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Abstract

A database procedure is a collection of queries stored in the database.
Several methods are possible to process a query that retrieves the value
returned by a database procedure. The conventional algorithm is to exe
cute the queries in the procedure whenever it is accessed. A second stra
tegy requires caching the previous value returned by the database pro
cedure. To process a query, if the cached value has been invalidated by an
update, the value is recomputed and stored back into the cache. Other
wise, the stored procedure result is still valid, so it is returned. A third
strategy is possible, in which a differential view maintenance algorithm is
employed to maintain at all times an up-to-date copy of the value returned
by the procedure. This paper compares the performance of these three al
ternatives. The results show that the choice of the preferred algorithm
depends heavily on the database environment, particularly the frequency
of updates and the size of objects retrieved by database procedures.

1. Introduction

Extensions to relational database systems have been proposed to allow database com
mands as well as data to be stored in the database [SAH84,SAH85]. A collection of query
language statements stored in a field of a record is known as a database procedure. As
described in [SAH85], database procedures can provide support for several desirable
features, including (1) stored queries, (2) objects with unpredictable composition, (3) com
plex objects with shared subobjects (e.g. a form with trim, labels and icons), (4) referential
integrity [Dat81], and (5) aggregation and generalization [SmS77].

Several different algorithms are possible for processing queries that retrieve the
value computed by a database procedure. The conventional method, which will be called
Always Recompute, is to compute the result of a database procedure from the base rela
tions whenever the procedure is accessed. This strategy has been implemented in a ver
sion of INGRES enhanced with database procedures [SAH85]. Another scheme which is
based on saving previous values returned by the database procedure will be called Cache
and Invalidate. In Cache and Invalidate, when the procedure is accessed, if a valid result
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for it is in the cache, it is used. Otherwise, the procedure result is recomputed and stored
to refresh the cache. If an update command occurs that changes the value of the procedure
result, the currently cached result is marked invalid. This method has been proposed in
[SAH85,StR86] and is also known as caching. Database procedures are simply collections
of database queries, and queries have the same structure as database views. Thus,
differential view maintenance algorithms [BLT86,RoK86] can be applied to maintain at
all times an up-to-date copy of the value retrieved by each query in a database procedure.
This represents a third algorithm for processing procedure queries, known as Update
Cache. In Update Cache, queries that retrieve the result of a database procedure are pro
cessed by simply reading the value maintained in the cache.

The three strategies discussed above have different cost characteristics. Each may
perform best, depending on the environment. For example, the average cost of a query
that reads a procedure value will depend on the relative frequency of queries and updates,
the size of objects, and other parameters. The rest of this paper presents a performance
analysis comparing the costs of the Always Recompute, Cache and Invalidate, and Update
Cache algorithms for processing queries against database procedures*. The paper is
organized as follows. Section 2 describes the three algorithms in more detail (in particu
lar, it presents two versions of the Update Cache strategy based on different view mainte
nance algorithms). Section 3 describes the two procedure models (model 1 and model 2)
that will be analyzed. Section 4 analyzes the cost of procedure maintenance assuming
model 1. Section 5 presents the performance results obtained for model 1. Section 6
analyzes the cost of maintaining model 2 procedures. Section 7 gives the performance
results for model 2. Finally, section 8 summarizes and presents conclusions.

2. Details of Query-Processing Algorithms for Procedures
Below we present a more detailed description of the Alway Recompute, Cache and

Invalidate, and Update Cache algorithms. Always Recompute is a straightforward exten
sion of normal query processing. It is assumed in this paper that when using Always
Recompute, an optimized execution plan for the query(s) in the procedure is compiled in
advance and stored with the procedure. This plan (or collection of plans) is executed
when the result of the procedure is retrieved. There is no compilation overhead at run
time.

Using Cache and Invalidate, a precompiled execution plan is stored with the pro
cedure just as in Always Recompute, so there is no run-time compilation overhead. As
described previously, Cache and Invalidate recomputes procedure results only if a valid
result is not available in the cache. A reliable mechanism is required to invalidate cache
entries that have been made invalid by a database update. This is done using a tech
nique called rule indexing [SSH86]. Using rule indexing, when the value of a database
procedure is retrieved, special persistent locks called invalidate locks or i-locks are set on
all data read during query processing, including any index intervals inspected. Each i-
lock contains the identifier of the database procedure for which it was set. If an update
later sets a write lock that conflicts with an Mock, the cached procedure value for which
that t-lock was set is marked invalid.

"A related paper compared the cost of query modification vs. use of a view maintenance algo
rithm for processing queries against views [Han87a]
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Two different versions of the Update Cache strategy are analyzed in this paper. The
first is based on the view maintenance algorithm proposed in [BLT86]. This algorithm is
based on manipulations in relational algebra, and hence will be called algebraic view
maintenance (AVM). For example, consider a view V(A,B) defined using a relational
algebra expression on relations A and B. Suppose a transaction updates A by appending
a set of tuples a and deleting a set of tuples d. The new value of V after the transaction
can be represented as follows:

V(A Ufl-^) = V{AJB) U V(a,B) - V(dft)

The expression V(A,£) does not have to be computed because it is equal to the stored copy
of the view. Only V(a,B) and V{dji) need to be found. This is usually much less expen
sive than completely recomputing V.

The second Update Cache strategy is based on a view maintenance algorithm called
Rete view maintenance (RVM) proposed [Han87b]. The RVM algorithm is based on the
Rete network [For82], a type of discrimination network used in production-rule system
interpreters including OPS5 [For81], OPS83 [For84] and ART [Gev87,Sho87]. Using a
Rete network, after an update transaction, a collection of tokens are created to represent
the changes to the database made by the transaction. Inserted and deleted tuples are
represented by a tokens with tags " + " and " —", respectively (modifications are treated as
deletes followed by inserts). These tokens are inserted into the Rete network at a special
node called the root, and allowed to propagate through the data structure. In general, a
Rete network for maintaining views defined using relational algebra can be built using
nodes whose types and functions are described below:

• root node: The single root node receives all tokens input to the net, and broadcasts the
tokens to all successors.

• T-const nodes: These nodes test input tokens for simple conditions of the form

attribute operator constant

where the operator can be one of {<,>,<,>, = ,*}. All tokens that pass the test are
passed on to the successors of the T-const node. Tokens that do not pass the test are dis
carded.

• a-memory nodes: These nodes serve to hold the output of T-const nodes. Any token
input to an a-memory node containing a " + " tag is added to the memory. A token with
a "—" tag is deleted from the memory. All tokens that arrive at an a-memory node are
passed on to all successors of the node.

• and Nodes: These nodes specify joins of the form

left-input.attribute operator right-input.attribute

The left and right inputs of an and node are memory nodes. If a token arrives at the
input of an and node, the memory node that forms the opposite input is searched to see if
there are any tuples that join with the token. A new token is formed for each
[token,tuple] pair that meets the join qualification associated with the and node. The
tokens formed have the same tag ("+ " or " —") as the original token input to the and
node. These tokens are passed on to the and node's successor.

• /^-memory nodes: These nodes hold the output of and nodes. Otherwise, they are similar
to a-memory nodes.
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The Rete network can be used for view maintenance for the following reason: a and
j8-memory nodes are equivalent to views. The contents of a memory node m in the net
work is equal to the current value of the view whose qualification is represented by the
network nodes that are ancestors of m [Han87b].

Consider as an example the following schema and pair of views:

EMP(name, age, dept, salary, job)
DEPT(dname, floor)

/* all programmers who work on the first floor */

define view PROGS1 (EMP.all, DEPT.all)
where EMP.dept = DEPT.dname
and EMP.job = "Programmer"
and DEPT.floor = 1

/* all clerks who work on the first floor */

define view CLERKS1 (EMP.all, DEPT.all)
where EMP.dept = DEPT.dname
and EMP.job = "Clerk"
and DEPT.floor = 1

A Rete network for maintaining materialized copies of these two views is shown in figure
1. The two /J-memory nodes at the bottom of the diagram contain the views PROGS1 and
CLERKS1, respectively. As an example of how the Rete network is used to maintain
views, suppose that the following tuple t is added to the relation EMP:

t = <name="Susan", age=28, dept="Accounting", salary=30K, job="Programmer">
This insertion will cause a token T = [+ ,*] to be deposited at the root of the Rete net
work. Suppose that first T is passed to the t-const node with condition "relation =
DEPT." Since T is from the relation EMP, it will not meet this condition, and will be dis
carded. T will then be passed to the node marked "relation = EMP," and it will meet
that qualification and be propagated onward. It will fail the qualification "job = Clerk,"
but will meet the qualification "job = Programmer." Hence, it will be inserted into the a-
memory node below the node labeled "job = Programmer," and passed to the succeeding
and node. The opposite a-memory will then be checked to see if there is a joining tuple.
Assuming that there is a tuple in that memory node with the value

<dname = "Accounting", floor = 1>

a new token T' with the following value will be formed:

T =

[+ , <name="Susan", age= 28, dept="Accounting", salary = 30K, job= "Programmer">;
<dname = "Accounting", floor = 1>]

T' will then be added to the ^-memory corresponding to the view PROGSl.
The Rete network shown contains a shared subexpression for the predicate term

"DEPT.floor = 1." Rete networks take advantage of this type of sharing whenever possi
ble. Because of the possibility of sharing subexpressions in the Rete network, RVM is
called a shared view maintenance algorithm. In contrast, no shared subexpression
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Figure 1. Example Rete network

elimination techniques are used in the version of AVM analyzed in this paper, which is a
non-shared algorithm.

In both view maintenance algorithms considered here, execution plans for maintain
ing views (i.e. Rete networks and query plans for evaluating relational algebra expres
sions) are compiled in advance. These algorithms are called staticly optimized because all
optimization overhead is paid only once when the execution plan is built; no optimization
cost is incurred at run time [Han87b]. A dynamicly optimized, version of AVM exists
which finds execution plans for evaluating expressions at run time [BLT86]. The advan
tage of static optimization is the low planning overhead. However, the disadvantage is
that the execution plan for maintaining views may not always be optimal.

We now turn to the performance evaluation of the view maintenance algorithms
described above. The performance model for database procedures is described in the next
section.

3. Database Procedure Models Analyzed

Two different models for the structure of procedures will be evaluated. In both
models 1 and 2, it is assumed that each stored procedure consists of a single retrieve
query. In model 1, procedures may be of two types. The first type (Pi) is a simple



selection of one relation, Rv The second type (P2) is a join query. Procedures of type Px
have the following structure:

Pi:

retrieve CRi.all)
where CyCRi)

Type P2 procedures have the form:

P2, Model 1 (2-way join):

retrieve (121.fields, #2.fields)
where Rva. = <R2.b
amdCf(Ri)
and Cfjftj

The difference between model 1 and model 2 is that in model 2, type P2 procedures are
three-way joins instead oftwo-way joins. Type P2 procedures have this structure in model
2:

P2, Model 2 (3-way join):

retrieve CRi-fields, £2.fields, #3.fields)
where Ui.a = R2.b
and J22.c = R$.d
and CfiRJ
and Cf2(Rz)

The width of tuples in both Pi and P2 procedures is S bytes. The selectivity of the
clauses of the form Cx(Ri) is X (e.g. the selectivity of C^RX) is f). For type P2 procedures
the expected number oftuples the procedure will contain is determined as follows. Let f
be the product of the selectivities of the simple restriction terms Cf and Cf2 {f =f f2). It
is assumed that the expected number of tuples in a procedure of type P2 is

f* meLx(\R1\,\R2\,\Rz\)

= f* max(N,fRJf,fRJf)

= f* N

The database contains Ni procedures of type Plf and N2 of type P2. Using a shared view
maintenance algorithm there is a possibility of sharing subexpressions in this model.
Procedures of type Px can form a shared subexpression for procedures of type P2 if the
selection term Cf(R {) is the same. The models contain a parameter SF which is the shar
ing factor. It is assumed that a fraction SF of the type P2 procedures are able to use a
type Pi procedure as a shared subexpression. If SF is 0, then no sharing takes place, and
if SF is 1, every type P2 procedure has a shared subexpression.

In the models, k update operations and q procedure accesses occur. Each update
modifies / tuples of Ri in place. Relations R> and Rz are not modified. Each procedure
access reads the entire contents of a single stored procedure, which is selected at random
from the total collection o(Nl + N2 procedures.
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Using Cache and Invalidate, when an update causes a stored procedure value to
become invalid, this fact must be recorded. The most obvious way to do this is to read the
first page of the object, set a flag on it that says the object is invalid, and write it back.
This requires an amount of time equal to 2C2 (60 ms) per invalidation. An alternative is
to use a data structure kept in high-speed memory with an entry for each procedure indi
cating whether or not it is valid. One way to make this data structure recoverable is to
use a reliable battery power supply for the portion of memory containing it. Another is to
use conventional write-ahead log recovery and log the identifiers of invalidated procedures
[Gra78]. If the data structure is checkpointed periodicly, it can be recovered by playing
the latest part of the log against the last checkpoint after a crash. Using either of these
methods, the cost per invalidation is much less than 2C2 (using battery-backed-up
memory, it is essentially zero compared to the cost of reading and writing a page). To
measure the significance of the cost of an invalidation, a parameter for it called Cinvai is
included in the models.

A summary of the parameters used in the procedure cost model, and their defalt
values, is shown in figure 2. Unless stated otherwise, the parameters will have the
values shown. Using the default value of f, type Px procedures contain fN = 100 tuples.
Type P2 procedures contain f*N= 10 tuples for the default parameters.

The relations involved have the following access methods:

relationlation access method
Ri B-tree primary index on field used by selection predicate Cf(R{)
R2 hashed primary index on attribute a
R3 hashed primary index on attribute c

4. Cost Analysis for Model 1 Procedures

4.1. Model 1: Cost of Always Recompute Strategy

The expected cost to compute a procedure value is

the fraction of procedures that are of type Plt times
the cost to compute a procedure of type Px (CqueryP!)

the fraction of procedures that are of type P2, times
the cost to compute a procedure of type P2 (CqueryP2).

CqueryPi *s tne cost to search a B-tree index and read fN tuples from Rx. The height of
the B-tree index on Ri is H{, which is defined as follows:

#i = logis/djiV

Each of the fN tuples read must be tested against the procedure predicate at a cost of Ci
each. The number of pages read from disk at cost C2 each is is \f-b]. The complete
expression for CqueryPi is
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parameter definition

N number of tuples in relation R i
S bytes per tuple
B bytes per block
b total blocks (6 = NS/B)
d number of bytes in a B +-tree index record
k number of update transactions on base relation
I number of tuples modified by each update transaction
q number of times procedure queried
u number of tuples updated between queries {u=kl/q)
P probability that a given operation is an update (P= k/{k + q))
f selectivity factor of predicate term Cf
f* selectivity factor of predicate term C^

/r2 size of R2 as a fraction of N
/h, size of i23 as a fraction of N
Ci CPU cost in ms to screen a record against a predicate

c2 Cost in ms of a disk read or write

c3 Cost in ms per tuple per transaction to manipulate A and D
data structures in AVM

**i number of Pi-type procedures

N2 number of P2-type procedures
SF sharing factor (fraction of P2 procedures that have a Pt pro

cedure as a shared subexpression)

^ inval cost to record the invalidation of a cached procedure value

N 100,000 f .001

S 100 h .1

B 4,000 fR2 .1

k 100 //?, .1

I 25 Ci 1

q 100 c2 30

d 20 c3 1

SF .5 ^ inval 0

Figure 2. Procedure query cost parameters and default values



CqueryPi = CJN+C^b] +C^
CqueryP2 is ttte cost to <*o a two-way join to retrieve the tuples of a procedure of type P2. It
is assumed that the value of this procedure is found using a B-tree index scan on Rx and
joining qualifying Rxtuples with R2 using the hash index on R2. The number ofpages of
R2 that must be read to do the join is Yu which is found using the following formula
based on the Yao function y(n,myk) described in Appendix A (the Yao function gives the
expected number of pages touched when k records are accessed in a file containing n
records on m pages).

The total cost is

CqueryP2 = CJN+C^b] +C2ffl +C1/W + Cari
The expected cost to find the value of a single procedure is

'ProcessQuery
[ tfl ]

CqueryPi +
f #2 1

Nx+N2 JVl+N2
'queryP2

The cost of a procedure access when the procedure must be computed from scratch each
time is simply

TOTRecomputel = c ProcessQuery

4.2. Model 1: Cost of Cache and Invalidate

The expected cost of accessing the result of a stored procedure using Cache and
Invalidate has three components:

1. the probability that a stored procedure value is invalid (IP) times
the cost to compute the value and store it (T{)

2. the probability that the stored value is valid (1—IP) times
the cost to read the stored value (T2)

3. the cost of marking the procedure invalid if necessary (T3)

This gives the following formula for the expected cost per read of a stored procedure value
when using caching:

TOTCacheInvall = IP Tx + (1-IP) T2 + T3

The expected cost to compute the procedure value is Cproce88Query. After the values of the
procedures are found, the result must be written to update the cache. Type Pi procedures

pages. Thus, the average size of ahave \f*b] pages, and type P2 procedures have \f*b
stored procedure value is

N,
ProcSize =

Nx+N,
\f.b] +

Nx+N2 r+\
The cost to write the procedure value, CwriteCache» *s the cost to read the pages currently in
the cache, change their value, and write them back, which is
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CwriteCache = 2C2ProcSize

This gives the following value for Tx:

Ti = Cproce38Query + CwriteCache

T2 is simply the cost to read the cached procedure value, i.e.

T2 = C2ProcSize

The cost per update transaction of marking stored procedures invalid (T3) is determined
as follows. For a single stored procedure, the probability that any update transaction will
invalidate it (Pinvai) is one minus the probability that the procedure is not invalidated.
Thus, the value of Pinvai is

Pinvai = 1-(W)2/
The cost to mark a procedure value invalid is Cinvai. Since there are Nl-\-N2 total pro
cedures, the expected cost to mark objects invalid after an update is

(Ni+iV2)PinvalCinval

Averaging to find the total cost of invalidation per query, the complete expression for Tz
is

Tz = - UV\+iV2)PinvaiCinval
q

Finally, the probability IP that the cache will be invalidated between reads of the
procedure value must be found. To account for locality of reference, it is assumed that a
fraction Z of all procedures receives a fraction 1-Z of all references. The remaining pro
cedures receive a fraction Z of the references. For example, if Z =0.2 then 20% of the pro
cedures are accessed 80% of the time. The value of IP is equal to

The probability that an access is to a heavily-accessed object (1-Z)
times the probability that a heavily accessed object is invalid (Zx)

the probability that an access is to a seldom-accessed object (Z)
times the probability that a seldom accessed object is invalid (Z2).

It is assumed that each update transaction has an equal probability of invalidating any
procedure. Each access reads a single stored procedure. The expected number of update
transactions (X) between accesses to a single heavily-accessed procedure is equal to

(1) the total number of procedure accesses between queries to
an individual frequently-accessed procedure

times

(2) the number of updates per query.

To find (1) recall that the probability that a query is to a frequently accessed object is
1-Z. If n is the total number of objects in =NX+N2) then there are Zn total frequently-
accessed objects. Thus, the probability PF that any query is to a particular frequently
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accessed object is

_1_
Zn

The value of (1) is 1/PF. The value of (2) is k/q. The complete formula for X is
v Ik Z k
A = — = n-———

PF q 1-Z q

Each update transaction modifies I tuples, for a total of 2/ new and old tuple values.
Each of these tuple values has a probability f of breaking a t-lock and invalidating a pro
cedure. The complete formula for Zx is

Zi = 1-(W)X2'
The expression for Z2 is similar, except that X is replaced by Y, where Y is the expected
number of update transactions between queries that read a seldom-accessed procedure.
The formula for Y, which can be found using an analysis similar to the one for Z, is

Z q

The expression for Z2, and the final formula for IP are shown below.

Z2 = 1-(W)™

IP = (l-Z)Zi+ZZ2

PF = (1-Z)-^-

4.3. Model 1: Cost of Update Cache (Non-Shared)
The following factors contribute to the average cost of retrieving the value of a pro

cedure maintained using AVM:

• the cost to screen updated tuples when t-locks are broken to see if
they cause a procedure value to change,

• the cost to compute the sets of tuples to be inserted into and
deleted from the procedure value,

• the cost to read and write the procedure value to refresh its contents,

• the overhead to maintain the sets of modified base relation tuples
(Anet and Dnet) in an auxiliary data structure during each
update, and

• the cost to read the result of the stored procedure when it is accessed.

For screening new tuples there is an expected cost ofNfixfl for the Nx procedures of type
Pi and N2Cifl for the N2 procedures of type P2.

To compute the changes to procedures of type Px, there is no extra cost. For type P2
procedures, a cost is incurred to join qualifying flL tuples with R2. This requires joining
2fl tuples from Rx to R2 using the hash index on the join field of R2. R2 has fRjN tuples
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and fRib blocks. Thus, for asingle type P2 procedure, the following number of page reads
are required:

Y2=y(fR2N,fR2b,2fl)

The cost to refresh the stored copies of procedures is found in the following way. Pro
cedure values of type Px contain fN tuples, and fb blocks. Each update command
modifies I tuples (equivalently, I tuples are deleted and I are inserted). Thus, the
expected number of pages that must be read and written from a type Pt procedure after
each update command is

Y3 = y(fN,fb,2fl)

The total selectivity of the condition of a type P2 procedure is f* so there are f*N tuples
and f*b blocks in a procedure of type P2. Thus, refreshing a procedure of type P2 after a
transaction that modifies I tuples requires the following expected number of block reads
and writes:

Y4 = y(fN,fb,2fl)

There is also overhead to maintain the sets of new and old tuples (Anet and Daet) dur
ing each transaction. It is assumed that there is one Anet and Dnet set for each procedure
that has a lock broken by the update transaction. These sets are maintained in data
structures created on the fly. The total size of all the Anet and Dnei sets is equal to the
total number of locks broken, which is 2fl(Nl+N2). There is an overhead of C3 per tuple
to maintain these sets during a transaction.

The expected size in pages of a stored procedure value is ProcSize, so the average cost
to read a stored procedure value is

Cread = C2ProcSize

The components of the cost of a procedure access using AVM to implement the
Update Cache strategy are summarized below.

cost component

screen R Ltuples for type Px procedures
screen R x tuples for type P2 procedures
refresh procedures of type Pi
refresh procedures of type P2
maintain AirDi sets
join R i tuples to R 2
average cost to read a procedure

name

^screenPl

C3CreenP2
CrefreshPl
CrefreshP2
^overhead
C .Yjoin

Cread

value

Nfijl
N2Cxfl
iV"iC22Y3
iV2C22Y4

C82/Z(tfi+2V2)
iV2C2Y2
C2ProcSize

The cost Cread is paid once each time a procedure value is read. The other cost com
ponents are paid once each update operation. These components must be multiplied by
k/q to find the cost per access. Hence, the average cost ofa procedure access using AVM
in model 1 procedures is as follows:

TOTnon-sharedl = Cread+~ (Cscreenpi+CscreenP2 +CrefreShPl +Crefre9hP2 +Coverhead +Cjoin)
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4.4. Model 1: Cost of Update Cache (Shared)

The shared view maintenance algorithm analyzed here is Rete view maintenance.
The Rete network used to maintain individual procedures of type Pi and P2 is shown in
Figure 3. The costs for screening tuples against the predicate term Cf(R i) of procedures
of type Pi and to refresh stored copies of those procedures is the same as for AVM.
Because a fraction SF of type P2 procedures have a shared subexpression, screening costs
must only be paid for the remaining fraction 1-SF. The total cost of screening tuples
against the predicate term Cf(R{) of type P2 procedures is

CScreenP2.Rete = iV2(l-SF)Cl/'2/

For the fraction 1-SF of type P2 procedures that do not have a shared subexpression, the
left a-memory node must be refreshed. The cost to do this for these procedures is

Crefre3h-a = ^2(l-SF)2C2Y3

For each of the tuples inserted into or deleted from the left a-memory, the right memory
must be checked for joining tuples. The cost to check for joining tuples is the cost to
make 2/7 probes into the right memory, which contains f**N tuples, where the value of
f is

f -f2fn2

The expected number of pages that must be read from one right a-memory is

can be shared

R «i

Cf{Rx) CfiRO

a-memory a-memory

R.

Cf2(R2)

I
a-memory

Figure 3. Rete networks for type Pt and P2 procedures in model 1
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y5 = y(rN,rb,2fD

The total cost of these reads for all N2 procedures of type P2 is

Cjoin-a = N2C2Y5
The average cost of reading a procedure value when it is accessed is Cread. The com
ponents of the cost ofaccessing a procedure that is maintained using RVM are summar
ized in the table below.

cost component name value

screen Ri tuples for Pi ^screenPl (unchanged)

screen R i tuples for P2 CscreenP2-Rete iVi(l-SFXV2Z
refresh procedures of type Pi CrefreshPl (unchanged)
refresh left a-memory for

procedures of type P2 ^refresh-cr N2(1-SF)2C2Y3
refresh procedures of type P2 CrefreshP2 (unchanged)
read right a-memory ^join-o N2C2Y5
read procedures Pi, P2 Cread (unchanged)

Cread is paid once per query. The other costs shown in the table are paid once per update.
The average cost per query ofmaintaining procedures after updates is found by multiply
ing these figures by the number of updates per query (k/q). The average total cost per
query when maintaining procedures using RVM is

k
T0T8haredl = Crea<j+ —(C3creenpi +CscreeiiP2-Rete+CrefreshPl +Crefreah-a +^refreshP2+Cj0in-a)

q

5. Performance Results for Model 1 Procedures

In this section, the results of the performance analysis for model 1 procedures are
presented and discussed. Several figures show the cost of a procedure access for various
parameter values using Always Recompute, Cache and Invalidate, and both the shared
and non-shared versions of Update Cache. Other figures plot the area where each algo
rithm performs best for the update probability P vs. the object size f (All subsequent
figures appear at the end of the paper in Appendix B.)

Figure 4 shows query cost vs. update probability, assuming that the Cache and
Invalidate strategy marks procedures invalid using the straightforward method that
requires two disk I/Os. This situation is modeled by setting Cinvai=60ms. Figure 5 plots
the same curves for Cinvai = 0. Figures 4 and 5 clearly show that the total cost per query
using Cache and Invalidate is highly sensitive to the value of Cinvai. Thus, if Cache and
Invalidate is implemented, it is important to keep Cinvai small. This could be done using
one of the techniques previously described (e.g. a data structure in battery-backed-up
memory). In both figures, the cost of Cache and Invalidate and both versions of Update
Cache are equal when the update probability P is zero because there is never any over
head to update or recompute procedure values. In Figure 5, there is a significant
difference in the cost of Cache and Invalidate and Update Cache for 0<P<0.7. This
occurs for the following reasons.
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1. For /"=0.001 it is less expensive to incrementally update
an object when only a few tuples change than to invalidate and
recompute it.

2. Update Cache suffers from false invalidations, which are
invalidations that are not necessary because the object does not
really change.

For type P2 procedures, the probability that an object has really been made invalid given
that a new tuple matches the predicate CfiRi) is f2 (the selectivity of the other selection
term). Hence, the probability that an invalidation is false is l —f2. Since the default
value of f is 0.1, the probability of false invalidation is significant. For values of P >0.6
in Figure 5, the cost of Cache and Invalidate levels off at a plateau slightly above the cost
of Always Recompute because stored procedure values are virtually never valid. The
slight difference between the two curves represents the effort wasted by Cache and Invali
date to write back procedure values after they are computed. The cost of both Update
Cache strategies rises dramaticly for large values of P because stored procedure results
must be updated repeatedly between queries.

The cost per query using larger objects (^=0.01) is plotted in Figure 6. For this
value of f, type Px procedures contain 1,000 records and type P2 procedures contain 100
records. When the update probability is low, it is significantly more efficient to incremen
tally update a large object than to mark it invalid and require it to be recomputed. This
occurs because only a small amount of work is required to bring an object to the correct
state when only a few tuples in it change. Invalidation requires the next query to com
pletely recompute the object, which is expensive for large objects. The cost per query for
small objects (f=0.0001) is shown in Figure 7. For this value of f, type Px and P2 pro
cedures contain 10 tuples and 1 tuple, respectively. Figure 7 shows that when procedures
are small, Cache and Invalidate is very competitive with the Update Cache strategies.
Furthermore, Cache and Invalidate does not suffer from the severe performance degrada
tion that affects Update Cache when the update probability becomes large. The case
where objects are as small as possible (one tuple) is examined in Figure 8. In this figure,
iVi=100,2V2=0 and f=l/N, meaning that all procedures are selections of one tuple from
a single relation. Cache and Invalidate is essentially equivalent to Update Cache under
these conditions, except that the performance of Cache and Invalidate does not degrade
severely for large P.

Figure 9 shows the cost per query assuming that the locality of reference is high
(Z =0.05). Again, Cache and Invalidate is very competitive with Update Cache for low P,
and superior for large P. The affect of high locality of reference is similar to the affect of
small objects.

The affect of a large number of objects is modeled in Figure 10 by setting
iV*1=iV*2=1000. The cost of Cache and Invalidate and Update Cache is the same for zero
update probability, but cost increases more rapidly as P increases it does in Figure 5.
Varying the total number of objects changes the slope of the curves for the Update Cache
strategies, and changes the value of P where the cost of Cache and Invalidate reaches its
plateau. Figure 11 compares the two different Update Cache algorithms (AVM and RVM)
focusing on the effect of the level of sharing (SF). In model 1, the cost of RVM becomes
comparable to AVM only when almost every type P2 procedure has a shared subexpres
sion for its selection term on R v The reason RVM performs poorly compared to AVM for
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small sharing factors is that RVM must pay overhead to refresh copies of left a-memory
nodes. When procedures contain only two-way joins (as in model 1) only a high level of
sharing can make RVM competitive with AVM. Different results are obtained for the
three-way join case analyzed later for model 2.

Figure 12 shows the regions where each algorithm performs best for different object
sizes and update probabilities. The area where Cache and Invalidate wins in Figure 12 is
insignificant, except that it shows that its cost is close to the cost ofUpdate Cache in the
vicinity. As expected, the methods with a per-update overhead do not do as well as
Always Recompute when the update probability P is large. An interesting phenomenon
observed is that Update Cache wins for a smaller range of values for P when objects are
large than when they are small. This occurs because it is highly likely that any update
will affect a large object, so such an object must be maintained often. However, when
objects are small, updates are likely not to affect them at all, so little overhead is
incurred.

In Figure 13, the locality of reference is higher than in the previous figure (Z =0.05).
Cache and Invalidate benefits from the increased locality but Update Cache does not.
Cache and Invalidate performs best when objects are small (f< 0.002). The reason this
occurs is that incrementally updating small objects costs nearly as much as recomputing
them and writing back the results.

To demonstrate how close Update Cache and Cache and Invalidate are, Figure 14
shows the area where Cache and Invalidate is within a factor of two of Update Cache or
better for the default parameter settings. When the update probability P is high, Cache
and Invalidate is close to or superior to Update Cache because the cost of Update Cache
rises rapidly as P grows. Cache and Invalidate is also close to Update Cache for small
objects when the update probability is low. Figure 15 shows the same information with
f2 = l, which reduces the probability of false invalidation to zero. Cache and Invalidate
performs even better for small objects in this situation.

6. Cost Analysis for Model 2 Procedures
The cost of maintaining model 2 procedures is analyzed in this section. The

difference between models 1 and 2 is that type P2 procedures required a three-way join in
model 2 rather than a two-way join. Below, the cost formulas for model 2 are presented.
Mostof the formulas remain unchanged, so only the differences from model 1 are shown.

6.1. Model 2: Cost of Always Recompute

The cost of Always Recompute is different in model 2 than model 1 because a three-
way join is required to construct the value of a procedure of type P2 instead of a two-way
join. The cost to compute this three-way join is CqueryP2'. The value of a type-P2 pro
cedure is found by

(1) using a B-tree index scan on Ri to find tuples matching Cf(Ri),
(2) joining qualifying J?i tuples with R2 using the hash index on Ro, and
(3) joining the resulting tuples to #3 using the hash index on i23.

The cost of (1) plus (2) is the same as Cqueryi. Part (3) requires reading the following
number of pages from i?3:
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r6 = yVaff,fBj>m
An additional fN predicate tests are required. The complete expression for CqueryP2' is

CqueryP2' = Cqueryi + C2Y'6"'"Ci/'iv"

The average cost of computing a procedure value from scratch in model 2 is

TOTRecompute2
tfi

Nx+N2 'queryPl •"
2V<

iVi+N2 'queryP2

6.2. Model 2: Cost of Cache and Invalidate

The cost formula for caching in model 2 (TOTCacheInval2) is found simply by replacing
CqueryP2 Dv CqUeryP2'

6.3. Model 2: Cost of Update Cache (Non-Shared)
In model 2 the tuples resulting from the join of Rx and R2 must be joined to R3 when

the non-shared algorithm (AVM) is used. The join of tuples from Rx to R2 requires read
ing Y2 pages from R2. The fN tuples resulting from this join are then joined to Rz. Rz
has fR N tuples and fRb blocks, so this last join requires the following number of page
reads:

r7 = y(fRp,fRib,2fi)

The total join cost (Cj0jn') is

Cjoin' =N2C2(Y2+Y7)
The total cost per query for AVM in model 2 is found by substituting Cjoin' for Cjoin in the
formula from model 1, yielding the formula

k
TOTnon.3hared2 = CreadH (Cscreenpi +Cgcreenp2 +Crefre3hPl +Crefregnp2 +Coverhead +Cjoin )

q

6.4. Model 2: Cost of Update Cache (Shared)

The cost components C8creenPi, CScreenP2.Rete» CrefreshP1 and Crefre8h.a are unchanged
from the analysis for model 1. In model 2, a /J-memory rather than an a-memory forms
the right input to the and node above a type P2 procedure, as shown in Figure 16. The
part of the figure in the dashed box can be a shared subexpression. A fraction SF of the
type P2 procedures share that portion of the network with a procedure of type Pv Tuples
that reach the left input of the and node must be joined to the 0-memory node. The p-
memory contains f2N tuples and f2b blocks, where f2 has the following value:

ft —A/r,

The following number ofpages must be read from the /J-memory node to perform the join:

r8 = y{f?N,f?b,2fl)
The expected cost to join tuples from the left input to the /J-memory after each update is
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Cjoin-0 = N2C2YS
CrefreshP2 is the same as for model 1 because type P2 procedures are the same size as in
model 1, and the expected number of tuples in a type P2 procedure that change after an
update transaction is still the same. The average cost to read a procedure in model 2 is
also unchanged from model 1. Thus, the only difference in cost from model 1 is that Cjoin.
a is replaced by Cjoin.0. The total cost formula for maintaining procedures using RVM in
model 2 is

TOT3hared2 = Cread H (CscreenPi +CScreenP2-Rete +CrefreshPl +Crefresh-a +Crefreshp2 +Cjoin.^)

7. Performance Results for Model 2 Procedures

The performance results for Model 1 and Model 2 are similar, as can be seen by com
paring Figure 17 with Figure 5. The main difference is that the shared view mainte
nance algorithm (RVM) performs significantly better in model 2 than in model 1 com
pared to the non-shared algorithm (AVM). Figure 18 shows the performance of the two
algorithms vs. the sharing factor SF. For a sharing factor of approximately 0.47, the two
algorithms are equivalent in cost. For higher sharing factors, RVM is superior to AVM.
RVM has an advantage in this situation because when tuples in Rx change, they must be
joined only to the right j8-memory, but AVM must join the tuples to R2 and then join the
resulting tuples to R$. Using RVM, as the sharing factor increases, the cost of maintain
ing the left a-memory becomes less than the advantage provided by the precomputed
subexpression in the ^-memory. Figure 19 shows the areas where each algorithm per
forms best for update probability vs. object size in Model 2. Figure 19 is similar to Figure
12 for Model 1, except that the best version ofUpdate Cache is RVM instead of AVM.

8. Summary and Conclusions
This study has brought out several points regarding the effectiveness of Always

Recompute, Cache and Invalidate, and Update Cache for processing database procedures.
It is critical to use some method to limit the cost of marking a procedure invalid in Cache
and Invalidate. Otherwise, its performance is significantly worse than that of Update
Cache. If a low-cost invalidation method is used and procedure results are small, Cache
and Invalidate is as efficient (or only slightly worse than) Update Cache. A problem with
Update Cache is that its performance degrades severely at high update probabilities.
Cache and Invalidate does not suffer from this problem if the invalidation cost is small.
Its performance is only slightly worse than that of Always Recompute for high update
probability. This phenomenon makes Cache and Invalidate a much safer algorithm than
Update Cache if there is a possibility that update frequency will be high. Both Cache and
Invalidate and Update Cache bring substantial savings if the update probability is small.
For example, using / = 0.0001 (as shown in Figure 7), with P=0.1, Cache and Invalidate
and Update Cache outperform Always Recompute by factors of approximately 5 and 7,
respectively. Update Cache is significantly better than Cache and Invalidate for large
objects when update probability is low. This occurs because it is inexpensive to incremen
tally update a large object when it changes relative to the cost of recomputing it entirely.
Another interesting observation made in this study is that Update Cache sometimes out
performs Cache and Invalidate for both small and large objects when update probability is
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low. This occurs because Cache and Invalidate can suffer from false invalidations.

There are major differences in performance between Always Recompute, Cache and
Invalidate, and Update Cache which depend primarily on update probability and object
size. For the different versions of Update Cache, including a shared algorithm (RVM) and
a non-shared algorithm (AVM), relative performance is insensitive to update probability
and object size. The important parameters when comparing AVM and RVM are

(1) the likelihood of finding shared subexpressions (sharing factor),
(2) the number of joins in a procedure query, and
(3) the relative frequency of updates to different relations.

Increasing the sharing factor makes RVM perform better, but does not affect the perfor
mance of AVM. In the analysis of this paper, when procedures contain only two-way joins
(as in model 1) AVM is never significantly better than RVM. This will be true in general
for two-way joins because the cost saved by RVM through sharing subexpressions is can
celed by the overhead of maintaining a-memory nodes. If procedures contain joins of
three or more relations (as in model 2) RVM can perform better than AVM. This is possi
ble because there will be precomputed subexpressions containing joins of two or more
relations. These subexpressions can be used to limit the total number of joins that RVM
must perform compared to AVM. For example, in model 2, RVM only has to compute a
two-way join, but AVM must do a three-way join.

The relative frequency of updates to different relations is an important factor that
was not analyzed in this paper. Static optimization methods will use statistics on relative
update frequency when designing an optimal plan for maintaining procedures (e.g. an
optimized Rete network). Hence, the plan produced will be efficient for the given update
pattern. Because of this, it is expected that the benefits of static optimization observed in
the analysis performed in this paper will be observed in actual application. However,
further study of staticly optimized procedure (or view) maintenance algorithms is needed
before this can be concluded with certainty.

As mentioned previously, a potential drawback of the staticly optimized procedure or
view maintenance algorithms is their fixed execution plan (e.g. the Rete network), which
may cause them to become more costly than dynamicly optimized algorithms if the struc
ture of the database or the update frequency changes significantly. Experience is needed
to know whether the drawbacks of the fixed execution plan used in staticly optimized
algorithms will overwhelm the advantages gained by avoiding run-time compilation over
head, and by combining shared subexpressions.

An important issue with the Cache and Invalidate and Update Cache strategies is
how to decide whether or not to maintain a cached copy of given object. Sellis has con
sidered this issue for Cache and Invalidate [Sel86,Sel87]. The question is even more
important for Update Cache because the potential cost of a wrong decision (e.g. maintain
ing an object when the update probability is too high) is much larger than for Cache and
Invalidate. How to make this decision when using Update Cache is an interesting prob
lem for future study.

One would expect the results of database procedures to be small in most applications.
This expectation, combined with the observations made in this study suggest the follow
ing strategy for implementing database procedures. Always Recompute should be imple
mented first because it is simplest. If sufficient resources are available to implement a
second method, Cache and Invalidate should be chosen. It will give good performance
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benefits for small objects, and it does not degrade significantly if the system makes a mis
take (e.g. by caching an object that is seldom accessed). The Update Cache stategy can be
added later if the programming effort can be justified. This will make it possible to
efficiently maintain large stored procedure values. The view maintenance code written to
implement Update Cache can also be used to provide a materialized view facility.
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Appendix A

Given that there are n total records on m blocks, a formula giving the expected
number of blocks that will be accessed to modify k records is known as the Yao function,
denoted by y(n,m,k) [Yao77], Let C* be the number of ways that b items can be selected
from a items (a^b). If the number of records per block is p = n/m, then the formula
giving the expected number of block accesses is C£*p/CjJ. An alternative to the above
called Cardenas' approximation that is very close if the blocking factor is large (e.g.
/i/m>10) is m(l-(l-l/m)*) [Car75]. Cardenas' approximation gives good results unless
m approaches 1. Clearly, any stored object must occupy at least one page. The
approximation used in this paper is that if k^ 1, the expected number of pages touched is
k. If k is greater than 1, and m is less than 1, the expected number of pages touched is 1.
Otherwise, if m is less than some upper bound U (U=2 is used) and k is more than 1, the
minimum of k and m is returned. If none of the above conditions apply, Cardenas'
approximation is used. This approach gives an accurate estimate of the expected number
of pages touched for a wide range of parameter settings.
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