Jq)+JTfx C* }

with /N belonging to the null space of G. If the grasp maintains force closure and each of the

fingers avoids singularities over the entire trajectory, then the tracking error and the tracking error

rate converge to zero. Further, if the prehensility condition (3.5) is satisfied, /N can be chosen so
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as to keep the contact forces within the friction cone at the points of contact

Proof. Since the trajectory does nottake thesystem through any configuration singularities, J~l

exists and the control law (4.12) is well defined over the entire trajectory. Using (4.12) in (4.11)

yields

[MJ-lGT +JTG+M0)(E +KVE +KpE) =JT(fI-fN). (4.13)

Premultiplying (4.13) by GJ~T yields

[M0 +GJ-TMJ-lGT](E +KVE +KpE) =0 (4.14)

sinceGG+=I and// -fN lies in the null space of G.

Now, M0 is positive definite and GJ~TMJ~lGT is semi-definite (positive definite, in fact, since

GT isonto) sothat (4.14) implies that

E+KvE+KpE=0. (4.15)

Appropriate selection ofKv, Kp implies thatE, E -» 0.

The force /N in the null space of G is chosen to guarantee that the contact force for each finger,

fci, remains within the friction cone using the prehensility condition. CD

5. Simulations

In this section, we present simulations of two planar hands manipulating an object, using

the control law of equation (4.12). In these simulations, all rolling constraints are strictly

enforced without checking that the resulting forces lie in the friction cone. The simulation can

then be analyzed to see where the friction cone requirement is violated and note what range of

grasping forces will be necessary to place the contact forces in the friction cone.

A graphics package has been developed to show the motion of the fingers and object

through time in a stick-figure movie. We have included several frames for each example showing

the configuration of the hand-object system. Additionally, the contact force at each contact point

is drawn as a line segment showing both magnitude and direction. Viewing these pictures, it is

easy to see when the forces stray from the friction cone.

o

To find a grasping force in T|(G)nFC, we have tried the following heuristic: Let/^,^/ be

the force such that each contaa point force has unit magnitude in the direction of the object

inward normal. Set/N to the projection off„ormai onto the null space of G. This projection is
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accomplished using the projection operator

(I-G+G).

If the resulting force has a nonzero component at eachcontact point which lies within the friction

cone, we can bring arbitrary contact forces into the friction cone by adding a sufficiently large

multiple of/n to the contact force. This procedure is only a heuristic. The general problem of
o

finding a force in T|(G)nFC as well as determining when the prehensility condition (3.5) is

satisfied is the subject of ongoing research.

(1) Elliptical fingertips on an elliptical object

A planartwo-fingered hand was considered. Each finger consists of two links of unit length with

revolute joints and an elliptically-shaped fingertip rigidly attached to the end of the second link.

The object to be manipulated is also elliptical in shape. The matrices used in the velocity con

straint equation (4.8) are given as follows:

Each elliptical curve has the form c© = £^w§\ (£» here, is not arc length). Thus, J
=diag(71, J£ with

Ji=UfiJi =
-bf sin(£fi)
afcos£fi)

~sil2~si2

cil2 + ci2

1

where Si 12 =sin (0t-1 + 0i2)tci2 =cos(6,-2)» etc. Also, GT= Vol
Uo2

Si2

Ci2

1

, where

u* =
I -&*sin(5OI.)
I a0cos(^)

2x3
€ R

2x2
R

The control law (4.12) was used to control the corresponding dynamic system and a number of

frames from the resulting simulation are shown. The desired trajeaory of the object center of

mass is a circle while the orientation varies as a sinusoid. Figure 5.1 shows frames from the

simulation with grasping force, /N, set to zero. Note that the contact forces often stray from the

friction cone. This would normally result in sliding or loss of contact Figure 5.2 contains

frames from the simulation run again with the grasping force, /N, determined using the heuristic

described above. Now, the contact forces remain within the friction cone so that the same result

might have been achieved by a real system.
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(2) Circular fingertips on an elliptical object

We also considered the control of a planar 3-fingered hand, made up of 3 circular revolute

fingertips which can translate linearly along a rail rigidly fixed to a platform. The three rails ori-

2tc
ginate from a common point and are separated by — in orientation. We fix the base frame, Cb,

at the common center point In this case, J=diag(/lt J2, ^3)* where

Ji=UfiJi =
I -rsin(^+fy)
I rcos&fi+Qfi)

cos(oc,) 0

sin(a,) 0

0 1

where a, is the orientation of the / th rail with respect to frame Cb. The grasp matrix is

G=[UolT Uo2T Uo3T ]

where Uol ,/ = 1,2,3 are as given in example 1.

The control law (4.12) was again used to control the finger-object dynamic system. The

desired trajectory of the object center of mass is a figure 8 with the orientation varying as a

sinusoid. Figure 5.3 shows frames from the resulting simulation with grasping force, /N, set to

zero. Again, the contaa forces often stray from the friction cone which might allow the fingers to

slip or slide. Figure 5.2 contains frames from the simulation run again with the grasping force,

/N, determined using the heuristic described above. The contaa forces now remain within the

friction cone so that this trajectory could have been producedby a real system.

6. Conclusion «.

hi this work, we have considered the manipulation of objects of arbitrary shape by multi

fingered hands, where the contact between the object and the fingers are rolling contacts. The

kinematics, prehensility, dynamics, and control of these systems have been developed in this

paper. Simulations were provided to show the effectiveness of the control scheme.
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