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1. INTRODUCTION

This paper reports on numerical experiments on the problem of moving a flexible beam.

An optimal control problem is formulated and transcribed into a form which can be solved

using semi-infinite optimization techniques. All experiments were carried out on a SUN 3

microcomputer.

2. PROBLEM STATEMENT

We consider the hollow aluminum tube depicted in figure 1. The tube is one meter long,

has a cross sectional radius of 1.0 cm, and a thickness of 1.6 mm. Attached to one end of the

tube is a mass of 1 kg, and attached to the other end is a shaft connected to a motor. For sim

plicity, we assume that the torque produced by the motor can be directly controlled. Our aim

is to determine the torque necessary to rotate the tube and bring it to rest The maximum

torque produced by the motor is 5 newton-meters. The equations of motion determined by

application of the standard Euler-Bernoulli tube with Kelvin-Voigt visco-elastic damping are:

mwt£tj:) + ClWtadJtjc) + ElWxoJtj:) - mQ2(t)w(tjc) = - mu(t)x, x g [0,1] (la)

with boundary conditions:

w(r,0) = 0, wz(f,0) = 0, CIw^tA) + EIwJtA) = 0. (lb)

M[rf(r)w(r,l) - wtt(t,l) - «(r)] + C/w^r.l) + EIw^tA) = 0, (lc)

where wfcc) is the displacement of the tube from the shadow tube (which remains undeformed

during the motion) due to bending as a function of time and distance along the tube; u{t) is the

torque applied by the motor, and &(;) is the resulting angular velocity (in radians per second).

We shall denote by 0(0 the angular displacement of the rigid body (in radians). The values

for the parameters in (la) - (lc) are: m= .2815 kg/m, C = 6.89xl07 pascals/sec,

E = 6.89xl09 pascals, / = 1.005 x 1(T8ot4, M = 1.00 kg. These values are from the CRC



Handbook of Material Science. The tube is very lightly damped (0.1 per cent).

We consider three problems:

P^ Minimize the time required to rotate the tube 45 degrees, from rest to rest, subject to the

given torque constraint.

P2: Minimize the total energy required to rotate the tube 45 degrees, from rest to rest, subject

to the given torque constraint and the maneuver time not exceeding a given bound.

P3: Minimize the time required to rotate the tube 45 degrees, from rest to rest, subject to the

given torque constraint and an upper bound on the potential energy due to deformation of

the tube throughout the entire maneuver.

3. MATHEMATICAL FORMULATION OF THE THREE PROBLEMS

We will formulate the above problems Pl9 P2, and P3 in the form of the following canon

ical optimization problem:

P0: min { g\uj) Ig{uj) <> 0J e m } (2)
T g IR+, u e GT v '

where R+ 4 { ye IR Iy> 0 ),m 4 4 { 1,2, • • •m },

GT k { ue LJOJ] I \u{t)\ <> 5, t e [0,7] }, (3)

and g*:GTyT -» IR is continuously differentiable for ; e {0,1, ••• jn }. We define \|/(k,T) 4

max{ g*(ju,T) } and \|f+(w,7) 4 max{ 0,\|/(«,r) }.
ye a

We shall be making use of the following functions. First, let T denote the final time.

Then we define

g\uj) 4 T. (4)

The input energy is defined as the integral of the square of the input; hence we define



T

2£ \uitfdt. (5)ftuj) £ f

Next we define

g*(u,T) 4 (0(7)-tc/4)2 (6)

to be the square of the angular error at the final time. We say that the tube is at rest when the

total energy of the tube is zero. This energy is composed of the energy due to rigid body

motion and energy due to vibration and deformation. Rigid body energy at final time is pro

portional to the square of the angular velocity. Hence we define

g\uX) 4 Q(T)2. (7)

The kinetic energy due to vibration of the tube at time t is given by

l

K(fM) ^ fU(ttfdx, (8)

and the potential energy due to deformation of the tube at time t is given by

l

P(t,u) 4 M.\wxxHt1x)2dx. (9)

We now define

£{uj) 4 K(Tfu), g\uj) 4 P(Ttu). (10)

The tube is at rest if g\uj°) = £(u,T) = g\u,T) = 0.

For problem P3, we require that the potential energy due to the tube deformation be

within a specified range throughout the entire maneuver. This constraint has the form

P(t,u) £f(t) for all t e [0,T], where /(•) is a given positive bound function. This is a state-

space constraint, and does not fit the canonical form P0. However, we can replace it by an

equivalent form which requires that we define



T

g\uj) 4 f [max{ P{uu) -At), 0 }]2 (11)

Then, since P(t,u) is continuous, g7(uj) =0 if and only if P(f,w) <f(f) for all t e [0,7].

It can be shown that g*: GTxT-»IR is continuously differentiable (in the £,«, topology)

in u and t for all j e { 1,2, • • 7 }. To conform with the format of problem Pq, we relax

each of the equality constraints by a small amount. The relaxation can be be chosen to be

sufficiently small so as not to matter from a practical point of view. The three problems now

acquire the following mathematical form

Pi: min{ g\uj) Ig\u,T) - e <S 0, g\uj) - e <0, ^(ufT) - e £ 0,
g\uj) - e £ 0, « e Gr }

P2: min{ jty,I) Ig1^ - 7) <0, g*(ufT) - e£ 0, sVr) - e <£ 0,
$5(k,7) - e £ 0, g6(K,7) - e £ 0, u e Gr }

P3: min{ g\uj) I^(i^r) - e <. 0, g4(K,7) - e <£ 0, /(uj) - e £ 0,
S6(k,7) - e £ 0, sW) - e <> 0, u e Gt }

(12)

(13)

(14)

In our experiments, we set e = 10"4. Thus, with this relaxation, we are requiring that the final

value of the angle 0 be in the interval [45 - 0.5,45 + 0.5] degrees.

By adding an additional state variable z(r), with z(t) s 0, the above problems can be

recast as fixed time problems on the interval [0,1] in which one has to determine not only the

(time scaled) control u(t), but also 7, the initial value of z(t) which acts as a time scale factor,

and, in fact, is also the final time. Although the abstract form of the fixed time, scaled prob

lems

P0: min { f{uj) Iffy/T) £ QJ g m }, (15)
u e G,Te IR+ v '

where G ^ Gh is indistinguishable from that of the free time problem, the fixed time problem



does not lead to the serious convergence problems that are associated with the discretization of

free time problems.

4. THE ALGORITHM

To solve the above problems in fixed time form, we use an extension of the Mayne-Polak

phase I - phase n algorithm [1]. The algorithm first determines a search direction and then a

step size to update the design parameters u(-) and 7. The algorithm requires an initial guess

7 £ 0 and u e G. We state this algorithm in conceptual form.

Conceptual Algorithm

Data: 70 e IR,Mo e G, a e (0,1), p e (0,1), p > 0

Step 0: i = 0.

Step 1: Compute search direction Su,- = v,- - uit 87/ = t,- - Tt and the optimality func

tion Q(uitTj), where v;,T; are the solutions of the program

9(M,-,ri) ^ min { -i-lv - ui2 +4*1* - T$2 +max{ - p\|/+(K,-,7;) +
ve G,xe R+ 2 2 je m.

Wg^UiJ},
V-Ui

z-Ti V.jWd + tVsWk
V-Ui

T-Ti

Step 2: Compute the stepsize Xt g S & { Xe {0,l,p,p2, • • • ) such that

if y(Ui,T) > 0 (at least one constraint is violated)

%i = max{ X e S I^(m;+ XSk,-,^ + ^57^ - \^(uhTd £ aX6(M/,7-) }

if v(m,-,7^ £ 0, ((uitTj) is feasible)

Xf = max{ Xe S\ g°(«,- + MtojJi +^57^-goO*,^ £ oA9(M/,7i)

and ^(m/ + XSkjJ*; + ^57f) £ 0 }

(16)

(17a)

(17b)



Step 3: Set ui+l = u{ + X$Ui. Tt +\ = 7,- + A.,-87,-.

Step 4: Set i = i + 1; go to Step 1. •

The function 0(v) is called an optimality function. It has two important properties: (i)

For all 7 > 0 and u e G, 6(k,7) £ 0, and (ii) if 8(^,7/) < 0, then (uiJj) is not optimal and

(vt- - uit%i - 7j), where (vc^) is the solution of (16) is a direction of descent for \j/ if Ui,Tj) is

not feasible and for g° otherwise. The following theorem can be deduced from the results in

[1].

Theorem 1: If {(juitTD } is a sequence generated by the conceptual algorithm and (&3) is

an accumulation point of this sequence, then 0(«,5) =0. •

The above algorithm above is called a conceptual algorithm because we cannot solve sys

tem (la) - (lc) exactly, and hence we cannot evaluate g/(uj) or Vgfy*,7) exactly. Further

more, since u is an infinite dimensional design vector, it can only be entered into a computer in

discretized form. Hence, in practice, we must use an implementable algorithm which accepts

approximations. The algorithm that we use adjusts integration precision adaptively, along the

lines described in [2, 3 Appendix A]. To discretize the PDE in space, we use the finite ele

ment method. Since the PDE is fourth order in space, it is necessary to use elements of at

least second order. We have chosen Hermite splines as basis elements. The input u e G is

discretized in time and Newmark's method is applied to evaluate the resulting system of ordi

nary differential equations. For a specific number of finite elements, p, and a number of time

steps, n, the resulting discretized problem has the form:

P • min { g°njf(u,T) I&/u,T) <> 0J e m }. (18)
u e CJ e K+

where Gn 4 { u g 1Rb I id £ 5,; e a }.



The resulting problem P^ is finite dimensional and can be solved by computer. Problem

PrtJ7 always has a solution because the set G" is bounded. However, at first examination, it is

not clear how solutions to PB|P relate to the solution to P0. Fortunately, it is possible to estab

lish the following theorem which is an extension of the results in [2, 3].

Theorem 2: Let (^,7^) be a solution to P^. If (&,9) is an accumulation point of

{ (uttJ,tTniP) } as ft -» ooj) -> oo, then (m3) is a solution to P0. •

Implementable Algorithm

The implementable algorithm continues solving problem Vnj> until a test indicates that

both /t and p must be incremented, i.e., the implementable algorithm increases the discretization

in time and space adaptively. When the algorithm is far from a solution, it is less important

that the partial differential equations be solved exactly. By using a coarse discretization in the

early iterations, we save in two ways: the effort in solving the differential equations is smaller,

and the number of design parameters (the size of the discretized control) is much smaller. The

test for precision refinement monitors the progress in the reduction of \\f(u,T), when (u,7) is

infeasible, or in the reduction of g°(u,T), when {uj) is feasible. When that reduction is smaller

than a parameter y > 0, both the number of finite elements and time steps are doubled while y

is halved. The following theorem can be obtained by extending the results in [2, 3 Appendix

A].

Theorem 3: Let { (u;,7j) be the sequence produced by the implementable algorithm with the

refinement criterion above. Then the discretization becomes infinitely refined as i* -» ~, and

any accumulation point of { (uifTD }, (&5), satisfies the optimality condition 8(w3) = 0. •



5. COMPUTATIONAL RESULTS

The results presented here are for the case in which the &2(f) terms are neglected in

equation (la) - (lc). Similar results have been obtained by performing experiments for the

case in which the £l2(t) terms are included.

Problem P^

For simplicity, we choose the zero function as initial control and 2 for an initial value for

the maneuver time.

Figure 2 is a graph of the control after 150 iterations. The number of time steps is 256

and the number of finite elements is 48.

Figure 3a is a graph of \fnjiuj) as a function of the iteration number. Figure 3b shows

ynrP(utT) for the first 15 iterations. The initial discretization is 32 time steps and 6 finite ele

ments. The discretization is refined at iterations 67, 99, and 123. After precision refinement,

algorithm finds a feasible value for the control and final time for the new problem Pn<p in only

a few additional iterations. At each refinement the value of xjf^ increases. This is due to

improvement in the accuracy of the evaluation of the partial differential equation. This increase

in xjf,^ decreases each time the discretization is refined and we can show that in the limit the

increase is zero.

Figure 4 is the graphof the cost as a function of iterationnumber.

Figure 5 is the graph of w(U), the displacement of the tip of the tube, from the shadow

tube, as a function of time. There is a maximum displacement of the tip of about 5 mm. This

is within the range of validity of the Euler-Bemoulli model. The tip displacement is large

between 0.36 seconds and 0.437 seconds.



Figure 6 is a profile of the tube deformation, w{tyX) (see figure 1), during this interval.

The total time for the entire maneuver is 0.7886 seconds.

Problem P2:

Formulatingthe slewing problem as a minimum time problem has two drawbacks. First,

the solution to the problem is a bang-bang control (figure 2). Bang-bang controls may be

undesirable because they may cause premature aging of the equipment Furthermore, bang-

bang controls tend to excite the high frequency modes of the system. High frequency modes

are less well modeled by system (la) - (lc), and it is therefore best not to excite them.

Second, the simple minimum time formulation does not take into account the amount of energy

expended in performing the maneuver. In certain applications, the total energy available may

be limited, while the total time of the slewing motion is less criticaL Fortunately, both of the

problems arising from minimum time control can be mitigated by reformulating the problem.

We minimize the total input energy while constraining the final time to be less that a specified

amount

Figure 7 is the graph of the control produced by minimizing the total input energy while

constraining the final time to be less than 0.800 seconds. The resulting final time is 0.800

seconds. This is an increase of only 1.4 percent in the final time. The control has become

much smoother and the total energy is reduced from 19.15 to 15.72, a reduction of 18 percent.

Figure 8 is the graph of the control for final time being 1.00 second. This is an increase

of 27 percent in time over the minimum time case, but the total energy is reduced to 7.27, a

decrease of 62 percent

10



Problem P3:

In Figure 9, curve A is the graph of the potential energy of the tube as a function of time

for the control generated in solving the minimum time problem P^ In problem P3, we have

the additional requirement to keep the potential energy, which is a measure of the total tube

deformation, below the parabola (B) for all time.

Figure 10 shows the optimal bang-bang control for problem P3. The optimal final time

for this case is 0.8177 seconds, an increase of 3.7 percent over the solution of problem P^

Figure 11 shows the potential energy curve for the optimal control (Figure 10).
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