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ABSTRACT

A unified via minimization approach is presented for two layer rout-
ing of printed circuit boards and VLSI chips. We have analyzed and
characterized different aspects of the problem and have derived an
equivalent graph model for the problem from the linear programming for-
mulation. Based on the analysis of our unified formulation, we posed a
fast practical algorithm. The algorithm can handle both grid-based and
gridless routing. Also, an arbitrary number of wires is allowed to intersect
at a via and we allow both Manhattan and lock-knee routings.
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1. Introduction

Via minimization is an important step in both VLSI and PCB design, because vias
pot only increase the manufacturing cost but also reduce the reliability of the products.
Depending on whether the via minimization step is done before or after the routing, we
divide the via minimization problem into unconstrained via minimization (UVM) and
constrained via minimization (CVM).

1. Constrained Via Minimization (CVM)
Given a collection of paths representing the interconnection wires without specify-
ing what layer they belong, find a layer assignment to all the path segments that
will minimize the total number of vias used.

2. Unconstrained Via Minimization (UVM)
Given a routing region and a set of terminals of signal nets, find the topological
routing result and layer assignment that will minimize the number of vias used.

In practical VLSI or PCB design, the via minimization problem does not stand
alone. We need to trade off between via minimization and wire length minimization, chip
performance consideration and other constraints. For example, we may want to increase
the total number of vias to get rid of some vias on the critical path or fix the layers for
some nets to guarantee the chip performance.

We have developed a new topological routing method for the unconstrained via
minimization problem in order to formulate both the CVM and UVM problems as a {0,
1} linear programming problem. However, due to the length limitation on the paper, we
will discuss only the CVM problem. The UVM problem will be treated separately [24].

The via minimization problem is formulated as a {0, 1} linear programming prob-
lem. In our formulation, all arbitrary number of wires can intersect at a via and both
Manhattan and knock-knee routings can be handled. In addition to via minimization,
other constraints can be easily brought into consideration by modifying the objective
function and constraint conditions. Thus we have unified the formulation for via minim-
ization. To solve the problem, a practical algorithm is given which does not always
guarantee the optimal solution but works very well in general.

2. Previous Work

The via minimization problem arose from printed circuit board (PCB) design, and
was first formulated by Hashimoto and Stevens in 1971 [1]. The problem was believed
to be an NP-complete problem for a long time. Various heuristic approaches were
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applied to attack the problem ([1], [2], (3], and [4]). In 1980, Kajitani [5] presented a
polynomial-time algorithm for finding a max-cut in a planar graph to minimize vias if
the vias are only allowed at corners of paths (i. e. at places where a path changes its
direction in a Manhattan routing design). In another paper, Ciesielski and Kinnen (6]
gave an integer programming solution to the case in which vias are allowed wherever
they fit, but the time complexity of their solution is exponential. Chan, Kajitani and
Chan ([7), [8] and [9]) extended the approach in [5] to handle the case where three wires
can intersect at a via and proposed an algorithm which can find the optimal solution in
polynomial time. Independently, Pinter [10] found a polynomial algorithm to minimize
the vias which can connect two wires, but the position of the vias can be anywhere they
fit. The two optimal algorithms proposed in [9] and [10] were not implemented by the
original authors. In 1986, Du and Chang [11] proposed a heuristic algorithm based on
bipartiting the graph. And in 1987, Nakajima, Naclerio and Masuda [12] claimed that
they successfully implemented the optimal algorithms in [9] with 0(n3) time complexity.

In 1983, Hsu [13] presented a heuristic algorithm based on a net intersection graph
to attack the UVM. In 1984, Marek-Sadowska [14] proved that the UVM problem in the -
simplest case, in which all signal nets are two-pin nets, is NP-complete and proposed a
heuristic algorithm based on planarizing a net intersection graph.

In practice, minimizing the number of vias in an artificially defined small routing
region, e. g. a channel or a switch box, is not enough, because the more complicated case
is the interconnection of these small routing regions. What we really want is to minim-
ize the number of vias in the entire chip. This puts very serious restrictions on via
minimization algorithms. If n is the number of layout objects in the chip, even an O(n®)
algorithm will cause serious space and run-time overflow problems. Therefore, a com-
mon way to do via minimization is to depend on pattern recognition and a few simple
heuristics to reduce the number of existing vias in the entire chip. These kinds of tech-
niques do not give bounds on the solution and time complexity, but have widely practi-
cal applications.

3. Problem Analysis

3.1. Terminology and Assumptions
First, let us assume that there are two interconnection layers for routing.

A via candidate is an intersection of the wires belonging to the same net or a maxi-
mal piece of wire which does not overlap any other wire and can accommodate at least
one via.

The degree of a via candidate is the number of wires connected to the via candi-
date.

A wire segment is a piece of wire which has two end points attached to either ter-
minals or via candidates.

A cross point is the intersection of wires belonging to different nets.

A knock-knee point is the overlapping point of two corners of two paths belonging
to different nets.

EXAMPLE

In Fig. 1 (a), both cross points and knock-knee points are marked. The C.’s are via
candidates and Wi’s are wire segments. To simplify the discussion, let us assume that
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terminals can be accessed on both layers. If a via candidate has degree one, we will
merge the via candidate with the wire segment attached to it and delete the via candi-
date. For example, the via candidates C,, C., C; and C, in Fig. 1 (a) are merged to
. 4 -5 76 . L
wire segments Wg, Wl’ w 4 and W6 respectively in Fig. 1 (b).
From then on, we can assume that all via candidates have degree greater or equal
to two.

3.2. Formulation of the problem
Lemma 3.1:

A layer assignment is feasible if and only if all the intersecting wire segments of
different nets are assigned to different layers.

Proof:

Necessity: If any two wire segments belonging to different nets and intersecting
each other are assigned to the same layer, the two signal nets will short-circuit at the
intersecting point. Thus the layer assignment is illegal.

Sufficiency: If all the intersecting wire segments of different nets are assigned to
different layers, then no short-circuit will occur. We can use vias to connect all the wire
segments belonging to the same net but assigned to different layers ( by definition of
wire segment ). So there is no open-circuit in the layout. Thus the layer assignment is
feasible.

Corollary 3.1:

A layer assignment is feasible if and only if the wire segments attached to the same
cross point and/or knock-knee point are assigned to different layers.

Now we can formulate the via minimization problem. For each wire segment, we
assign a {0, 1} variable x | to it, where the first subscript n designates that the wire seg-
ment belongs to net n anél the second subscript | is the label of the wire segment.

The value of x | determines the layer (either O or 1) on which the wire segment will
be placed. By corolfary 3.1, we have a constraint for every cross point and/or knock-
knee point as follows:

Xni + xmj =1 _ (*)

where n # m and 1 # j.

We can directly obtain the following corollary from corollary 3.1.
Corollary 3.2:

A layer assignment is feasible if and only if the linear equations in (*) hold.

Notice that there are exactly two wire segment intersecting at a cross point and/or
knock-knee point. Therefore, for each constraint, exactly two variables will be involved.

A via candidate may or may not be a via depending on the layers assigned to the
wire segments attached to it. If all the wire segments attached to a via candidate are
assigned on the same layer, the via candidate will not be a via. Otherwise, a via will be
resulted if the wire segments attached to the via candidate are not assigned to the same
layer. For any pair of wire segments attached to the same via candidate, a term

Ixni' xnjl
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- is used in our objective function. If both x i and x_. are assigned to the same layer, this
term will be zero. Otherwise, this term wiﬂ be non-zero to reflect that a via is needed if
Xni and x_. are assigned to different layers. Since we allow all arbitrary number of wire
segments intersect at a via candidate, a cost function:

c ..=w *¥*d..

nij n ij

is defined, where w_ is the weight of the net n to be chosen and d'j reflects the contribu-
tion of the pair of wire segments according to the following. Flor a via candidate of

degree k, we have k(k-1)/2 items in the objective function. We define:

dij =2 / [k(k-1)]

If a pair of wire segments are assigned to the same layer, a via candidate with
degree two would not be a via. But a via candidate with degree greater than two still

depends on the layer assignment of the other pairs of wire segments. The di’ in our cost
function exactly reflects the contribution of a pair of wire segments to the objective.

In order to minimize the number of vias, we need:
min { & Cnij ( 'xni' xnjl) }

where x . and Xpj belong to the same net and are attached to the same via candidate.

We formulate the via minimization problem as the following {0, 1} integer pro-
gramming problem:

f='min { Ecnij * lxni'xnjl} (1)

where xn;x and Xhj belong to the same net and attach to the same via candidate.

Subject to:

X .+ x .=1
ni mj
--(2)
where n # m; i # j; Xni and X 8re associated with the same cross point or knock-

knee point; !
Xp; € {0, 1} for all n and i;
cnij > O for all n, i, and j;
The above is a standard {0, 1} integer programming problem. However, it is not
linear. In next section, we will transform the problem into a standard {0, 1} integer
linear programming problem.

EXAMPLE

In Fig. 1 (c), we have used the x _'s to label the wire segments in the example
given in Fig. 1 (a). The knock-knee point constraint is

Xa1 + Xy = 1
Other constraints for the cross points are

xa1+ xbl=1
xa1+ xd2=l
X9+ Xq1 = 1
xb2+ xd1=l

xd3+ xe1=l



Let us set w, = 1 for all nets, we have
1/3% bgq - xggl + 1/3 % gy - %gy |+ 1/3* Iegy - xgol
in the objective function for the via candidate 03. Also we have
1% Ixyy Xpgland 1% by - Xl
in objective function for via candidates C1 and C2.

For minimizing the number of vias in the example given in Fig. 1, we need to solve
the following problem:

+1* bel 'xb2|+ 1t lxcl' chI%

- (3)
subject to
X.1 + Xy = 1
Xa1 + Xp1 = 1
Xa1 + X4o = 1
X9+ X4 = 1
xb2+ xd1=l
X3t Xe1 = 1

X212 b1 ¥b2 X1 Xe2 ¥d1’ ¥d2’ ¥d3 and x) € {0, 1} (4)

4. Formulation Analysis

As we see in formula (1), the objective function is not a linear function. Under for-
mulas (1) and (2), the optimization problem represents a {0, 1} integer quadratic pro-
gramming problem. Fortunately we can transform the problem into one with an objec-
tive function which is much easier to solve and having linear constraints.

4.1. Existence of a Feasible Solution and Constraints

First, let us take a close look at the constraints in (2). For each constraint, exactly
two variables are involved. Furthermore, the values of the two variables in a constraint
are complementary. By a cluster, we mean a sub-set of constraints in which every con-
straint shares at least one variable with at least another constraints in the sub-set. In
other words, constraints in a cluster are linear dependent. A mazimal cluster is a cluster
which shares no variables with the constraints outside the cluster. That is, the maximal
clusters are linearly independent of each other.

A cluster is feasible if and only if all constraints in the cluster can be satisfied. That
is, the values of all variables involved in the cluster can be determined.
Theorem 4.1:

The via minimization problem, formulated by (1) and (2), has a feasible (not neces-
sarily optimal) solution if and only if all clusters in (2) are feasible.
Proof:
Necessity: If a cluster is not feasible, at least one constraint cannot be satisfied. So there

are intersecting wire segments of different nets which cannot be assigned on different
layers. By lemma 3.1, we do not have a feasible solution.



-6-

Sufficiency: If all clusters in (2) are feasible, we have a unique value assignment for the
variables involved in (2). We can assign all remaining variables arbitrary {0, 1} values.
The layer assignment is feasible by corollary 3.2.

Q.E.D.

Another way to look. at the problem is that we can build a constraint graph where
every wire segment corresponds to a node in the graph, an edge existing between two
nodes if and only if the two corresponding wire segments cross over or overlap each
other. Fig. 2 gives the constraint graph for the example given in Fig. 1. Then a maxi-
mal cluster corresponds to a connected component in the graph. A cluster is feasible if
and only if the corresponding connected component in the constraint graph is two-
colorable. Then we have the following equivalent corollaries.

Corollary 4.1:

The via minimization problem formulated by (1) and (2) has a feasible (not neces-
sarily optimal) solution if and only if the corresponding constraint graph is two-colorable
(or contains no odd cycles).

If only Manhattan routing is used, we can always have a feasible layer assignment
by placing all horizontal wires on one layer and all vertical wires on the other. This is a
very popular layer assignment used in most of today’s detailed routers. However, if we
allow both Manhattan and knock-knee routings, we cannot always have a feasible layer
assignment. A counter example is given in Fig. 3. In 1982, Preparata and Lipski proved
that three layers is sufficient ([15]) for mixed Manhattan and knock-knee routings. By
solving the linear equations in (2) or checking the corresponding constraint graph, we
can easily test the feasibility of the original input. From now on, we will assume that the
given input always has a feasible solution. That is, all clusters in (2) are feasible.

4.2. Formulation Transformation

For convenience of the discussion, we also use the term cluster or mazimal cluster
to refer to the sub-set of variables involved in the sub-set of constraints.

Lemma 4.1:

If the value of any one variable in a feasible cluster is fixed, the values of all vari-
ables in the cluster are fixed.

Proof:

Let v be the variable whose value is fixed. Because the values of the two variables
in any given constraint are complementary, the variable(s) in the same constraint(s) as v
has a fixed value. By the definition of a cluster, every constraint in a cluster must share
at least one variable with at least one other constraint in the cluster. Thus, the values of
all variables in the cluster will be fixed.

In the constraint graph, a cluster corresponds to a connected sub-graph and to
assign the layer to wire segments is to color the constraint graph with two colors. Once a
node is colored, the color of all the other nodes in the connected sub-graph is fixed.

Using the above lemma, we can reduce the number of variables in our original for-
mulation. For a maximal cluster, i, we need only one variable, X which takes value 1 if
the corresponding wire is assigned on layer one and O otherwise.

Let us define the new {0, 1} variable ¥ij 8 follows:
¥ij = 0if X; has the same value as x.



yij = 1 otherwise
Then, we have the following objective function:
min{E(Cij*yij-i- Dij)}
Both D;; and C;; are obtained from (1). D;; is the value when y;. is zero and C;; is the
difference of the value, when Yij takes one, and the value when Yij takes zero.

To calculate the value of D.., we first assign an arbitrary value to x;. Next we let
x. equals x, i. e. let Yii equals zero. Notice that all variables of the ith anJ the jth maxi-
mal cluster in (1) are determined (by Lemma 4.1). Then we delete all terms which con-
tain undetermined variable in (1). The value of f in (1) is the value of D... If we assign
the complementary value of x. to x;, i. e. let y.. equals one, and delete all l!erms contain-
ing undetermined variable in (Il), the value of f in (1) is denoted as Mij’ Then we have:

Notice that Cij can be either negative or positive.

By introducing the dummy boolean variables z;. for each y.. and eliminating the
constant Dij from the objective function, we can transform the formulations (1) and (2)
to:

f=min {ZC.. *y..}
ij i)
- (5)

X. 4+ X, -y..=2%7z.
1 ] "1 y
— (6)
Thus we transform the via minimization problem to a {0, 1} integer linear pro-
gramming problem.

EXAMPLE

Let us redraw the example given in Fig. 1, in Fig. 4. We only need three variables,

31;1 -—; Xa1 X9 = Xpo and Xg = X 43 to present the three maximal clusters, as shown in
1g. 4.

Then we can calculate D..’s and C..’s. To obtain Dl , We assign x; =1 and the let
Xo = X, == 1. Notice that the values of the variables in the same cluster as x, are deter-
mined by (4). We have: x| = x4o = x,; = 0. Also the values of the variables in the
same cluster as x,, are determined. We have x ,, = 0 and x =1 Dropping the terms

containing undetermined variables in (3), in our example terms containing x d3 and x el’
we have:

Dyg=1/3* kg - Xgol + 1* bel'xligl'" 1* by = Xgol
=1/3*0-0l+ 1*P-1]+1*]0-1]=2.

Similarly, we have the following:

To obtain C,,, we need to get M12 first. We assign x, = 1 and we have: Xpy =
X1 = X_, = 0. Now let x, = 0. The values of the va.riab}

es in the same cluster as Xg
are determined by (4). We iave xqp =1 and x 2 = 0. Dropping the terms containing
undetermined variables in (3), in our example terms containing x d3 and x o1’ We have:

My, =1/3% Kk, -0+ 1%k ,-x0l+ 1%k -x,l
1 1° X420 17 *p2 17 %c2
—13 -0+ 1+ - 1fF 15 - o= 103, °oe



Thus we obtain:

Similarly, we get:
C;3=0-D3="-1/3
Therefore, we have:

subject to:

Xy + Xg-Yjp=2%zp
X+ x3-¥13=2%23
Xg + X3-Yg3 =2"%193

4.3. Problem Extensions

In IC layout, the layers may be not equal in performance. Some wire segments may
have pre-assigned layers. For each of these wire segments, we need to add another con-
straint:

xp =K,
where Xp is the corresponding variable and K is a constant, O or 1.

To optimize the chip performance, we may want to limit the number of contacts on
a critical net: say the number of contacts on net n'must be less than a constant N. Then
we can pose the following constraints to take care of the case:

2 Ixni - xnjl < N,
where Xpi and Xnj belong to net n and share a via candidate.

With a more complicated cost function, we can also reflect the trade-offs between
the number of contacts and the wire length on a preferred layer or we can maximize the
wire length on the preferred layer as a secondary goal.

5. Problem Solution

5.1. Underlining Ideas

Because of the huge number of variables in the formulation, any kind of known
constraint relaxation technique is not practical due to the space and/or run-time prob-
lems. We propose a graph theoretical approach to solve our problem. First, let us build
a weighted cluster graph G(V, E) as follows:

A node, v, in V has a one-to-one correspondence to a maximal cluster in the for-
mulation. An edge, e = {vi, v.}, in E has a one-to-one correspondence to the boolean
variable y.. in the problem f')ormula.tion. A weight, Wi = 'Ci" is assigned to the

corresponding edge. The weighted cluster graph for the examp]le given in Fig. 4 is
shown in Fig. 5.

The problem now becomes to find a maximal cut in the weighted. cluster graph
which will divide the vertex set into two parts. The vertices in one part will be colored
with one color while the vertices in another part will be colored the other color. If the
weighted cluster graph is planar, we can find the optimal solution in polynomial time
([16] and [17]). Unfortunately, the weighted cluster graph is not planar in general and we
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know that to find a maximal cut in a general graph is NP-complete ([18] and [19]). So we
will try the heuristics to solve the problem.

5.2. Special Case of the Problem

Let us conduct some special cases of the problem from the graph theory point of
view.

Lemma 5.1:

If the 2weighted cluster graph is a planar graph, the optimal solution can be found
in O( V[/2 * [E] ) time ((16], [17], [20] snd [21]).

A graph is called biconnected if and only there exist at least two different paths
connecting each pair of nodes. The biconnected components of a graph are maximal
biconnected subgraphs of the graph. Notice that two biconnected components of a graph

are either disconnected or connected by a node, an edge or a simple path. Then we have
the following:

Lemma 5.2:

The maximum cut in a biconnected component of the weighted cluster graph is a
part of the maximum cut for the graph.

Theorem 5.1:

The biconnected components of the weighted cluster graph can be handled indepen-
dently.

The above theorem gives a way to partition the original problem into smaller ones
if it is possible.

5.3. The Algorithm and Complexity Analysis

step 1:
Get input data; identify all cross points, knock-knee points and via candidates; and
build the weighted cluster graph G = (V, E);

step 2:
’ Sort the edges of G by their weights in decreasing order in E and use the ‘“‘edge-
pick-up’ procedure to get an initial solution.
step 3:
Improve the initial result by swapping the nodes.
edge-pick-up procedure
Input:
weighted cluster graph G = (V, E, W)
Output:
an edge cut, C, partitioning the node set V into two disjoint sets, V S and Vt.
Objective:

maximize W= X W,

}’Vhile (((e = {v; vj}) €E)= NULL )

if ( both v; and v NOT marked )
{

mark v, € Vs and v € Vt;
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put e € C;

}

else if ( both v, and \f MARKED )
do nothing;

else

{
mark the unmarked node € the different set to the marked
node;
put e €C;

}

go to next edge in E;

}
}

To implement step one, we can use the plane-sweep technique to find all cross
points, knock-knee points and via candidates; the time complexity will be O(nlogn + k)
where n is the number of layout objects in the input chip and k is the total number of
cross points, knock-knee points and via candidates [22]. In step two, we need O(
[Ellog|E| ) time to sort the edges and O( [E]) to find the cut. So the time complexity for
step two is O( |Ellog|E| ) where [E| is the number of edges in the weighted cluster graph.

In order to improve the initial result obtained by the above procedure, we propose
the following iterative improvement approach. After the initial solution is obtained, the
node set V of the weighted cluster graph is divided into two sub-node-sets, V_ and Vt’
by the cut C. For each node v, w__ is the sum of the weights of the edges incident to v
and the nodes which belong to tie same sub-node-set as v; w_. is the sum of the
weights of the edges incident to v and the nodes which belong to the complementary
sub-node-set. If Wos is larger than w, for a node v, then we will move the node, v,
from its original sub-node-set to the complementary sub-node-set.

To further improve the result, we can group the nodes in their sub-node-set into
pseudo nodes and repeat the above process.

Each iteration of such improvement takes O( [V]) time where [V] is the number of
the nodes in the weighted cluster graph.

Usually, the number of layout objects is much larger than the number of edges, IE|,
and the number of nodes, [V], in the weighted cluster graph. So the overall time com-
plexity of our algorithm is O( nlogn + k).

6. Results

Following the above algorithm, we find (x;, x,) and (x1) Xg) as the maximal cut for
the example given in Fig. 4. The layer assignment is shown in Fig. 6. The algorithm is
implemented in C on a u-VAXII workstation and was used as a post-process step for a
gridless channel router -- Glitter [23]. Fig. 7 and Fig. 8 show the layer assignment of
two other examples. In all the examples given here, the optimal solution is obtained. In
other words, the number of vias in these examples is the minimum possible. Notice that
the number of vias is the minimum possible undér the given topology. As an example,
let us use our topological routing method to re-route the channel given in Fig. 7. Fig. 9
shows the result with only one via.

Fig. 10 shows the channel routing result of D. N. Deutsch’s difficult example with
406 vias. The number of vias is minimized by our approach in about 10 minutes. The
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final number of vias is 335, reduced by 17.5 percents, and the result is shown in Fig. 11.

7. Concluding Remarks

We used a unified {0, 1} linear programming formulation for the via minimization
problem. Based on the analysis of the formulation and graph theory, we developed an
efficient algorithm to solve the general practical via minimization problem.

To obtain the global optimal solution for the problem, the simulated annealing
technique can be applied to find the maximum cut in the weighted cluster graph we pro-
posed.

The rapid advance in VLSI fabrication technology has made it possible that more
than two layers are available for routing. So how to minimize the number of vias in

more than two layer routing is important. We are going to extend our approach to han-
dle the problem involving more than two routing layers.
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