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LIST OF SYMBOLS

A time-varying voltage (or current) is given as V (or /). For sinusoids, V = Re V ejm, with V

(or /) being the complex amplitude. The complex amplitude V (or /) is written V = Vqe , where

V0 (or 7q) is the (real) magnitude ofV (or 7),and <^o is the phase angle in radians.

a (sub), discharge plate

A area

b (sub), discharge plate

B susceptance (siemons)

C capacitance

d plasma length

D diode; (sub) discharge; XD, Debye length

e proton charge; (sub) electron

E electric field

£ energy (volts)

/ electron speed or energy distribution function; (sub) floating

F complex constant with units of magnetic flux

G conductance (siemons)

i (sub) ion

iz (sub) ionization

/ current

7 complex current amplitude

7q real magnitude of complex current amplitude



/ time-average or dc current

J current density

K collision rate constant (m3-sec_1)

/ . discharge length

L inductance; (sub) loss

m electron mass; (sub) momentum transfer

M ion mass; (sub) matching

n plasma density

N neutral gas density

p pressure; (sub) plasma

P power

P time-average power

q collision cross section (m2)

Q charge

r position vector

R resistance (ohms)

s sheath thickness; (sub) sheath

t time

T temperature (volts); (sub) Thevenin-equivalent source

u velocity or speed

V voltage

V complex voltage amplitude



V0 real magnitude of complex voltage amplitude

V time-average or dc voltage

w sub (wall)

X reactance (ohms)

Y admittance (siemons)

z axial position

Z impedance (ohms)

a first Townsend coefficient

e dielectric constant

r particle flux

X mean free path (sub e, i); Debye length (sub D)

v collision frequency

a electrical conductivity

$ phase

<X> electric potential

CO radian frequency



Chapter 3. BASIC RF DISCHARGE MODEL (REVISED)

3.1 Introduction

We describe a uniform, symmetric model for a capacitive parallel plate rf discharge in the regime

normally used for reactive ion etching. We call this the "basic model." The principles described in

Chapter 2, inparticular the conservation laws, are used. Because simplifying assumptions are made, the

model cannot be used to predia the quantitative behavior of "real" discharges. The model is correct

qualitatively and is introduced to describe the procedure for theanalysis of real discharges.

The basic model was developed by V. L Godyak and his collaborators in the 1970s [Godyak

1972, 1976; Godyak and Kuzovnikov, 1975; Godyak and Popov, 1979]. Certain features of the model

were known earlier [Taillet, 1969]. The work of the Soviet group is summarized in a monograph by

Godyak (1986). In Chapter 4, we consider nonuniformities and asymmetries in real discharges and

examine their effects on the basic model

Figure 3.1a shows the basic model. A sinusoidal current /r/ having complex amplitude

7 =lye and frequency CO flows across discharge plates a and b. Here 70 is the real magnitude of

7 and <(>o is the phase of 7. The plates are separated by a distance / and are taken to becircular, each

having cross sectional area A. A gas having neutral density N is present between the plates. In

response to the current flow, the gas breaks down and a discharge plasma forms between the plates,

accompanied by a voltage V(r) across the plates and a power flow P(t) into the plasma, the plasma

has an ion density n,-(r,r), an electron density «,(r,f) and an electron temperature Te(r,t). Because

of quasineutrality, ne ~ /t(- almost everywhere except within the oscillating sheaths near the plates,

where ne < /»,-. Hie instantaneous sheath thickness is s(t) and its time averaged value is T. Typi

cally, T <zL

The state of the discharge is specified once a complete set of control parameters is given. The

remaining plasma and circuit parameters are then specified as functions of the control parameters. A

convenient choice for the control parameters is 7, CO, Nt and /. Given these, we develop the basic

model to determine ne, Te, s,T, V, and P. The choice of control parameters is not unique. We
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Figure 3.1. The basic rf discharge modeL (a) Sheath and plasma thicknesses, (b) Electron and
ion densities.
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choose / rather than V or P for ease of analysis.

In general, the discharge parameters ne, nit and Te are complicated functions of position and

time. We assume the following to simplify the analysis:

(1) There is no transverse variation (along the plates). This is true provided / <c VA . Since the

divergence of Maxwell's equation VxH = J +edSE/dt is zero, we see that, at any instant of

time, the sum of the conduction current J and the displacement current efiE/dt within the

discharge is independent of z.

(2) The ions respond only to the time-averaged potentials. We will show later that this is true pro

vided that

©J2*©2, (3.U)

where CO; is the ion plasma frequency.

(3) The electrons respond to the instantaneous potentials and carry the rf discharge current We will

show that this is true provided

a>2 » ©2(l+v2/C02)1/2 , 0.12)

where (Oe is the electron plasma frequency and vm is the electron-neutral collision frequency for

momentum transfer. \

(4) The electron density is zero within the sheath regions. This is true provided XD <: s, where XD

is the electron Debye length. We will show that this condition is met provided Te <l^,, where

Vpg is the dc voltage across the sheath.

(5) The ion density is uniform and constant in time everywhere in the plasma and sheath regions.

This assumption is made to simplify the analysis and is rarely valid. In the plasma, the density is

generally peaked in the center of the discharge and falls to a reduced value at the plasma-sheath

boundary. Within the sheath, the density foils further as ions are accelerated toward the discharge

plates. These issues are considered in Chapter 4. The electron and ion density profiles for the

basic model are shown in Fig. 3.1b.



3.2. Plasma Admittance

The admittance of a plasma slab of thickness d and cross-sectional area A is Yp = j(QEpA/d,

where Zp is the plasma dielectric constant From Sec. 2.6,

Cp =eo
CD2

1-
©(©-./vm)

We will show in Sec. 3.3 that

d = / - 25" = const, (3-2.2)

independent of time. We find that

YB =;coC0 + , * n . (3.2.3)p J ° jmLp+Rp

where C0 =EoA/rf, ^ =©^Co1 and Rp =vmLp. As shown in Fig. 3.2, Yp represents avacuum

capacitance Co in parallel with the series combination ofplasma inductance Lp and resistance Rp. By

assumption (3), the displacement current that flows through C0 is much smaller than the conduction

current that flows through Lp and Rp. Thus the element C0 can be omitted from the model'

If the sinusoidal current

/r/(r) =Re7e>fflr (3-2.4)

flows through the plasma, then the voltage across the plasma is given by

V,(0 =ReV, *'•<*, (3-2.5)

where Vp =llYp is the complex voltage amplitude. We see that the plasma voltage is linear in the

applied current and there is no harmonic generation (multiples of ©) or dc component of Vp.

3.3. Sheath Admittance

In contrast to the plasma, the current that flows through the two sheaths is almost entirely dis

placement current; i.e., it is due to a time-varying electric field This is true because the conduction

current in a discharge is carried mainly by electrons, and the electron density is zero within the time-:

TThis holds during normal discharge operation but is not true at startup when ©e <: ©.

(3.2.1)



Figure 3.2. Equivalent circuit model for the plasma.
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varying sheath. We will show that the conduction current carried by the steady flow of ions across the

sheath to the plates is much smaller than the displacement current

33.1 Displacement Current

The electric field within sheath a (see Fig. 3.1) is given by Poisson's equation

£L =^ , z <; sa(t), (33.i)
dz £q

which yields

E(z,t) =-^ (z-Ja(0) . (33.2)
€o

The boundary condition is is = 0 at z = sa because ^nomud is continuous across the plasma-sheath

interface and because a negligible electric field exists in the plasma. Enormal is continuous because the

discharge cannot support a surface charge (infinite charge density) at the interface.

The displacement current flowing through sheath a into the plasma is

MO =eoA 4J . (3-33)

Using (33.2) in (3.33), we obtain

VO =- enA^- . (3-3.4)

From (33.4), the sheath boundary sa is linear in the applied current Setting 7^(0 = /r/(0, where

lrf =70 cos ©r , (333)

we integrate (33.4) to obtain

sA = T - So sin ©f (33.6)

where

»a

en(&A

is the sinusoidal oscillation amplitude about the dc value T

-10-
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The voltage across the sheath is given by

VapiO =|. i£A.-SL*
En 2

(3.3.8)

Rom (33.8), the sheath voltage is a nonlinear function of sa and therefore of the applied current

Using (33.6) in (33.8), we obtain

V o--£L
ap 2eo

J2 +T so ~^o sin ©r - -i So cos 2©f

We see thatthe nonlinearity leads to second harmonic voltage generation.

Differentiating (33.8) and using(3.3.4) to eliminate sa, we obtain

7 =C^'op ^a ^

where Ca is a nonlinear capacitance

Ca(Vap) =
(-V^)1/2 2

1/2

The current flowing through sheath b into the plasma is

dsb
Itp = - enA — ,

and the voltage across this sheath is

., en sb

Bycontinuity of current hp = - lap- Using (33.4) and (33.12), we obtain

•j (*«+**) =0 .

which yields after integration,

sa +sb =2S~ = const

-11-

(3.3.9)

(3.3.10)

(3.3.11)

(3.3.12)

(33.13)

(33.14)



We see that d = I -2Y = const as stated in Sec. 32. For sheath b, we then find

sb = T + S0 sin ©f

and a nonlinear voltage response

p 2eo
S2 +4- So +2S"3osin ©f - -i-So cos 2©r

which is modelled by the nonlinear capacitance

1/2

c*(nP) = 1/2i-Vbp) 2

(33.15)

(33.16)

Although Ca and C* are each nonlinear, the voltages across each are related. Substituting

(33.14) into (3.3.8) and (33.13), the combined voltage V^ = V^ - V^ across both sheaths can be

written as

From (33.6) and (33.15),

2e/t s S0 .
V^ = sin ©r

Co

(33.17)

(3.3.18)

which is a timor voltage response. Differentiating (33.17) and using (3.3.4) and (3.3.12) to eliminate

sa and sb, we obtain the simple result

dV*
lab = C$'

dt
(33.19)

where

C, =
2T

(3.3.20)

is a linear capacitance. Physically, this capacitance is the series combination of the two nonlinear capa

citances Ca = ZQAIsa(t) and Cy = EoA/SbO):

.12.



J_ J_ _ sa+sb 2s 1
Ca Cb eoA eoA " C,

We obtain the almost paradoxical result that although each sheath is nonlinear, the combined effect of

both sheaths is linear. This is true only for the basic model assumptions of a symmetric, homogeneous

discharge. We will show in Chapter 4 that the sheath capacitance C, is nonlinear when these assump

tions do not hold.

3.3.2. Conduction Current

Although the conduction current in each sheath is small, the average sheath thickness T is deter

mined by the balance between ion and electron conduction currents. By assumption (2), there is a

steady flow of ions from the plasma through sheath a, carrying a steady current

£ a enuBA (33.21)

where, from Sec. 2.6, the Bohm velocity

1/2

uB =
M

(3.3.22)

is the velocity at which ions enter the sheath.

By symmetry, the time average conduction current flowing to plate a is zero. There is a steady

flow of ions to the plate. For the basic model, the electron density is strictly zero in the sheath. The

sheath thickness sa(t) must therefore collapse to zero at some time during the rf cycle in order to

transfer electrons from the plasma to the plate. It follows from (33.6) that

T=5o =_Zl_ (3.323)
en(oA

and from (3.3.8) that

Vpa =it- S^d-sin ©O2 . (3.3.24)
2£q

Since the sheath voltage collapses to zero at the time that the electrons are transferred to the plate, this

action can be modelled as an ideal diode across the sheath whose preferred direction of current flow is

•13-



into the plasma. A similar result holds for sheath b.

The voltages Vap(t), Vpb(t) and their sum V^t) are plotted versus t in Fig. 33. The manner

in which the sum of the two non-sinusoidal voltages yields the Vab sinusoidal is clearly seen. The

time-average value Vp, for Vpb is also shown as the horizontal dashed line.

From the results in Sees. 32 and 33, we have the circuit model shown in Fig. 3.4. Each sheath

is represented as the parallel combination of a nonlinear capacitance Ca or Cb, an ideal diode D, and

a dc current source 7;. The sheath circuits are in series with the plasma circuit shown in Fig. 32.

Capacitors Ca and Cb are "ganged" together to remind us that their series combination is the linear

capacitance Cs.

It will be shown in Sec. 33.2 that the ion current source 7/ represents a flow of dc power out of

the discharge. This power is supplied by the if current source through a rectifying action involving /,-,

D, Ca. and Cb within the sheath. As a result the rf source "sees" an additional series resistance Rit

which replaces 7; and D in the rf circuit model This model is developed in Sec. 3.6.

Although the circuit form is specified, the elements are functions of the unknown density n and

electron temperature Te. These are determined from conservation of particles and energy as described

in the next two sections.

3.4. Ionization Balance

For a steady discharge, the rate of creation of electron-ion pairs is equal to their rate of loss. By

quasineutrality, the loss rates for electrons and ions are equal, averaged over an rf cycle. Setting the

rate of creation due to electron-neutral ionization equal to the rate of ion loss to the two plates, we

obtain

nv^Ad = 2nuBA . (3.4.1)

The ionization rate v^ is

V* = NKk , (3.42)

where N is the neutral gas density and

.14-
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cut

Figure 3.3. Sheath voltages V^.V^ and their sum V^ versus time. The time-average value
Vp, of Vp), is also shown.
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r,cb¥ + 'a

—T— Cs

Figure 3.4. Nonlinear circuit model of the rf plasma discharge. The dashed lines indicate that the
series connection of the nonlinear elements Ca and Cb yields the corresponding
linear element Cs.
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**=<**<©«> 0A3)

is the ionization rate constant In (3.4.3), q-a is the electron-neutral ionization cross section, u is the

electron speed, and the brackets denote an average over the electron energy distribution / (£). For a

Maxwellian distribution, K& is a function of the electron temperature Te alone. For argon gas, qa and

Ktt are plotted in Figs. 33 and 3.6 respectively.

Using 0322) and (3.4.2) in (3.4.1), we obtain

(3.4.4)

Since d = / - 2T, and generally T <. /, we have d ~ I. In this approximation, (3.4.4) determines Te

as a function of the control parameters N and /.

Plotting the left hand side of (3.4.4) on the graph in Fig. 3.6 yields a straight line having slope

1/2 whose vertical position varies with Nd. The intersection of this line with the K& curve determines

Tg. The solid line in Fig. 3.7 shows Te vs. AW for argon. Because K& varies rapidly with Te, we

find that Te lies between 2 and 5 volts over the many orders of magnitude variation in AW that are

found in typical etching discharges.

We see that there is a minimum value (JVtf)min = 1-7 x 1013 cm"2 to sustain the discharge,

shown as the dashed line in Fig. 3.6 which is tangent to the Ka curve. For d = 5 cm, we obtain

Pmin = lO-4 torr at room temperature in argon.

Because Ka falls off as Te"ia for large Tet we note that there are two solutions to (3.4.4) for

Nd > (Nd)JBjn. It can be shown that the solution having the lower value of Te is stable to perturba

tions in the discharge parameters, whereas the solution having the higher value of Te is unstable.

The ionization potential of argon is £;z = 15.8 volts. For Te between 2 to 5 volts, electron-ion

pairs are produced by the small fraction of high energy electrons in the tail of the assumed Maxwellian

distribution. The ionization rate is therefore very sensitive to the collisional, heating and loss processes

that affect these "tail" electrons. In fact it is electron-electron scattering that drives the tail electrons

toward a Maxwellian distribution, in the face of the other, generally stronger, processes that distort the

r mo.

2 e~e
Nd M

^^(Tg).
\m J

•15-
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Figure 3.5. Ionization crass section fo versus election energy £ for argon gas atoms.
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Figure 3.7. Electron temperature Tg versus neutral density-length product Nd in argon gas. The
solid curve is for Maxwellian electrons, and the dashed curve is for a Maxwellian dis
tribution truncated atVf = 4.77*, volts.

-15c-

21



distribution away from a Maxwellian. If the tail electrons are far from Maxwellian, then the solution to

(3.4.4) is only qualitatively correct A similar difficulty exists in determining the ionization in the posi

tive column of a dc glow discharge. There, ohmic heating competes with energy loss due to elastic and

inelastic scattering to determine the equilibrium /(£).

To illustrate the effect of a non-Maxwellian /, we assume that sufficient high energy electrons

are lost to the plates to balance the loss of ions to the plates. The equilibrium / is then modelled as a

"cutoff" Maxwellian

/-/«®.e<v/S 0AS)
= 0 , e > Vf ;

where, from Sec. 2.6,

» «

(3.4.6)V> =| Tg in M

2ian

is the floating potential. Integrating qa for argon (Vy =4.7 Te) over this / we obtain the ionization

rate constant shown as the dotted line in Fig. 3.6. The dotted line in Hg. 3.7 shows the resulting curve

of Tg versus Nd. The equilibrium temperatures are higher than for the full Maxwellian, and there is a

minimum Te = 3.4 V to sustain the discharge.

Although the ionization rate is a rapidly varying function of Te and is very sensitive to deviations

from a Maxwellian distribution, this affects only the particle balance equation (3.4.4). All other equili

brium equations for the basic model depend only weakly on Te. We can consider Te to be roughly

constant over a wide range of control parameters in these other equations.

35. Power Balance

The total time-average power Prf absorbed by the discharge is the sum of the power absorbed by

the electrons and the power carrried by the ions to the plates.

-16-



Figure 3.8. Energy loss factor Zi versus electron temperature Te in argon gas.
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3.5.1. Electron Power

The power deposited in the electrons is equal to the power lost by the electrons for a steady

discharge. The power deposited is the ohmic heating in the plasma, and the power lost isdue mainly to

collisional energy transfer to the gas atoms:

Pe =4" H*p =nvhe ZLAd (3.5.1)

In (3.5.1), Rp is the plasma resistance (see Hg. 3.4), and it is assumed that essentially all ofthe source

current flows through this element. The quantity Zl is the electron energy loss per ionization, and

accounts for collisional loss due to electron-neutral elastic scattering, electron-neutral excitation and

electron-neutral ionization. 8^ isa function of Te only, and is shown for argon in Hg. 3.8. For Te in

the range typical of etching discharges, 8j, = 38&. Although electrons are lost to the plates, the power

they carry to the plates is relatively small compared to the collisional loss for typical etching

discharges.'

From (3.23), we find that

y e*n A

We note that

O= -£-2- (3.53)
mv„

It2,
2

is the dc electrical conductivity of the plasma; thus — IqRp is the time-average ohmic power depo-

sited in the plasma. Inserting v^ = 2uBld from (3.4.1) into (3.5.1) and using (3.3.7), we obtain

(3.5.4)

^Actually, the kinetic energy per electron lost from the plasma is 2Te +Vpb(t), where V^ is
the sheath potential at the instant of loss. For Vpb - Vf - 4.7 Te and Te - 5 V, the energy of lost
electrons is not negligible compared to £L. This additional loss can be included by adding it to 8^ in
(3.5.1).

-17-



where

fl0 = «tf0 =
4e8i,Mfi

1/2

mvmd
(3.5.5)

is the amplitude of the sheath oscillation velocity.

The momentum transfer frequency vm is given by vm = NKm, whereKm is the rate constant for

momentum transfer

Km = <<&»(£)" >.

qm is the momentum transfer cross section, and the brackets denote an average over the electron energy

distribution. For Maxwellian electrons in argon gas, qm(Z) and Km(Te) are shown in Figs. 3.9 and

3.10 respectively. Km is not sensitive to small deviations from a Maxwellian, and Km is relatively

constant for Te in the range between 2 and 5 volts.

Assuming that d = /, (3.5.4) with (35.5) gives the plasma density n as a function of the control

parameters 7, N and /. In addition, n depends weakly onTt, already determined as a function of the

control parameters in Sec. 3.4.

Inserting (3.4.1) into (3.5.1), the electron power is

Pe = 2nuBAeZL (3.5.6)

Using (3.5.4) and (3.5.5) in (3.5.6),

^=2-^7o8L.
fio

Equating (3.5.7) to the left hand side of (3.5.1), we obtain

The resistance Rp due to electron power loss decreases as 70 increases because, from (3.5.4), the carrier

density increases with Iq.

.18-
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Momentum transfer rate constant Km versus electron temperature Te for Maxwellian
electrons in argon gas.
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3.5.2 Ion Power

The powercarried by the ions to the plates is

Pt =2nuBAeVps (3.5.9)

where 2/J =2nuBAe is the total dc ion current and V^ is the dc sheath voltage. Averaging (3.3.9)

over time and using (3.3.7), we obtain

y -222-
" 4eo

2

en<oA t
(3.5.10)

Substituting (3.5.10) in (3.5.9), we obtain

/»,. =-fe. . (3J.11)
2ZQ(QrA

Writing Pi = — Jq/J,-, weobtain from (3.5.11) the effective resistance due to ion power losses

3uB

eoG>2A
Ri = f- . (3.5.12)

Summing (3.5.7) and (3.5.11), we obtain the total time-average power supplied to thedischarge

^.AA+^. (3-5.13)
' So 2e<flrA

The dc ion power is supplied by the rf source by means of a rectifying action, as follows:

Electron-ion pairs are continuously created by ionization. During most of the rf cycle, ions flow

steadily to each plate without an accompanying flow of electrons. The ions accumulate on the plate.

Since the plasma is quasineutral, the excess electrons created by ionization are transported to the

plasma-sheath boundaries, where they accumulate. The electron accumulation causes both sheaths to

diminish in thickness at the velocity uB; if unchecked, the sheaths would collapse. However, the rf

source alternately drives boundary a into plate a and boundary b into plate b. When boundary a

strikes plate a, the excess electrons suddenly flow to the plate to neutralize the ions. These electrons

are supplied by the plasma, causing the sheath at boundary b to suddenly expand. A half-period later,

•19-



the sheath at boundary b strikes plate b, and, in turn, sheath a suddenly expands. This cycle repeats

continually.

To determine quantitatively the time-average rf power supplied by the source during this cycle,

we let Irf ss - 70 sin cor, and we introduce the periodic sawtooth function

saw(<|>) =1- -^ , 0 £ $<2ft, (3.5.14)
ft

where saw(<$>) is an odd function periodic in 4> with period 2ft. From the preceding description of

sheath motion we can write

ftZlo
sa(t) = 50(l-cos <M) + saw(G>f-ft), (3.5.15)

ftlla
sb(t) = 3f0(l+cos cor) + —— saw(cor), (3.5.16)

such that

ftifa
sa +sb =2S0 + —— saw(2cor) . (3.5.17)

The charge Qa on plate a is due to both the source current Irf and the electron and ion conduction

currents:

Qa(f) = — cos cor + —- (l-saw(cor)). (3.5.18)
CO CO

The voltage across both sheaths is

Vrf(t) = Qa(t)IC(t) , (3.5.19)

where C(t) = So^Ksa+sb) ^ me time-varying sheath capacitance. The instantaneous power is then

P(t) = Vrflrf. Taking the time average ofP using (3.5.14) and (3.5.17)-(3.5.18), we obtain

P =*!fa , (3.5^0)
1 2£oC02i4

which is identical to Pt given in (3.5.11). For lrf a sinusoid, we note that Vrf contains higher har-
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monies ofCO, but this anharmonic content ofVrf is oforder /,/70 <K 1.

3.6. Circuit Laws

The voltage amplitude V is determined from the rf circuit equations. The circuit is the series

combination of the ion resistance /?;, the electron resistance Rpi the plasma inductance Lp, and the

total sheath capacitance Cs. R( is a constant resistance, independent of Iq. However, Rp and Lp are

both inversely proportional to n [see (3.2.3)]. Since n <* 70 from (3.5.4), the complex amplitude Vp

of the voltage across these elements is

Vp = (j<0Lp+Rp) I , (3.6.1)

or

Vp = 0"OM-Vm) F , 0.62)
p

where

F=™£LeJ*o (3.6.3)
e

is acomplex constant We recall that 7 =Itf* °, with <J>0 some arbitrary reference phase. Thus Vp is

aconstant independent of 70. This represents a sinusoidal voltage source

Vp(t) =Re Vpej<at (3.6.4)

which has a component proportional to vm that is in phase with the current This in-phase component

absorbs the electron power Pe.

Finally, the capacitance Cs is, using (3.3.20), (3.3.23), and (3.5.4)

end ooC, =-2£— . (3.6.5)
2m0

The equivalent circuit for these elements is shown in Fig. 3.11, and has the V—I relation
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Hgure 3.11. Rf equivalentcircuit for the capadtive discharge.
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where V is the total discharge voltage amplitude and 7 is the discharge current amplitude.

At the driving frequencies for typical etching discharges (13.56 MHz and below), the second term

in (3.6.6) is large compared to the other terms, and the discharge is capacitive. As the frequency is

increased, the condition of series resonance is reached, where the sum of the second and third terms is

zero:

1/3

mtoAd

The voltage across the discharge has the minimum value

Vmin = 7/?|.+vmF (3.6.7)

Above the resonant frequency, the discharge is inductive. For a capacitive discharge, CO <£ (Qres,

(3.6.6) reduces to

co„, =

The dc voltageacross sheath a or b is obtained by time-averaging (3.3.9) for s = S<>

The rf voltage amplitude acrossa capacitive discharge is obtained from (3.3.18):

IVI =Vab =—S02 .
So

From (3.6.9) and (3.6.10),

This is shown as the dashed line in Hg. 3.3.

Finally, writing d - 1-2T and using (3.3.23) and (3.5.4), we obtain
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CO

(3.6.12)

The boxed equations (3.4.4), (3.5.4), (3.5.13), (3.6.8), (3.6.11), and (3.6.12), along with (3.5.5) for

m0 = C050, comprise the basic model for the capacitive rf discharge. The equations determine Te, n,

*V»^» ^w» fi0» so =J*» and d as functions of the control parameters 7, CO, AT and /. For comparison

with experimental results, it is usually more convenient to choose Prf as the electrical control parame

ter rather than Irf. The procedure for solving the basic model is then as follows:

1. Approximating d ~ I, we solve (3.4.4) for Te.

2. Using Tg in (3.5.5), we obtain Uq.

3. For the given Prf, we solve (3.5.13) for 70.

4. Using u0 and 70 in(3.5.4) and (3.6.8), we obtain n and V.

5. Equation (3.6.11) then yields Vpg.

6. Finally, we determine d using (3.6.12) and verify that d ~ I.

7. If this is not the case, then we iterate the procedure using the new valueof d. This iteration con

verges very rapidly.

Although there is no difficulty solving the quadratic equation (3.5.13) for 70, it is instructive to

consider the two limiting cases of mainly ion or mainly electron power loss. The two terms on the

right hand side of (3.5.13) are equal for

Prf0 =4—toKmZL <& Nd A. (3.6.13)
J 3 e

Fixing Tg and approximating d = /, weobtain the following scalings with CO,/%/, A, and Nl:

(1) Ion power loss, Prf » PrfQ. Comparing (3.5.6) and (3.5.9), we see that the voltage is high;

Vpg ^ZL. Using vm oc Nand u0 «= (Nl)~l/2t we obtain

70 oc oiF^A1*, (3.6.14)

n oc (QPrfA-m(Nl)m% (3.6.15)
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V oc co-i P^A-"1 (NlTm . (3.6.16)

(2) Electron power loss, Prf «*: Prfo. The voltage is low, Vp, <£. ZL. We obtain

70 oc prf (NlTm , (3.6.17)

n oc jT, A"1 , (3.6.18)

V oc co"2Pr/ A^CrVTT1. (3-6-19)

3.7. Matching Networks

If the discharge is driven directly by an rf power source, then generally power is not transferred

efficiendy from the source to the discharge. As shown in Fig. 3.12, the discharge is modeled as a load

having impedance ZD = Rp+jXD, where RD = Rt + Vpll is the discharge resistance and

XD = - (coC, )_1 is the discharge reactance. The power source is modeled by its Thevenin-equivalent

circuit consisting of a voltage source VT in series with a source resistance Rj. The power flowing into

the discharge is

Prf =i- Re(? 7*) . (3.7.1)

Solving the circuit inHg. 3.12 for 7 and V\ we obtain

VTI 0 i t (3.72)
Rj+Rp+jXp

V = I(RD+JXd) • (3-73)

Using (3.12) and (3.7.3) in (3.7.1), we obtain

Kf =T &T I2 21—T (3.7.4)r/ 2 (RT+RD)2+X§

Fixing the source parameters Vr and /?7, what values of the load parameters Rp and XD will maxim

ize PI Setting dP/dXD = 0 and dP/dRp = 0, we obtain X/> = 0 and RD = RT for maximum

power transfer. The load Zp = Rj is call a matched load. The maximum power supplied by the
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1
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Figure 3.12. Equivalent circuit to determine time-average rf power.
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source to the load is then

p - _L —I— . (3.7.5)
*** 4 RT

Since the discharge impedance ZD is usually much smaller than RT, the power Pry is generally

much less than F^. To increase Prf to P^^ alossless matching network is usually placed between

the source and the discharge. Because Rp and XD are two independent components of ZD, the sim

plest matching network consists of two independent components. The most common configuration,

called the "L-network," is shown in Fig. 3.13. It consists of a shunt capacitor having susceptance

BM = ®Cm and a series inductor having a reactance XM = 0)LW.

To understand the operation of the matching network, we refer to the complex impedance plane

shown in Fig. 3.14. In this plane, the locus of an impedance having constant resistance is a vertical

straight line having ordinate R, and the locus of an impedance having a constant conductance G is a

circle of radius (2G)'1 whose center is at X =0, rt =(2G)-1.^ This circle always touches the origin.

A typical discharge impedance is plotted as point 1 in the figure. Usually Rp < Rj and Xp is nega

tive for a capacitance discharge.

To match the source to the load, we adjust XM so that the impedance Z2 (see Hg. 3.13) has a

conductance G2 = VRt- Because Z2 = Rp + jQCm+Xd), this corresponds to moving from 1 to 2

along the constant resistance locus in Fig. 3.14 having ordinate Rp. We next adjust BM so that the

admittance Y3 (see Fig. 3.13) has B3 = 0. Because Y3 = VRT + j(B?hBM)f this corresponds to

moving from 2 to 3 along the constant conductance circle G = Gj. This achieves the matched condi

tion, i.e., the Thevenin-equivalent source "sees" an impedance Rj.

To determine XM and BM, we write

*To see the latter, we write R + jX = (G+jB)~l, which yields R =G/(G2+B2) and
X = - B/(G2+B2). Fixing G, we note that

[R (B ) - (2G r1]2 + X2(B) = (2G )-2

for any B, which is the equation of the circle as stated.
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Figure 3.13.

JX,

L-NETWORK DISCHARGE

Equivalent circuit for matching the rf power source to the discharge using an L«
network.
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G=(2RT)

Hgure 3.14. Complex impedance plane X versus R. The loci of constant resistance R and con
ductance G are shown. The heavy solid line from (1) to (3) shows the locus for
matching the source to the discharge using the L-network.
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G2 +JB2 = (Rp+jXzT1 , (3.7.6)

which yields

RD
°l = p2 V2 0.7.7)

Kir**!

B2 « tt-t . (3.7.8)

Setting G2 = l/#r in (3.7.7), we obtain

X2 = (RDRT-Rg)m . (3.7.9)

sinceX2 = Xw + X/>, the requiredXM is

*M = (RdRt-Rd)1,Z - *D • (3-7.10)

Since X/> is negative, XM must be positive; Le., a matching inductor LM = Xw/G) must be used.

Using (3.7.9) in (3.7.8) and setting 2*M = - B2, we obtain

1 1
BM =

Rt^d Rt

Since B# Is positive, a matching capacitor CM = BM/(H\srequired. '

Because Rp is actually a function of7q, we must specify 70 for the matched condition Z3 = /fy.

The power supplied by the source to the discharge is

1 IVr'2
PT=T -T— • (3.7.12)

4 Kj

The power absorbed by the discharge is

Prf =\ H*i +-j Wo • (3.7.13)

Equating these powers and solving for 70, we obtain

(3.7.11)
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/n = 4
vT\2 92Po

RtRi Ri2

Using Rp =Ri +Vp0/70, we obtain

1/2

VpO

IVrl2 ( Vp\
1/2

Ri
1? J? —

RtRi Ri2
"/) — "i 1/2

k .

*

In the limit of mainly ion power losses (high discharge voltage), Vp0/I0 <c /?, and

/n = -T-
1 IVrl

2 (*t*,-)1/2

/?£) = Ri .

In the opposite limit of mainly electron power losses,

/n =
Itfrl2

4*T?„0

and

Rn = 4#, 9P0
i> |2VT

(3.7.14)

(3.7.15)

(3.7.16)

(3.7J7)

(3.7.17)

(3.7.18)

The source voltage VT is out of phase with the discharge current 7. It can be shown that for the

circuit in Fig. 3.13 under matched conditions,

cos
2(V,Q+7oft,.)

Vto
(3.7.19)

where (j^ is the phase angle between the source voltage and the discharge current

We note that an L-network cannot be used to match a discharge having RD > Rt. This is seen

in Fig. 3.14 where the constant Rp vertical line no longer intersects the constant G = VRj circle; a
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real solution (3.7.9) for X2 no longer exists. To achieve a match in this case the order of BM and XM

must be inverted, putting BM nearest the discharge. A three element (T or II) network can be used to

match any discharge. The three elements are not uniquely determined by the condition of achieving a

match.

A stray capacitance Cw across terminals a-b in Hg. 3.13 is often present in real discharges. An

L-network can still be used to achieve a match in this case.

3.8. Conclusions

The equations for the basic model of the capacitive rf discharge are summarized below:

2uB

Nd
= Kk(Te)

n =

eAU0

J s0 2eoCorA

V =
2B(/

;co2eoA

V = — IVyps 8 ik

d =/-

In these equations,

2£c
CO

&o = co?0 =
4eZLuB

mvmd

M

1/2

uB =

1/2

.28-
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(3.82)

(3.83)

(3.8.4)

(3.8.5)

(3.8.6)



SeTg

e ion

vm = NKK

and the rate constants Ktt(Te) and Km(Te) are given for Maxwellian electrons in argon gas in Hgs.

3.6 and 3.10, respectively. Given the control parameters 7 =1&J °, CO, N and /, the algebraic set

(3.8.1M3.8.6) can be solved for Te, n, Pr/, V, V%, u0t 3f0 =3", and d, provided N exceeds a

minimum neutral density N^. Alternately, Prf or V0 can be used instead of 70 as the electrical con

trol parameter.

We have shown that the time-varying discharge dynamics appears linear to an external observer,

Le., a sinusoidal current source at frequency 03 produces a sinusoidal external voltage at frequency CO,

with no harmonic generation. However, the time-varying dynamics of the sheaths within the discharge

are nonlinear. This leads to second harmonic voltage generation within the discharge that is unseen by

an external observer. We have also shown how to use a matching network to transfer maximum power

from the rf source to the discharge.

We now verify several assumptions of the basic model. The dc voltage (3.6.9) across the sheath

is typically of order 100volts. The ratio of Debye length to sheath thickness is

1/2
X.•D 3Te

4V„s.o rv* j

(3.8.7)

Since Te is of order a few volts, the sheath is tens of Debye lengths thick.

In a real sheath, the electron density is not identically zero, but is determined by the Boltzmann

factor

ne (z, 0 = n exp(-0(z, t)ITe), (3.8.8)

where <&(z,t) is the potential in the sheath with respect to the plasma-sheath interface. Integrating

(3.32) once to obtain

-29-



and substituting this in (3.8.8) we obtain

(Sa-z)2
ne - n exp

Kp

(3.8.9)

(3.8.10)

We see that ne <: n a few Debye lengths into the sheath from the plasma-sheath interface atsa. This

justifies assumption (4).

The mean electric field E within the sheath can be estimated from (3.3.2)

E=-&-sc
2eo c

The ion transit time tt across the sheath is determined from the relation

*' = 2
eE

M
*

(3.8.11)

(3.8.12)

which yields f; = 2/C0;. For 00 :*» CO;, we have CO*,- » 1, which verifies assumption (2).

The ratio of ion conduction current to displacement current in the sheath is found using (3.3.21)

and (3.323):

h So
(3.8.13)

Substituting (3.55) and (3.8.7) in (3.8.13) and writing uB and XD in terms of n and 7e, we obtain

1/2
/» ©«

CO

3Tg

4V,
P»

(3.8.14)

Since CO » CO, and V^ » Ttf, we find that /, <c 70; Le., the conduction current in the sheath is small

compared to the displacement current, which is the condition for a capacitive discharge.
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