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Abstract

We present a fast and effective placement algorithm which takes advantage of inherent
sparsity in the connectivity specification. It solves repeatedly sparse linear equations by the
SOR method in a top-down hierarchy. The algorithm has been implemented; for a triple-
metal-layer 100K sea-of-gates design with 26,000 instances, it takes 50 minutes on a VAX
8650 and yields excellent results.

* Chi-Ping Hsu is with Hughes Aircraft Company, 500 Superior Avenue, Newport Beach, Ca., 92663.



1. Introduction

As Application Specific Integrated Circuits (ASIC) become more popular and the gate
count on a chip gets increasingly larger, the quality and speed of automatic layout algorithms
need to be readdressed. It is well-known that the problem of cell placement is especially cru-
cial to the final outcome of the design [1]. For a sea-of-gates chip with 100K or more gates,
conventional deterministic methods are no longer suitable because sparsity of the connectivity
specification ought to be considered. Random algorithms such as simulated annealing could
take a forbidden amount of time in reaching an acceptable solution.

In this paper we introduce a hierarchical method of placement which takes full advantage
of the sparsity inherent in the placement specification. The method uses the quadratic place-
ment formulation first proposed by Hall [2], however we do not find the eigenvalues and
eigenvectors of a large matrix. It depends on Cheng’s and Kuh'’s concept of resistive network
optimization in [3], but it bypasses the slot constraints and employs a simpler partitioning
scheme. Our method takes the I/O pad specification as input and solves successively linear
sparse equations. From the result of several real chips, the quality of the placement is excel-
lent. It is superior to that obtained by TimberWolf 3.2 [4] and is comparable with that of
TWOLF 405 [5). The run time complexity of our method is O (nlog?n) and the memory
space complexity is linear. For a 100K sea-of-gates chip with 26K modules (cells), the run
time is about 50 minutes on a VAX 8650 (6 MIPs machine) and the memory requirement is
about 11 megabytes.

In Section 2, we give the formulation of the global placement problem which is used for
initial placement and review pertinent concepts from earlier work [2, 3]. Section 3 deals with
the next step, that is, two-way partitioning and iterations. Together they constitute one cycle of
the top-down hierarchy. The pseudo code of our method is given in Section 4. Section 5
gives the complexity of the algorithm. Section 6 describes some experimental results. We
conclude the paper in Section 7 and indicate some future directions.

2. The Global Placement

The global placement is solved based on the two usual assumptions that all modules are
point modules and all nets are two-pin nets. Thus multi-pin nets must be preprocessed and
replaced with two-pin nets. Let ¢;; be the connectivity between module i and module j, e.g.,
the number of nets connecting the two modules. Thus a symmetric connectivity matrix

C = |c;j | is introduced with ¢; = 0. As in Refs. [2, 3] we use the sum of the squared wire

lengths as the objective function. Let l;; be the distance between module i and module j, then
with n modules, the objective function is

=l z C,-j lijz (l)
2 =1
1 o 2 2.

=2 i?,l [Ci,' (x; =x;)" + ¢ ()’i_yj)]

where (x;, y;) represents the coordinate of module i .
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Next, a modified connectivity matrix B is defined:
B=D-C ' (23)

where D is a diagonal matrix with

di = 3.6 (2b)
J=1

It is easily shown that Eq. (1) can be rewritten as:
Lx, y)=x'Bx+y' By 3

where x and y are n-vectors which specify the coordinates of » modules. The usual place-
ment problem is then to minimize L subject to the "slot" constraints, that is, all point modules
are placed on an evenly spaced, two-dimensional grid. The following discussion summarizes
the background material as well as our method for global placement.

1. In [2], the linear placement problem is treated first, i.e., only x’ Bx in the objective
function L is considered. A first order "slot" constraint, x! x = 1, is used. This leads to the
Lagrangian multiplier formulation with

L'=x"Bx-Ax" x

and the solution amounts to finding the least nonzero eigenvalue and its associate eigenvector
of the matrix B. Since the method only takes into account the first order constraint, the solu-
tion does not satisfy the "slot" constraint, and it can only be served as a first order approxima-
tion to the final placement.

If we use the two least nonzero eigenvalues, we can find an approximation to the two-
dimensional placement problem with the y-dimension coordinate obtained from the eigenvector
associated with the second smallest nonzero eigenvalue. One main difficulty with this
approach is that the calculation of the eigenvalues and eigenvectors of a large matrix, even for
a sparse matrix, is not a simple task. Furthermore, the solution forms only a rough initial
placement; to be useful, other methods must be devised as a followup.

2. In [3], higher order constraints are derived to guarantee that modules be forced onto
slots. However, the nonlinear programming problem so formulated is difficult, if not impossi-
ble, to solve. By using only a first-order linear constraint, Cheng and Kuh introduced a resis-
tive network model to obtain the initial solution explicitly from the well-known Kuhn-Tucker
conditions [6]. It is then followed by relaxation and successive partitioning to obtain the final
solution. Our present method takes advantage of the resistive network concept, but departs
from [3] in that we ignore all constraints. Instead of solving the optimization problem directly,
we solve a linear set of equations by the SOR method, a generalized Gauss-Seidel method [7].

3. Consider the electric network analogy of the placement problem. The one-
dimensional objective function x” Bx can be interpreted as the power dissipation of an n node
linear resistive network with x corresponding to an n-vector whose components represent the
voltage at the nodes. In the remainder of this section we use x to designate either the coordi-
nate or the voltage vector. The modified connectivity matrix B is exactly the indefinite



admittance matrix of the n-node resistive network with —b; equal to the conductance between
node i and node j. The placement problem is then equivalent to that of choosing the node
voltages of the n-node network for which the power dissipation is a minimum. In electric net-
work theory it is well-known that minimum power dissipation is implied by the two Kirchhoff
Laws. Thus we can reformulate our linear placement problem in terms of a linear resistive
network problem provided that we include the I/O pad specifications. This allows us to model
the 1/O pads as fixed voltage sources applied to the network, and the coordinates of the mov-
able modules are then the node voltages to be determined.

4. In Fig. 1 we show a network where nodes 1 to m represent movable modules and
nodes'm +1 to n represent fixed modules with voltages specified by the I/O pads. Then the
n-port network equation can be written as follows:

By x; +Byyx; =0 (4a)
le X; + Bzz Xy = iz (4b)

where By;, BT 12=B3;, and By, are the familiar submatrices of the node admittance matrix of
the network. x; is the voltage vector of dimension m to be determined, where m is the
number of movable modules. x; is the voltage source vector, and i, represents the current vec-
tor flowing into the n —m terminals from the sources shown in Fig. 1. Eq. (4a) is the key
equation which we depend on, and it is rewritten as:

Ax;=b ©))
where
A é Bu and b= —B12X2 (6)

are given. Therefore we have converted the optimization problem into a linear algebraic prob-

lem. Since A is sparse, usually 0.1 percent to 1 percent, familiar sparse matrix techniques can
be used to solve for x;.

5. We have chosen the Successive-Over-Relaxation (SOR) method to solve the sparse
linear equations. The method is summarized below:

Let
A=AL+1+0)

where A is a diagonal, positive definite matrix, L is a lower triangular matrix and U is an
upper triangular matrix. The vector x, is solved iteratively by the following recursive formula:

X, (k+1) =Mx, (k)+a
where

M=(1+wL)’! [(l—w)l—wU]
and

a=A"lb

The parameter w, to be chosen, is in the range of zero to two. For the special case w =1, the
SOR method reduces to the familiar Gauss-Seidel method. The advantage of the SOR method



is that it preserves the sparsity in A in the iteration and since A is real, symmetric, and diago-
nally dominant, convergence is guaranteed. The running time in each iteration is linear.

6. The I/O pads on the boundary of a chip define the coordinates of the fixed modules in
the x-direction by projecting all pads to the x-axis as shown in Fig. 2. The one-dimension
problem is a linear placement problem. Similarly, the fixed module for the y-direction linear
placement problem is shown. The solutions of the two linear placement problems give the
coordinates of the movable modules in two dimensions and constitute our initial placement.

7. The result of the initial placement gives the optimal solution in terms of our original
objective function. This is because L (x,y) is a convex quadratic function, thus there exists a
unique global minimum. However, we have assumed in the formulation that all modules are
point modules and the slot constraint is ignored.. In the real situation, modules occupy finite
nonzero area and their shapes vary. While the slot constraint is not pertinent to our current
problem of module placement, replacing the point modules with real modules will cause
module overlaps. In the next section we specifically address the overlap problem and propose
an efficient partitioning method with iterations to perturb the initial solution. The key feature
is that we again resort to solving linear sparse equations. We repeat the process in a top-down
hierarchy to obtain the final solution.

3. Partition and Iteration

As shown in Fig. 3 we introduce a vertical cut line to partition the chip into two. The
location of the cut is determined by the area consideration based on the position of the modules
obtained from the initial placement. We sort the modules from left to right and add up the
area until roughly half of the total area is reached. The cut is then made. If the cut line coin-
cides with the center line, we proceed to the next hierarchy by performing horizontal cuts on
each half. If not, we must move the cut line to the center in order to satisfy the area require-
ment. This calls for a modification of the placement to both halves. To achieve this, we intro-
duce a simple heuristic as follows.

We may assume that the cut line is to the right of the center as shown in Fig. 3 without
loss of generality. All modules to the right of the center line are projected on the center line
as shown. We then solve the global placement problem in the left half plane by the method
outlined in the previous section. However, it should be noted that among the projected
modules only those modules which lie between the cut line and the center line will be included
in the set of movable modules while others will be grouped with the fixed modules. We next
repeat the placement algorithm for the right half region. In this case all modules form the left
half plane are projected on the center line as fixed modules. At the end of this process,
modules have been perturbed from the initial placement in such a way that the center line
divides the modules into two sets with each occupying half the area of the chip as required by
the modules. The following comments explain why the method works well and how it can be
further improved. Except for the improvements mentioned in items 3 and 4 below, we have
reached the next level of hierarchy for further two-way partitioning by means of horizontal
cuts. The process then repeats until we reach the bottom level and all modules are finally
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placed.

1. A key concept used in finding the global placement of the movable modules from the
given placement of the fixed modules is convexity. It is easy to prove from the property of the
modified connectivity matrix B that all movable modules are restricted to be inside the convex
hull of the fixed modules on the boundary. This is also obvious from the electric network
analogy. For passive resistive networks, the node voltage of any node cannot exceed the max-
imum source voltage in the circuit. Thus we are assured that the optimum location of the point
modules in each placement problem obtained from the solution of linear equations constructed
from the modified connectivity matrix remains within the given region.

2. As shown in [8], the problems of partitioning and placement are similar in structure.
In particular, bipartitioning is equivalent to linear placement. Thus in our approach, the result
of the initial linear placement guarantees a min-cut partitioning. This explains also the success
of other placement techniques based on min-cut partitioning [9, 10). With minimum crossing
between the two sides of a cut, global routing requirements between them are reduced. This is
obviously a good design strategy for any styles of layout.

3. Further improvement can be made at each level of hierarchy. Let us consider the
two-way partitioning of the movable modules, i.e. the left half and the right half of the center
line. Let the coordinates of the movable modules be depicted with subindices according to the

.s . X
two halves. Thus we partition X, into x:: . Eq. (5) becomes
AnXia FApx), =b (72)

A1 X)g +An X =b, (7b)
. ,
where [b;] = b is the contribution due to the given 1/O pads as in Eq. (6). Clearly,

X1a = Ay [bl = Apxy, (8a)

and

Xpp = Ay [bz - Apxy, (8b)

We have used Egs. (8a) and (8b) to improve the solution of x, after the initial placement. We
have found that even one iteration of Eq. (8) has led to considerable improvement. The itera-
tion scheme has been implemented in our program.

4. The two-way partitioning is simple in concept and in calculation. The next obvious
extension is four-way partitioning. This requires the one-step division of a given region into
four pieces of equal area. A simple heuristic algorithm has been developed. To distinguish
two-way partitioning from four-way partitioning, we call the former program Proud-2 and the
latter Proud-4. The result of Proud-4 in comparison with Proud-2 is given in Section 6. In
general, Proud-4 improves the quality by two to five percent in terms of total wire length. The
running time is however roughly 50 percent longer.



4. Pseudo Code

The core of this program has only 1500 lines. There are another 1500 lines for the input
and output. The program is written in C and can run on a VAX machine under UNIX or
VMS, and also on an APOLLO under AEGIS. We list the pseudo code for the readers’ refer-
ence.

PROUD_PLACEMENT: .
Input: design description, net weighting, number of hierarchies, number of inner iterations
Output: placement result.
Algorithm:
Read in and set up the data structure.
Assign all modules to one internal block, and assign all I/O pads to one 1/O block.
Construct the modified connectivity matrix in the sparse form.
For each hierarchy
(
Repeat number of inner iterations (repeat only once for the first hierarchy)
{
For each intemal block
{
Reconstruct the modified connectivity matrix for this block.

Calculate the right hand side of the linear equation according to the
boundary condition determined by the projections of modules or I/O pads
in other blocks.

Use the SOR method to solve for relative module positions.

Temporarily cut the block into two sub-blocks according to the cut
method for this hierarchy. Assign the modules into separate sub-blocks
by sorting.

}

Fix the cut at the center of each internal block and permanently associate the
modules to the corresponding sub-blocks, which form a new set of internal blocks
for next hierarchy. ‘



5. Complexity

The key consideration for storage complexity is how we store the modified connectivity
matrix B. Since the net list specification is usually given by the pin-net connectivity, we need
to express the complexity in terms of the total number of pins. However, in practice, the
number of pins is roughly proportional to the number of modules. Thus the memory space
complexity in our sparse matrix formulation is O (n), where 2 is the number of modules.

The initial placement and the iterative linear system solver are linear in terms of run time
complexity. The complexity for the sorting algorithm is O (n logn) at each partitioning step.
The hierarchical cut creates a binary tree which can have at most log n levels. Thus the run
time complexity for our method is O (n log?n).

6. Experimental results

The algorithm was tested on nine real circuits. Seven of them are mid-sized designs
which contain 1,000 to 4,000 modules. The other two are in the realm of high-complexity lay-
out. One has 14,000 and the other has 26,000 modules. The run time is reported under test
runs on a VAX 8650 machine (which is a six MIPs machine). We observed that the memory
storage requirement is so efficient that it is less than linear mainly because of the sparse matrix
structure. The run time does vary from example to example because different examples need
different numbers of iterations in order to converge to the final solution, and the number of
cuts is different for different-sized examples. However, in general the run time is only slightly
worse than linear.

Tables 1 through 9 summarize results on nine real designs and give comparisons with
TimberWolf 3.2 and the recent TWOLF 405. Our results in terms of total wire length are
superior to TimberWolf 3.2 in all cases where comparisons can be made. They are comparable
to that of TWOLF 405. However, in terms of running time, even on the smaller chips, Proud-
2 is roughly 100 times faster.

7. Conclusion

In this paper we present a novel approach to high-complexity placement. This is the first
time that a deterministic algorithm is comparable with simulated annealing in the quality of the
results. However, the running time is several orders of magnitude faster. The approach is
especially suitable for sea-of-gates design. The method takes advantage of the inherent sparsity
of the placement problem and depends on solving linear sparse equations repeatedly. In the
following we indicate some future directions in extending our present method.

(i) Combining basic cells like NANDs, NORs, etc. and macros like RAMs, PLAs, etc. in
one design is believed to be the most viable approach for future VLSI design. However,
it is not an easy task because of the extreme size differences in cells and macros. The
difficulty can possibly be overcome by the simple min-cut step in our placement algo-
rithm which scans through a sorted list based on the global placement result.



@ii)

(iii)

@Gv)

)

The determination of the parameter w used in the SOR method needs to be studied. A
good choice of the parameter can reduce the number of iterations, and will shorten the
total run time.

The iterative methods for linear systems are ideal for parallel processing. Either the
block Gauss-Seidel or the block SOR method can be implemented. The general issue for
parallel processing is the problem of independence. If there is strong interaction among
sub-problems, the costly overhead can make the parallel algorithm inapplicable [11].

The I/O pad placement is critical to the final solution of module placement. We have
looked into the problem of optimum I/O pad placement from the information of module
connectivity. Since all I/Os are placed around the boundary ring of a chip, which is a
special case of the one-dimensional placement problem, some form of optimal solution
can be expected.

Timing-driven layout depends in a critical way on module placement. Our simple place-
ment algorithm is ideal to incorporate timing into consideration.
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— Linear m+l
P —— Passive
D Resistive @
m—— Network

Fig.1 An n-terminal linear, passive resistive network whose first m nodes are floating and the remaining
n-m nodes are connected to voltage sources.

Fig.2 Fixed /O pads are projected to the x-axis and y-axis respectively in defining the two linear place-
ment problems

cut line

7

center line

Fig. 3 Projecting modules from the right-half-plane to the center line to determine the left-half-plane
placement
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Table 1

design #modules #nets #pins
hl __ 1180 1704 4815 |
leorith wire length run time memory
algoritim 1| (half perimeter) | (seconds) (Megabytes)
‘PROUD-2 || 4025290 (1) 34 (1) 0.8
PROUD-4 || 3970740 (0.986) | 55 (1.62) 0.8 .
TWOLF NA NA NA
TWOLF405 || 3758618 (0.933) | 3279 (96) NA
Table 2
design #modules #nets #pins
h2 1438 1645 4936 |
Ioorith wire length run time memory
algorithm (half perimeter) (seconds) (Megabytes)
PROUD-2 || 3580000 (1) 50 (1) 1.27
PROUD-4 || 3451000 (0.964) 96 (1.93) 1.27
TWOLF 3836410 (1.072) | 7200 (144) NA
TWOLF405 || 3236228 (0.904) 3260 (65) NA
Table 3
design #modules #nets #pins
h3 1975 2302 9886
. wire length run time memory
algorithm (half perimeter) (seconds) (Megabytes)
PROUD-2 || 5435550 (1) 232 (1) 14
PROUD-4 || 5303120 (0.976) 256 (1.10) 14
TWOLF 6253750 (1.151) | 27973 (120) NA
TWOLF405 || 4740746 (0.872) NA NA
Table 4
design #modules #nets #pins
_hd4 2552 3864 12240
. wire length run time memory
algorithm (half perimeter) (seconds) (Megabytes)
PROUD-2 14971934 (1) 86 (1) 1.63
PROUD-4 || 14048436 (0.938) | 153 (1.78) 1.63
TWOLF 17704610 (1.183) NA NA
TWOLF405 || 14580270 (0.974) | 10440 (121) NA
Table 5
design #modules #nets #pins
h5 2886 3755 11629
. wire length run time memory
algorithm (half perimeter) | (seconds) | (Megabytes)
PROUD-2 || 7950754 (1) 99 (1) 1.56
PROUD-4 || 7812430 (0.983) | 157 (1.59) 1.56
TWOLF 9202952 (1.157) NA NA
TWOLF405 || NA NA NA
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Table 6

design #modules #nets #pins
hé 3249 4237 13166
. wire length run time memory
algorithm (half perimeter) (seconds) (Megabytes)
PROUD-2 || 5328358 (1) 128 (1) 1.53
PROUD-4 || 5204386 (0.967) 195 (1.53) 1.53
TWOLF 8398243 (1.576) NA NA
TWOLF405 || 5008952 (0.940) | 14400 (113) NA
Table 7
design #modules #nets #pins
h7 3816 3094 10778 |
. wire length run time memory
algorithm (half perimeter) | (seconds) | (Megabytes)
PROUD-2 || 6312228 (1) 325 (1) 1.54
PROUD-4 || 6347820 (1.006) | 654 (2.01) 1.54
TWOLF 7002087 (1.109) NA NA
TWOLF405 || 5828984 (0.923) | 24108 (74) NA
Table 8
design #modules #nets #pins
h8 14091 16958 56377
. wire length run time memory
algorithm (half perimeter) (seconds) | (Megabytes)
PROUD-2 || 34518106 (1) 1704 (1) 6.12
PROUD-4 || 32657287 (0.946) | 3143 (1.84) 6.12
TWOLF NA > 49 dayst NA
TWOLF405 || NA NA7T NA
+ Cannot place the whole chip flat.
Table 9
design #modules #nets #pins
h9 26277 29151 92530
alvorithm wire length run time memory
g (half perimeter) (seconds) (Megabytes)
PROUD-2 || 50028939 (1) 3048 (1) 11.08
PROUD-4 || 48142839 (0.962) | 5598 (1.84) 11.08
TWOLF NA NAY} NA
TWOLF405 || NA NAYT NA

1 Cannot place the whole chip flat.
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