

Copyright © 1987, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

THE BERKELEY PROCESS-FLOW LANGUAGE:

REFERENCE DOCUMENT

by

Christopher B. Williams and Lawrence A. Rowe

Memorandum No. UCB/ERL M87/73

15 October 1987

THE BERKELEY PROCESS-FLOW LANGUAGE:

REFERENCE DOCUMENT

by

Christopher B. Williams and Lawrence A. Rowe

Memorandum No. UCB/ERL M87/73

15 October 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

The Berkeley Process-Flow Language:
Reference Document

Christopher B. Williams
(mlliams@merlin.berkeley.edu)

Lawrence A. Rowe

(larry@postgres.berkeley.edu)

Computer Science Division - Dept. EECS
University of California, Berkeley

Berkeley, CA 74720

Version 1

October 15,1987

The Berkeley Process-Flow Language (BPFL) for integrated circuit manufacturing

is described. The language specifies the manufacturing steps that describe how a sem

iconductor is fabricated. The language will be used to automate the manufacturing pro

cess and as an input and output language for other computer integrated manufacturing

tools (e.g., process and scheduling simulators).

This research was supported by grants from the Semiconductor Research Corp., Fairchild Semicon
ductor, Harris Semiconductor, Philips/Signetics, and Siemens Corp., with a matching grant from the State
of California's MICRO program. The first author was also supported by a fellowship from the Semicon
ductor Research Corporation.

THE BERKELEY PROCESS-FLOW LANGUAGE:

REFERENCE DOCUMENT

by

Christopher B. Williams and Lawrence A. Rowe

Memorandum No. UCB/ERL M87/73

15 October 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

1. Introduction

This document describes the Berkeley Process-Flow Language (BPFL). It is a

reference document for those who wish to specify processes with BPFL or to write pro

cess interpreters.

Specifications written in BPFL describe the fabrication of semiconductor devices.

Fabrication requires many processing steps to be performed in a fixed sequence. The

word process is commonly used to describe two different aspects of fabrication. The first

usage refers to the entire sequence of operations that result in a working device (e.g., a

"2 micron CMOS process"). The second usage refers to an operation within the

sequence (i.e., a processing step), usually associated with one piece of equipment (e.g.,

an oxidation process, an implantation process, or a photolithography process).

A BPFL process is composed of a sequence of smaller, more specific processes.

Thus, a process is a hierarchy, with the most general processes at the top. BPFL categor

izes the processes in a hierarchy into three process levels. Each process level has a set of

process steps that define the finest level of detail expressible at that level At the highest

level, called the flow level, the process steps specify the desired effect to be achieved

(e.g., "grow 1000A of oxide"). At the second level, called the generic-equipment level,

the process steps describe how to implement a flow step using a general class of equip

ment (e.g., a tube furnace or an ion-beam implanter). At the third and lowest level,

called the equipment-specific level, the process steps describe in complete detail how to

implement the generic-equipment steps on a specific piece of equipment

A complete process specification, like "2 micron CMOS," is called &process-flow,

while process can refer to any level of detail. In a BPFL specification of a process-flow,

processes are represented by functions. Functions can call other functions in sequence,

just as processes can use other processes. Functions have local and global variables that

hold data values, similar to variables in conventional programming languages.

Each function in a process-flow is specified as being at one process level (ie„ flow,

generic-equipment, or equipment-specific). Statements in these functions may call func

tions at the same or lower level, but they may not call functions at a higher level For

example, a flow level function may call any function since it is at the highest level An

equipment-specific function may call another equipment-specific function, but cannot

call a flow or generic level function.

The fabrication unit from a process design viewpoint is a wafer. In practice, how

ever, work is performed on a set of wafers, called a lot. During a processing step, the

wafers in a lot may be treated serially or in parallel, depending on the specific equipment.

A lot and its controlling process specification is called a run. In a typical fabrication

facility, severalruns, each at a different stage of completion, will be under the control of

one process specification. BPFL process specifications are written in terms of one run.

Within a run, the lot may be divided into sub-lots, each of which can be processed

separately from the rest

The intent of BPFL is to represent all information about a fabrication process that

will be needed by any application programs during the design, manufacture, and testing

of semiconductors. Because different applications need different kinds of information, a

process-flow actually specifies several different views of a process. For example, a pro

duction control application needs equipment-specific information, while a process simu

lator can use only generic-equipment information and can ignore the test wafer process-

ing. Most application programs will be interpreters that extract information from a

BPFL process-flow description according to the needs of the application.

A process-flow specification has several semantic interpretations because the

specification is interpreted by many applications. To allow one description to be used by

many interpreters, basic semantic forms must be preserved by all interpretations. The

basic structure of BPFL is taken from Common Lisp[Steele], However, BPFL is

intended to be a description language as opposed to a general purpose programming

language. BPFL is distinguished from Common Lisp by several restrictions and two

modifications of semantics. It is expected that BPFL will be used in an environment that

relies on a database. Thus, the semantics of some constructs are defined in terms of a

database rather than a main memory Lisp system. The programming functionality sup

ported by BPFL was limited so that it would be easier to write a variety of interpreters.

The remainder of this report describes BPFL. It is organized as follows. The next

section describes the syntax of BPFL. The third section describes the language semantics

and functionality that must be supported by application interpreters. The fourth section

provides some examples of descriptions written in BPFL.

2. BPFL Syntax

BPFL syntax is defined by its printed representation. BPFL could also be

represented in a database or a Lisp system, but these forms, although easier to manipu

late, are not as portable. Thus, all examples will be textual and set in this

typeface. The first sub-section defines the data types. The remaining sections define

special uses of the list data type for function calls and function definition.

2.1. Data Types

The BPFL data types are described by their printed representation and a general dis

cussion. In what follows, a newline (i.e., a line separation character) may appear wher

ever a space is valid, unless otherwise specified. The behavior of the data types will be

specified later by the functions that operate on them.

A value exists either as a constant or as a dynamic entity created by an interpreter.

Data types describe the behavior of data values (i.e., values have a data type). A set of

primitive or basic data types are defined (e.g., integer, floating point, and string). In addi

tion, constructors are provided that can be used to define more complex, structured data

types. The BPFL data types are described by first defining the basic data types and then

defining the type constructors.

2.1.1. Basic Data Types

integer [Data type]

An integer is a signed number in the range that can be represented by a 32-bit two's

complement binary number (i.e., -2147483648 to 2147483647). Integers are printed in

decimal with a preceding sign ("+" is optional).

Examples:
0 1 +256 -100000 2147483647

ratio [Data type]

The ratio data type allows exact representation of numbers such as one-third. The

print representation is two integers separated by a slash ("/"). The first integer is the

numerator of a rational number, and the second is the denominator. The numerator and

denominator should have a greatest common factor of one. The denominator must be

strictly positive (i.e., non-zero) and has no preceding sign.

Examples:
1/2 1/3 -7/8 15/7 12831129/192282938

float [Data type]

BPFL has single precision and double precision floating point numbers analogous to

those found in most computer systems. These have a precision of about 7 and 15 decimal

places, respectively. The mantissa is required, and may be followed by an exponent,

separated by a letter called an exponent marker (i.e., "scientific notation"). The

mantissa and exponent are printed in decimal with a preceding sign ("+" is optional).

The print representation must contain at least a decimal point or an exponent A decimal

point, if present, must be followed by at least one digit If no exponent marker is given,

or if the exponent marker is "e" or "f", then the number is single precision. If the

exponent marker is "d", then the number is double precision. The number of digits

given does not affect the precision of the value.

Examples:
1.0 .1 0.1 leO 1.0e7 3.14159265358979317d0

string [Data type]

A string is a sequence of printable characters delimited by double quotes ("" "). A

printable character is any non-control character in the ASCII character set If the

backslash character ("\") appears in a string, the following character is included in the

string, even if that character is a backslash or a double quote. A string may contain zero

characters, or up to 10,000 characters. A newline (textual line separator) may appear in a

string. It is printed as a newline and the rest of the characters in the string follow

immediately at the beginning of the next line. The case of characters is significant

BPFL is not intended to be a text manipulation language. Thus the text handling capabil

ities are intentionally limited.

Examples:
"string"

"Hello world."

"\"Hi!\""

"This string goes from here
to here"

symbol [Data type]

A symbol is a sequence of printable characters, without any special delimiters. The

characters may be alphanumeric, or any character in the string "+-*/@$%~&_<>. ~".

Note that the question mark (*'?") and the exclamation mark ("!") are not allowed

since they are reserved for future expansion of the language. The case of alphabetic

characters is not significant and so a symbol may be printed with either upper or lower

case letters. Symbols names may have up to 255 characters. A symbol may not consist

entirely of dots. A symbol should not resemble a number. In the most general case, a

number is a series of signs, dots, slashes, singleton letters, and at least one digit. Obvi

ously, not all such combinations would be considered numbers as defined by BPFL.

Anything that cannot be interpreted as a number is a symbol. However, to allow for

future representations of numbers, such symbols should be avoided. In any case, a

sequence of characters is a symbol and not a number if it ends with a sign (**+" or **-")

or starts with a slash ("/"). Symbols can be used to name variables.

Examples:

hello oxidation *report-format* 1+ %%% &aux x

keyword [Data type]

A keyword has the same syntax as a symbol, except that the first character of its

print representation is a colon (":"). A symbol and a keyword that print the same

(modulo the initial colon) are said to correspond. Thus : energy is the corresponding

keyword for the symbol energy, and vice versa. Except where noted otherwise, a key

word can be used in place of a symbol.

2.1.2. Data Type Constructors

These types have structuresand print representations that include other data types.

object [Data type]

An object has no print representation and may not be written out by a user. An

object may be used as a value generated by a function and may be passed as an argument

to a function. An object belongs to a class, which defines a number of slot names and

method names. If a class defines a particular slot, then each instance of that class (i.e.,

each object belonging to that class) can store a value under the name of that slot Certain

functions, called accessfunctions, will return values stored in the slots of an object

Methods are functions. Several related classes will use the same method name, but

each will bind a different function to that name. Thus, when the method name is invoked

on an object, the function used will be determined by the class of the object, and will thus

be appropriate. For example, suppose all classes associated with furnaces defined a

method current-temperature that determined the current temperature for a tube.

For each class of furnace, the details of deterrnining the current temperature are different.

However, given an object from a furnace class, invoking the current-

temperature method will always work. BPFL presumes that objects will be stored in

a database. Classes are not defined within BPFL process specifications. Classes used by

a process specificationmust already exist in the object support environment

list [Data type]

A list is printed as a left parenthesis (*'("), followed by zero or more values of

valid BPFL types, followed by a right parentheses (") "). Elements of the list are

separated from each otherby spaces or newlines. The empty list (" () ") is synonymous

with the symbol nil. Parenthesis neednot be delimited by spaces. An apostrophe may

be used to abbreviate a list whose first element is the symbol quote.

Examples:
(a be) (12 3) () nil (a (b c)) ((a))
(quote (12 3))
'(12 3)

array [Data type]
vector

bit-vector

Arrays, vectors, and bit-vectors contain data values that are identified by indicies.

Elements of vectors and arrays may be values of any valid BPFL type. An element of a

bit-vector is either 1 or 0. Unless otherwise specified, a bit-vector can be used in place

of a general vector.

A general vector prints as a hash mark ("#") followed by an optional non-negative

integer indicating the length of the vector, followed by a list whose elements are the vec

tor elements. The first element has the lowest index (i.e., 0). If no vector length was

specified, then the vector has as many elements as were given. If a length was given,

then the number of given elements must not exceed that length. If fewer elements were

given, then the remaining ones are set to the last value in the list (or nil if none was

given).

An array prints as a hash mark, followed by a positive integer indicating the array

rank (number of dimensions), followed by the letter "a" or "A", followed by a list

whose elements define the first dimension of the array. If the array is one dimensional,

this is equivalent to filling a vector. If the array has more than one dimension, then each

element of the list is in turn a list that could fill an array of one less dimension. The

number of elements in a list must exactly match the size of the appropriate dimension.

Thus the first list used in a particular dimension determines the size of the dimension, and

all other lists must match that size. BPFL does not support arrays with zero dimensions.

Vectors are arrays with a rank of one.

A bit-vector prints as a hash mark, followed by an optional non-negative integer

indicating the length of the vector, followed by an asterisk ("*"), followed by a series of

"0" and "1" digits. At least one digit must be given if a non-zero length was specified.

The series of digits is used to fill the bit-vector in the same way that a list is used to fill a

vector.

Examples:
#(1 2 3)

These two vectors are equivalent:
#3(x y)
#(x y y)

A 2 by 2 array:
#2a((a b) (c d))

A 3 row by 2 column array:
#2A((a b) (c d) (e f))

10

#*101101

unit [Data type]

A unit value consists of a magnitude (an integer, ratio, or floating point number) and

a unit designator (a symbol). A basic unit is separated from its exponent with a

circumflex ('"*"). The exponent can be negative. Thus, the unit "square meter" would

be m~2. Basic units multiplied together should be separated by a dash ("-"). For

example, "acre-feet" (a unit of volume) is acre-ft. The unit designator should con

tain one slash ("/") to separate the numerator and denominator units. For example,

"meters per second" is m/s. If there are no numerator units (e.g., "per second"), the

unit destinator begins with a slash (i.e., /sec). If there are no denominator units, the

slash is not present Values without units have the unit designator "-". Unit values with

the same unit designator may be compared based on their magnitude. Since units may

have negative exponents, unit designators must be formed consistently throughout a site.

Thus, the unit "per square meter" should always be either /m~2 or nT-2. These are

considered different unit designators, unless the optional unit conversion facility is sup

ported. A unit value is printed as "#u (number unit-designator) ".

Examples:
#u(1000 A)

#u(20 urn)
#u (10 mega__ohm)
#u(3.07E9 m/s)
#u(9.8 m/sec~2)

interval [Data type]

An interval value consists of two numbers or two unit values with the same unit

designator. The first item should be less than or equal to the second. An interval is

11

printed as "#i (item-1 item-2) ".

Examples:
#i(0 1/2) .
#i(-1.0 1.0)

#i(#u(3 in) #u(5 in))

2.2. Function Calls

A list can be interpreted as a function call. The first element of the list is a non-

keyword symbol, called the header. The header symbol will be discussed in more detail

below in the section on semantics. The remaining elements in the list are the actual argu

ments to the function. There are two kinds of arguments: positional and keyword. For

positional arguments, the elements in the list immediately following the header symbol

are used. Each element corresponds to one argument The order of the elements is

significant when assigning values to the formal arguments of the function being called.

For keyword arguments, the elements of the list are used in pairs. The first member of a

pair must be a keyword. The second member can be any value. The keyword names the

argument and the second part gives the value of the argument The order in which argu

ments are given is not significant because the formal arguments are assigned by name. It

is an error for a keyword argument to have a name and no value.

If both positional and keyword arguments are to be passed to a function, then the

positional arguments must appear first in the list, following the header symbol. Posi

tional arguments end with the first appearance of a keyword. If it is necessary to pass a

keyword as a positional argument, then it may be passed with the quote function,

either as " (quote : keyword)," or in the abbreviated form "' : keyword.'*

Examples:
A function call with two positional arguments:

(+ 1 1.3)

A function call with two keyword arguments:
(etch :thickness #u(10 um) itarget 'si-oxide)

A function call with a positional argumentand a keyword argument:
(sort input-list :descending t)

A function call with one positional argument:
(foobar ':bletch)

12

2.3. Function Definitions

A list can be interpreted as a function definition. The first element of the list is one

of the symbols defflow, defgeneric, or defequipment, which indicates the

process level of the function (i.e., flow, generic-equipment, or equipment-specific). The

second element is a non-keyword symbol that names the function. While examples show

names as simple identifiers, in general they wouldbe uniquewithin a site andwould con

tain version control information. The third element is an argument-declaration list that

defines the formal arguments to the function and its local variables. The remaining ele

ments of the list (if any) make up the body of the function. The general syntax of a func

tion definition is:

(deflevel name (arg-list) body...)

The argument-declaration list is divided into two parts. The first part defines the

formal arguments and includes all elements up to the end of the list or to the symbol

&aux. The second part of the list defines localvariables and includes all elements after

the saux symbol.

The elements of the argument-declaration list, other than the &aux symbol, are

called variable-specifiers. Variable-specifiers for arguments and declarations have

13

similar syntax. Each variable-specifier must be either a non-keyword symbol or a list

with one, two, or three elements. If it is a symbol, it names a variable, be it a formal

argumentor a local variable. If it is a list, the first element must be a non-keyword sym

bol, which names a variable. A variable-specifier list may have a second element, called

an initializationform that can be used to initialize the variable. The third element of the

list, which should be a non-keyword symbol, names another variable, called the was-

supplied variable. Further interpretation of the argument-declaration list will be

described in the section on semantics.

The body of the function has two parts: declarations and code. The declarations

part consists of the zero or more elements at the beginning of the body that are either

strings or lists whose first element is the symbol declare. The strings provide docu

mentation. The remaining elements in a declare list are declarations and can be used

to note special conditions. The only declaration supported by all interpreters is a list

whose first element is the symbol special and whose remaining elements are symbols

that are to be used as global variables. Global variables are variables that exist as long as

the run being processed exists.

The elements of the function body following the declarations are generally function

calls (i.e., lists). The function body is a boundary defining the scope of local variables

and control flow. Local variable names do not affect the use of the same names in other

function bodies. Control of the execution sequence within the function body is restricted

to that function. Control may not be transferred to another function except by a function

call or by exiting the current function body.

14

Object methods are functions bound to an object class. A list can be interpreted as a

method definition. The first element of the list is one of symbols def flow-method,

defgeneric-method, or defequipment-method, which indicates the process

level of the method. The second element of the list is a non-keyword symbol that names

the method. The third element of the list is an argument-declaration list and the remain

ing elements make up the body of the function. The first element of the argument-

declaration list must be a variable-specifier list with two elements. The first element is

the symbol self and the second element is a symbol that names the class under which

this function will be bound to the method name. The remainder of the argument-

declaration list and the function body are the same as for user-defined functions. Figure

1 gives some examples of function and method definitions.

(defflow CMOS-well-formation (Saux (thickness #u(1000 urn)))

"Dope and drive-in the well"
(declare (special *mask-set*))
(mask :mask 'WELL

:thickness thickness)

. . .)
This function is called cmos-well-formation and takes no formal arguments. It has one local vari
able thickness that is initialized to a unit value. The function uses one global variable and one function
call in the function body is shown.

(defequipment-method run-sequence ((self tylan) sequence &aux recipe)
"Given a sequence, find the appropriate recipe"
. . •)

This function is bound to the tylan class under the method name run-sequence. It takes two formal

arguments, one of which is the required self argument The function has one local variable.

Figure 1 - Functions and method definition examples.

15

3. Basic BPFL Semantics

This section describes the semantics of BPFL that must be preserved by all inter

preters of a BPFL description. Interpreters can provide additional functionality as long

as these basic semantics are not violated.

Each step of a process specifies an operation to be carried out according to the pro

cess specification. The interpreter analog of a step is evaluation. Evaluation extracts a

result value from another BPFL value, according to the contents of the value being

evaluated. For example, the result of evaluating a variable is the value of the variable. It

is illegal to evaluate objects, vectors, and arrays. The next three sub-sections describe

the behavior of constants, variables, and function calls when they are evaluated. The

remaining sub-sections describe functions that should be supported by all interpreters.

3.1. Constants

Constants evaluate to the value they denote (i.e., they self-evaluate). When a

number (e.g., integer, ratio, or floating point) is evaluated, the result value is just the

number (except that integral valued ratios may be converted to integers during evalua

tion). Strings, unit values, intervals, and keywords also self-evaluate. The symbols t

and nil, representing the boolean values true and false, are the only self-evaluating

symbols.

32. Variables

A non-keyword symbol can have a value. This value is returned when the symbol is

evaluated. If the symbol has not had a value assigned to it, an error results. The special

function set f (described below) is used to set the value of a symbol. The quote spe-

16

cial function may be used to return a symbol as the result of evaluation rather than the

symbol's assigned value.

There are two classes of variables: local and global. Local variables include the

formal arguments of a function. When a symbol is declared a local variable, local

storage is allocated to hold the value of the variable. The same symbol can be used in

different functions to name a local variable. These variables (i.e., storage locations) are

distinct Thus, a symbol has an assigned value for each function that it is used in. A

value must be assigned in each function before the variable can be used.

A symbol that is declared special is a global variable. This variable can be

accessed in any function. It is an error to declare a variable special when a local

variable with the same name is being used. Global variables must also be initialized

before use.

3 3. Function Calls

Evaluating a list causes a function call. There are three types of functions that can

be called: built-in functions (i.e., those implemented directly by an interpreter, such as

format, or keywo r dp), user-defined (i.e., a function defined by defflow, def-

generic, or defequipment), and object methods (i.e., a function bound by a class

to a method name with defflow-method, defgeneric-method, or

defequipment-method). The actual arguments to a function are determined in the

same way for all types of functions, except for special built-in functions. The result of

evaluating a list is the value returned by the function called.

The evaluation a function call is composed of the following steps:

1. Checking for special functions (i.e., those that do not evaluate their arguments

17

in the usual way),

2. Evaluation of actual arguments,

3. Determination of the function to be called,

4. Initialization of formal arguments and local variables, and

5. Execution of the function.

Given the function call list, the header symbol is examined. If it is a special built-in

function, arguments are not processed in the usual manner. Special functions are dis

cussed below. Otherwise, each argument is evaluated and the result becomes an argu

ment to the function. In the case of keyword arguments, the value is evaluated and the

name is not The division between positional and keyword arguments is determined

before evaluation begins (i.e., it is syntactically determined). Thus, there must be an

even number of elements in the function call list following the positional arguments.

The header symbol of the list may or may not indicate which function will be

called, depending on the interpreter. If the headersymbol of the call list is recognized by

the interpreter the function is built-in to that interpreter. If the function is not built-in and

the keyword argument ":implemented-by" is given, the argument value specifies

the user-defined function that will be called as follows. If the value is a symbol, it names

the function. If the value is an object, the keyword argument :method specifies a

method name. If the :method argument is not given, then the header symbol names

the method. The function bound by the object's class under that method name is then

called. If the ": implemented-by" argument is not given, the header symbol names

the user-defined function that will be called. It is an error to evaluate a list when there is

no built-in or user-defined function that can be called. Some examples of function deter

mination may be found in Figure 2.

18

(if tube-available tube-name)
The header symbol if is a special function andthe arguments aretreated specially.

(+ line-width 1)
The + function is built-in to all interpreters. The first actual argument is the value of the variable line-
width.

(grow :thickness #u(1000 ang) :implemented-by 'CMOS-init-oxide)
If grow is notbuilt-in to theparticular interpreter, then the function CMOS-init-oxide is called.

(cmos-init-oxide :thickness #u(1000 ang))
This is equivalent to the previous example, exceptwhen the grow function is built-into the interpreter.

(furnace rsequence '((temp #u(950 C)) (wait #u(l hr)))
:implemented-by tube-object rmethod 'run-sequence)

If the value of the variable tube-object is an object, then the run-sequence method for the
object's class is the function to be called.

Figure 2 - Examples of function determination.

Once a function body has been found for execution, the actual arguments are

assigned to the formal arguments of the function. The variable-specifiers in the first half

of the formal argument list (i.e., the argument-declaration list) name a sequence of vari

ables, each of which is assigned a value, in order, as follows. If there are any unused

positional arguments, the first one is marked used and its value is assigned to the vari

able. Otherwise, if there is a keyword argument with a name corresponding to the vari

able symbol, the value of that argument is assigned to the variable. Otherwise, if the

variable-specifier for the variable is a list and contains an initialization form, the initiali

zation form is evaluated and the resulting value is assigned to the variable. If there is no

initialization form, the variable is initialized to nil. If a was-supplied variable is

specified, it is initialized to t if the corresponding variable was initialized from the

actual argument list Otherwise, it is initialized to nil. It is an error if more positional

arguments are supplied than there are formal arguments. It is not an error to supply a

keyword argument that names a variable that is not formally declared.

19

When initializing the variables for a method, there is one small difference. The

self argument, which must always be the first formal argument, is initialized to the

object that was used in the method invocation. All other arguments are initialized from

the actual argument list as usual.

The argument passing mechanism in BPFL is considerably different from the

mechanism in Common lisp. In the usual case, user-defined functions will either take all

positional arguments or all keyword arguments, but in any case, all arguments are

optional Users may use was-supplied variables or default values to detect when argu

ments have not been given. It is expected that keyword arguments and default values

will suffice for a large number of user-defined functions.

After the formal arguments have been initialized, the local variables are initialized

in order of specification. If an initialization form is given, the form is evaluated and the

result is used to initialize the variable. Otherwise, the variable is initialized to nil.

Was-supplied variables for local variables are vacuous and are ignored. Initialization

forms may reference any local variable (or formal argument) that has already been ini

tialized. Special declarations are processed before initializing any formal argu

ments, and thus global variables may be used by any initialization form.

Once the arguments and variables have been initialized, the function is evaluated.

The declarations and documentation part of the function body is completely ignored and

is not evaluated in any way. Of course, the special declarations must be examined,

but they are not evaluated in the usual sense. The code part of the function body is

treated as a call to progn, which is described below. The result of this implicit progn

is returned as the value of the function call.

20

3.4. Special functions

Some built-in functions do not evaluate arguments in the usual way. These func

tions are fisted below. This set is exclusive - no other functions will evaluate arguments

abnormally. These functions must be built-in to all interperters. Future extensions of

this set will be minimal, since the cost of implementing special functions in interpreters

is very high. If one of these special functions does not evaluate an element of the argu

ment list, the element itself is used as an argument instead of the result of evaluating it.

quote org [Special Function]

The quote function takes one argument and does not evaluate it The return value

is the un-evaluated argument For convenience, the function call " (quote x) " may

be written "' x". When evaluated, this list would return the symbol x.

setf where what [Special Function]

Setf takes two arguments. The second is evaluated, the first is not Setf changes

the interpretation environment so that if the first argument had been evaluated, then the

result would be the value of the second argument to setf. Thus, if the first argument is

a symbol, its assigned value becomes the second argument to setf. If the first argu

ment is a function call (i.e., a list) on a function known to setf, then things are suitably

modified such that the function call would return the desired value. Setf returns the

value of its second argument

and org... [Special Function]

Arguments are evaluated one at a time. As soon as an argument evaluates to nil,

evaluation stops and the function returns nil. Remaining arguments are not evaluated.

21

If all arguments are evaluated, then the function returns the value of the last argument

evaluated.

or org... [Special Function]

Arguments are evaluated one at a time. As soon as an argument does not evaluate

to nil, evaluation stops and the function returns the value of that argument Remaining

arguments are not evaluated. If all arguments evaluate to nil, then the function returns

nil.

if condition if-true [Special Function]
if condition if-true if-false

If evaluates its first argument If the result is not nil, (ie., false) then it evaluates

its second argument, otherwise it evaluates the third, if any. The result value is the value

of the last argument evaluated.

progn org... [Special Function]

The arguments are examined in order. If an argument is a string, it is ignored and

assumed to be documentation. If an argument is a list, it is evaluated as a function call.

If an argument is an integer or a symbol, it is not evaluated and is used as a positional

tag. (See the go function below.) There may be any number of arguments. Progn

returns the value of the last function call evaluated, or else nil if no functions ever got

evaluated. Arguments may be evaluated more than once or not at all if the go function

is used. If evaluating an argument to progn causes another progn in the same func

tion body to be evaluated, then the first progn "surrounds" the second. The code sec

tion of a function body is treated as if it was a list of arguments to progn. This is called

22

an implicit progn. A number of special functions make use of an implicit progn.

go tag [Special Function]

This function causes the point of evaluation to be transferred within a progn. The

tag, which is not evaluated, must appear in a function body or a progn surrounding the

call to go. The progn will then begin evaluating the arguments that follow the tag in

its list of arguments. If the tag appears in more than one progn, control is transferred

to the "closest" progn (Le., most recently began evaluating) to the go. If control is

transferred to the end of the argument list for a progn, then the progn returns nil.

return value [Special Function]

The function currently being executed is caused to return the given value, or nil if

no value is given. Even though return evaluates its argument, it is considered a spe

cial function because of its affect on function evaluation.

while conditionargs... [Special Function]

The condition is evaluated. If it does not evaluate to nil (i.e., false), then the

remaining arguments are treated as as call to progn. When the implicit progn

returns, the condition is evaluated again and the process repeats. While always returns

nil.

cond (condition consequent...) ... [SpecialFunction]

The arguments to cond are never directly evaluated. Each argument should be a

list and they are considered in order. The first element of an argument is evaluated. If

the result is nil, (i.e., false), cond skips to the next argument and begins again. (If

there are no more arguments, cond returns nil). If the condition returns true, then the

23

remainder of the argument is evaluated as an implicit progn. The result of the implicit

progn is returned by cond and no more arguments are considered.

case subject (tag consequent...) ... [SpecialFunction]

The subject is evaluated and should return a number, symbol, or keyword. This

value is used to select one of the remaining arguments, which should be lists and are not

evaluated. The first element of one of the remaining arguments should be a single item

or a list of items. This element is not evaluated. If the subject item is equal to one of the

tag items, then the remainder of the list is evaluated as an implicit progn and the result

of the progn is the result value of the case call. No more arguments are considered.

A given tag should appear only once. The tag t, if it appears, must be in the last argu

ment and its consequent is always evaluated if no other tags are selected. The subject

item and the tags are compared with the eql function.

3.5. Value Copies

When a BPFL construct is evaluated, it returns a value. Unless the value is a sym

bol or an object, it is a copy of the value that generated the result This copying occurs

both for the evaluation of arguments and for the evaluation that results in the return value

from a function. For example, consider the call (setf a b). Assume the value

assigned to b is not a symbol or an object The symbol b is evaluated and a copy of its

value is assigned to a. Thus, if the value of b were an array, future changes to the ele

ments of the array stored in a would not be visible in the array stored in b. The function

call to setf also returns the value which was assigned. This will be another copy, dis

tinct from the values assigned to a and b. A side effect of evaluation copying values is

that circular, or cyclic, data structures can not be created. For example, if the value of

24

the variable b is an array, then

(setf (elt b 0) b)

would set the first element of the array to be a copy of itself from before the assignment

was made. The copying semantics are a significant difference between BPFL and Com

mon Lisp. BPFL uses copying semanticsto allow for database storage of interpreter state

and to make data garbage collection easier on interpreters that don't have a built-in gar

bage collector.

3.6. Documentation

Strings may appear in the main function body or in the implicit progn in a special

function. These strings serve no purpose than to store information about the process

specification for human readers. Within function calls to non-special functions, the key

word argument : doc may be used. By convention, no functions will use a formal argu

ment named doc, and so this argument will always be ignored.

A more stylized form of documentation may be introduced with the : t ag keyword

argument to non-special functions. The argument should be a symbol or a string that

mnemonicaUy identifies the step. This is different from the : doc argument because the

tag does not necessarily describe the operation. Tags may be used to help interpreters

locate a step of interest If tags are used in a consistent manner, some functions may use

tag as a formal argument in order to record the calling step.

3.7. Lot Control

A run associates a process specification and a set of wafers to be processed. Each

wafer is assigned an index, which is used for identification of wafers by the process

25

specification. Wafer indicies may be grouped into named sets called lots or sub-lots,

depending on context. A set of wafers may be specified by a list whose elements are

integers specifying wafer indicies, integer intervals, or symbols naming sub-lots. Using

an integer interval is equivalent to specifying all integers on that interval. Using a sym

bol is equivalent to specifying all indicies contained in the named sub-lot Individual

interpreters may choose whether or not it is an error to use an unregistered sub-lot name

in a wafer-set specification. If it is not an error, then the sub-lot is assumed to contain no

wafers. If a wafer-set specification list consists of just one symbol, then that symbol may

be used in place of the list Thus, a wafer-set specification is either a symbol or a list.

When a run starts, it contains no wafers. Wafers are allocated to a run with the

allocate-lot function. As each wafer is allocated, it is assigned an index for the life

of the run. The index could also correspondto a position in a cassette or to an inscription

on the wafer. Lot names may be registered at allocation time or with set-lot func

tion. Two special lot names are always available. The first is all-wafers, which

contains all wafers that are currently allocated. The second is current, which is the

set of wafers that are currently being operated on. Each function being evaluated in a run

has a separate definition of the current lot The initial contents of the current lot

for a function is determined when the function is first called. In the general case, the

contents of the current lot for the calling function is copied to the current lot for

the function being called. If the function being called is not special and the keyword

argument : lot is given, the current lot for the function being called is set to the

value of that argument. The : lot argument should be a wafer-set specifier. If it con

tains symbols or sub-lot names, these are expanded to their corresponding set of wafer

indicies. The current lot is initialized for a function before formal arguments are

26

initialized. Once a function has begun evaluation, the current lot may be changed

with the set-current-lot function. If the current lot is assigned to a wafer-set

specifier of nil, the steps carried out will not affect any wafers. This feature may be

used to specify equipment preparation. In the usual case, the : lot argument will only

be used at the higher process levels of the specification. For example, photolithography

steps are not performed on test wafers. Thus, the sub-lot containing production wafers

would be specifiedfor calls on a function thatperformed photolithography operations.

If a wafer breaks (i.e., the interpretation environment is a real production facility),

the index of the wafer is removed from all sub-lots that contained it If all of the wafers

in a lot are broken, the sub-lot name is not invalidated.

set-lot name index-list [Function]

The first argument should be a symbol and is registered as a sub-lot name. If the

name is already in use, the old registration is destroyed. The index-list is a wafer-set

specification and the sub-lot name is registered as containing the specified wafers. The

wafer-set specifier is expanded before the old sub-lot registration is destroyed. Thus, a

sub-lot name may be redefined in terms of its old contents. The all-wafers and

current lots may not be redefined with set-lot. If the index-list is nil, the sub-

lot name is invalidated. Changing the definition of a sub-lot name will not affect the con

tents of other lot names. Wafer-set specification lists that contain sub-lot names are

expanded to a set of indicies at the time of their use. Thus no connection is made

27

between a wafer set and the sub-lots that were used to define it.

set-current-lot contents [Function]

The current lot (i.e., the one that process steps will operate on in the current

function) is changed to the set of wafers specified by the argument The argument is a

wafer-set specification.

allocate-lot : size lot-size [Function]
:type doping
: resistivity value
: crystal orientation
: quality list
preparation list
: names list

Wafers are added to the run lot and assigned sub-lot names. This function should be

called once at the beginning of a process-flow, although equipment-specific functions can

request test wafers for local monitoring. The : size is the number of wafers to be allo

cated. : type should be the symbol p or n, or a list whose first element is one of

these symbols. The remainder of the list would indicate doping type and concentration.

The : resistivity is the electrical resistivity and should be given as a unit value or

an interval of acceptable unit values. : crystal is one of the symbols <100> (the

default) or <111>. The : quality argument is a list whose elements would indicate

oxygen content or the manufacturer. The :preparation argument is a list whose

elements dictate the steps that have already been performed on the wafers (e.g., an oxida

tion step). No formalisms for specifying this information exist yet, so strings for human

readers are sufficient The :names argument is a list whose elements are lists, each of

which defines a sub-lot The first element of a sub-lot definition list is a symbol that

names the sub-lot The remainder of the definition list consists of either integers or

28

integer intervals that indicate the index numbers of the wafers within the group being

allocated. The first wafer is numbered 0 for each call to allocate-lot. Note that

these are not the indicies that will be assigned by allocate-lot and used throughout

the remainder of the process specification. The lots defined with the : names argument

can only refer to the wafers currently being allocated. The all-wafers and

current lot names may not be defined with the : names argument The function

returns a list containing the permanent indicies assigned to each wafer. This list will not

use integer intervals. No wafer will be assigned an index that has been assigned previ

ously.

lot-indexes name [Function]
.: interval org

: names org

The name argument is a symbol naming a registered sub-lot A list of the indicies

of the wafers in the lot is returned. Unless the : interval argument is given and not

nil, none of the list elements will be integer intervals. If the given lot name has not

been registered or if all of the wafers in the lot have broken, the function returns nil.

The call " (lot-indexes ' all-wafers) " will return nil before the first call to

allocate-lot.

wafer-identifiers org [Function]

The argument is a wafer-set specification. The return value is a corresponding list

of wafer identifiers (e.g., serial numbers). The list elements will be either symbols or

strings. This function is only useful when the interpreter is controlling physical produc-

29

tion or a detailed simulation.

lot-names [Function]

This function returns a list of all currently valid sub-lot names. The names all-

wafers and current are not included. The names of sub-lots that have attritioned to

empty sets, but have not been explicitly invalidated, are included.

deallocate-lot org [Function]

The argument is a wafer-set specification. The indicated wafers are removed from

the processing run as if they had been broken. This is how temporary test wafers may be

forgotten. In addition, any lot names used in the wafer-set specification are invalidated.

3.8. General Functions

The following are built-in functions that should be supported by all interpreters.

They are taken from Common Lisp in most cases. Any extensions to this set should try

to follow lisp when possible. General functions can be used by functions at any process

level.

3.8.1. Type Predicates

integerp org [Function]
ratiop org
f loatp org
numberp org
stringp org
symbolp org
keywordp org
objectp org
listp org
arrayp org

vectorp org

30

bit-vectorp org
unitp org
intervalp org

If the given argument is of the appropriate type, return t; otherwise, return nil.

Numberp returns t if its argument is either an integer, a ratio, or a floating point

number. Arrayp returns t if its argument is either an array, vector, or bit-vector.

Vectorp returns t if its argument is either a general vector or a bit-vector. Both sym-

bolpand listp will return t if their argument is nil.

3.8.2. Data Access Functions

The values stored in the slots of an object may be retrieved with access functions

defined for the class of the object Since BPFL does not define any classes, it does not

prescribe any access functions other than object-name. Each interpreter will have

built-in access functions for the classes that it supports.

object-name object [Function]

The argument is an object of any class. If the object has a name, then it is returned

as a symbol or a string. A symbol is preferred whenpossible. If the object has no mean

ingful name, the return value is unique to that object,but otherwisearbitrary.

numerator ratio [Function]

The argumentmust be a ratio data value and the numerator(an integer) is returned.

denominator ratio [Function]

The argumentmust be a ratio data value and the denominator (a positiveinteger) is

31

returned.

symbol-value symbol [Function]

The actual argument is a symbol. Return the assigned value for the symbol, just as

if the symbol had been evaluated. Note that the call " (symbol-value a) " does not

return the value assigned to a, but the value assigned to the symbol that is assigned to a.

This function may be used with setf.

unit-value unit [Function]

Return the magnitude (numeric) part of the argument, which must be a unit value.

This function may be used with setf.

unit-designator unit [Function]

Return the unit-designator (a symbol) part of the argument, which must be a unit

value. This function may be used with setf.

interval-lower interval [Function]

This function returns the first part of its interval argument, which is assumed to be

the lower half. This function may be used with setf.

interval-upper interval [Function]

This function returns the secondpart of its interval argument, which is assumed to

be the upper half. This function may be used with setf.

elt constructn [Function]

32

The construct is either a vector or a list; n is a non-negative integer. The function

returns the nth element of the vector or list The first element has index 0. The index

must not attempt to access an element beyond the end of the list or vector. This function

may be used with setf.

first list [Function]
second list

third list
fourth list

fifth list

sixth list

seventh list

eighth list
ninth list

tenth list

Return the nth element of the list. If the list doesn't have enough elements, return

nil. Note that these functions use ordinal indexes, as opposed to the cardinal indexes of

elt. These functions are provided to emphasize how a list is being accessed. These

functions may be used with setf.

rest list [Function]

The argument should be a list The return value is a list that contains all the ele

ments of the argument list except the first If the list does not have more than one ele

ment, then return nil. This function may be used with setf.

length org [Function]

The argument must be a list or a vector. The function returns the number of ele-

33

ments in the list or vector.

aref array subscript... [Function]

The array is either an array or a vector. For a vector, there is just one subscript

argument; for an array, there should be as many subscript arguments as there are array

dimensions. Arrays are accessed in row-major order. The result of " (aref ' #2a ((a

b) (c d)) 0 1) " is b. This function may be used with setf.

array-dimensions array [Function]

The argument is an array. The return value is a list whose length is the rank of an

array and whose elements are the size of each dimension. Since a vector is just a one-

dimensional array, array-dimensions would return a list whose sole element

would be the length of the vector.

string org [Function]

The argument must be either a string or a symbol. The function always returns a

string. If the argument is a string, that string is returned. If the argument is a symbol,

then a string containing the name of the symbol is returned. Whether the string for a

symbol uses upper case or lower case characters depends on the interpreter. The function

string-equal may be used to compare strings independent of case. Thus, the call

(string-equal "yes" (string 'yes)) will always return t. A keyword

symbol is given, then the resulting string does not have the initial colon (": *')•

subseq org lower upper [Function]

The first argument must be a list, vector, or a string. (The first element has index 0,

as with elt). The second argument specifies an index into the vector or list The

34

second argument is optional and specifies another index greater than or equal to the first

The result is a value of the same type as the argument (list, string, general vector, or bit-

vector). The result contains all elements of the first argument with indicies greater than

or equal to the first argument and strictly less than the third argument. If the third argu

ment is not given, then all elements up to the end of the list, vector, or string are present

in the result If the second and third arguments areequal, the result is an empty list, vec

tor, or string. Neitherof the index arguments should be greater thanthe length of the first

argument This function may be used with setf, but the length of the item may not be

changed.

3.8.3. Expressions

When math operations are performed on two numbers of different types (e.g., an

integer and a ratio), the type of the result will be determined as follows. If a floating

pointnumber is involved, the result will be floating point If only ratios andintegers are

involved, the result will be a ratio, unless the result value is integral, in which case the

result will be an integer. When comparing numbers, if a floating point value is present,

everything will be coerced to floating point.

When operating on two unit values, the unit designators should be the same. BPFL

does not require that interpreters support automatic unit conversion. However, if unit

conversion is supported, some semantics must be observed. When a function requires

that two unit values have the same unit designator, the interpreter may attempt to scale

one of the values so that it has the same unit designator as the other. This is similar to

numeric coercion in that the user's original value is not modified.

35

With respect to aninterval, ascalarnumber is eithera number (i.e., integer, ratio, or

floating point) or a unit value.

not org [Function]
null org

Return t if the argument is nil; return nil otherwise.

and org... [Special Function]
or org...

These functions were described above in the section on special functions. They per

form boolean operations and only evaluate enough arguments to determine the result

+ argl argl... [Function]

The arguments are added. If the result overflows the range expressible by the

appropriate data type, then the result is undefined. Unit values may be added if they both

have, the same unit designator. An interval may be added to a scalar. The result is an

interval where both the lower and upper halves have had the scalar added in.

- argl [Function]
- argl argl

Mone argument is given, the number or the magnitude of the unit value is negated.

If the argument is an interval, then both halves are negated and their positions are

swapped to maintain ordering. If two arguments are given, the second argument is sub

tracted from the first Unit values may be subtracted if they both have the same unit

designator. If one argument is an interval and the other is a scalar, then the result is the

36

same as negating the second argument and performing an addition.

* argl argl... [Function]

The arguments are multiplied. If the result overflows the range expressible by the

appropriate data type, then the result is undefined. A unit value may be multiplied by a

scalarnumber. Two unit values may be multiplied if the interpreter supports unit conver

sion. An interval may be multiplied by a scalar. The lower and upper halves of the inter

val are each multiplied and the result is an interval. If the scalar is negative, then both

arguments are negated before multiplying.

/ argl argl [Function]
/org

The first argument is divided by the second. A unit value may be divided by a

scalar number. Two unit values may be divided or a scalar may be divided by a unit

value if the interpreter supports unit conversion. If the arguments are integers and they

do not evenly divide, then the result is a ratio with a numeratorof argl and a denomina

tor of argl. If the arguments are an interval and a scalar number, then the result is an

interval where the lower and upper halves of the argument interval participated individu

ally in the division. If the scalar was negative, both arguments are negatedbefore divid

ing. If only one argument is given, then the argument is reciprocated.

= arg... [Function]
l=arg...
<arg...
>arg...
<-arg...
>=arg...

37

The arguments must either all be numbers or all be unit values. If the arguments are

unit values, the unit designators must all be the same. At most one argument may be an

interval over a type compatible with the restof the arguments. The functions test the fol

lowing conditions:

= —all arguments are numerically equal.
/= - each argument is different from all the rest
< - arguments are monotonically increasing.
> - arguments are monotonically decreasing.
<= - arguments are monotonically nondecreasing.
>= - arguments are monotonically nonincreasing.

The functions return t if the condition is satisfied and return nil otherwise. Type coer

cions are made to compare numbers. If only one argument is given, then the condition is

always true. Intervals may be compared to scalar numbers. A scalar is equal to an inter

val value if it is on the closed interval defined by the upper and lower halves of the inter

val value. A scalar is strictly less than an interval if it is less than the lower half of the

interval value. A scalar if strictly greater than an interval value if it is greater than the

upper half of the interval value.

eq argl argl [Function]
eql argl argl
equal argl argl
equalp argl argl

Two arguments are eq if and only if they are the same symbol or object Two

arguments are eql if they are eq or if they are numbers of the same type and value.

The = function is recommended for numeric comparisons. Two arguments are equal

if they are eql. Two strings are equal if they match character for character. Two

unit values or two intervals are equal if their components are equal. Two lists or

bit-vectors are equal if their corresponding elements are equal. Arrays and general

38

vectors are never equal. Two arguments are equalp if they are equal or if they

have isomorphic structures whose components are equalp. Thus, two arrays with the

same number and sizes of dimensions are equalp if all of their corresponding elements

are equalp.

strings string ... [Function]
string-equal string...

These two functions compare their arguments, which should all be strings.

String= returns t if its arguments match character for character, as with the function

equal. String-equal returns t if its arguments match character for character or if

they only differ by the case of the alphabetic characters. Both functions return nil oth

erwise. Thus (string= "Hello" "hello") returns nil and (string-

equal "Hello" "hello") returns t.

random integer [Function]

The argument is a positive integer. The return value of the function is an integer

greater than or equal to 0 and less than the argument The number returned is chosen

from a uniform distribution over the possibilities.

3.8.4. Constructors

These functions create data values from their components. Ratios are created with

the "/"function.

list arg... [Function]

The arguments are made into a list. The list will have as many elements as there

were arguments given. If no arguments are given, then an empty list (i.e., nil) is

39

returned.

listifyarg [Function]

If the argument is a list, then that list is returned. Otherwise, a list containing that

one value is returned. This is useful when it is desirable to have a list

make-interval lower upper [Function]

This function returns an interval whose bounds are the given arguments. The argu

ments must have the same type.

make-unit magnitude unit-designator [Function]

This functionreturns a unit value whosecomponents are the given arguments.

make-array dimensions initial-contents :bit org [Function]

The first argument is a list whose length is the rank of the array. Each element of

the list is a positive integer that defines the size of the dimension corresponding to the

element's position in the list The dimensions are given in the same order that aref

subscripts access arrays. If the array has just one dimension (i.e., it is a vector), then the

dimensions argument can be an integer instead of a list An array cannot have zero

dimensions, although a vector may have zero length.

The second argument is optional and defaults to nil. If the second argument is

nil, the array or vector elements are initialized to nil. Otherwise, the second argu

ment should be a list of the sameform as the initializer list of constant arrays and vectors

(i.e., those written with a hash mark ("#")).

40

If only one dimension is given and the :bit keyword argument is given and is not

nil, then a bit-vector is returned instead of a general vector. The bit-vector elements are

initialized to 0 where general vector elements would be initialized to nil.

vector org ... [Function]
bit-vector org...

These functions are similar to the list function. The arguments are gathered into

the elements of a vector. The vector has the same length as the number of arguments

given.

concatenate org... [Function]

The arguments are concatenated. The arguments should either be vectors, lists, or

strings. Bit-vectors and strings may only be used with similarly typed arguments. Gen

eral vectors and lists may be concatenated with each other and the result has the same

type as the first argument Note that this function operates differently than the Common

Lisp function.

3.8.5. Miscellanea

abort message [Function]

This function never returns. The interpreter stops or suspends evaluation of the

process-flow. This function is used when a process specification detects a situation that

is undesirable or prevents further processing. The optional argument is a string that will

41

help explain what went wrong.

format control-string org ... [Function]

Return a string similar to control-string, but with the other arguments inserted

according to directives. This function is modeled after the Common Lisp function,

which has a large number of directives and formatting options. An interpreter should

approximate the Common Lisp functionality as much as possible, although this is not

necessary in most cases. It is not an error to attempt to print an object, although the con

tents of the object need not be printed.

Values, other than objects, printed with the ~S directive should be printed accord

ing to BPFL syntax. For example, strings would be printed with surrounding double

quotes. Values printed with the "A directive should be more readable by people.

Strings should be printed without the surrounding double quotes. Intervals should be

printed as "lower-value to upper-value". Unit values should just be printed as "mag

nitude unit-designator".

interpreter name [Function]

This function returns t if the given name, which is a symbol or a string, is known

to the interpreter executing the function. The function returns nil otherwise. This

function can be used with the if special function to execute functions known only to a

particular interpreter. In this way, a process specification can provide special purpose

functions and still be used by a number of different interpreters. Examples of symbols to

use with this function are fabrication, scheduling, simulation (when

simulating a fabrication facility), or the name of a process simulator such as suprem or

simpl.

42

3.9. Environment functions

These functions interact with the environment of the BPFL interpreter. Most of

these functions are designed for process specifications that will be used to control pro

duction.

wait-for condition [Function]

The condition is a data value that will be recognized by an external monitoring sys

tem. This function is primarily used when then process specification is controlling equip

ment. An example condition might be (done tube-7).

user-dialog ititle string [Function]
: summary string
: detail string
: reference string
: query string
: form object

This function allows interaction with an operator in a fabrication facility or the user

of an interpreter. The function can be used to display text or to display a form. Li either

case, the : t itle is required and shouldbe a stringindicating the nature of the conver

sation. The : summary and : detail arguments are strings or lists of strings (with

newlines possiblyembedded) that will be displayed as the user requests. Two stringsin a

list have an implicit newline between them. The : query argument is a string or a list

of strings. Each string is presented to the user and the user enters a single BPFL value

(which could include a list). The : form argument names a form to be displayed. A

form can contain both information and data fields for the user to fill This argument will

generally not be used if the other arguments are used. Forms are assumed to already

exist in a database. The return value of user-dialog is a list containing one element

43

for each query made. The return value if a form was used depends on the forms support

system used by the interpreter.

As a side effect of presenting the requested information to the user, the function

may also append such information as the run indentifier, the name of the function making

the call, the wafers in the current lot, or any other information relevant to the

interpretation environment

allocate what [Function]

If it is physically processing wafers, this function allocates equipment and resources

to a run. In any case, it indicates what equipmentis required by the process specification.

The argumentis either a symbolor a list of symbols. The symbols name equipment. If a

list is given, then any of the pieces of equipment will do. The return value is an equip

ment object representing the equipment that was allocated.

If more than one resource is needed, the argument can be a list whose first element

is the symbol and. The remaining elements should be symbols or lists of symbols as

described above. The return value will be a list of equipment objects, one taken from

each request

deallocate what [Function]

The given object, or list of objects, as obtained from the allocate function, is

removed from the run's set of resources.

log destination args... [Function]

This function puts information contained in the arguments into a history record. If

the first argument is a symbol, then it names an object class. The remaining arguments

44

are used to instantiate a member of that class and the resulting object is stored in a data

base. If the first argument is a string, then it names a disk file. The remaining arguments

are used in an interpreter dependent way to append information to the file. An interpreter

should automatically include the time, run indentifier, calling function name, and current

lot composition in log records when appropriate.

3.10. Flow Level Functions

The following functions areintended for use as basic steps at the flow process level.

Some interpreters will consider these to be built-in functions. Others will need an

: implemented-by argument specifying a generic or equipment level function. All of

these functions state goals to be achieved on the wafers being processed. All of these

functions take keyword arguments, many of which areoptional.

Some of these functions specify a material to be deposited or removed. In the sim

ple cases, this should be a symbol, such as silicon, silicon-nitride,

silicon-oxide (as opposed to silicon-monoxide), poly-silicon,

photo-resist, aluminum, boron, or phosphorus. Variations on a material,

such as doping or impurities, and specializations, such as specifying atomic weight or

density, should be described with a list The first element of the list is the primary

material and the remaining elements of the list are lists that add information. Each addi

tional list starts with a symbol specifying the attribute and the remaining elements give

the value or degree of the attribute. Whether a material is a specialization of another

material or whether it deserves its own symbol is a matter of convention. Different

molecules, and often different phases (nitrogen vs liquid-nitrogen and

water vs steam), use different symbols. Whether elements such as nitrogen,

45

oxygen, or chlorine are atomic or diatomic must be determined by context or the

presenseof an ionization specialization attribute.

Examples:
(boron (atomic-weight 11))
(arsenic (ionization +1))
(photo-resist (polarity positive) (brand kodak-820))
(poly-silicon (dope boron #u(lel4 /cnT2)))

anneal : modify property [Function]
: contact-resistance value
: etch-rate value

: resistivity value

Change the properties of a target material. The : modi f y argument should be one

of contacts, dielectric, or semiconductor. Depending on this argument,

additional information may be given with the other arguments.

deposit :material what [Function]
: thickness value

: density value
: planarity value
: resistivity value
: crystal-specification value
: surface-state-density value

Deposit some material on the wafer. The : material argument should be a sym

bol, such as nitride. The : thickness argument should be a unit value specifying

the desired thickness of the layer being deposited. The remaining arguments are optional

and place restrictions on the properties of the layer being deposited.

drive-in : junction-depth value [Function]
: oxide-thickness value

Redistribute dopants. The target : junction-depth is given and a desirable

46

resulting : oxide-thickness may be specified as well.

etch : material what [Function]
: thickries s value

: undercut value

: selectivity value

The given :material will be etched. The :thickness argument indicates

how much will be removed. This argument may be a list where the first element is the

symbol all and the second element is the expected thickness of the layer. The remain

ing arguments specify how much undercutting is acceptable and how selective the etch

ing process must be to avoid other materials in adjacent or lower layers.

implant : dopant what [Function]
:dose amount

: depth value
: orientation value

Perform an ion implantation. The given :dose of : dopant ions are implanted

over a region of the given : depth. If an ion beam is to be used, the the : orienta

tion argument may be used to specify an incidence angle different from the default 7

degrees.

mask : thickness value [Function]
:mask name

:polarity symbol

Perform a photolithography deposition. Photoresist of :thickness depth is

deposited. The rpolarity will be either positive or negative. The polarity is

between the original artwork and the final resist pattern. The :mask names the layer to

mask. The mask set from which the mask is chosen should be bound to the global vari-

47

able *mask-set*.

measure : attribute what [Function]

The requested attribute of the lot is sampled and the results are stored away.

grow : compound what [Function]
: thickness value

: surface-state-density value

The requested : compound is grown to the desired : thickness. The com

pound is generally silicon-oxide. The : surface-state-density may be

limited, if desired.

reflow : angle value [Function]

Smooth feature edges such that the maximum feature angle is : angle.

other [Function]

This function specifies a change in wafer state or topology that cannot be described

with the previous functions. This should not be used for operations that have no major

effect on a wafer. For operations such as cleaning, the generic or equipment level func

tion should be called directly.

3.11. Generic Level Functions

The following functions are intended for useas basic stepsat the generic-equipment

process level. These functions may be built-in to some interpreters, but will require an

: implemented-by argument in others to specify an equipment level function. Imple

mentation may be either through an equipment object method, if an object has been allo

cated, or else through an equipment-specific function that will allocate equipment and

48

perform the desired operations.

Many of these functions take a : sequence argument. The : sequence argu

ment specifies a recipe for the generic class of equipment Recipes are fixed sequences

of operations and are represented as a list Each element of the list represents an opera

tion appropriate to the class of equipment The format of an operation is similar to a

BPFL function call, but the operations are not evaluated by a BPFL interpreter. Control-

flow operations will probably be rare, but should be modeled after BPFL special func

tions when present An additional control operation is repeat, which takes a number

for its first argument and a list of operations for its second argument The list of opera

tions is performed the specified number of times. The first operation of a recipe may be

the tag pseudo operation. Its argument is a symbol that names the sequence of opera

tions. It is quite possible that the : sequence argument will be ignored by implement

ing functions and only used for documentation.

implanter : dopant what [Function]
:dose value

: energy value
: orientation value

This describes the input to a generic ion implanter. The orientation defaults to 7

degrees. The dopant uses the materials specification format.

furnace : sequence recipe [Function]

This describes the average tube furnace. Some of the operations are temp, gas,

wait, pressure, and boat. The arguments to temp are the target temperature and

optionally a time value over which the ramping takes place. The arguments to gas are

the gas to be used and the proportion it contributesto the total pressure. Foroperations at

49

atmospheric pressures, the proportion argument may simply be on, to indicate an ample

supply (as with steam or nitrogen). The gas argument may be the symbol all, in which

case all gasses of interest are affected. The pressure operation specifies the pressure

to be maintained. If the pressure is the symbol ambient, then no pressure control is

maintained. The boat operation takes the argument in or out. The wait operation

simply extends the current conditions for the given amount of time. The default case is

that the boat will push in, the temperature will ramp up in nitrogen and then the given

recipe will start After completion, the tube is cooled in nitrogen and the boat is pulled.

The default ramp up does not occur if an initial boat operation is given. The default

ramp down is not given if a final boat operation is given.

oven : time value [Function]
: temperature value

This is a medium temperature heating oven. No sequence argument is given

because the number of major steps is almost always one.

plasma : sequence recipe [Function]

The operations for a plasma system are similar to those for a furnace. Additionally,

there is an energy operation for striking a plasma. There is also an optional end-

point operation for initializing an end-point detector.

spinner : sequence recipe [Function]

This function describes the operation of a spinner, such as is commonly used in

photolithography steps. The recipe operations are spin, which takes a unit value speci

fying the frequency of revolutions, temp, which defaults to room ambient, and

dispense, which takes a materials specification as its first argument and a flow rate as

50

its optional second argument

wet-sink : sequence recipe [Function]

The operations for a wet process sink are bath, which takes a materials

specification and an optional time argument, wait, which takes a time value argument,

and repeat-until, which takes an argument that is used as a termination condition

(e.g., de-wet), plus a sequence of operations to be performed repeatedly.

4. Example BPFL Specification

The following functions are an example of how the Berkeley CMOS process could

be specifiedwith BPFL. The first function, cmos-nwell, would be the first one called

by an interpreter and its arguments would be given by the user. The function initializes

some global variables and allocates wafers to be processed. It then calls a series of func

tions and specifies the wafers that they will operate on with the : lot argument

(defflow CMOS-Nwell (analog-option (lot-size 10) mask-set)
n3 urn, N-well, single poly-Si, single metal"
(declare (special *def-resist-thickness*)

(special *mask-set*))

";; Set the global variable for use by low level routines"
(setf *mask-set* mask-set)

(allocate-lot :doc "Allocate a device lot and 3 test wafers"
:size (+ lot-size 3)
:type 'p
:resistivity #i(#u(18 ohm-cm) #u(22 ohm-cm))
:crystal '<100>
:names (list

(list 'MAIN (make-interval 0 (-lot-size 1)))
(list 'WELL lot-size)
(list 'NCH (+ lot-size 1))
(list 'PSG (+ lot-size 2)))

)

"This parameter is determined by the mask-making functions"
(setf *def-resist-thickness* #u(1.2 urn))

(CMOS-Well-Formation :lot ' (MAIN WELL))

51

(CMOS-Isolation-Formation :lot '(MAIN WELL))

(CMOS-Threshold-Adjustment :lot '(MAIN WELL))
(if analog-option

(CMOS-Analog-Options :lot '(MAIN WELL)))
(CMOS-Gate-Poly-Formation :lot '(MAIN WELL NCH))
(CMOS-S/D-Formation :lot '(MAIN WELL NCH))

(CMOS-Final-Steps :lot '(MAIN))
"... At this point, CMOS-NWell returns and the run is terminated"
)

(defflow CMOS-Well-Formation ()

"This function groups together a set of flow-level steps"
"that begin building the CMOS device."
(declare (special *def-resist-thickness*))

(grow :doc "Initial Oxidation"
:tag 'init-oxide
:compound 'silicon-oxide
:thickness #u(1000 A)

:implemented-by 'CMOS-init-oxide)

(measure :doc "Measure oxide"

:attribute 'oxide-thickness

:lot 'WELL

:tag 'init-oxide
:implemented-by 'measure-oxide)

(mask :doc "WELL mask — note lot restriction"

:mask 'WELL

rpolarity 'negative
:thickness def-resist-thickness

:lot 'MAIN

:implemented-by 'CMOS-mask)

(implantation :tag 'well-implant
:dopant 'phosphorus
:dose #u(4el2 /cm**2)
:depth #u(.09 urn)
:implemented-by 'CMOS-implantation)

(cmos-well-drive-in-clean)

(etch :doc "Oxide Etch"

rmaterial 'silicon-oxide

rthickness '(all #u(1000 a))

:implemented-by 'CMOS-well-drive-in-etch)

(etch :doc "Remove resist"

:material 'photo-resist
rthickness (list 'all *def-resist-thickness*)

riot 'MAIN

rimplemented-by 'CMOS-photo-resist-removal)

(drive-in rjunction-depth #u(3 urn)
roxide-thickness #u(3000 a)

rimplemented-by 'CMOS-well-drive-in)

(measure rattribute 'oxide-thickness
riot 'WELL

rtag 'well-drive-in
rimplemented-by 'measure-oxide)

(measure rattribute 'junction-depth
riot 'WELL

rimplemented-by 'measure-well-depth)

)

(defflow CMOS-Isolation-Formation ()
(declare (special *def-resist-thickness*))

(etch rdoc "Remove oxide from well drive-in"
rmaterial 'silicon-oxide

rthickness '(all #u(3000 a))

rimplemented-by 'oxide-strip-bhf5/1)

(grow rtag 'pad-oxidation
rmaterial 'silicon-oxide

rthickness #u(200 a)

rimplemented-by 'dry-oxidation)

(measure rattribute 'oxide-thickness
riot 'WELL

rtag 'pad-oxide
rimplemented-by 'measure-oxide)

(etch rdoc "NOTEr only stripping control wafer"
rmaterial 'silicon-oxide

rthickness '(all #u(200 a))
rimplemented-by 'oxide-strip-bhf5/1
riot 'WELL)

(deposit rtag 'nitride-deposit
rmaterial 'silicon-nitride

rthickness #u(1000 a)

rimplemented-by 'CMOS-deposit-nitride)

(measure rattribute 'nitride-thickness

rimplemented-by 'measure-nitride
riot 'WELL)

(mask rmask 'ACTV

rthickness *def-resist-thickness*

rpolarity 'positive
rimplemented-by 'CMOS-mask
riot 'MAIN)

(etch rmaterial 'silicon-nitride
rthickness '(all #u(1000 a))

rselectivity '(not (or silicon-bixde photo-resist))
rimplemented-by 'plasma-etch-nitride
riot 'MAIN)

(mask rdoc "NOTEr double mask"

52

53

rmask 'FDII

rthickness *def-resist-thickness*

rpolarity 'positive
rimplemented-by 'CMOS-mask
riot 'MAIN)

(implantation rtag 'field-implant
rdopant 'boron
rdose #u(lel3 /cm~2)

rdepth #u(0.4 um)
rimplemented-by 'CMOS-implantation
riot 'MAIN)

(etch rmaterial 'photo-resist
rthickness (list 'all (* 2 *def-resist-thickness*))
rimplemented-by 'CMOS-photo-resist-removal
riot 'MAIN)

(grow rtag 'locos-oxide
rmaterial 'silicon-oxide

rthickness #u(5500 a)

:impIntented-by 'CMOS-locos-oxidation
riot 'MAIN)

(measure rdoc "Pick a random wafer from the device production lot"
rattribute 'oxide-thickness

riot (list (nth (random (length (lot-indexes 'MAIN)))
(lot-indexes 'MAIN)))

rtag 'locos-oxide
)

(etch rmaterial 'silicon-nitride

rthickness '(all #u(1000 a))
rimplemented-by 'CMOS-nitride-etch
rdoc "WELL control included again")

)

(defflow CMOS-Threshold-Adjustment (&aux main-indexes main-size
breakl break2)

(grow rtag sacrificial-oxide
rcompound 'silicon-oxide
rthickness #u(200 a)

rimplemented-by 'CMOS-sacrificial-oxide)

"Divide the main production lot into thirds and"
"give each sub-lot a slightly different dose"

(setf main-indexes (lot-indexes 'main))
(setf main-size (length main-indexes))
(setf breakl (/ main-size 3))
(setf break2 (+ breakl breakl))

(implantation rtag 'threshold-implant
rdopant 'boron

54

rdose #u(0.9el2 /cirT2)
rdepth #u(0.1 urn)
riot (subseq main-indexes 0 breakl))

(implantation rtag 'threshold-implant
rdopant 'boron
rdose #u(1.0el2 /cnT2)
rdepth #u(0.1 um)
riot (subseq main-indexes breakl break2))

(implantation rtag 'threshold-implant
rdopant 'boron
rdose #u(l.lel2 /cm*2)
rdepth #u(0.1 um)
riot (subseq main-indexes break2 main-size))

)

The following functions are used to implement the flow level steps. Since there is

one function defined per step, these functions may be thought of as specializations on the

flow level specifications. All of these functions assume that they implment only the

intended step and thus ignore their actual arguments. The functions could verify the

actual arguments, but this is not done in this example.

(defgeneric CMOS-init-oxide (&aux tube)
"Implement the flow level goal of 1000A of oxide on bare silicon"

(setf tube (allocate rwhat '(tylanl tylan2 tylan3 tylan4)))

(furnace rdoc "Clean the tube with TCA before use"
r implemented-by tube
rmethod 'run-recipe
riot nil

rrecipe "STCA")

(std-clean-wafers)

(furnace rimplemented-by tube
rmethod 'run-sequence
rsequence '((tag cmos-init-oxide)

(temp #u(1000 C))
(gas oxygen on) (gas steam on) (wait #u(ll min))
(gas all 0)
(gas N2 on) (wait #u(20 min)))

)

(deallocate tube)

)

(defgeneric cmos-well-drive-in-clean ()
"Prepare for the cmos well-drive-in."
"This furnace step is separated because flow level steps"

55

"interveve between the clean and the drive-in"
"Ideally, we could put this in the cmos-drive-in function and"
"a scheduler would notice that the riot was nil and migrate"
"the function accordingly"
(declare (special *drive-in-tube*))

(setf *drive-in-tube* (allocate rwhat '(tylanl tylan2 tylan3 tylan4)))

(furnace rimplmented-by *drive-in-tube*
rmethod 'run-recipe
riot nil

rrecipe "STCA")

)

(defgeneric cmos-well-drive-in ()
(declare (special *drive-in-tube*))

(std-clean-wafers)

(furnace rimplmented-by *drive-in-tube*
rmethod 'run-sequence
rsequence '((tag cmos-well-drive-in)

(temp #u(1150 c))
(gas oxygen on) (wait #u(4 hr))
(gas oxygen off) (wait #u(4 hr)))

)
(deallocate *drive-in-tube*)

)

(defgeneric cmos-pad-oxidation (&aux tube)

(setf tube (allocate rwhat '(tylanl tylan2 tylan3 tylan4)))

(std-clean-wafers)

(furnace rimplemented-by tube
rmethod 'run-sequence
rsequence '((tag cmos-pad-oxidation)

(temp #u(950 c)) .
(gas oxygen on) (wait #u(28 min))
(gas oxygen off) (wait #u(20 min)))

)

(deallocate tube)

)

(defgeneric cmos-deposit-nitride (&aux tube)

(setf tube (allocate rwhat 'tylan9))
(furnace rimplemented-by tube

rmethod 'run-sequence
rsequence '((tag cmos-deposit-nitride)

(temp #u(800 c))
(gas nitrogen off)
(pressure #u(35 mtorr))
(gas dichloride on)
(wait #u(22 min)))

56

)
(deallocatetube))

(defgenericcmos-locos-oxidation(&auxtube)

(setftube(allocaterwhat'(tylanltylan2tylan3tylan4)))

(furnacerimplemented-bytube
rmethod'run-sequence
rsequence'((temp#u(950c))

(gasoxygenon)(gassteamon)
(wait#u(10/3hr))
(gasoxygenoff)(gassteamoff)
(wait#u(20min)))

)
(deallocatetube))

Thefollowingtwofunctionsareboundtomethodsinthetylanclass.The

run-sequencemethodisusedwiththegenericequipmentlevelfurnacestep.It

expectsrecipestostartwiththetagstepsothatitcanlookuptheequipmentspecific

recipeinadatabase.Inthiscase,thedatabaseiscontainedinacasespecialfunction.

Themappingofgenericsequencestoequipmentrecipescouldalsobedonewithatrue

database,orinthefuture,bycompilingthegenericsequenceintoanequipment-specific

recipe.ItwouldalsobepossibletouseindividualBPFLfunctionsforeachequipment-

specificrecipeandnotusetheobjectmethod.

(defequipment-methodrun-sequence((selftylan)sequence
fiauxtagspecifics)

(if(eq'tag(first(firstsequence)))
(setf(tag(second(firstsequence))))
(abort"Genericfurnacerecipeisuntagged"))

(setfspecifics
(casetag

(cmos-init-oxide
'("SWETOXB""Time=llmin,anneal=20min"))
(cmos-well-drive-in
'("SDRYOXA""Time=4hrs,anneal=4hrs"))
(cmos-pad-oxide
'("SDRYOXA""Time«=28min,anneal=20min"))
(cmos-deposit-nitride
'("SNITC"""))

(cmos-locos-oxide
'("SWETOXB""Time=3hrs20min,anneal=20min"))

57

(t

(abort "Unknown recipe for given tag"))))

(run-recipe rimplemented-by self
rrecipe (first specifics)
rparameters (second specifics))

)

(defequipment-method run-recipe ((self tylan) recipe parameters)

(user-dialog
rtitle "Load and start tylan tube"
rsummary (list (format "Load recipe *a into tube "a; parameters are"

recipe (object-name self))
parameters

"Load wafers into boat and start recipe")

)

(wait-for rwhat (concatenate "Tylan tube "
(string (object-name self))))

(user-dialog
rtitle "Unload tylan tube"
rdetail

(format "Alarm will sound when run is complete ~@
Press ALARM ACK on ROP or type 'ACK tube*' to stop alarm. "@
Press the OUT button on the ROP. ~@

Wait for wafers to cool "@

•Press IN button on ROP.")

)

)

The following functions demonstrate possible uses of the log function. In both

cases, we assume that a logging format has already been set up under the given object

class names. Each call to log will create an instance of the class with the given values.

For the measure-oxide function, the tagargument is used to mnemonically indentify

which step within the process we are measuring. This function is equipment-specific

because it assumes that the Nanospec measurment system will be used. The nano-

spec function will return a value for the measured oxide thickness.

(defequipment measure-oxide (tag &aux
(wafer-set (wafer-indexes 'current))
result)

"For each wafer in the current lot, measure and log the"
"oxide thickness"

58

(if (not (interpreter 'fabrication))
(return))

(while wafer-set

(setf result (nano-spec rtarget 'silicon-oxide
riot (list (first wafer-set))))

(log 'nano-spec-measurement
rstep tag

rlayer "oxide"
rthickness result

riot (list (first wafer-set)))

"Step through the list of wafers for the current lot"
(setf wafer-set (rest wafer-set))

)

)

(defequipment measure-well-depth (&aux results)

(if (not (interpreter 'fabrication))
(return))

(if (null (query-user-yn "Should the well depth (xj) be measured?"))
(return))

(setf results

(user-dialog
rtitle "Measure well depth"
rsummary '("Send the wafers to the valley for measurement.")
rquery '("Enter the average well depthr")

))
(log 'cmos-well-depth'

rdepth results)

)

This function demonstrates how rework can become a fully controlled process.

(defgeneric cmos-mask ()

(cmos-hmds-treatment)

apply-resist
(spinner rsequence '((tag resist-soft-bake)

(spin #u(4600 /min))
(dispense (photo-resist (brand kodak-820)))
(wait #u(25 sec)) (rpm 0)
(temp #u(120 c)) (wait #u(45 sec))

)

rimplemented-by 'cmos-resist/soft-bake)

(cmos-expose-resist)

(spinner rsequence '((tag develop-resist)
(spin 1.0)
(dispense developer) (wait #u(60 sec))

59

(spin 0.05)
(dispense water) (wait #u(20 sec))
(dispense off)
(spin 0.50) (wait #u(20 sec)))

rimplemented-by 'cmos-resist-develop)

(if (null (cmos-inspect-resist))
(progn
(cmos-photo-resist-removal)
(cmos-dehydration-bake)
(go apply-resist)))

(plasma rsequence '((tag resist-descum)
(pressure #u(35 mtorr))
(gas oxygen on)
(power #u(50 watt))
(wait #u(l min)))

rimplmented-by 'cmos-technics-c)

(oven rtemperature #u(120 c) rtime #u(20 min))
)

This function demonstrates how simple variations on built-in functions can be made

with BPFL functions. This function could alsohave been built-in to interpreters.

(defequipment query-user-yn (query-string Saux user-response)

"This function returns t or nil according to the user's response."
"Defined at the equipment level so that anyone can call it"

(if (not (stringp query-string))
(return nil))

(setf query-string
(concatenate query-string " (yes/no) "))

retry-loop
(setf user-response

(user-dialog rtitle "Yes-no query"
rquery query-string))

"user-dialog will return a list; get the answer from the list"
(setf user-response (first user-response))

(if (or (eq user-response 'yes)
(eq user-response 'y))

(return t))

(if (or (eq user-response 'no)
(eq user-response 'n))

(return nil))

"Retry until we get a reasonable answer*
(go retry-loop)

)

60

	Copyright notice1987
	ERL-87-73

