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ABSTRACT
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1. INTRODUCTION

Feedback is used to achieve various desirable properties in a control system, such as stability, dis

turbance attenuation, and low sensitivity to changes in the plant Since these properties depend on the

shape of various feedback loop responses, all control system design techniques are at least partially

based on loop shaping. Currently one of the most popularand powerful techniques for shaping a single

loop (or a composite loop which can be made to look like a single loop) is based on the unconstrained

minimization of the weighted Zf-norm of the corresponding transfer function matrix. A key element of

the /f technique is the use of the parametrization of stabilizing controllers described in [You.l],

[Des.l], which makes all the transfer functions of the closed-loop feedback system in Fig.l affine in the

the controller parameter and hence leads to a convex unconstrained minimization problem in H°°.

The If minimization technique was first proposed by Zames [Zam.l] who applied it to a scalar

weighted sensitivity function, see also [Fra.2]. Since then at least three approaches to the solution of

/f-norm unconstrained minimization of a weighted, affinely parametrized transfer function matrix,

have emerged, see, e.g., [Fra.1], [Cha.l], [ Glo.l] (for a survey see [Fra.3]). Software is either being

written or is available for all of the methods cited above [Hel.l].

At present there is considerable interest in developing more powerful control system design tech

niques which permit simultaneous shaping of several frequency and time domain responses, some of

which may be subject to constraints in the form of hard bounds. Such problems are beyond the scope of

the techniques mentioned above.

In this paper we give a brief introduction to the new nondifferentiable optimization algorithms

which were presented in [Pol.l] and show that they can be used in the /f° design of compensators, for

feedback systems of the form in Fig. 1, which are required to shape both time and frequency domain

responses. The use of our new algorithms requires the expansion of the If controller parameter in a

series and the development of formulae for the search direction maps which are required by the algo

rithms. We show that our new optimization algorithms [Pol.l] can be used to get an arbitrarily good

solution to the design problem and we give an example to illustrate the type of result our computations

produce.



2. FORMULATION OF OPTIMAL COMPENSATOR DESIGN PROBLEM IN R^)"^

We begin by transcribing a typical compensator design problem into a form suitable for solution

by nondifferentiable optimization algorithms. Consider the feedback system S(PJO shown in Figure 1

where the plant has the state spacerepresentation

z = Az + Be2, 3»i = Cz + De2, (2.1)

with A€ JR"*", Be R*°\ Ce R^*", De r"^. We assume that (A ,5) is stabilizable and (C,A) is

detectable. Hence the plant transfer function P(s) = C(sI-A)~lB +D e R(j)v°\ the space of

matrices whose entries are proper rational functions. The compensator is specified only in transfer

function form, with the entries of K(s) in Rfc)***9.

Let U ^ { s e CI Re(s) >-otu }, with Ou >0, and let Rufc) be the set of rational functions

that are bounded and analytic in U. We assume that the compensator K must ensure the internal stabil

ity [Call, Vidl] of the feedback system S(P,K), Le., that all the transfer functions in the feedback

loop are in TRv(s). We make use of the following characterization of the class of stabilizing feedback

compensators (see [Zam.l, You.1, Des.l]).

Theorem 2.1: Let P = NJD;1 - DJlN{ be right and left coprime factorizations of P, with entries in

Ru(s), and let UrtV„NuUltVu with entries in (Ru(j)) satisfy the Bezout identities CW+ V,Dr = /v

NiUi +DiVi = /v Then, the set of stabilizing feedback compensators is given by

K k {<yr-RNirx{Ur +RDj)\ Re Rute)"^, det(Vr-RNt) *0}. • (22)

If we define the vectors of the Laplace transforms of inputs and outputs by $ = (ex .^.zj and

M = fii.jfe.^.dj, and parametrize the compensator as in (2.2), then y(s) = H(R)(s)M.(s)t where the

stable input-output map H(R) is given by

//(/?) =

-NflD^Vfo NrRNrNrVr NJIDrVPi NftDrVPt

D#DtrD&r - DJIN&DrVr - D#DrDrUr - D,RDrDJJr

N,RDit-Npr - NftNfiNrVr - NftDrbVfi, - NftDrNJJr

(23)



Referring to (23), we see that every transfer function in the feedback loop S(PJC) is an affme

function of the parameter R. Next we note that the requirement that dQt(Vr-RNt) *0 is automati

cally satisfied for R in an open dense subset of Ru^)"**"0 [Vid.l] and it is always satisfied when P(s) is

stricdy proper. Hence one can at first ignore this requirement in finding a parameter R e Ru(?) which

shapes the transfer functions in (23) and check at the end that it is not violated.

Frequency domain loop shaping requirements, such as command tracking and disturbance rejec

tion, plant saturation avoidance and stability robustness, have the form

sup {3[/fy(i?)0*©)]-fy(a>)}£0, (24)

where d#(-) is a continuous bound function, © is large and i e { 1,2,3 },y e { 1,2,3,4 }.

Time domain constraints, in the form of hard bounds on trajectories, cannot be expressed in the

form (2.4) and must be dealt with direcdy, as we shall illustrate by example. Suppose we are required

to confine the response of the i-th channel of the plant output to a unit step input in the j-th input

channel within a prescribed envelope. This leads to a pair of inequalities of the form

tnunc {Vl[iH3l(RMs) j}(0 - 5/0} *0, (2.5a)

fmax {fy<0 - Vl[H3l(R)h<s) j)(t)} Z0, (2.5b)

where -&,,(•), £,>•(•) are upper semicontinuous continuous bound functions and L"1 is the one-sided

inverse Laplace transform operator.

More generally, we may wish the plant output to follow, within a tolerance, a given trajectory for

a given command input. Let %<(•)» *d(). be the Laplace transforms of the command input and the

desired time-domain plant output and let b£) be a lower semicontinuous, positive tolerance function.

Then the tracking requirement can be expressed in the form

max {IL-1 {H3l(s)uJLs)Kt)-zMh -^/)} £0. (2.6)
te

More complex expressions result when one attempts to ensure disturbance rejection and plant saturation

avoidance in the time domain. Thus, disturbance rejection can be ensured by requiring that



•ffEi r.W-> ' L"l{//33W(J) toKr) ' - b°* °- (2.7a)

where 6tf > 0. Note that (2.7a) is equivalent to

3[ lim (//33(j)] +fmL-U(tf33(*)- lim <F»<0)G)Wf-*.£O , (2.7b)

We see from the above that control system design specifications canbe expressed in terms of ine

qualities involving three types of performance functions, all of which are defined on WLrfs)"**1* and are

real-valued.

(i) Frequency domain performance functions. These functions have the form

f(R) = max {S[(G,*Gr-FXMi-J&(®)) (2to

where G\,R,Gr,F e Ru(r) and bfi) is a positive, bounded, lower semicontinuous function and JS>0

is large.

(ii) Time domain performance functions. These functions have the form

f\R) -- tm [L^iJiGtRGr-FMefaM-biW) (2.9a)

or

f(R) =tm^{lL"H(GtRGr-F)(s)u(s)Ktyd(t)l2-b2(t)) (2.9b)
where ek denotes the k-th unit vector, GltRtGrtF e Rute), &i(0. &2O). and <*(•) are lower semicon

tinuous functions, 2>i(-), b^) are positive and «(•) is the Laplace transform of an input signal,

(iii) Integral time domain performance functions. These are of the form

A*) = 3[JinMG,*Gr-F)(*)] (2.10a)

+ jmiTlmRGr-F)(.s)- lim (G,RGr-F)(s)}(t)]dt-bj,

where Gt,R,Gr,F e Rufa) and 6/ > 0. In practice, one must replace the indefinite integral (2.10a) by

f*(R) =V[Jmm{G,RGr-FK)l (2.10b)



+ \G[irl{(G,RGr-F)(s)- lim (GtRGr-F)(s)Kt)]dt-bj ,
o

for some large T e R +.

Theorem 2.2 [Sal.l]: The functions f:TRu(s) * * -> R, i = 1,2,3,4, defined in (2.8), (2.9a), (2.9b),

(2.10a) and (2.10b), respectively, are convex. Furthermore, if the plantP is strictly proper, i.e., D - 0

in (2.1), then,

(i) f1: (Ru(<s)n'x*tf, l-L) -» R, defined in (2.8), is Lipschitz continuous.

(ii) If GiGfaWiG&yVuisfo = Ofc-2), then the functions fi.fiQRrftf^A-l) -> R defined in

(2.9a), (2.9b), are Lipschitz continuous.

(iii) If c[G£s)]V[G,(s)] = 0(s-\ then the function/4:(Ru(5)n<x"tf,MDO)-> R, defined in (2.10b), is

given by

T

A*) - fs[irl {(G,*Gr-iO(j)}(0]dr (2.11)

and is Lipschitz continuous. •

Whenever the input «(•) in (2.9a). (2.9b) is such that fiiisfo = Oif1) (this includes steps, ramps,

exponentials), strict propemess of the plant implies that &[Gfa)]a[G,(s)] tu(s)\\2 = 0(s~2) holds for all

transfer functions Htffi) in (2.3) except for H2l(R), H^R), H^R). Also, whenever P(s) = Ofr"2),

&[Gfe)]a[GAs)] = OCT2) holds for all transfer functions in (2.3) except for H2l(R), H^R), H^R).

We can ensure that G[Gfc)]a[Gr(s)] = 0(s'2) is satisfied by all transfer functions in (2.3) in

two ways. First, we can replace the domain ofdefinition TRl^s)n^n° of the functions/'(•), j = 1,2,3,4

by {Q e 1u(j)w IQ(s) = ° R(s), Re lRv(s)H^e}, where •*<> ><kr is chosen to be much
\S + Jo)

larger than the desired feedback system bandwidth. Second, we can weight the affine functions defined

in (2.3) by low-pass, wide bandwidth filters, with a roll-off of at least 40 dB per decade. This will have

the effect of attenuating high frequency inputs. Either of these methods will have little effect on the

achievable performance of the feedback system.



Finally, one can also show Lipschitz continuity of /*(•) in (JRuis)***"* ,1-IJ under the same

assumptions as in Theorem 2.2, whenever, the region of analyticity U for which the coprime factoriza

tions in Rute)"1*1* are obtained includes [se CI Re(s) > - e} for some e >0. This conditions is usu

ally satisfied in practice.

The optimal selection of the compensator parameter R can be formulated in several ways. Thus,

suppose we are given a set of frequency and time domain performance functions y(-),y e m., where

m = { 1,2, • • • ,m }, with each V of the form of/1,/2,/3 or/4, and that we are required to obtain

a compensator parameter R in the "desirable set" F defined by

F ^ (Re Ruis)"**** I\|/*(*) £ 0, k e m) . (2.12)

which might, in fact, be empty. Because our performance functions are convex and bounded from

below, the problem

Pi : inf max {\^(R), kern.) n 1Tk
*««*»*'* (2*13)

must have finite value ylt Furthermore, y^ < 0 if and only if F is not empty, i.e., if the desired perfor

mance requirements are achievable. Our next observation is that if y} < 0, then an appropriate uncon

strained optimization algorithm will compute a parameter R* e F in a finite numberof iterations.

Once one has obtained an R* e F, one may elect to tighten the performance requirements. This

can be done, for example, by replacing an inequality \^(R) £ 0 with y*(R) + ti <> 0, with ti > 0.

Another possibility is to add new performance functions to the set (y*(/?)» kern). In either case the

set F and the problem Pi become redefined. If this new F is nonempty, an unconstrained optimization

algorithm will produce a new parameter R* which corresponds to a compensator with better perfor

mance.

Alternatively, once a compensator parameter is computed in the desirable set F, one can define a

weighted objective function y°(R) ^ max; 6/ WV(/?), where the V are performance functions that

were omitted in the first round and use a phase n algorithm (see [Pol.l]) to solve to the problem



P2: min {V°(/?) Itftf) ,ke m). (2U)

A phase II algorithm will reduce the value of y°(R) without violating the constraint R e F. It should

be clear that various other alternatives are also possible, including carrying out complex trade-offs.

Computationally, one cannot deal with elements of TR^sf^0" and hence the problems P!, P2

must somehow be discretized. Hence we propose to parametrize the parameter R e Ru^)"**"0 of the

compensator K(JR) in terms of a vector x e R""**", with n = 1,2,3, • • •, as follows:

We define the matrices Xt e R' *, i = 1,2,...,n, by filling them in order, row-wise, with the

components of x, Le.,

&Hkj = Ma-«*,*,+<*-1^+/.*e rti, le no. (2.15)

Let p e R+, then we define Rn: R""^ -» JR^)"^ by

The parametrization (2.15), (2.16) has the following useful properties, the first of which follows from

the Weierstrass approximation theorem:

Proposition 2.1: The set (Rn(x) Ixe lRmfl°, ne IN } is dense in (Rufr/^M-L), i.e., any proper

rational transfer function with real coefficients that is analytic in U can beuniformly approximated arbi

trarily closely by a polynomialof the form (2.16). • *

Proposition 22: The functions/*(*„(•)), k = 1,2,3,4, obtained by composing /?„(•) defined in

(2.16) with/*(•), defined in (2.8), (2.9a), (2.9b) and (2.10b), respectively, are convex. •'

Theorem 2^ [Sal.l]: Let {bn} c R+be such that bn T + «>, and let

Y*l(flM) & iRn(x)l„-bH . (2.17)

Consider the sequences of problems

Pu: min { V(/?n£c)) IY*l<fiM) * 0 }
(2.18a)

where



¥(*«(*)) ^ max V(J?B(*)) , ne N, (2#18b)
and

P^: min {^(Rn(x)) IV(RB(*)) <5 0,y e m±i } , n e IN.
<•. (2.19)

Suppose that there exist Re Rufc)*' ° and 5> 0 such that \^(R) £ - 8 for all i e m.. Then, for

each n € N, there exist xi^,x^e R^0 which solve Pu, P^, respectively, and

^lim^ \?(Rn&xJ) = Yi = inf^ y(*). 0^

lim_ V^Cr^) = y2 £ inf^ {y°(*) Iy\R) <> 0, ie m ) . • (220b)

Thus it follows that an approximation to the solution of the original problems Pj, P2 in Ru(^)n<M>°

can be obtained by solving a sequence ofconvex problems Pl>s, P^ in R^*.

3. SEMI-INFINITE OPTIMIZATION ALGORITHMS

We shall now give a brief introduction to our semi-infinite optimization algorithms as they apply

to problem (2.18a). Algorithms for solving (2.18b) are quite similar in structure. For a full treatment the

reader is referred to [Poll]. First, referring, to (2.18a), we simplify notation, by redefining V(x) to be

V(fln(*)). with x e R* and N £ nnin0, and n e N.

We shall develop an algorithm for solving (2.18a) by extension from differentiable steepest des

cent For the sake of simplicity, we shall consider only the unconstrained problem

min v(x), (31)

and assume, for the moment that xy(-) is continuously differentiable. Then we have the following result

Theorem 3.1 [Pol.l] : (i) If x is a local solution of (3.1) then

a\f(pt',h) >. 0V h e R" <= = => 0 = V\j/(jc) ; (3.2a)

(ii) the search direction

h(x) £ VyCc) = argmin {Wy(x),h)+ Whf } « 2W



is a continuous descent direction for v(-) at x. •

-Next suppose that y(x) = max; e aV(*) and that the V(-) are continuously differentiable. Then

we get the following extension of Theorem 3.1.

Theorem 3.2 [Pol.l]: (i) If x is a local solution of (3.1) then

<ty<x;A) = maxd^foftZOV he R*<= = =>0e 3^(x) = co { VV(x) }, (33a)

where dy(x) denotes the generalized gradient of y(-) at x and

/(x) ^ {/ e as IV(r) = y(x) }. (3.3b)

(ii) The function

9(x) £ min max {V(x) - y(x) +05V(*) ,/ft+ VilAI2 } n ^

is continuous and satisfies (a) G(x) £ 0 for all x e WLN, (b) 6(x) = 0 if and only if (33a) holds,

(iii) The search direction

h(x) £ argmin max ( y'(x) - y(x) +W(x), A)+ telAI2 } n ^
Ae Rw /'ea V-*V

is a continuous descent direction for y(«) at x e R* and satisfies <fy(x;/*(x)) £ 9(x) for all x e R*.

•

Theorem 33 [Pol.l] : Suppose that \p(x) = max; e ^(x) and that the V(-) are continuously

differentiable in RiV. Consider the algorithm defined by: xo e TRN given,

*m = Xi + \ih(Xi),i - 0,1,2,3,... (3.4a)

with

h e argmin y(xt +Xh(xd, (3>4b)

or the Armijo rule [Arm.l], with a, P e (0,1),

h = max{ p* Iite N, \jf(x,- +p*A(x;) - \|/(x^ <; P*ae(x,)}. (3.4c)

Then any accumulation pointx of {x,}£o satisfies the first order optimality condition 8(x) = 0.

10



Proof : We shall only give a proof for the simplercase (3.4b). First we note that {y(xd)o is mono

tone decreasing. Hence, if there is a convergent subsequence jcj -» x, where K c IN, then we must have
K

that \|/(x«) -»y(x) as i ->«». Now suppose that 9$) < 0. Then we must have that

<fy(jc; A(x)) £ 9(x) < 0. Hence there exists a X> 0 such that

y(x +fa(x))-\|f(x) = -25<0. (3.5)

Hence, by continuity of y, there exists an i0 such that for all / ^ z„, i e £,

V(xm)) ~¥.*d * ¥*+fa(*d) - V(*/) * -5, (3.6)

which implies that \jf(jC|) .-» -*>. Hence we have a contradiction and the theorem is proven. •'

To extend the algorithm defined by (3.4a), (3.4b) to be applicable to problems of the form

(2.18a), we proceed as follows. First we note that by von Neumann's theorem [Ber.l],

8(x) £ min max {V(x) - \jf(x) + (V(x),h)+ V&litf2 }
AaR* >6 a

= max min { T. \)/( V(x)- y(x) + flV(x),/ft+ lMhl2 } }

= - min U°+V4!K;fl2} nj)

where Z £ {\i e Rm Ip/ ^ 0, ££, tf = 1).? = (6°.8 e R™ and GV(x) c R™ is defined by

GV(x) 4 .co{?(x)}, (3.8)
yea v '

with ?(*) A (y(x) - y(x),Vy(x)). If we denote by ?(x) = (5°(x) »$(*)) the solution of (3.8), then we

see that h(x) = -£(x) holds.

Note that G\p(*) is a continuous (in the sense of Berge [Ber.l]) set valued search directionfinding

map which maps Rw into subsets of R^1.

The above results can be extended to general, locally Lipschitz continuous functions V' R" -> R*

In this case, directional derivatives dy(x;h) need not exist and they are replaced by generalized direc

tional derivatives [Cla.1] defined by

11



*«,;«* %*>+*>-*>>. (3.9a)
y-Mc

In addition, a generalized gradient [Qa.1] can be defined by

3y(x) M5e R?l4,Y(*;A)*t.M VAeR"). (3.9b)

Quite analogously to (33a), we obtain that if x minimizes a locally Lipschitz continuous function

y:R* -» R, then 4,\|/<x; A) £ 0 for all Ae R* and 0 e a\|/(x).

In the case of convex functions (such as the ones occuring in the control system design problem

defined in the preceding section), the directional derivative always exists and is equal to the directional

derivative, while the generalized gradient is equal to the subgradient [Cla.l].

The concept of search direction map generalizes as follows.

Definition 3.1 [Pol.l]: Let y: R* -> R be a locally Lipschitz continuous function. We shall say that

Gy:R* -> 2R isan augmented convergent direction finding (a.c.d.f.) map for \j/(-) if:

(a) G\jr(-) is continuous in the sense of Berge [Ber.l] and Gy(x) is convex for all x e R^.

(b) For any x 6 R", if? = (S°,$) € R*+1 isan element of Gy(x), then $° >0.

(c) For any x 6 R", apoint % = (0£) is an element of Gty(x) if and only if 5 e d\\r(x). u

Theorem 3.4 [Poll] : Suppose that y: R* -» R is LL.c. and G\y(-) is an a.c.dX map for y(-). Then

for any x e R^,

(a) 0 e <ty(x) <= = => 0 6 G\|/(x)

(b) The functions 9: R" -» R and h:R* -* R*"1 defined by

9(x) £ min [$° +V4©21 f e Gy(x)}, (3.10a)

h(x) = (h°(x)Mx)) 4 -argmin {$°+^l?l2l? e GV(x)}, (3.10b)

areboth continuous and 9(x) = 0 <= = => 0 e dy(x).

(c) The vector h(x), is a descent direction for y(-) satisfying

d0y(x iKx)) <-9(x). • (3.10c)

12



The following theorem can be proved by an almost verbatim reproduction of the proofof Theorem 3.3.

Theorem 3.5 [Pol.1]: Suppose that y:TRN -> R is l.L.c. and that GyQ isan a.c.d.f. map for it Let

h(x) and 9(x) be defined by (3.10b), (3.10a), respectively, and consider the algorithm defined by:

xo e R* given,

xM = Xf + tyKxi), i = 0,1,23,... (3.11a)

with

h e argnin \|/(xf +7Ji(xd), (3.! lb)

or the Armijo rule, with a, p e (0,1),

Xi = max{ P* Ik e N, yfe +$kh(xd - y(x0 £ P*a9(xf)}. (3.11c)

Then any accumulation point x of {x,}£o satisfies the first order optimality condition 9(x) =0. •

Since all the functions in (2.18a) are convex, they are locally Lipschitz continuous, and hence the

algorithm described in Theorem 3.S is applicable to the case of problem (3.1) where \\f(x) = \|f(RR(x)),

provided we can produce a formula for Gy(x) and provided we can compute the search direction h(x)

defined by (3.10b) and h(x) = -£(x). The following two results give us a start

Proposition 3.1 : (i) Suppose that for j e m, y^:lRN-> R are convex and that they have a.c.d.f.

maps GV(x). Let \j/(x) 4 max^ aV(x). For; € m» let vj(x) £ (\|/(x) -V(x),0) e R**4. Then yQ

is convex and

G\|/(x) = co { G*V(x) +vfo)} (3.12a)
/ a Bk

defines an a.c.d.f. map for \pQ«

(ii) Suppose that ^:TRN x Rw -> R is continuous in (x,y) and convex in x, that its generalized gra

dient dx$(x,y) is continuous in y and that Y c RM is compact and that for each y e Y, G$(x,y) is an

a.c.dX map for <K*.y).

(a) If \|f(x) £ maxy6y<KxoO, and v(x,y) £ (y(x) -<|>(x,y),0) e R^1 for all y e Y, then

V(0 is convex and

13



Gy(x) = co {G<KxoO + v(x,y)} (3.12b)
ye Y v '

defines an ax.d.f. map for y(-).

(b) If \jf(x) = f F$(x,y)dy, then \p(-) is convex and

GV(x) =JflyG<j>(x,y)<fy (3.12c)

defines an ax.d.f. map for y(-). •

By analogy with (3.8), we get the following result.

Proposition 3.2 [Pol.1] : Suppose that $:TRNx €** -» R is is convex, that Y c €" is sequentially

compact and that $(x,y) is continuously differentiable in x and upper semicontinuous in y and that

VMx,y) is continuous in both arguments. If \y(x) £ maxyey^x,^), and

v(x,y) 4 (V(x) - <J)(x),V^x.y)) e R^1 with y e Y, then

GV(x) = &JL vtx.y) } (3J3)

defines an ax.d.f. map for y(')- •

We are now ready to construct ax.d.f. maps for the functions f'(Rn('))J = 1,2,3,4, defined in

Section 2. We begin with /*, defined in (2.8). First we define //(xjco) & [Gfin(x)Gr - F)(j®)]t and

note that for any co € [0,<5],

Vfc.ffl) £ 5[tf(x,;co)] - fc/co) = max <«,[//(x,y©)]v)-*/©), _ .. ,
lid • 1 (j.l4a)
M-l

where «, v are complex vectors, <a,b) & Re(a*b) for all complex vectors, and Bui ^ <u,uP. Hence,

since for any «, v, co, <u,H(xJ<o)v)is differentiable in x, it follows from Proposition 32 that

GVOc.co) £ co{v(x,co) = (v°(x>co),v(x,co))e R"+11

v°(x,co) = tolQt,a)-<M,UiQcJuM],

V*(x,co)) = 0*,[3//(xjco)/8x']v)],

i = 1,2, ,JV\ lul = l.lvl = 1 } (3.14b)

is an a.c.d.f. map for ^(- ,©). It now follows from Proposition 3.1 that
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is an a.c.d.f. map forfl(Rn(x)).

Next we turn to/2(-). Let <>2(x,0 £ L-1{fiJ(G,/?n(x)Gr-F)(5)eitt(j)}(r)-61(0]. (The shifted

output Qr\x,t) and its gradient with respect to x are probably best computed by first constructing areali

zation for the system and then making use of the techniques described in [Wuu.l].) Then it follows

from Proposition 3.2 that

Gf\Rn(x)) k co { v(x,0 = (v°(x,0.v(x,0) 6 R™ I
te [0,/q]

Ax,t) = l^(i?„(x))-<|)2(x,/)]

V{x,t) = d^2(x,t)fdx»,i = 1,2, ••• ,N) (315)

is an a.c.di. map for f\Rn(x)) defined in (2.9a).

Since ly(x,f)l = rnaxfai.i <tf,y(x,f)\ an a.c.d.f. map for f3(Rn(x)) has a very similar form to

(3.14b). FinaUy, consider the simpler case ofA') in (2.11). Let H(x,t) £ Vl( (Gfln(x) - F)(s) )(t)

and let <t>4(x,r) = oW(x,r). Then it follows from Proposition 3.2that for every r> 0,

G$\x,f) £ co{ v\x,t) = (v°(x,0,v(x,0) e TRmi I

v°(x,')) = ®4(x,t)-<«,[H(x,t)]v)],

Ax,® = bddHixjydtfv)],

i = 1,2, ••• ,N, lul = l,lvl = 1 }, (3.16a)

and hence an ax.d.f. map for/4^^)) is obtained, via (3.12c):

T

GfQc) = \G$\x,t)dt. (3.16b)

The a.c.di. map for the function \|/(-) for our special case of problem (3.1) can now be obtained

by making use of Proposition 3.1, (3.12a).

The above expressions for the a.c.d.f. maps are quite complex and hence we must address the

issue as to whether the search direction finding problem (3.10b) is solvable. Problem (3.10b) can be

solved by an algorithm evolved from the algorithm proposed by Gilbert [Gil.1], via [Wol.l] or [Hoh.l].
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All these algorithms construct a sequence of contact points to the set Gy(x). Contact points ^(v) are

defined by a normal v" e Rw+1 and are given by the formula

?<?) = argmax ^,f). nyn

The evaluation of ^(v) is simplified by making use of the following result

Proposition 33 : (a) Suppose that Gy(x) = co G^(x). Then
/« at

max Cv,f) = max max 5?,?). tt 18a}

(b) Suppose that G^(x) = co Gtf(x,y). Then

max (7,1;) = max max (7,$. n irm

r

(c) Suppose that (V(x) = f G$(x,t)dt. Then

r

max <y,f) = J max Slftdt. • (3.18c)

Hence we are left with considering the two special cases defined by (3.14b) and (3.15). We begin with

(3.14b) and note that

max <v,f) = max {vV(x,co) +te,[-v0//(xJco) +£ v'3//(xj©)/8xjv) }

= vV(x,a>) +S[-v0//(xJ(o) +£ VdH(x,j<o)/dxi\. (3.19)

i.e., the contact function is evaluated by performing a singular value decomposition and picking up any

pair of singular vectors corresponding to the maximum singular value.

Next from (3.15),

max tf ,B = max {v°/2(/?n(x) - v°y(x,f) +£ vfoftr.fl/to1 }. (3 20)

The evaluation of (3.20) can be simplified, at least in the initial iterations, by making use of the obser-

N

vation that £ Vd^x^/dx1 = [<|>2(x + Xv,/) - <J>2(x,f)]/*.. for \ small,
w
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4. CONCLUSION

We have seen that at least in principle, the new semi-infinite optimization algorithms are applica

ble to the solution of optimal control system synthesis problems in an If setting. The state of our com

putational experience allows us to make only certain preliminary evaluations as to how well these

methods will perform in practice. Our first empirical observation is that the optimal design problems in

the If setting tend to be rather ill-conditioned. The reason for this seems to be that the functions /'(•),

defined by (Z8), (2.9a), (2.9b) and (2.10b), with R = Rn(x), are of the form ^(A/x+bj), with the

matrices Aj of low rank (singular). In addition, the co-prime factorizations of the plant seem to have a

substantial influence on the problem conditioning. At present we are experimenting with two versions

of a scaled algorithm. To form an idea of how we scale, consider the case where

\p(x) £ max;e a g!(AjX+ bj) and the ^(-) are differentiable. Then the conceptually simpler version of

the scaled algorithm computes the search direction according to

h(x) = argminmaxf^A^ +^ +^V^A/c +^.^+^IAll }, (41)

where

Qj & [(AfAfT1 (42)

(with D* denoting the pseudoinverse of D). The reader may recognize (4.1) as an extension of Newton's

method. Since formula (4.1) requires the use of a gradient projection method for evaluation, it is some

what cosdy. Hence we are using also a two step formula, which first solves (4.1) with all Qj replaced

by the identity matrix, as in (3.3d), and in the process obtains multipliers jj/^0 such that

2>e a ^ = 1» ^d men solves (4.1) with all Qj replaced by £;-6 ^Q, which the reader may recog

nize as a form of sequential quadratic programming. These two evalutations are carried out by means of

nearest point algorithms, such as the ones mentioned in the preceeding section (see [Gil.l, Hoh.l,

Wol.l]). Our experiments with the second formula have been most encouraging and we will report on

them, as well as on the details of our algorithm in a future paper. Our design experiments are being

facilitated by the use of the DELIGHT.MIMO system [Wuu.2, Nye.l].
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Fig. 1. Feedback System
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