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THE PIERCE DIODE WITH AN EXTERNAL CIRCUIT. I.
SIMULATIONS IN THE LINEAR REGIME

William S. Lawson

15 July 1987

Abstract

The linear theory for the eigentrequencies ofthe extended Pierce diode for resistive, ca-

pacitive, and inductive external circuits is tested via computer simulation with the PDW1
code, and is verified to within the accuracy of the simulation (between 1% and .01% de
pending on the circumstances). The simulations were remarkably inexpensive in terms of
computer time, and could have been performed on a personal computer.

Introduction

The classical Pierce diode is a theoretical model with relevance to several bounded plasma

devices. Itconsists oftwo electrodes (either plates or grids) adistance / apart, connected by ashort

circuit, with abeam of electrons injected at one electrode with constant velocity v0 and absorbed
at which ever electrode is first encountered. The electron beam is neutralized by infinitely massive

co-moving ions (see Fig. 1). Pierce showed [1] that the behavior of this device is governed solely
by the dimensionless parameter a=upl/v0 where up is the plasma frequency of the incoming beam
of electrons. (Pierce assumed stationary ions, which made no difference in his model, but for the
extended model presented here, the distinction is important.) Pierce also worked out the dispersion

relation for linear perturbations about the uniform equilibrium. This dispersion relation is

2^(l-e^cosa)+̂ ^e-^ina+^=0 (1)
(02 + a2)2 / (02 + a2)2 9* + a*

where 0 is the normalized complex temporal growth rate, t.e., 0= £(7+«")• Despite appearances,

there is no singularity at 0=±ia. The standard Pierce model has been studied by several people.
Pierce found the value ofo which first becomes unstable, Cary and Lemons [2] correctly described

the dominant branch ofthe dispersion curve, and Crystal and Kuhn [3] have successfully verified the

linear behavior ofthe classical Pierce diode using the computer particle simulation code PDW1 [4].

Crystal and Kuhn also investigated some of the non-linear saturation states via the same simulation

methods.
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In an effort to understand the effects of an external circuit on bounded plasma systems, Kuhn

[5] replaced the external short circuit with a series RL circuit, and found the linear modes ofthe

plasma/circuit system (which I shall refer to as the extended Pierce diode). Kuhn and Horhager

[6] generalized this to a series RLC circuit, worked out the dispersion relation, and graphed the

eigenvalues for the R, L, and Celements taken separately. The modified dispersion relation is

^Fo---«)+Tfe9*-'8in»+^+c-1+iw+w2=o
(Kuhn and Horhager multiply (1) by (02+a2)2 to dear the denominator, but this introduces spurious

double roots at 0 = ±ia.)

It is my purpose to use computer simulation (the PDW1 code) to verify the linear theory of

Kuhn and Horhager for specific values of a.

Choice of Parameters

Because the regime ofinterest islinear, and particles' deviations from their unperturbed posi

tions is small, great accuracy can beachieved with minimal numbers of particles and grid points.

Most of thesimulation runs were performed with 128 particles (on theaverage) and 128 grid cells,

with the time step chosen such that each particle moves roughly one grid cell per time step. With

these modest parameters, it is possible to follow the decay of a mode through twenty or more

decades in amplitude. The complete simulation parameters are shown in Table I. These simulation

parameters make the 0 representation (Equation 2) most appropriate (see Kuhn and Horhager for

a description of the alternate tj representation).

The simulation eigenvalues (values of0) were obtained from the simulation as a function oftime,

using a four-time-point scheme due toBuneman [7] when the expected dominant mode has asingle

complex frequency, and byatwo-time-point scheme when it has apurely growing or purely damped

frequency. (The scheme ofBuneman can be extended to yield the two most dominant modes ifboth

are purely growing or damped; this extension was used in some cases in which the modes were so

close together in0 that the sub-dominant mode did not decay enough for an accurate measurement

ofthedamping rate ofthe dominant mode.) The eigenvalues obtained by this scheme will beexact

only when there are no competing modes. When competing modes are present, the error in the

computed values ofthe eigenvalues will be proportional to the amplitude ofthe competing mode.



3

In order to estimate the precision of the simulation results, the eigenvalues given by the sim

ulation (estimates of 0) are plotted as a function of time and as a table of numbers. Typically,

these plots begin by fluctuating strongly, then settle down to a fairly constant value, then begin to

fluctuate again, either due to non-linearity (when the mode is growing), or round-off noise (when

the mode isdamped). Figure 2 shows an example of this behavior for the classical Pierce diode at

a = ir/2 (the first entry in Table II). The minimum fluctuation about this constant value is given

in the tables of results as an estimate of the precision of the simulation.

The errors listedin the tablesarenotmeant to reflect the accuracy of the simulations, but rather

the precision with which thesimulation produces its result. The actual error also includes systematic

errors which can be only roughly estimated knowing the order of accuracy of the algorithms. The

particle integrator isaccurate tosecond order inall cases, but the circuit advancement algorithm is

of different orders for different external circuit elements. These circuit advancement algorithms will

be discussed as the results for the respective-circuits are discussed.

The a values v/2, 3*/2, and 5*/2 were chosen for simulation. These values of ft have nearly

mnYJTnal separation between the dominant mode and the next most dominant one, thus ensuring

that, in most cases, after a reasonable amount of time, only thedominant mode will be significant.

These values for ft havethe additional advantage that they sample each of the three different types

of behavior of the classical Pierce diode, namely dominant modes which are monotonically damped,

monotonically growing, and oscillatory growing.

Initially, the beam fills thesimulation region uniformly except for a sinusoidal perturbation in

position. This perturbation ischosen togive the dominant mode an advantage over the other modes.

The density profile for the dominant mode is never truly sinusoidal, but the modes are similar to

sinusoids.

The external circuits also require initial conditions. Recall that the average current of the

beam (which isquite large) is neutralized by the co-moving ions in order to prevent a large offset

voltage in the resistive case, and the build-up ofcharge in the capacitive case. Thus the external

circuit must respond only to the perturbation. The initial conditions for the resistive and inductive

circuits present no special problems, since only the initial voltage and current need be specified,

and regardless of how they are chosen, the dominant mode will eventually take over. The initial

conditions for the capacitive case, however, have an additional complication. The charge on the

emitting electrode minus the charge Q on the capacitor is a constant; hence, if the unperturbed



state (uniform beam, zero voltage across the diode) is to be an allowed state of the system, then
the initial charge on the capacitor must be chosen to be equal to the initial charge on the emitting
electrode. This condition can be satisfied by choosing the initial condition for the charge on the

external capacitor consistently with the initial electric field at the emitting electrode (which is
proportional to the charge on the electrode according to Gauss' law). This choice is essential, but

fortunately requires only a little algebra.

Simultion Results

(a) CapacitiveCase

When the external circuit consists of a capacitor, it is to be expected that the smaller the

capacitance, the more damped each of the modes is, since the limit C —0 reduces to the open
circuit case which shows no instability. The stabilizing effect of-the external capacitor can be

seen in Fig. 3(taken from Kuhn and Horhager —who denote the normalized circuit quantities with

overbars, whereas here the overbars are omitted). Figure 3a shows the real parte ofthe growth rates

as a function of ft for several values of 1/C, and Figure 3b shows the imaginary part of the same

growth rates.

The simulation results for the capacitive case (including the C= oo case, which isthe classical

short circuit Pierce diode), are shown in Table II. The systematic error is ofsecond order in the time

step (roughly 0.01 percent), since the circuit is an instantaneous boundary condition on the solution

of Poisson's equation. Confirmation of the linear theory is plain.

(b) Resistive Case

One might expect an external resistance to have the same sort of stabilizing effect that a

capacitor has, but this is not the case. Figure 4(also from Kuhn and Horhager) shows the dispersion

plots for several resistance values. An external resistor does not reduce the real parts of all growth
rates, but rather, for large resistances, tends to reduce their magnitudes, bringing them closer to

zero, which implies the existence ofastatic mode in the limit R-+ oo. This seems to be aparadox,

since the R-+oo limit should be an open circuit, just as with the C—0limit. The reason for this

apparent paradox is the extra initial condition which was imposed on the capacitive case in order to
make the unperturbed state accessible. For large values of the resistor, the circuit becomes an RC

circuit perturbed by the plasma where the capacitance comes from the parallel plate capacitance of
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the confining electrodes. The relaxation time of this RC circuit grows in proportion to R, so the

growth rates (or at least the dominant growth rate) must approach zero as l/R.

The results for the resistive case are shown in Table HI. Again, the confirmation is clear,

although the discrepancy between theory and simulation is about one percent. The method used
for advancing aresistive circuit in time is, however, only first-order accurate in the time step, so an

error of a percent is to be expected.

(c) Inductive case

An external inductor is also a stabilizing influence in most cases. As one might expect, the

higher frequency modes are affected the most. Figure 5(again from Kuhn and Horhager) shows the

dispersion plots for several inductance values.

There is one exception to the stabiizing influence ofthe external inductor. Surprisingly, itoccurs

in the most stable regime of the classical Pierce diode —the o<jt regime. Anew mode is observed,

which is stable for some values ofL, and unstable for others. Figure 6shows the real and imaginary

parts of the growth rate of this mode for ft =w/2 versus the logarithm of L. The imaginary part
of the growth rate reveals that this mode is in essence an LC oscillation perturbed by the plasma,
where the capacitance comes from the vacuum capacitance of the bounding electrodes. As the value

ofL decreases, the imaginary part ofthe growth rate (t.e., the frequency) increases as the inverse

square root of L. Expanding the growth rate jRe 0 for small or and small Re 0 yields

Hc^^Vl(sin-^+2VIcos-^) (3)

Since only the magnitude of the growth or decay depends on ft, and not whether the mode is stable

or not, a transit time effect is indicated rather than a true plasma interaction.

The principal results for the inductive case are shown in Table IV. Once again, the theory is

confirmed to high accuracy.

As mentioned above, the LC mode has the interesting property that it can be unstable in the

a<x regime, which is stable for all other external circuits. Note that Fig. 6shows the beginning of

an infinite progression ofstable and unstable regions as L-• 0. These modes are somewhat difficult

tosimulate, since the imaginary part of0(the frequency) varies as 1/VE, and so becomes very large

for small values of L. The difficulties can be overcome by a very small time step, however, and
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Table V shows the results for eight values ofL (each atadifferent extremum ofthe real part ofthe

growth rate curve shown in Fig. 6). The agreement issurprisingly good.

Summary

The extended Pierce diode of Kuhn and Horhager has been simulated with great accuracy,

confirming their linear theory in all cases.
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System length 1

Number of grid cells 128

Time step 1/128

Number of time steps 1024

€0 1

«c/mc -1

m* CO

w0 1

Injected electron current -ft2

Background current ft2

Injected electron flux 128

Table I. Simulation parameters



CAPACITIVE CASE

c Theory Simulation a

oo -1.9269 -1.9272 ±.0002

v/220 -2.0120 -2.0122 ±.0002

10 -2.0926 -2.0928 ±.0002

5 -2.2420 -2.2423 ±.0003

oo 0.76575 0.76591 ±.00001

3ff/220 0.57219 .0.57238 ±.00001

10 0.38749 0.38770 ±.00001

5 0.04056 0.04088 ±.00002

00 0.5892
+ 1.4289t

0.5898 ±.0002
+ (1.4296 ±.0002)t

5x/220 0.4602

+ 1.7399>

0.4605 ±.0001
+ (1.7404 ±.0002)t

10 0.3389

+ 1.9831s

0.3393 ±.0002
+ (1.9833 ±.0001)*

5 0.1162

+2.3540*

0.1167 ±.0001
+ (2.3543 ±.0001)t

Table II. Values of the complex growth rate 0 for different values of a and C.



RESISTIVE CASE

R Theory Simulation a

0.05 -1.7642 -1.7633

w/20.2 -1.3587 -1.3564

0.5 -0.8746 -0.8728

2.0 -0.2908 -0.2905

0.05 0.6407 0.6417

3t/20.2 0.4348 0.4353

0.5 0.2674 0.2677

2.0 0.09229 0.09235

0.05 0.1173

+ 1.3827t

0.1170 ±.0005
+ (1.386 ±.001)*

5*/20.2 -0.6762

+ 0.9299»

-0.6810 ±.0005
+ (0.931 ±.001)*

0.5 -0.33648 -0.33640 ±.00005

2.0 -0.06701 -0.06778 ±.00008

Table HI. Values of the complex growth rate 0 for different values of ft and R.

Errors not shown are smaller than accuracy given.



INDUCTIVE CASE

L Theory Simulation a

0.01 -0.0775

+ 10.0537s

-0.0777

+ 10.0563s

*/20.1 -0.56102

+ 3.25597s

-0.56109
+3.25605s

1.0 -0.08775

+ 0.81437s

-0.08774

+0.81438s

40.0 -0.0021749

+ 0.12622*

-0.0021747

+0.12622s 1

0.01 0.74385 0.744 ±.001

3ir/20.1 0.61736 0.61748

1.0 0.33751 0.33758

40.0 0.06918 0.06919

0.01 0.51971

+ 1.2920s

0.520 ±.001
+ (1.2925 ±.0005)*

5»/20.1 0.25327

+0.8424s

0.25346

+0.8427s

1.0 0.04338
+ 0.3419s

0.04342

+ 0.3420s

40.0 0.001183

+ 0.05635s

0.001184 ±.000002

+ 0.05638s

Table IV. Values of the complex growth rate 0 for different values of o and L.

Errors not shown are smaller than accuracy given.



LC MODE

L Theory Simulation

0.00112 -0.02978

+ 29.92419*

-0.02996

+29.92480s

0.0014 0.02521

+ 26.77038s
0.02536

+ 26.77048s

0.0018 -0.03906

+23.62486s

-0.03921

+ 23.62513*

0.0024 0.03147

+ 20.47098s
0.03159

+ 20.47098*

0.0034 -0.05696

+ 17.21925s

-0.05709

+ 17.21943*

0.0050 0.04128
+ 14.22469*

0.04136
+ 14.22464s

0.0085 -0.10147

+ 10.95935s

-0.10156

+ 10.95951s

0.0170 0.05809

+ 7.83190*

0.05815

+ 7.83185s

Table V. Complex growth rate for or = */2 and various small values of L.
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Fig. 1. Extended Pierce model. Note that the ground symbol denotes only the reference potential. No
charge can flow tothis ground once the model is one-dimensional.
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Fig. 2. Typical history ofgrowth-rate diagnostic. Accuracy is limited first by competing modes, then by
numerical noise. The analytic answer is $ = —1.9269.)
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Fig. 3. Real and imaginary parts of the complex growth rate versus a for several values of C. (From Kuhn
and Horhager.)

Fig. 4. Real and imaginary parts of the complex growth rate versus a for several values of R. (From Kuhn
and Horhager.)
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Fig. 5. Real and imaginary parts of the complex growth rate versus a over a wide range of values of L.
(From Kuhn and Horhager.)
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Fig. 6. Real and imaginary parts of the complex growth rate versus log10 Lat a = »/2. (From Kuhn and
Horhager.)
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