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Abstract

PLA optimization aims at minimizing the area occupied by the PLA and the delay

through it (proportional to the number of product-terms, to a first order approxima

tion). PLA-based FSM optimum state assignment looks for the assignment

corresponding to a PLA implementation of minimum area. State assignment by means

of symbolic (multiple-valued) logic minimization requires solving the problem of

CONSTRAINED CUBICAL EMBEDDING : assigning subsets of states to subcubes of a

boolean ft-cube, for a minimum ft. Combinatorial theoretical models of CON

STRAINED CUBICAL EMBEDDING are examined. A review of previous techniques of

embedding graphs into hypercubes is presented. A new model in terms of poset

embedding is given and new optimization problems are defined : SUBPOSET DIMEN

SION and SUBPOSET EQUIVALENCE (the recognition version of the first one). The

latter is shown to be NP-complete and the former is shown to be NP-hard.

An algorithm to solve exactly SUBPOSET DIMENSION is described . It has been

developed, beside intrinsic combinatorial interest, as a tool to make real progress with

approximate solutions to CONSTRAINED CUBICAL EMBEDDING based on heuristics.

An approximate algorithm. NOVA, that tries heuristically to satisfy all it can with

minimum code length (log of cardinality of the state set) is also described. Results of

an extensive testing are reported, showing that NOVA outperforms KISS in terms of

area efficiency and that it can handle also large examples on which KISS is unable to

complete successfully. A table is reported with the results of the exact encoding algo

rithm applied to the optimal encoding of some FSMs . Compared to KISS, the exact

algorithm achieves almost always a smaller number of product terms and a shorter

code-length, but NOVA is almost always winner in terms of area .



Acknowledgements

My research advisor. Prof. Alberto Sangiovanni Vincentelli is greatly ack

nowledged for having introduced me to the study of logic synthesis. He uught me

(and still is) how the mind of an applied mathematician works, showing me how to

put together elegance of analysis with effectiveness of application. Through my years

of graduate school at Berkeley he has always been an inexhaustible source of

encouragement and advise.

Prof D.O. Pederson took the burden of reading this report, providing useful

remarks: Prof. R. Newton contributed with many ideas to the logic synthesis group of

Berkeley.

I wish to thank Luciano Lavagno (CSELT Labs. Torino. Italy) for collaboration in

obtaining the experimental results and for lively arguments on many aspects of PLA-

based FSM synthesis.

Richard Rudell provided examples and interesting discussions. Early discussions

on optimal state assignment with Giovanni De Micheli are also acknowledged.

I am grateful to Fabio Romeo for (among other things) help inquickly enhancing

my editorial skills to finish in time the report.

I acknowledge and greatly appreciate the support of CSELT Labs during the first

year and an half of my graduate study. The heads of the 1C-CAD group. Luciano

Leproni and Amelio Patrucco. were always understanding of what was more proper to

me. This research has been sponsored in part by (NSF) ECS-8430435 subcontract with

the University of Colorado. MICRO, and Silicon Compilers. Inc.

u



TABLE OF CONTENTS

CHAPTER 1: Introduction ™. ™... ~ 1

CHAPTER 2: A mathematical model of the problem.M.MMM.MM.MM.MMM.MMH«M.MMMM.MM......MM. 8

2.1 A guided tour of graph embedding problems 9

2.2 Cubical graphs . . „ 12

2.3 How to cope with the unpleasant realities of cubical graphs 16

2.4 Our model . 18

Z5 Implicit representation of graphs : labeling schemes and universal graphs 25

CHAPTER 3: An algorithm for solving exactly SUBPOSET DIMENSION ~ 33

3.1 Processing a problem instance of SUBPOSET DIMENSION 34

3.2 General structure of the exact encoding algorithm and upper level backtracking 35

3.3 Lower level backtracking ...................... 40

3.3.1 Walking through the instance poset. 40

3.3.2 Overview of backtrack_down 43

3.3.3 Walking through the instance poset and assigning faces ..... 45

3.3.4 The generation of faces........................... ...... ..... 48

3.4 Coding singletons using don't cares 49

3.5 An example 56

3.6 Experimental results on optimal encoding of FSMs 58

CHAPTER 4: NOVA: An approximate algorithm to solve constrained embedding............ 60

4.1 Output forcing 61

4.2 Processing the collection of constraints 62

4.3 Coding the states 64

. 4.4 Selection routines 66

4.5 Coding routines , 61

in



IV

4.6 Complementation 68

4.7 Randomization 68

4.7 Experimental results ..... .......... .......—..... ....... 69

CHAPTER 5: Conclusions and future workM.MMM.MM.MM.MMM.MM.MMM.MM.MMM.MMM.MM.MMM.MM.M. 74

REFERENCES 77



CHAPTER 1

Introduction

The design of digital circuits can be viewed as a sequence of transformations

(depending on the design style being used) of design representations at different levels

of abstraction . Parametrized modules or macrocells . because of their flexibility, are

currently widely used to implement digital subsystems of Very Large Scale of Integra

tion (VLSI) digital integrated circuits .

Parametrized macro-cells can implement functional units that are specified by

design parameters and by their functionality . Macro-cells are highly regular and

structured and so may be efficiently produced by module generators . Programmable

Logic Array (PLA) macros provide a simple and regular layout strategy for combina

tional logic functions expressed in two-level canonical form and implemented on a two

dimensional array . Sequential logic functions, usually modeled by Finite State

Machines (FSM). can be implemented by a PLA for the combinational part and by

latches for the feedback .

The automatic synthesis of a sequential circuit as a PLA-based FSM involves

functional design, logic design, topological design and physical design . The step of

functional design defines the system behaviour by means of a functional description

given by a state table or equivalent formalisms . The step of logic design maps the

functional description into a logic representation in terms of logic variables . A

representation of the symbolic states (and also of the proper inputs and outputs, if

they are symbolic) in terms of boolean variables, called state assignment, is chosen .

The complexity of the combinational component of the FSM depends heavily on the

state assignment and selection of memory elements . PLA optimization aims at minim-



izing the area occupied by the PLA and the delay through it (proportional to the

number of product-terms, to a first-order approximation) .

The PLA area is proportional to the product of the number of rows (product-

terms) times the number of columns . The optimum state assignment (or encoding)

problem looks for the assignment corresponding to a PLA implementation of minimum

area . The (minimum) number of rows is the cardinality of the (minimum) cover of

the FSM combinational component according to a given assignment . The number of

bits used to represent the states (and the proper inputs and outputs, in case they are

symbolic) is related to the number of PLA columns . Therefore the PLA area depends

in a complex way on the state assignment.

Two related and simpler optimal state assignment problems may be defined :

1) find the assignment of minimum code-length among those that minimize the

number of rows of the PLA ;

2) find the assignment that minimizes the number of rowsof the PLA among those of

given code-length .

The optimum solution to the state assignment problem is achieved trading-off between

the solutions to the previous two problems .

Special cases of the general state assignment problem of PLA-based FSMs are the

optimal encoding of the inputs of a PLA and the optimal encoding of the outputs of a

PLA [Rud86] . The optimal encoding of the inputs of a PLA. with n binary inputs. 1

(or more) symbolic inputs and m outputs looks for an encoding of the symbols into

binary vectors minimizing the number of product terms needed to represent the func

tion in disjunctive normal form . The optimal encoding of the outputs of a PLA.

where n binary inputs are assigned to one or more sets of symbolic outputs, looks for

an encoding as binary vectors of the symbols in the output sets in order to minimize

the number of product terms needed to represent the function in disjunctive normal



form .

Recent advances in the state assignment problem [BHM84] have made a key con

nection with multiple-valued logic minimization : the states of a FSM are represented

as the set of possible values for a single multiple-valued variable . Logic minimization

is applied on a symbolic (code-independent) representation of the combinational com

ponent of the FSM . The effect of symbolic (multiple-valued) logic minimization is to

group together the states that are mapped by some input into the same next-state and

assert the same output . The problem arises (called CONSTRAINED CUBICAL

EMBEDDING) of assigning each of these sets to subcubes of a boolean k -cube, for a

minimum k . This would allow to group together the state codes in binary-valued

logical implicants in the same way states are grouped together in the minimal symbolic

(multiple-valued) cover . to obtain a binary-valued cover of the FSM combinational

component having as many implicants as the minimal symbolic cover . An encoding

such that each subcube contains all and only the codes of the states included in the

corresponding subset of states satisfies the above requirements . In fact, each coded

implicant represents all and only the state transitions related to the corresponding

symbolic implicant . This idea works well also for the optimal encoding of the inputs

of a PLA (purely combinational logic) .

Notice that the state (or symbolic input) encoding operation transforms a

minimal symbolic cover into a non-necessarily minimal boolean cover . This is because

in the symbolic cover the components of the next-state function have disjoint on-sets.

while, in the coded boolean cover, some state codes have a non-zero entry in the same

position and therefore the components of the next-state functions are not necessarily

disjoint. Therefore the boolean cover of the FSM may require fewer product-terms . So

the original formulation optimizes the choice of the present-state codes, neglecting the

implications of the corresponding next-state encoding .



More recent efforts of taking into account the next-state encoding [DeM86],

[Vil86b] gave birth to a more full-fledged symbolic minimization technique that looks

for a minimal encoding-independent sum-of-products representation of a symbolic

function. A key observation is that (the size of) representations of symbolic functions

depend on the definitions of operations among symbols and that (the size of )

representation of results of operations depend on a linear order on the domain and

range of the variables of the symbolic functions . In a sum-of-product representation

only the order in the range affects the efficiency of the representation and when such a

linear order relation holds, symbolic function representations are equivalent to

multiple-valued representations . Since no order relation holds a priori among the

symbols of the description, we have the degree of freedom of introducing an order to

obtain the most efficient representation of the symbolic functions . Once a linear order

on the range has been defined, we are left with the problem of finding an encoding of

the states that satisfies it . together with the constraint relations coming from the

inputs . The previous outlined solution works in principle also for the optimal encod

ing of the outputs of a PLA .

This report deals with combinatorial theoretical models and algorithmic solutions

of the problem of the constrained encoding of subsets of states (or symbols) in hyper-

cubes, and with their application to the optimal state assignment of finite state

machines and other problems of logical synthesis . We are leaving out from the com

binatorial analysis the problem of satisfying also the order relations among the next-

state symbols, because we are still working on how to find efficiently a linear order

among them and how to reach eventually the unification of next-state ordering and

proper output phase assignment. The results of this work will dictate which combina

torial problem we really want to solve .



Work done in 1983 at UCB and reported in [MSV83] paved the way for the

breakthrough-idea of connecting optimal state assignment and multiple-valued logic

minimization . A program, called SAP. was implemented, whose approach was based

on the use of distance relations among the codes of the states . Distance requirements

to reduce the combinational logic, were determined by foreseeing the effect of a heuris

tic minimization of the combinational logic related to a symbolic description of the

FSM, and were represented by a graph . Adjacent code assignment was pictured as an

embedding of an adjacency graph into a boolean hypercube . To ease the embedding

task, don't care conditions were exploited in state codes . States were coded associating

each vertex of the adjacency graph to a subset of vertices of the boolean hypercube, i.e.

embedding the adjacency graph into a squashed hypercube. having appropriate faces

squashed into vertices . Difficulties with bounding the code-length plagued this

approach .

After the breakthrough already mentioned . a program (KISS) [DBS85]. [DeM83]

implementing the previous approach was developed at UCB . KISS increases the code

length as much as needed by its heuristic encoding strategy, to satisfy the lower bound

on the product-terms cardinality .

In the spring 1986. we developed at UCB a new program NOVA [Vil86c],

[Vil86a]. coded in C (4000 lines of code) to overcome some practical limitations of

KISS, but more seriously because of persuasion gained from experiments, that increas

ing too much the length of the codes of the states of a FSM. it isn't likely to pay too

much in terms of area . So we decided to implement an encoding algorithm, that did

not increase the length of the code to satisfy more constraints . NOVA tries heuristi-

cally to satisfy all it can with minimum code length (log of cardinality of the state

set) . And the experimental results have been quite good .



After that NOVA achieved satisfactory results in practice, we grew unsatisfied

with the little of sound combinatorial analysis that we could claim for its basic com

binatorial optimization problem (CONSTRAINED CUBICAL EMBEDDING) . We inves

tigated with some depth the treatment of embedding problems in the literature and we

formulated a model of our own .

We report in Chapter 2 about combinatorial theoretical models of the problem of

CONSTRAINED CUBICAL EMBEDDING . A review of previous techniques of embed

ding graphs into hypercubes is presented . Reasons why previous schemes didn't cap

ture the combinatorics of the problem we are dealing with and had poor performances

when applied in the context of the optimal state assignment problem are offered . A

new model in terms of poset embedding is given and new optimization problems are

defined : SUBPOSET DIMENSION and SUBPOSET EQUIVALENCE (the recognition

version of the first one) . The latter is shown to be NP-complete and the former is

shown to be NP-hard . The poset embedding model, very useful for our applications,

is also an interesting tool for the investigation of algorithmic properties of intersecting

families of sets . The analysis leading to the formulation of the SUBPOSET problems

is highly suggestive of algorithmic solutions .

In Chapter 3 we describe such an algorithm to solve exactly SUBPOSET DIMEN

SION . We detail its architecture, and we discuss the complex efficiency issues

involved in its design . The algorithm is based on a double backtracking cycle and on a

decreasing cardinality constraint assignment order . It tries to discover as soon as pos

sible that a partial solution cannot be extended to all the domain, and it does it with

one level of look-ahead with respect to the intersections of the constraints currently

coded . The reason for developing an exact algorithm, beside intrinsic combinatorial

interest, is that to make real progress with approximate solutions to CONSTRAINED

CUBICAL EMBEDDING based on heuristics, we need a tool for their validation .



We implemented a prototype of the algorithm . A table is reported with the

results of the exact encoding algorithm applied to the optimal encoding of some FSMs.

compared against KISS and NOVA. Compared to KISS, the exact algorithm achieves

almost always a smaller number of product terms and a shorter code-length . In terms

of area. NOVA wins in all reported examples, except one where the exact algorithm

gives the best.

In Chapter 4, we present the underlying embedding algorithm of NOVA and we

compare it with KISS. We report in the appendix the results of an extensive testing,

showing that NOVA outperforms KISS in terms of area efficiency and that it can han

dle also large examples on which KISS is unable to complete successfully .

Chapter 5 concludes with directions of future work and final remarks .

Comparisons of NOVA versus KISS on a collection of industrial and academic

FSMs and the software documentation of the program NOVA are given in the appendix



CHAPTER 2

A mathematical model of the problem

According to the scenario already outlined in the introduction . in this report we

are mainly attacking the combinatorial optimization problem CONSTRAINED CUBI

CAL EMBEDDING : given a collection of subsets of states or symbols (sometimes

called constraint relations) we want to assign each of these subsets to subcubes (called

faces) of a boolean space of minimum dimension in such a way that each face is a sub-

space which does not intersect the boolean vector (called encoding, code or assignment)

assigned to any state not contained in the corresponding constraint . Formally it may

be stated as:

INSTANCE : Set S » {l.....n} and a collection C(S,) of subsets 5, £5 . i - l.....m .

QUESTION : find the minimum k and an injective map / from the sets

Si €C(Si) \JS to 0.1.x

/ :$*--f(Si)

such that for all subsets S, € C(Si) ,s € S :

/(s,)fV( ) ^empty iff s € S4.

The purpose of this chapter is to analyze combinatorial theoretical models of the

problem of CONSTRAINED CUBICAL EMBEDDING . A review of previous techniques

of embedding graphs into hypercubes is made . We will see the reasons why previous

schemes didn't capture the combinatorics of the problem we are dealing with and had

poor performances when applied in the context of the optimal state assignment prob

lem . A new model in terms of poset embedding is given and a new NP-hard

8



optimization problem is defined : SUBPOSET DIMENSION . The proposed model will

lead later to the design of an algorithmic solution to our problem .

2.1. A guided tour of graph embedding problems

To appreciate the complexity of CONSTRAINED CUBICAL EMBEDDING and the

intricacy of its "family tree" it is worth exploring briefly the "graph embedding" world

. We will restrict our attention to models related to CONSTRAINED CUBICAL

EMBEDDING and we will point out their computational complexity . We will concen

trate on cubical graphs (subgraphs of hypercubes). the key combinatorial objects in

which we would like to be able to embed our graphs. Later we will see their algo

rithmic treatment in applications of our interest and we will assess merits and draw

backs . This will prepare the ground for proposing eventually the formulation that

captures better, at the moment, the combinatorics of CONSTRAINED CUBICAL

EMBEDDING and lends itself to the design of efficient algorithmic solutions .

The graph embedding world includes the many combinatorial problems that ask

questions about the embedding of graphs into other objects . Most of them are NP-

complete . A problem is defined to be NP-complete if it belongs to NP and all other

NP problems are polynomially transformable to it. or briefly transform to it.

NP is class of all decision problems, that under reasonable encoding schemes, can be

solved by polynomial time nondeterministic algorithms. To prove that a problem is

NP-complete it is sufficient to show that it belongs to NP and that some known NP-

complete problem transforms to it. Among the embedding problems of most interest

for us. we recall:

SUBGRAPH ISOMORPHISM [GaJ79]

INSTANCE: Graphs G-(V^), H<V2£2)
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QUESTION: Does G contain a subgraph isomorphic to H. i.e. a subset V QVx and a

subset E QEi. such that IV I = IV2I. \E\ = l£2l and there exists a one-to-one

function / : V2 —> V satisfying {u ,v} € E2 iff 1/ (w )./ (v )} € £ ?

Computational complexity: NP-complete in the general case ;CLIQUE transforms to it.

SUBGRAPH HOMEOMORPHISM [GaJ79]

INSTANCE: Graphs G ~(V1£1).H~(V2M2)

QUESTION: Does G contain a subgraph homeomorphic to H. i.e. a subgraph

G=(V'£') that can be converted to a graph isomorphic to H by repeatedly removing

any vertex of degree 2 and adding the edge joining its two neighbors ?

Computational complexity: NP-complete in the general case: SUBGRAPH ISOMOR

PHISM is a special case of it.

SUBGRAPH HOMOMORPHISM [Joh82]

INSTANCE: Graphs G^ViJEj). H~(V2£2). witn self-loops allowed but no multiple

edges .

QUESTION: Is there a homomorphism from G to a subgraph of H. i.e. a function / :

Vi->V2 such that if [u ,v} 6 Ex then {/ (w )./ (v)} € E{t

Computational complexity: NP-complete: GRAPH 3-COLORABILITY transforms to it.

This problem differs from graph isomorphism mainly in that the image of G need not

be isomorphic to H but instead can be a proper subgraph (if H is loop-free the prob-*

lems are otherwise equivalent) .

GRAPH ENCODABILITY [Joh82]

INSTANCE: Directed graphs G-(V A ).H=(V'A )
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QUESTION: Is there an encoding of G in H . i.e. a one-to-one function / : V—>V'

such that, for each arc (u ,v ) € A , there exists a directed path from / (u ) to / (v ) in

H .

Computational complexity: NP-complete: 3-SAT transforms to it . This problem

differs from the directed SUBGRAPH HOMEOMORPHISM problem because the paths

corresponding to edges need not be vertex-disjoint . This problem had its source in

simulating a data structurewith another [Ros78].

UNIFORM GRAPH ENCODABILITY [Joh82]

INSTANCE: Directed graphs G»(V.A ) and #=(V'A'), sets LX' of labels with LLI=

maximum out-degree of G and lZ/l=maximum outdegree of H, labeling functions h :

A—>L and h' : A—>L' such that no two arcs with the same initial vertex get the

same label.

QUESTION: Is there a uniform encoding of G in H, i.e. a pair of one-to-one maps / :

V—>V and e : A —Mpaths in H} such that

(i) for all a=(u ,v ) in A . e(a ) is a path from / (u ) to / (v ) and

(ii) if a i and a 2 are arcs in A with the same label, then the sequence of labels on the

path e(a i) is the same as sequence on the path e(a2) ?

Computational complexity: NP-complete: FINITE STATE AUTOMATA INTERSEC

TION transforms to it. PSPACE-complete .

EMBEDDING DIMENSION [Joh82]

INSTANCE: Graph G =(V .£). positive integer K.

QUESTION: Does G have embedding dimension K or less. i.e. is there a one-to-one

K

function / : V—>{0.1.2 such that, for all u.v in V . \u.v) 6 E iff /(u) and
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/ (v ) differ by at most 1 in any component ?

Computational complexity: NP-complete: VERTEX COVER transforms to it.

2.2. Cubical graphs

Earlier techniques of optimal state assignment of FSMs (both synchronous and

asynchronous) based on imposing adjacency relations among the states of the FSM (to

insure minimal cost of the implementation and/or timing correctness of the transi

tions) led to the problem of embedding a suitably defined state adjacency graph into

hypercubes [Arm62], [Sau72], [MSV83] . Other problems of software/hardware design

led to the same problem, as in the case of finite automata modeling communication

processes , with each state standing for a different process and state transitions result

ing from atomic actions, performed by any process . Atomicity of actions can be

guaranteed by assigning a bit vector of some fixed length to each state of the automa

ton (each position of the vector is a boolean variable that can be changed by any

atomic action) in a way that adjacent states differ only in one position . This requires

that the underlying graph of the automaton be cubical, i.e. a subgraph of some hyper

cube [APP85].

It is worth at this point reviewing what is known about cubical graphs . We

remember that an n -dimensional hypercube (that we will call hypercube or n -cube or

simply cube, from now on) is seen as a graph Qn with nodes the elements of H
and an edge between two nodes whenever the Hamming distance of the corresponding

bit vectors is one .

More formally : The undirected graph Q„ and the directed graph DQn (called

dicube) of the n -dimensional cube are defined as



V(Qn) = V(DQn) = («i u„);ui^ 0.1 . i = l,...ji

E(Qn ) °= (m ,v ) : u ,v €V((2„ ) and u ,v dif fer in exactly one coordinate

the edge (w ,v ) of V(Qn ) being in DQn directed from u to v iff the number of ones in

u is less by one that that in v . DQn is an acyclic digraph having 2" vertices and

n2(n_1) arcs . For w in V(Qn) . u = (k1(...^), the number ul-¥...-¥un will be called

the norm of u . A digraph DG is called cubical if there is n such that DG is iso

morphic to asubgraph of DQ„ :the smallest n withthis property is denoted duniDG )

(dim(G ) is defined analogously in the undirected case, if graph G is cubical, then the

dimension of G is the smallest n such that G is a subgraph of Q„ ) .

The following equivalent definition has a more set-theoretic flavor [GaG73] and is

especially suggestive of an underlying order relation. For aset S . define &graph Q(5)

called the cube on 5. as follows . The vertices of Q (5 ) are the finite subsets of 5: the

pair of subsets {5i^2} is an edge of Q(S) iff the symmetric difference of Si and S2

consists of a single element . i.e. ISi A S2\ = 1. To each T £ 5. one can associate the

13

characteristic function Xr : S—> 0.1 For a finite set 5„ 5l^2....^n . x can be

used to coordinate Q(Sn) by assigning to each TQSn. the binary n-tuple

A(D»(«i„...fi» ) where ak =1 iff sk 6 T . An embedding of a graph G into Q(5„ ) isan

injective mapping of the vertices of G into the vertices of Q(Sn ) which maps the edges

of G into edges of QiSn ) .

By the second definition, the n-cube can be considered as a poset with the natural

partial ordering defined by

/ <g iff /(O <*(OV i <n.
The n-cube as a partially ordered set (poset) is isomorphic to the poset consisting of

all subsets of an n -element set ordered by inclusion [Tro75].
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Cubical graphs are hard to characterize . Notice that the obvious property that a

cubical graph has to be bipartite . is not sufficient, as K2$ (the complete bipartite graph

with IV jl = 2 and IV2I = 3) shows . A first nice result by Djokovic [Djo73] character

ized a subclass of them : those graphs that can be isometrically embedded in hyper

cubes. showing that G can be embedded in a cube so that distance is preserved iff G is

bipartite and satisfies the following condition:

Giajb) is closed whenever a and b are adjacent vertices in G, where.

G{aJ>> v6 V(G): divja) >d{vjb) . and W CV(G ) is closed if. for all a J> € W

and v€ V(G)

<f(a,v)+d(v.o) = diajb) —*{impUes) v€W.

The two previous conditions are sufficient for a graph to be cubical. While bipartite-

ness is also necessary, the other condition is not as the figure 2.1 shows . Remember

that if. for embedding / : G—>Q(n ). it is true that

<*g(vi.v2) - dQ(n)(f(y1),f(v2))
then we say that / is an isometric embedding.

Havel and Liebl studied the embedding of trees in cubes [HaL72]. Havel and

Moravel [HaM72] found an interesting property that cubical graphs inherit from cubes

and is sufficient to characterize them : a graph is cubical iff it has a proper edge color

ing. We recall that an edge coloring of a graph G is an assignment of colors to the

edges of G such that no two adjacent edges have the same color. A path is a connected

set of edges with maximum vertex degree two . If all nodes have degree two. the path

is called a cycle . Given an edge coloring and a path, we call the path even if all colors

appear an even number of times in the path. Finally an edge coloring is proper when a

path is even with respect to it iff it is a cycle . A corollary is that a graph is cubical iff

all its biconnected components are .
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Fig. 2.1. Acubical graph with no isometric embedding

Garey and Graham [GaG73] showed that any cubical graph has dimension at most

P/U . Afrati. Papadimitriou and Papageorgiou [APP85] improved the bound for bicon

necled graphs to at most lower ceiling of IVl/2 . deducing as acorollary that the
dimension of a graph with n nodes and * biconnecled components is at most

(n+*-l)/2.

They established the computational complexity of the problem CUBICAL
GRAPHS: given agraph, is it cubical ? showing that it is NP-complete . by reducing

EXACT COVER to it.
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What can be said about the dimension of specific classes of graphs ? Unfor

tunately, it is even hard to prove things for trees (which are cubical, because they have

no cycles and each edge can be given a different color) . Havel and Liebl [HaL72]

proved that a full binary Uee with height h has dimension h +2 . While full binary

trees can be embedded in low-dimensional cubes , trees like the star attain the max

imum possible value (IV1-1) . There is an exponential gap between the lower and

upper bounds . Afrati et al. [APP85] suggested an heuristics that uses at most k2

colors when applied to a tree of dimension k (and can be improved down to k2 / log*

) and conjectured that calculating the dimension of a tree is NP-complete .

23. How to cope with the unpleasant realities of cubical graphs

Two approaches were taken by researchers to embed in a cube graphs that are not

cubical: "relax" the graph or "relax" the cube . An example of the first kind was pro

posed by Hechler and Kainen [HeK74], who investigated the conditions for the embed-

dability of a digraph in a dicube . They introduced the concept of subdivision to relax

a given digraph and allow its embedding in a cube and gave conditions on the subdivi

sions of a graph to ensure embeddability . If D is a digraph, we call the graph D a

subdivision if it is obtained by replacing certain arcs a by directed paths all of whose

interior points are new and which join the points originally joined by a .

Armstrong [Arm62] and Saucier [Sau72] represented the state assignment problem

as a subgraph isomorphism problem, where a one-to-one mapping is sought between

the set of the vertices of the adjacency graph (states) and a subset of the vertices of a

given boolean hypercube (codes) . Since such an isomorphism may not exist,

Armstrong and Saucier relaxed some adjacency requirements, although their technique

even by increasing the code length (augmenting the dimension of the hypercube) does
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Fig. 2.2. The upper triangle has asubdivision (below) that embeds in Q2

not guarantee that adistance-preserving embedding exists

Graham and Pollack [GrP7l], [GrP72]. working in the undirected case, modified

the cube ("squashed cube") instead of the graph . They considered the following prob

lem : assign a*-digit binary "address" to each vertex v of a graph G in such away

that d(v.w)=d(a(v)ui(w)). where rf(v.w) denotes the distance from v to w in G

and 4(«(v).fl(w)) is the Hamming distance from a(v) to «(w). Le. the number of

coordinates at which n(v) and «(w) differ . Such an addressing corresponds to an

embedding ofG in Qt . But. this in not possible in general: for example JT3 cannot be
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addressed in this way . They insured that a solution could always be found by intro

ducing the don't care besides 0 and 1 in the addresses, with distance computed by

counting two coordinates as distinct only when one has a 1 and other has a 0 . This

amounts to embedding G in a cube some of whose faces have been "squashed" . More

over, the dimension of the cube is at most s(n—1) where s is the maximum distance

between any two vertices of G . and an algorithm was given to obtain the cube which

always produced a cube of dimension at most n—1 . Yao [Yao78] proved that any

graph with n vertices has such an addressing scheme of length bounded by nlogn .

A program for optimal state assignment developed at UCB in the 1983 [MSV83]

considered the problem of assigning codes satisfying distance relations . Adjacency

code assignment was represented as an embedding of an adjacency graph into squashed

cubes . The results were not completely satisfactory because it wasn't easy to

effectively bound the code-length and especially because this wasn't the most appropri

ate model for the cost function involved in the problem .

2.4. Our model

Cubical graphs, although deceivingly close to what required by CONSTRAINED

CUBICAL EMBEDDING, are not really what we should be concerned with when solv

ing that problem . In a sense the definition of an n -cube given in section 2.2 suggests

the wrong structure underlying the cube, or more properly the wrong cube, because it

doesn't capture what we care most in CONSTRAINED CUBICAL EMBEDDING. i.e. the

representation of the inclusion relations among the faces of the hypercube . Indeed, we

want to group together the state codes in binary-valued logical implicants in the same

way states are grouped together in the minimal symbolic (multiple-valued) cover . to

obtain a binary-valued cover of the FSM combinational component having as many
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Fig. 23. Squashing a 3-cube to embed a graph
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implicants as the minimal symbolic cover . An encoding such that each subcube con

tains all and only the codes of the states included in the corresponding subset ofstates

satisfies the above requirements . In fact, each coded implicant represents all and only

the state transitions related to the corresponding symbolic implicant . The pitfall we

warned about, wasn't avoided in [MSV83]: later approaches [DeM83], [Vil86c] realized

that, but renounced to analyzing the combinatorial structure of the problem and

implemented reasonable heuristics, based mostly on the geometric intuition . Since it is

more likely that sound heuristics arise from the "right" model of the problem, we will

reformulate CONSTRAINED CUBICAL EMBEDDING in a proper way.
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Since, for our purposes, it is essential to capture the inclusion relations among the

faces of the hypercube, we choose to represent it with its underlying face-poset ,

obtained by ordering all faces of all available dimensions according to the boolean

inclusion relation .

Formally the n -cube face-poset (or n -face-poset) is the set of all sequences of 0.

1. x (don't care) of length n (called faces) . It is a poset with the natural partial ord

ering defined by / <= g iff / (i) <g(0 for all i <n (note that 0 <x . 1 <x) .

(the face-poset is completely different from the poset structure induced on the n -cube

by the natural partial ordering on the Hamming codes of the vertices and isomorphic

to the poset consisting of all subsets of an n -element set ordered by inclusion) . Level

of a face is the number of x 's contained in the sequence . There are n +1 levels in a

n-face-poset . Cardinality or dimension of a face is 2{lev?-f-htJact) . We define the

intersection of faces, with the usual boolean rules .

Proposition 2.1 The number of faces of an n -face-poset is 3" .

Proof . For each level i » l.....n there are 1*1 ways of choosing the care posi

tions and each choice generates 2' different faces . Summing up over all levels and

applying the binomial theorem, we obtain 3n .

It helps the intuition to draw the posets as Hasse diagrams .

Also the collection of constraint relations of the problem instance can be seen as a

poset by ordering them accordingto the set inclusion relation .

Within this setting CONSTRAINED CUBICAL EMBEDDING may be modeled by :

SUBPOSET DIMENSION:
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Fig. 2J&. A 3-face-poset

INSTANCEiSetS-tU^JandacollectionCCS^ofsubsetsSi CS . i - 1_J» .

QUESTION : find the minimum * and an injective map / from the sets €

Closure ^ [C CSj )] (where

Closure rfCiS^ -CiSt) \j\sj ^-S^ftoi- *, .SjaCCCSf> |
and 0 •U*r* assumed in set-theoretical sense) to the faces of the *-cube

/ :$->/(**)

satisfying cardinality^) <- cardinality^ C*» and such that the *^ube contains a
poset equivalent to the given one. i.e. for all subsets 5< .Sj .St €Closure n[CCS,)] :
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Si ^Sj iff /(5,)D/(5j)

[ / preserves inclusions ]:

Si r\sj = sk iff fw n/c^) = /«*)
[ f preserves intersections ].

SUBPOSET EQUIVALENCE:

INSTANCE : Set S = {l.....n.} and a collection C(Si) of subsets St QS . i - l.....m .

and a positive integer k .

QUESTION : does the k -cube contain a poset equivalent to the given one. i.e. is there

an injective map / from the sets €Closure q [C (S,-)] (where

Closure n[C(Si)] - C(Si) \J Sj : Sj - S;1 fl^2'. S/i .SJ2 6C(Si)

and D. |J are assumed inset-theoretical sense) to the faces of the k-cube

/ :Si->/(S.)

satisfying cardinality^) <« cardinality(/($ )) and such that for all subsets

Si .Sj .Sk €Closure ^[C(5,-)] :

Si DSj iff /(S*)D/(S,)

[ / preserves inclusions ].

Si r\sj - sk iff ft*) ri/(s,) - /tf*)
[ / preserves intersections ] ?

Proposition 2.2 SUBPOSET EQUIVALENCE is NP-complete .

Proof . Consider the Hasse diagram of Closure r\[C (5,)] |J . We say that

it is completely leveled if it has k +1 levels of inclusion and for every constraint St of

cardinality c there are constraints Sj of cardinality c / 2 such that

Us, " Si
Here. (J is assumed in set-theoretical sense (see Figure 2.7) . Restrict SUBPOSET
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EQUIVALENCE to SUBGRAPH ISOMORPHISM by allowing only insunces which are

completely leveled . There is a similar restriction to SUBGRAPH HOMEOMORPHISM

(see Figure 2.8) .

Proposition 23 SUBPOSET DIMENSION is NP-hard .

Proof . SUBPOSET EQUIVALENCE, the recognition version is NP-complete and

is no harder than the optimization problem . NP-hard means that there is no succinct

certificate for an answer other than verifying all possible assignments in cubes of

smaller dimensions than the minimum one given in the answer .

Remark: it could have been also interesting to couche the problem in terms of

hypergraph embedding . Both the constraints of the instance of the problem and the

faces of the cube can be seen as collection of subsets defining the hypergraphs of a

subhypergraph isomorphism problem . We have not looked yet in that direction .

while we will pursue in the next chapter an algorithmic solution to SUBPOSET

DIMENSION .

2£. Implicit representation of graphs: labeling schemes and universal graphs

We notice an interesting analogy with recent research [KNR87] on implicit

representation of graphs . In the usual representation of an n -node graph, the names

of the nodes (i.e. the integers from 1 ton) betray nothing about the graph itself . The

names (or labels) of the n nodes are just logn bit place holders to allow data on the

edges to code for the structure of the graph . It would be better to be able, by
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1A3A5,6,7,8

Fig. 2.7(a). Completely leveled instance (restriction to SUBGRAPH ISOMORPHISM)
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Fig. 2.7(b). 3-face-poset with subgraph isomorphic to instance poset of Fig. 2.7(a).
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IAM&6J.8

Fig. 2.8(a). Partially leveled instance (restriction to SUBGRAPH HOMEOMORPHISM)
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Fig. 2£(b). 3-face-poset with subgraph homeomorphic to instance poset of Fig. 2.8.(a).
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Fig. 2.9(a).General instance
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XXX

xll

000 001

Fig. 2.9(b). 3-face-poset with subposet equivalent to instance poset of Fig. 2.9(a).

assigning OQogn) bit labels to the nodes, to code completely the structure of the

graph, so that given the- labels of two nodes one can test if they are adjacent in time

linear in the size of the labels .

More formally a family F of finite graphs has a * -labeling scheme if there is a

polynomial time Turing machine 2\ and a function / which labels the nodes of each

graph G in F with distinct labels of no more than klogn bits (n is the size of G).

such that given two node labels of a graph G in F. T will correctly decide adjacency

of the corresponding nodes of G . If a family Fhasa* -labeling scheme for some k.

.we say that it has a labeling scheme .
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A related notion is that of universal graphs . Formally, given a finite set of

graphs S. a graph G is universal for S. if every graph in 5 is a vertex induced sub

graph of G. A family has universal graphs of size g(n), if for every n, there is a

graph of size less than g(n ). which is universal for the set of all graphs in F with

fewer than n nodes . Labeling schemes and universal graphs are closely related, in the

sense that if a family F has a k -labeling scheme, then it has universal graphs of size

nk constructible in logspace.

The labels on the nodes of the universal graph make the embedding of a graph G

in its universal graph easy to find . To embed a graph G in its universal graph, all that

is required is to label G. The labels then give information about the embedding. An

answer to SUBPOSET DIMENSION essentially is a generalized labeling of a given graph

on the class of universal graphs of the n -face-posets for minimum n .



CHAPTER 3

An algorithm for solving exactly SUBPOSET DIMENSION

In this chapter we will describe an algorithm to solve exactly SUBPOSET

DIMENSION . It is already clear from the computational analysis given in Chapter 2.

that in the worst case an exact solution is hopelessly exponential . But we pursue it.

because we need a tool for the validation of approximate solutions to CONSTRAINED

CUBICAL EMBEDDING based on heuristics . The approaches taken so far in other

programs are:

(i) either satisfy all constraints (KISS), and try to keep the dimension as close as pos

sible to the minimum(unknown) one while assigning constraints to faces in a heuristic'

fashion in general much more wasteful of space than the exact solution;

(ii) or limit the dimension of the cube to a fixed value (for instance in NOVA the log

of the cardinality of the universe of the states), and try to satisfy as many constraints

as possible within the given boolean space .

The problems with (i) are that without being able to compute an exact embedding

it is not possible to validate the quality of the proposed heuristics ; given that our

experimental results show poor gains in area even with an exact embedding when the

minimum dimension grows too much with respect to the information-theoretic

minimum, algorithms that look for suboptimal satisfaction of all constraints have to

be tested against exact solutions, to understand what at most we can hope from them .

The problems with (ii) are that it is hard to define quantitatively the meaning of

satisfying "as many constraints as possible", without a precise measure of what we

gain/loose, in terms of area, adding/dropping a constraint . With the availability of a

program for the exact solution, wemay come up with a good evaluation of the "merit

33
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of each constraint in the exact case (i.e. final area satisfying the complete given poset /

final area satisfying the given poset without the constraint to evaluate) to suggest right

heuristics on dropping constraints, when in need to trim a given poset to fit in the

available boolean space.

3.1. Processing a problem instance of SUBPOSET DIMENSION

The poset of the constraints of an instance of SUBPOSET DIMENSION is

represented by its Hasse diagram, i.e. an acyclic directed graph whose nodes are the

constraints and an arc goes from v, to vj when subset S,- includes subset Sj . We call

it the poset graph or instance poset (to distinguish it from the other poset involved,

the n -face-poset) . More constraints are added to the poset graph to make all the

inclusion relations already implicit in it explicit . Namely, not already present con

straints that may be obtained as intersections of other constraints (and related arcs)

are added, becauseany assignment satisfying the original constraints must satisfy their

intersections too. and therefore, in designing a constructive algorithm, it pays to see the

poset structure completely unfolded . We add to the poset graph also the following

trivial constraints (and related arcs), if they are not already there :

1) the constraint representing the universe;

2) the constraints representing the singletons .

The reason, again, is to make sure that the poset graphcontains all the inclusion rela

tions of the problem . Especially, we add the singletons because their assignment (con

sistent with that of all subsets including them, directly and undirectly). which is the

ultimate goal of our embedding, has to be enforced explicitly (if they are not already

part of the problem instance) .

Lastly, to every constraint c in the poset graph, we associate the set of his

fathers F (c ) and the set of his children C (c ), where



35

F(c) = {set of constraints that include properly c and don't contain properly any

other constraint that includes properly c }

in other words, they are the minimal constraints that include c

C(c) = { set of constraints included properly in c and not included properly in any

other constraint included properly in c }

in other words, they are the maximal constraints included in c

We can easily recognize that the relations of fathers and children, are a coincise

representation of the Hasse diagram arcs (instead of the arcs between all possible com

parable constraints) . We walk through the poset graph from a constraint to another,

through the fathers and the children of the constraint on which we are currently

placed .

3.2. General structure of the exact encoding algorithm and upper level back

tracking

The exact encoding algorithm that we implemented finds an answer to SUBPOSET

DIMENSION, by answering exactly to SUBPOSET EQUIVALENCE on the range of

feasible dimensions . SUBPOSET EQUIVALENCE asks if the instance poset can be

embedded in a given k-face-poset (and finds a satisfactory assignment, when it exists)

. If it is so for dimension k and we already answered "no" for the feasible dimensions

< k. we have an answer to SUBPOSET DIMENSION. i.e. it is the minimum dimension

and the sought assignment is returned by SUBPOSET EQUIVALENCE . We know that

the algorithm will not invoke SUBSET EQUIVALENCE on face-posets of increasing

dimensions endlessly, but that it will come up eventually with a "yes", because of a

well-known upper bound on SUBPOSET DIMENSION : any instance poset can be
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Fig. 3.1. Example of instance constraints and instance poset
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embedded in at most an n -face-poset if its universe has cardinality n .

At the other end of the range of feasible dimensions, we need lower bounds to

spare useless invocations of SUBPOSET EQUIVALENCE . The most trivial one is that

the k -face-poset should have at least log IS I(log of the cardinality of the universe) 0-

dimensional faces; it can be generalized to the criterion that the *-face-poset should

have at least as many faces of a given cardinality as the instance poset has constraints

of a given cardinality (counting necessary condition) . It would be important to come

up with more powerful necessary conditions that need to be satisfied by a solution, to

allow a quick rejection of dimensions unfeasible for a given problem instance . This is
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still an open area of investigation in the future developments of the algorithm . The

current version calls a routine least_dimcube that implements the counting necessary

condition and returns the lower bound from which to start the invocations of SUB-

POSET EQUIVALENCE.

The main routine is based on a two-tier backtracking cycle, called respectively

backtrack_up and backtrack_down . It is no wonder that some backtracking is involved

to find an exact solution, but to explain the nested backtracking mechanism imple

mented, we need to introduce the concept of cardinality configuration . According to

the statement of SUBPOSET DIMENSION a feasible assignment between constraint 5,

of the instance poset and face / (5j) of the face-poset needs to satisfy the cardinality

hypothesis : cardinality(Sj )«=cardinality(/ ($)) . Given the current dimension of the

hypercube on which we are invoking SUBPOSET EQUIVALENCE sometimes a solution

exists only when the previous inequality is proper for one or more of the constraints .

The reason may be that we are dealing with constraints that are not a power of two

and freeze more space on the hypercube than their cardinality would tell and/or con

straints that need to be adjacent to many others and so require a large face (which

means a large boundary) to satisfy their numerous intersections with others . So, for a

fixed embedding dimension, it looks like that we have for every constraint not only

the choice of many possible faces of its given cardinality, but even the choice of many

possible cardinalities of the face to which it can be assigned . This sounds frightening

from a computational point of view . Fortunately, not all constraints enjoy this high

degree of freedom.

We classified constraints in 4 categories :

category 0) the universe;

category 1) their only father isthe universe (called primary constraints):

category 2) they have at least two fathers;
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category 3) their only father is not the universe.

The universe has only a possible assignment. Constraints of category 2) are com

pletely determined (not only in terms of cardinality) by their fathers, because they get

as face the intersection of the faces assigned to their fathers: constraints of cardinality

3) enjoy the freedom that their only father allows them, but since their father is not

the universe, it is unlikely that the cardinality of the face to which they can be

assigned will span a large range; only constraints of cardinality 1) enjoy a high degree

of freedom, because their image cardinality spans the entire range from the minimum

to that of the universe - 1 . To take this into account, a routine called facesjdim_set

returns at every call a new feasible cardinality configuration, mapping each constraint

of category 1 into a feasible face cardinality; an upper level backtrack mechanism will

call faces_dim_set every time that the lower level embedding mechanism (the second

backtrack, that we will describe later) isn't able to find an encoding with the given

cardinality configuration (and given hypercube dimension). When, for a given embed

ding dimension, all possible cardinality configurations have been unsuccessfully tried,

the main routine updates the hypercube dimension to a dimension larger by one than

the current one.

We are aware of how important a smart upper level backtracking mechanism is.

for the computational efficiency of the algorithm, since every new iteration through it

may be an expensive computational trigger of computations at the lower level . The

one currently implemented is simple, because the choices are still under evaluation at

the moment of the present writing . It must be said that one needs to experiment with

rather large examples to test meaningfully different heuristics at the upper backtrack

ing level.

The heuristic currently implemented generates the cardinality configurations in

increasing order of magnitude, i.e.. it first tries to assign to a constraint the minimum
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face cardinality larger than or equal to its own cardinality and later increases it; what

is hard to figure out is the interactions among the choices for the different primary

constraints and also necessary conditions that can trim as much as possible the space

of the possible cardinality configurations . We plan to look carefully into this issue .

As a summary, we offer a complete view of the external cycle of the exact algo

rithm

codeJound = FALSE:

for (dim_cube •» least.jlimcubeflSI); dim_cube <= ISI: dim_cube++) {

/* backtrack_up finds a feasible cardinality configuration

of faces ( it calls faces_dim_set(ISI,dim_cube) ) */

outerjoop - backtrack_up(ISI.dim_cube):

while (codeJound = FALSE && outerjoop — TRUE) {

/* backtrack_down finds if an encoding exist given the

current cardinality configuration and cube dimension */

codejound » backtrack_down(ISI.diin_cube);

/* finds a new feasible cardinality configuration */

outerjoop « backtrack_up(ISI,dim_cube);

}

if (codejound = TRUE) {

break;

}



if (codejound — FALSE) {

something went wrong : upper bound was overflowed

}
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33. Lower level backtracking

Lower level backtracking ( backtrack_down ) answers SUBPOSET

EQUIVALENCE, given an hypercube dimension and a cardinality configuration . The

main tasks that need to be carried out at this level are 1) walking through the instance

poset and the face-poset. and 2) mapping constraints of the first to faces of the second

. An assignment is built incrementally and when it cannot be extended, because of pre

vious wrong choices, backtrackjlown undoes part of later work and new maps from

constraints to faces are attempted from a previous stage • In case no feasible assign

ment exists. backtrack_down answers "no" to SUBPOSET EQUIVALENCE . It is crucial

to design efficiently backtrack_down. because it is the basic computational device of the

exact encoding algorithm .

33.1. Walking through the instance poset

One can think of many ways of picking the constraints (i.e. introducing among

them an encoding order) to assign them a face : choosing many of them at a time or

just one at a time . What matters mostly is to choose them in a way such that it can be

discovered as soon as possible that a given partial assignment is unfeasible, i.e. it can-
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not be extended to a complete assignment; especially crucial is the capability of discov

ering quickly that no assignment is feasible with the given space parameters . The pro

perty of an assignment of being feasible is global (it depends on all the inclusion and

intersection relations among constraints), while we can treat fairly well (especially

with a sequential algorithm) local information . so we must trade-off between making

the selection far-sighted enough and keeping the building of the assignment reasonably

local.

Our heuristic orders the constraints in order of decreasing feasible face cardinality

(encoding level) and, the encoding level being the same, selects first the constraints

sharing sons with already assigned constraints . The rationale is that we want to code

first the constraints needing larger faces and that we exploit a look-ahead of one level

(sharing sons) to reject encodings at the upper level if they are unable to satisfy inter

sections at the next lower level . This allows to discover at the upmost possible level

when an assignment is unfeasible. i.e. cannot be extended downwards . Constraints of

category 2 (with at least two fathers) are not seen by the select routine because their

code is decided by the encoding of their fathers, which happens before them . Only

constraints of category 1 and 3 really matter, and. since the latter's faces must be con

tained in the faces assigned to their fathers, only the former enjoy true freedom ; so

we select them soon and build a feasible assignment, while taking into account also the

intersections at one level down . If no such assignment exists we are able to discover it

quickly, in the worst-case we may assign to most constraints of category 1 all feasible

faces, but we strongly bound the backtracking with faces of lower encoding level .

One could extend the look-ahead to two or more encoding levels down, and we plan to

experiment with it in the future . Up to now. we got good results with only one level

of look-ahead . The choice of the first constraint may be tuned a little more, up to

now we didn't have reasons to favor more complex criteria .



Summary of the structure of the selection routine next_to_code

the first time:

return a constraint of category 1 (different from the universe)

with maximum feasible face cardinality (given by the cardinality

configuration mapping) .

the successive times :

if (there is an unassigned constraint "c" of the same feasible face

cardinality sharing a son with the last chosen constraint) {

return "c"

} else {

if (there is unassigned constraint "c" of the same feasible face

cardinality) {

H «

return c

} else {

if (there is un unassigned constraint "c" of maximum smaller

feasible face cardinality) {

return V

} else {

return none;

}

}

}

42
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33.2. Overview of backtrack_down

It is now possible to offer a general perspective of backtrack_down . Three main

routines are involved in the cycle :

1) jvext_to_code that walks through the instance poset and was examined in 3.3.1;

2) assign_face that walks through the face-poset and assigns faces to constraints and

will be examined in 3.3.3:

3) select_backtrack_constr that implements the backtracking control mechanism, i.e. it

undoes a partially realized assignment which cannot be extended or it recovers after

previous wrong decisions have been corrected . Decisions are taken with help from the

list of the already selected constraints of cardinality 1. inserted in the order in which

they have been chosen by nextjp.code; when facing an assignment which cannot be

extended, the constraint inserted there as last and related (e.g.. by inclusion or inter

section) to the current unassignable constraints) is sent back to assign_face and part

of the assignment is undone . We are currently tuning the choice of how much to

undo, many times undoing only the last coded constraint seems to work fine .

We notice that the code given to the first chosen constraint, because of invariance

under rotations and reflections, doesn't affect the feasibility of an assignment, in other

words when backtrack_down comes back to the first code it means that no feasible

assignment exists.

#

scheme of backtrackjiown

next_constr = next_to_code();



while (next_constr != (CONSTRAINT *) 0) {

backtrack = FALSE:

facejound = assignJace(next_constr);

while ( ! (facejound = TRUE &&backtrack — FALSE) ) {

if (facejound — FALSE && backtrack = FALSE) {

/* a backtracking phase starts */

backtrack = TRUE;

if (back to the first selected constraint) {

/* no feasible assignment exist V

return;

} else {

backtrack_constr - selectJ»cktrack_constr();

facejound = assignJace(backtrack_constr);

}

}

if (facejound = FALSE && backtrack — TRUE) {

/* the current backtracking phase continues */

if (back to the first selected constraint) {

/* no feasible assignment exist */

return;

} else {

backtrack_constr = selectJ>acktrack_constrO;
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facejound - assignJace(backtrack_constr);

}

}

if (facejound = TRUE && backtrack = TRUE) {

/* a backtracking phase ends */

backtrack_constr = selectJ>acktrack_constr():

facejound = assignJace(backtrack_constr);

if (again to the last constraint selected by next_to_code) {

backtrack - FALSE;

}

}

next_constr * nextjo_code();

}

}
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33.3. Walking through the face-poset and assigning faces

A careful reader will have noticed that after having introduced the n -face-poset.

we glissed over its huge size (3n nodes for constraints drawn from an universe of car

dinality n) . Are we really going to build such a monster and walk through it ?

Obviously no. this would destroy any hope of coming up with a solution efficient even

on the average . Fortunately, the n-face-poset enjoys the enviable property of
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possessing a natural labeling scheme, so that given the label of a face we can say

immediately which are its neighbors. i.e. the nodes connected to it by ingoingor outgo

ing edges . Equally easy is to generate all faces of a given cardinality . So we will not

build nor store in any way the n -face-poset. but instead a routine genjtewface will be

able to return faces in the neighborhood of a given one. i.e. it will walk through the

n -face-poset without explicitly generating it.

Fig. 3.2. A face with its vertical neighborhood
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Assign_face is the routine that maps constraints to faces . Given a constraint, it

assigns it a face compatible with the partial assignment built up to now; also, it assigns

faces to those constraints of category 2, that are children of the constraint being

currently encoded and have another father already encoded . When unable to map the

constraint to a face, it informs backtrack_down which takes actions, according to the

outlined lower backtracking scheme . Faces are generated calling the routine

genjiewface, and they are verified with help of the routines fathersjoodes_ok and

code_yerify . We will examine in 3.3.4 the issues brought up by the generation of

faces.

We see now the verification aspect . It guarantees the incremental correctness of

the assignment. We suppose that up to the i -th step we built a correct partial assign

ment. i.e. an assignment to a subset of constraints that verifies the subposet

equivalence among the constraints already taken into consideration . Coding a new

constraint, we want to make sure that we still get a correct assignment with respect to

the enlarged set of encoded constraints and of inclusion/intersection relations holding

among them . The verification on the instance poset is done by fathers_code_ok . The

checks are:

1) if the new constraint has only one father, the latter's face must include the face

proposed for the former (inclusion condition 5,- DSj —>(implies) f (Si) 3/ (Sj ));

2) if the new constraint has more than one father, the faces assigned to the fathers

must intersect in the face proposed for the child (intersection condition St (\Sj « Sk

-> (implies) / (St) f| / (Sj) = / (Sk)) . We limit the check to the fathers of the

constraints being encoded, because we build the global assignment function incremen

tally fathers first, children after, and so on the instance poset we need to worry only

about the local fathers/children relations .
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The verification on the face-poset is done by code_yerify . The checks are :

1) the face proposed for the constraint being encoded must be different from the faces

already assigned (the mapping has to be injective);

2a) if an assigned face includes properly the face proposed, the former's inverse must

be a father of the constraint being encoded.

2b) if the face proposed includes properly a face already assigned, the latter's inverse

has a to be a child of the constraint being encoded (both verify the inclusion condition

/ (Si) ^ f (Sj ) -> (implies) S-, DSj );

3) for all other constraints already coded at the same level, that have a non-void

intersection with the one being encoded it must be true that f (Si) f]f (Sj) = / (Sk)

—> (implies) S-t f\Sj = Sk (intersection condition) . On the face-poset the check is

global, because a new proposed face may a priori lay anyway in it.

Inductively, we can say that we always guarantee a correct partial assignment, so

when we are able to extend it to the complete instance poset. we have a correct solu

tion of the problem . When a complete assignment has been successfully produced by

the algorithm, a different verification routine checks again the encoding, going through

all the constraints and faces, to warn of bugs in the implementation, if any .

33.4. The generation of faces

The routine genjiewface walks through the n -face-poset . Given a constraint

being currently encoded. gen_newface returns a new face, that assign_face checks for

correctness . If it isn't, genjtewface is called again until a face eventually passes the

test of correctness or gen_newface exhausts all possible faces of the face-poset of

proper cardinality for the constraint and that satisfy, when known, some locality con

ditions . If a constraint is of category 3. the locality condition restricts the potential



Nova ( CADI ) CAD Software Manual Nova ( CADI )

"Hie meaning of the first symbolic implicant above is "when input input_l is asserted , proceed from
state state 1 to state state_3 with the first, second, third and fifth outputs low, and the fourth output
high". Note that the symbolic implicants are in one-to-one correspondence with the arcs in a state-
diagram representation of the FSM.

The following options areunderstood by nova:

Jist - The input finite state machine table is printed on the standard output.
symbolic input - Inputs are considered as symbolic strings and an optimal assignment of binary vectors
to each symbolic input is alsoperformed.
xonstraint forcing - Forces (when it is possible) columns of the codes of the next states to coincide
with columns of proper outputs. Experimental results show this option scarcely effective , so don't
expect much by using it
xonstraint pow2constr - Constraints whose cardinality is not a power of two are either kept in the lat
tice or deleted, according to the free positions available on the hypercube. Other massages of the con
straints lattice are carried on , trying to prune unimportant constraints unlikely to be satisfied by a short
code . This option is often very effective.

xonstraint forcing pow2constr - Both previous options are set active.
xutput complement - All the rotations of the codes are tried . Analytically they correspond to all the
column-wise complementations , or said in another way , to setting in turn to zero the code of all the
states . While it is true that the best choice of the state to code to zero depends on how many times it
appears as anext state with azero proper output - the default heuristic -, sometimes this option finds a
better complementation, likely exploiting implicit ordering relations among the outputs.
jrandom [-integer] - Some random codings are tried . The user can specify how many trials , other
wise the following default values hold : #states if the proper inputs are not symbolic , #states +#inputs
if the proper inputs are symbolic . The only purpose ofthis option is showing you , users , how bad
you could do if you don't use carefully chosen assignments , Le. nova !
A sequence ofdetailed snapshots ofthe internal running ofthe program is printed on the standard out
put . Most are of interest only to the user concerned with the algorithms as implemented internally .
The only important information comes at the end under the heading SUMMARY.

Example of summary of a run

SIMtfARY

onehot_products - 24

bestialgo - vebucc
bestj>roducU " 32
best_size - 640
states[0]:state_l
states[l]:state_2
states[2]:state_3
states[3]:state_4
states[4]:state_5
states[5]:state_6
states[6]:stateJ7
states[71:state_8

Performance evaluation of the coding on the states constraints
The constraint 00000011 was used and SATISFIED

Best code: 111 ,
Best code: 110

Best code: on

Best code:' 010

Best code: 001

Best code: 101

Best code*: 100

Best code: 000

O© Software 5/16/86
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The constraint 00110000 wasn't used but luckily SATISFIED
The constraint 10000100 was used and SATISFIED
The constraint 00010001 was used and SATISFIED
The constraint 00000110 was used and SATISFIED
The constraint 00001100 was used and SATISFIED
The constraint 00100010 wasn't used and remained WSATISFIED
The constraint 00101000 was used and SATISFIED
The constraint 00001001 was used and SATISFIED
The constraint 11000000 was used and SATISFIED
measure(satisfaction) - 9
measure(unsatisfaction) - 1

THE END of NOVA

The field best site gives the final minimized FLA area according to this encoding . The user should
compare this figure with the ones obtained running nova with different options to find when aminimum
area implementation is achieved.

Other figures are:
onehotproducts - # ofproduct terms of the 1-hot coded pla.
bestproducts - #ofproduct terms obtained with this encoding
measure(satisfaction) « cumulative weight ofthe constraints satisfied by this encoding
measure(unsatisfaction) - cumulative weight ofthe constraints unsatisfied by this encoding

The codes and information on the usage of the constraints are reported also.

Acomplete session could require running the input with the following constraint-related options :

a) no special option

b) xonstraintforcing

c) xonstraint pow2constr

d) xonstraint forcing powlconstr

e) .output complement

f) xonstraint powlconstr
xutput complement

g) xonstraint forcing powlconstr
xutput complement

Sample ofarunning session with the mput file dkl4 (notice that the inputs are symbolic. so every nm
requires the option .symbolic input)

> Run with options of case a)

SIKMAKY

onehot_products - 24
best_products - 32

CAD Software 5/16/86
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best_size - 640

Inputs:
measure(satisfaction) - 9
measure(unsatisfaction) - 1

States:

measure(satisfaction) * 22
measure(unsatisfaction) • 18
THE END of NOVA

> Run with options of case b)

SUAftRY

onehot_products - 24
best_products - 35
best'size - 700

Inputs:
measure(satisfaction) - 9
measure(unsatisfaction) - 1

States:

measure(satisfaction) - 28
measure(unsatisfaction) - 23
THE END of NOVA

Given the unsatisfactory result obtained with options of case b) we can skip the runs with options of
cases d) and g).

> Run with options of case c)

SUMMARY

onehot_products - 24
best_products - 28
best_size - 560

Inputs:
measure(satisfaction) - 9
measure(unsatisfaction) - 1

States:

measure(satisfaction) - 19
measure(unsatisfactton) - 5
THE END of NOVA

CAD Software 5/16786
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> Run with options of case e)

SUMMARY

onehot_products - 24
best_products - 30
best'size - 600

Inputs:
measure(satisfaction) - 9
measure(unsatisfaction) - 1

States:
measure(satisfaction) - 22
measure(unsatisfaction) - 18
THE END of NOVA

> Run with optionsof case f)

SUMMARY

onehot_products - 24
best_products - 27
best_size - 540

Inputs:
measure(satisfaction) - 9
measure(unsatisfaction) - 1

States:
measure(satisfaction) - 19
measure(unsatisfaction) - 5
IHE END of NOVA

The bestresult ( area-540) is obtained withoptions of case f).

SEE ALSO

espressofCADl)

AUTHOR

TlzianoVOla (villa@ucbic)

COMMENTS
In a given state, if symbolic implicants are not specified for all possible input conditions, then the state
machine response for the unspecified conditions is undefined. In particular, nova will use this to its
advantage when assigning the state codes. It is possible to see all ofthe don't cares created in this way
by using the -out fd option when the PLA isminimized with espresso.
It is possible to specify logically inconsistent finite state machines (Le* to specify two transitions for
the same set of inputs in a single state) and this should be, but is not, detected as an error.

CAD Software 5/16786
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Temporary files tempi . tempi, ump3 , tempA and temp$ are created in the current working directory .
Their meaning is as follows. ...» ,..,..tempi : 1-hot coded cover of the input table . It is fed into the mimnuzer Espresso invoked mthe
multiple-valued mode to get the input constraints.
tempi • output of the above specified run of the minimizer Espresso . Its cardinality gives the lower

bound on the product terms of the coded cover, with respect to the input constraints relations.
ump3 :boolean coded cover of the input table . It is fed into the minimizer Espresso invoked mthe

normal mode.
temp4 : output of the above specified run of the minimizer Espresso.
tempS : best coded minimized pla implementation . It can be fed ( with the proper synctauc adapta

tions ) into a pla layout generator.
The above mentioned files are not removed in the current version and can be inspected by the user to
verify an intermediate step of the logical mimizations . Therefore, it is wise to avoid multiple nova
runs in the same directory at the same time.
Only asingle symbolic input (besides the present state) is allowed. The ability to specify any number
ofsymbolic inputs along with binary inputs would be much more practical.
Options not understood by the program are ignored.
nova invokes the multiple-valued minimization program espresso (CADI).
nova is written in C. There are no limitations on the number ofbinary or symbolic inputs, binary out
puts, states, or symbolic implicants.
Amessage like follows (rarely issued) warns only that the detection of the lattice intersections has been
stopped after aquite large number of them has been computed . No action needs to be taken.
Message fac-sinule:

WARNING . , . a . v_ a
•After that lattice added the 1001-th new constraint, Nova stopped executing lattice and went ahead
with the constraints thatlattice already got" . .,
(implementatio) nova comes from latin and means anew (implementation). No connections to astro
nomical objects is implied.

CAD Software 5/16786
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faces to those included in the face already assigned to the father . No constraints of

category 2 are serviced by genjiewface . since they are encoded as a byproduct of

assigning faces to their fathers . Only constraints of category 1 pose a problem when

generating new faces, because potentially some of them require the exploration of all

possible faces of a given cardinality . The point is that, when generating most or all

faces, we don't want to store those already tried to know which ones have been

rejected; instead, we prefer to produce them in an orderly fashion, that makes control

ling the generation very quick .

Then, we use the information about inclusion and intersection relations to start

from a seed. i.e. a face that is a reasonable starting neighbor for the new face, and gen

erate faces expanding in the free neighborhood . If none of them passes the checks of

assignJace . we trigger the ordered generation of all possible faces of proper cardinal

ity . Currently we implemented a mechanism based on the generation of all combina

tions of the x 's of the face in lexicographic order, we plan also to implement a Gray

reversed code that minimizes the amount of change from one combination to the other

and a random criterion to evaluate the heuristics . It is interesting to come up with an

orderly generation mechanism that produces the faces according to some decreasing

degreeof satisfiability, although in general we can't expect that a criterion work for all

cases.

3.4. Coding singletons using don't cares

It is an interesting issue in optimal state assignment to investigate the usefulness

of assigning don't cares to states . The encoding mechanism implemented in [MSV83]

allowed it: the techniques of KISS and NOVA didn't use them . Here we want to

analyze whether our way of modeling CONSTRAINED CUBICAL EMBEDDING via

SUBPOSET DIMENSION allows or not coding states with don't cares .
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In our model, all constraints can be assigned faces of a dimension larger than the

minimum required by the cardinality of the constraint. Singleton constraints, i.e. con

straints representing single states or symbols, are no exception, so they too can be

assigned faces larger then their cardinality (one), which means faces with don't cares .

There are cases when this allows to achieve the encoding in a smaller hypercube that

otherwise possible . Consider the following example of Figure 3.3 . Not allowing the

use of don't care with singletons, it would be necessary a 4-cube to encode the con

straints . as shown in Figure 3.4 . Allowing the use of don't care with singletons, we

can embed the given constraints in a 3-cube . as shown in Figure 3.5 .

There are other cases when it would be useful to introduce don't cares, but it is

not allowed by our model . Consider the power set of {1.2.3} in Figure 3.6 . It can be

coded in a 2-cube assigning an edge to the state 2 . as shown in Figure 3.7 . Our algo

rithm, instead, would find the solution shown in Figure 3.8 . That solution is the

correct one in our model; we are dealing with the all-constrained case on 3 states, we

need a 3-cube. as the upper bound teaches us .

We tend to see these as "anomalies" due to the difficulty of mapping completely

CONSTRAINED CUBICAL EMBEDDING in purely combinatorial terms . We don't

think that they are going to penalize our algorithm in any serious sense, although we

pointed them out. as limit cases in which the model doesn't capture all the problem .
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Fig. 33. Instance poset
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Fig. 3.4. Not using "x" with singletons inex. of Figure 3.3
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Fig.33. Using "x" with singletons in ex. of Figure3.3
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1,2,3
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Fig. 3.6. Complete poset on three elements
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Fig. 3.7. Optimal solution to the ex. of Figure 3.6
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Fig. 3£. Our solution to the ex. of Figure3.6
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33. An example

In this section, we show an exact solution to a non-trivial instance, requiring a

5-face-poset . Finding the exact solution allowed in this case to achieve a minimum

area compared to both NOVA and KISS (see table 4.1) .
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,5,6,7,8,910,11

Fig. 3.9. An example : constraints and instance poset
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Fig. 3.10. Exact solution of ex. of Figure 3.9

3.6. Experimental results on optimal encoding of FSMs

We havea prototype of the exact algorithm already working (coded in C.approx

imately 2.500 lines of code), although not all described features are already there . In

table 3.1 the results of the exact algorithm applied to the optimal encoding of some

FSMs are given . They are checked against the results of the programs KISS and NOVA

(see Chapter 4) . Compared to KISS, the exact algorithm achieves almost always a

smaller number of product terms and a shorter code-length . In terms of area. NOVA

wins in all reported examples, except one where the exact algorithm gives the best .

We need more work to speed up the exact algorithm and much more testing to make
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stronger statements . Moreover, it will be important to test the exact algorithm on

other problems of constrained embedding besides state assignment of FSMs .

1-hot Exact solution NOVA KISS

(a) (b) (c) (d) (b) (c) (d) (b) (c) (d)

FSM1 24 4+4 22 550 3+3 27 540 4+5 25 700

FSM2 25 4 23 529 3 26 520 4 23 529

FSM3 17 3+3 16 320 3+2 18 306 3+4 17 391

FSM4 17 4 16 368 2 18 306 4 16 368

FSM5 20 2+4 17 323 2+3 18 288 2+4 19 361

FSM6 21 1+5 17 340 1+4 17 289 1+6 18 414

FSM7 77 7 49 1813 5 49 1519 8 47 1880

FSM8 11 5 9 180 4 11 187 6 10 230

(a) #product-terms of minimized multiple-valued cover
(b) [code-length of symbolic inputs + ] code-length of states
(c) tproduct-texms of minimized coded FSM
(d) area of minimized coded FSM

Table 3.1 Experimental results



CHAPTER 4

NOVA: An approximate algorithm to solve constrained embedding

Understanding by experiments that increasing too much the length of the codes of

the states of a FSM. it isn't likely to pay in terms of area, together with practical limi

tations of KISS, (the program in use at UCB for optimal state assignment), motivated

us to design a new algorithm and implement the program NOVA . The philosophy of

this new encoding algorithm, is never to increase the length of the code to satisfy more

constraints, but instead it tries to satisfy heuristically as many constraints as it can

with minimum code length (log of cardinality of the state set) . We will analyze the

main features of this algorithm in the next paragraphs . Its basic scheme is :

{

/* determines output-related constraints, if any */

if (FORCING) output_forcing();

/* processes the constraints */

precodeO:

/* assigns the code */

coding_cycle();

/* rotates the code */

rotationO;

/* tries random codes */

if (RANDOM) random_test():

60



/* chooses the best code obtained so far */

choose_best_result( );

61

4.1. Output forcing

The routine outputforcing . supplements the pool of constraints determined by

the initial multiple-valued logic minimization with new constraints expressing the con

dition that some columns carrying next-state information are forced to coincide with

columns of proper outputs (i.e. not symbolic), when it is feasible . It is invoked under

user's control, by setting true the boolean parameter FORCING . Output_forcing

achieves its goal by cycling through all proper output variables; for each of them, it

verifies if the next states can be roughly partitioned into two sets of the same size

S£T0t and SETif (theindex i refers to the proper output column):

SET0 contains all next states with i-th proper output equal to 0.

SETi contains all next states with i-th proper output equal to 1 .

When this is possible, a new ("output") constraint expressing the condition that all

states in the same subset should be encoded in the same face of the hypercube is added

to the collection of constraints . This would allow a likely simplification of the combi

national logic and a sure decrease in the column cardinality, because the same column

could be shared by both next state and proper output. This feature was suggested by

the practice of some logic designers when encoding FSMs . Our experiments didn't find

it effective in most cases, nethertheless in a few situations it allowed a dramatic

decrease in area.
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4.2. Processing the collection of constraints

The routine precede processes the collection of constraints . It deletes some of

them (those unsatisfiable in the given hypercube) and intersects the others to obtain

their closure with respect to set-theoretic intersection (called intersecting family) . The

intersecting family is basic to the following coding step . The scheme of precode is :

{

}

if (POW2CONSTR) {

/* deletes the pow2-uneven constraints */

pow2pruning();

/* computes the intersecting family */

constraint_closure();

/* deletes the pow2-uneven constraints */

pow2pruning();

} else {

/* computes the intersecting family */

constraint_closure();

}

The routine pow2pruning handles the constraints whose cardinality is not a power

of two (call them pow2-uneven constraints), deleting some or all of them . It is

invoked under user's control, by setting true the boolean parameter POW2CONSTR .

Since we embed into an hypercube of dimension equal to the lower bound of the prob-
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lem, in order to satisfy pow2-uneven constraints, it is necessary that the hypercube

have more vertices than there are states (in this case we say that the hypercube has

holes): if this is not so. it is better to delete the pow2-uneven constraints, otherwise

we keep as many of them as there is space on the hypercube, i.e. each pow2-uneven

constraint, if satisfied, freezes on the hypercube as many vertices as the difference

(minimum power of two of the cardinality of the constraint - cardinality of con

straint), since we cannot hope of satisfying more pow2-uneven constraints than we can

fit their cumulative amount of frozen space in the hypercube . If the hypercube has

holes, we try to keep with higher priority the pow2-uneven constraintsof larger cardi

nality . If the user doesn't set POW2CONSTR true, the algorithm will recognize which

constraints may or may not be satisfied in the coding step, by actually trying to

satisfy them; pruning some of the unsatisfiable ones before the coding (as powlpruning

does), may help it in concentrating on feasible constraints , avoiding faux pas . as will

become clearer when detailing the selection and coding routines .

The routine constraint^closure intersects the constraints and adds to them the

intersections to get the complete intersecting family . All constraints are classified

according to depth. i.e. initially they have all depth - 0 and then, every time that they

are equal to the intersection of two constraints of upperdepth, their depth is increased

by one . Pictorially, the intersecting family can be seen as an Hasse diagram and the

depth is the level of a constraint . In case of a very large initial set of constraints,

when the cardinality of the intersecting family passes a threshold (conventionally we

set as threshold the number 1001). no more intersections are computed, to avoid

potential combinatorial explosion (like dealing with the power setof the states) and to

ease the work of the encoding algorithm . Obviously, this could degrade in some case

the performance of the algorithm .

If POW2CONSTR is true, the routine powlpruning is invoked again after
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constraint^closure . because pow2-uneven constraints may be added by the latter .

43. Coding the states

The routine coding_cycle encodes the states by clusters starting from seed states

computed by selection routines. There are two operations involved in the coding cycle:

1) selection of new states as seed of the coding operations (routines seljjrst, sel_next,

seljropagate ) and

2) assignment of codes to the selected states and other constraint-related states. i.e.

states belonging to the same constraints as the seed (routines codejirst, codejxext,

code_propagate ) . The scheme of coding_cycle is :

{

/* selects the first state to code */

sel_state = sel_first();

/* codes sel_state and constraint-related states */

code_first(sel_state):

/* loops while there are uncoded state */

cycle_in_progress = FALSE:

if (there are uncoded states) {

cycle_jn_progress «• TRUE;

}

while ( cycle_in_progress = TRUE ) {

/* returns a coded state; from its code a new cluster



of states can be propagated on the hypercube */

sel_state = sel^propagateO:

if ( sel_state != empty ) { /* there is a propagation state */

/* codes a new cluster of states starting from sel_state V

code_propagate(sel_state):

} else {

/* selects a new state to code (no propagation possible

from the coded states) */

sel_state - seLnextO:

/* codes sel_state and constraint-related states */

code_next(sel_state):

cycle_in_progress = FALSE;

if (there are uncoded states ) {

cycle_in_progress = TRUE;

}
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4.4. Selection routines

The selection routines choose the next state to code . They are seljtrst, sel_next

and selj/ropagate .

The routines seljtrst and seljvext choose a new state not included in any constraint

including a state already coded . Their basic structure is :

search the deepest constraint not already satisfied;

if (it is found) {

give to each state a score =

(10 + weight) * (number of unsatisfied

constraints of same depth containing it);

choose the state with maximum score;

} else { search for the first uncoded state }

The routine sel_propagate chooses a coded state, called the seed, as a propagation source

for new codes . Its basic structure is :

for (all coded states) {

if (state sx has a code adjacent to free vertices in the cube) {

if (s% belongs to an unused constraint containing uncoded states) {

computes a score for st

( - depth * weight of unused constraints containing s%);

}

}

}

choose state with maximum score:
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4.5. Coding routines

The coding routines are codejirst, codejiext and codejjropagate . The routine

codejirst (codejiext) codes the first state(seed state) and the other constrained-related

ones starting from the deepest constraints . The routine codejiropagate propagates

from the seed a cluster of codes of uncoded states constraint-related to it. Their basic

structure is (here distancemeans Hamming-distance) :

code_first(seed)

seed : state returned by sel_first

assign to seed a conventional code;

for (all unused constraints c (in decreasing depth) that include seed) {

assign to the uncoded states in c the free vertex at

minimum distance from the set of coded constraints of c:

freezes some holes if c is pow2-uneven;

}

code_next(seed)

seed : state returned by sel_next

assign to seed the free vertex at maximum distance from the vertices already

assigned;

for (all unused constraints c (in decreasing depth) that include seed) {

assign to the uncoded states in c the free vertex at

minimum distance from the set of coded constraints of c;

freezes some holes if c is pow2-uneven:

}

code__propagate(seed)
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seed : state returned by sel_propagate

for (all unused constraints c (in decreasing depth) that include seed) {

assign to the uncoded states in c the free vertex at

minimum distance from the set of coded constraints of c:

freezes some holes if c is pow2-uneven;

}

4.6. Complementation

After the coding is complete and verified, a rotation is applied to it by determin

ing the state that appears more often as a next-state with a null proper output and

then giving it the zero boolean code . Among all possible rotations, this should guaran

tee the bigger reduction of product-terms, since product-terms with all zero outputs

are dropped by the minimizer from the final FSM boolean cover . Actually we found

experimentally that, sometimes, there are other rotations which obtain a better

minimal final cover . We think that this is related to the heuristic nature of the avail

able minimization algorithms, and maybe to some hidden effects of the next-state

encoding . To exploit these cases, the user may set true the option COMPLEMENT,

that tries all possible rotations of the given code and keeps the best result (routine

choose bestjresuU ) . All rotations of a code are obtained by complementing in turn all

bits of a column of the code matrix . We recall that state assignment is invariant with

respect to rotations . and that a n -cube has n distinct rotations .

4.7. Randomization

Because it is difficult to evaluate the quality of a state assignment compared to

the absolute best (very rarely known). i.e. independently of the technique used in
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assigning the states, we gave the user the possibility of trying random assignments .

This is done by setting true the parameter RANDOM and specifying how many cases

must be tried by the program . In case at least one of them returns a better result than

the official algorithm, the user is warned of the low performance and the better ran

dom coding is kept. This outcome is not unusual when multiple-valued logic minimi

zation returns almost no constraints and our embedding technique degenerates to just a

random assignment among others .

4.8. Experimental results

For sake of illustration we report a few snapshots from the running of NOVA on

an industrial FSM.

Constraints after multiple-valued minimization

00010100 weight:1 depth :0

01000100 weight:l depth:0

11010000 weight:l depth:0

00100010 weight:l depth.O

00001010 weight:l depth:0

11000000 weight:1 depth :0

10001000 weight:! depth:0

00110100 weight:l depth:0

01001100 weight:1 depth:0

00110010 weight:l depth:0

01001010 weight:l depth:0

10010000 weight:l depth:0

00100100 weight:l depth:0

10100000 weight:! depth:0



00110000 weight:7 depth:0

01001000 weight:7 depth:0

00000110 weight:7 depth:0

Constraints after precode

10000000 weight:6 depth:2 PRUNED

00001000 weight:3 depth:2 PRUNED

00100000 weight:6 depth:2 PRUNED

00000010 weight:3 depth:2 PRUNED

01000000 weight:3 depth:2 PRUNED

00010000 weight:3 depth:2 PRUNED

00000100 weight:6 depth:2 PRUNED

00010100 weight:1 depth :0

01000100 weight:l depth:0

11010000 weight:l depth:0 PRUNED

00100010 weight:l depth:0

00001010 weight:l depth:0

11000000 weight:l depth:0

10001000 weight:l depth:0

00110100 weight:l depth:0 PRUNED

01001100 weight:l depth:0 PRUNED

00110010 weight:l depth:0 PRUNED

01001010 weight:l depth:0 PRUNED

10010000 weight:1 depth:0

00100100 weight:l depth:0

10100000 weight:! depth:0
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00110000 weight:7 depth:0

01001000 weight:7 depth:0

00000110 weight:7 depth:0

Codes given by coding_cycle

si code: 000

s7 code: 010

s2 code: 100

s6 code: 101

s3 code: Oil

s8 code: 110

s4 code: 111

s5 code: 001

SUMMARY

product-terms of the multiple-valued minimized cover =86

product-terms of the minimized boolean cover =66

area of the minimized boolean cover » 1914

Performance of the coding on the constraints

The constraint 00010100 was used but remained UNSATISFIED

The constraint 01000100 was used and SATISFIED

The constraint 11010000 was pruned and UNSATISFIED

The constraint 00100010 was used but remained UNSATISFIED

The constraint 00001010 wasn't used but luckily SATISFIED

The constraint 11000000 was used and SATISFIED

The constraint 10001000 wasn't used and remained UNSATISFIED

The constraint 00110100 was pruned and UNSATISFIED
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The constraint 01001100 was pruned and UNSATISFIED

The constraint 00110010 was pruned and UNSATISFIED

The constraint 01001010 was pruned and UNSATISFIED

The constraint 10010000 wasn't used and remained UNSATISFIED

The constraint 00100100 was used and SATISFIED

The constraint 10100000 was used and SATISFIED

The constraint 00110000 was used and SATISFIED

The constraint 01001000 was used and SATISFIED

The constraint 00000110 was used and SATISFIED

measure(satisfaction) = 26

measure(unsatisfaction) = 9

On the same example KISS obtained :

length of the code » 8 bits (= number of states)

product-terms of the minimized boolean cover » 84

area of the minimized boolean cover - 3696

In the appendixes we providethe results of running NOVA with different options

on a large collection of FSM's of both industrial and academic origin . For sakeof com

parison, the results of KISS are also included . NOVAachieves in most cases a smaller

area, although on the average it has more product-terms, drawback taken care by the

minimum code-length . It never happens, as sometimes with KISS, that NOVA is

unable to complete the coding for unfeasible demands of memory and/or time . We

didn't bother to give the timing of NOVA, because it is linear in the number of con

straints and states: the only potentially expensive step. i.e. the computation of the

intersecting family is checked against a threshold to avoid a combinatorial explosion .

The fact that NOVA is so fast (a matter of a few seconds also on relatively large
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examples) is due to its extreme greediness; this could become a liability (being trapped

in a very poor local minimum) on very complex constrained examples, although it is

not the case of many FSM examples, that more often suffer from lack of enough con

straints . Notice that, when we talk about the timing of NOVA, we don't take into

account the running time of calls to ESPRESSO .



CHAPTER 5

Conclusions and future work

Combinatorial theoretical models of the problem of CONSTRAINED CUBICAL

EMBEDDING have been examined . A review of previous techniques of embedding

graphs into hypercubes has been presented . A new model in terms of poset embedding

has been given and new optimization problems have been defined : SUBPOSET DIMEN

SION and SUBPOSET EQUIVALENCE (the recognition version of the first one) . The

latter has been shown to be NP-complete and the former has been shown to be NP-

hard .

An algorithm to solve exactly SUBPOSET DIMENSION has been described . We

developed it. beside intrinsic combinatorial interest, because it is a necessary tool to

make real progress with approximate solutions to CONSTRAINED CUBICAL EMBED

DING based on heuristics . We implemented a prototype of the algorithm .

An approximate algorithm. NOVA, that tries heuristically to satisfy all it can

with minimum code length (log of cardinality of the state set) has been also described

. Results of an extensive testing arereported. They show that NOVA outperforms KISS

in terms of area efficiency and that it can handle also large examples on which KISS is

unable to complete successfully .

A table is reported with the results of the exact encoding algorithm applied to the

optimal, encoding of some FSMs . Compared to KISS, the exact algorithm achieves

almost always a smaller number of product terms and a shorter code-length, but

NOVA is almost always winner in terms of area .
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Future work includes :

1) We need to complete and test thoroughly the implementation of the exact algo

rithm . Since its worst case complexity is exponential in the size of instance of the

input, we need to characterize its performance on the average .

2) With the help of the exact solution, we want to come up with a good evaluation of

the "merit" of each constraint in the exact case (i.e. final area satisfying the complete

given poset / final area satisfying the given poset without the constraint to evaluate) to

define quantitatively the meaning of satisfying "as many constraints as possible", and

gauge/enhance the heuristics a la NOVA that limit the dimension of the cube to a fixed

value and try to satisfy as many constraints as possible within the given boolean space

. We plan to use these findings to improve the current version of NOVA, allowing also

for more flexibility in setting the dimension of cube .

3) We plan to derive new heuristics that satisfy all constraints, as suboptimal cases of

the exact algorithm . Given that our experimental results for optimal encoding of

FSMs show poor gains in area even with an exact embedding when the minimum

dimension grows too much with respect to the information-theoretic minimum, algo

rithms that look for suboptimal satisfaction of all constraints have to be severely

tested against exact solutions, to understand what is the best we can hope from them .

The approaches in 2) and 3) will be integrated by a master routine, computing the best

trade-off between product-terms and code-length to optimize the area .

4) We need to take into account, in the encoding of FSMs. also the order relations

among next-state symbols, adjusting the combinatorial analysis to the modified set

ting .

5) We want to characterize the cases when multiple-valued logic minimization and
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next-state ordering don't return enough constraints to trigger a meaningful state

assignment . What can then be said of the properties of a good state assignment and

how can we use them ?

6) We plan to extend optimal state assignment to multiple-level logic and analyze its

interactions with FSM decomposition .
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APPENDIX N. 1

RESULTS OF THE PERFORMANCE OF NOVA ON SOME EXAMPLES AND COMPARISONS WITH KISS

FSM

dk!4

dkl4x

dkl5

dk!5z

#symbols
inputs:8
states:7

states:7

inputs:8
states:4

states:4

lh-prods
24

25

17

17

KISS

bits prods area
4+5 25 700

bits prods area
4 23 529

bits prods area
3+4 17 391

NOVA

bits prods area sat unsat
3+3 32 640 94-22 1+18
f

p2

fp2

compl

35

28

31

30
fcompl

30
p2compl

26
fp2compl

31
Random
trials:15 area-aver:809

700

560

620

600

600

520

620

9+28 1+23

9+19 1+5

9+14 1+13

9+22 1+18

9+28 1+23

9+19 1+5

9+14 1+13

bits prods area sat
3 27 540 24
f

P2

£p2

compl

unsat

7

38

28

37

26
fcompl

38
p2compl

26
fp2compl

35
Random
trials:7
best random :

35 700

760

560

740

520

760

520

700

12 25

17 6

10 16

24 7

12 25

17 6

10 16

area-aver:760

13 18

bits prods area sat * unsat
3+2 18 306 1+11 0+2

fp2

compl

22

18
fcompl

p2compl
20

fp2compl

374 1+6 0+4

306 1+11 0+2

340 1+6 0+4

Random
trials:12 area-aver:376

bits prods area bits prods area sat unsat
4 16 368 2 18 306 10 2

£
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dkl6 inputs:4 55
states:27

dkl6x states:27 55

d)cl7 inputs:4 20
states:8

bits prods area
2+10 55 2035

fp2

compl
18

fcompl

p2compl
19

fp2compl

306

323

10 2

8 1

Random
trials:4

bits prods
2+5 74
f

area-

area

1628

aver:378

sat unsat

2+23 0+38

P2
76

fp2
1672 2+13 0+27

compl
68

fcompl
1496 2+23 0+38

p2compl
72

fp2compl
1584 2+13 0+27

Random
trials:31 area-aver:1994

bits prods area bits prods area sat unsat
(out of memory) 5 74 1628 22 27

P2

fp2
73 1606 19 20

compl
71 1562 22 27

fcompl

p2compl
71 1562 19 20

fp2compl

Random
trials:27 area-aver:1983

bits prods area bits prods area sat unsat
2+4 19 361 2+3 19 304 1+8 0+2

P2

fp2
19 304 1+8 0+1

compl
18 288 1+8 0+2

fcompl

p2compl
18 288 1+9 0+1

fp2compl

Random
trials:12 area-aver:368



dk27 inputs:2 10
states:7

dk512 inputs:2 21
states:15

iofsm states:10 19

markl states:15 19

bits prods area
1+3 9 117

bits prods area
1+6 18 414

bits prods area
4 16 448

bits prods area sat unsat
1+3 6 104 4 1
f

P2

compl
7

fcompl

91

91

p2compl
-7 91 5 0
fp2compl

Random
trials:9 area-aver:140

bits prods area sat unsat
1+4 19 323 0+7 0+4
f

P2

fp2
compl

19

fcompl

17 289 0+8 0+2

323 0+7 0+4

p2compl
17 289 0+8 0+2

fp2compl

Random
trials:17 area-aver:418

bits prods area sat unsat
4 16 448 2 0
f

P2

fp2

compl
16

fcompl

16 448 2

448 2

p2compl
- 16 448 2
fp2compl

Random
trials:10 area-aver:579

bits prods area bits prods area sat unsat
4 19 722 4 21 798 3 2

f

P2

£p2
19 722 5

compl
17 646 3

fcompl

p2compl



mc states:4 10

mfsm states:32

scf states:121 154

bbara states:10 34

bits prods area
2 9 153

Random
trials:15 area-aver:782
best random :

19 722 1 4

bits prods area sat
2 9 153 0
f

P2
9

fp2

compl
9

fcompl

153

153

153

unsat

0

p2compl
9

fp2compl

Random

trials:4 area-aver:157

bits prods area bits prods area sat
(ON-SET and OFF-SET are not orthogonal)

60 3060 ?

unsat

?

bits prods area
8 140 18760

Si
fp2

compl
55

fcompl

p2compl

fp2compl

Random

2805 0

bits prods area sat unsat
7 145 18995 13 7
f

P2

fp2

compl
145

fcompl

p2compl
143

fp2compl

Random

143 18733 14

18995 13

18733 14

bits prods area bits prods area sat unsat
5 26 650 4 25 550 5 5

f



bbsse states:16 29

bbtas states:5 16

beecount states:7 12

bits prods area
6 27 1053

bits prods area
3 13 195

bits prods area
4 11 242

SL—-r
compl

25 550 5
fcompl

p2compl
25 550 7

fp2compl

Random
trials:10 area-aver:649

bits prods area sat unsat
4 31 1023 6 1
f

P2
31 1023 2

fp2
BBMMMBVI

compl
31 1023 6

fcompl

p2compl
31 1023 2

fp2compl

Random
trials:16 area-aver:1144

bits prods area sat unsat
3 12 180 0 1
f

p2compl
11 165 1

fp2compl

Random
trials:5 area-aver:215

bits prods area sat unsat
3 12 228 7 3
f

P2

fp2
12 228 3

compl
10

fcompl
190 7

p2compl
11 209 3

fp2compl

Random
trials:7 area-aver:293



cse states:16 55

donfile states:24 24

keyb states:19 77

lion states:4

bits prods area
5 47 1692

bits prods area
12 24 984

bits prods area
8 47 1880

bits prods area
2 6 66

bits prods area sat unsat
4 48 1584 14 6
f

P2

compl
48

fcompl

46 1518 13

1584 14

p2compl
46 1518 13

fp2compl

Random
trials:16 area-aver:2087

bits prods area sat unsat
5 48 960 21 39
f

P2

fp2

compl
41

fcompl

48 960 21 39

820 21 39

p2compl
41 820 21

fp2compl
39

Random
trials:24 area-aver:1360

bits prods area sat unsat
5 55 1705 55 113
f

P2

fp2

compl
55

fcompl

49 1519 87 18

1705 55 113

p2compl
49 . 1519 87

fp2compl
18

Random
trials:19 area-aver:3416

bits prods
2 6

area sat

66 4

unsat

0

f

V . 66 4 0

«P2

compl
6 66 4 0

fcompl

p2compl



lion9 states:9 10

modulo!2 states:12 24

planet states:48 92

si states:20 92

bits prods area
4 6 136

Random
trials:4 area-aver:96

bits prods area sat unsat
4 9 153 11 9
f

P2
m

fp2

compl
9

fcompl

8 136 13

153 11

p2compl
8 136 13 7

fp2compl

Random
trials:9 area-aver:266

bits prods area bits prods area sat unsat
4 14 210 4 12 180 0 0

f

bits prods area
6 89 4539

P2

fp2 ^ ________
compl

11 165 0
fcompl

p2compl
- 11 165 0
fp2compl

12 180 0

Random
trials:12 area-aver:192

bits prods area sat unsat
6 91 4641 10 2
f

P2
88 4488 11 1

fp2

compl
87

fcompl
4437 10 2

p2compl
- 87 4437 11
fp2compl

Random
trials:12 area-aver:192

bits prods area bits prods area sat
5 81 2997 5 83 3071 14

f

unsat

1

P2

fp2
81 2997 15



sand states:32 114

shiftreg states:8

bits prods area
6 96 4704

bits prods area
3 6 72

83 3071 14 1
fcompl

p2compl
81 2997 15 0

fp2compl

Random
trials:? area-aver:?

bits prods area sat unsat
5 102 4692 9 1
f

P2

fp2

compl
99 4554 9

fcompl

101 4646 8

p2compl
100 4600 8

fp2compl

Random
trials:? area-aver:?

bits prods area sat unsat
3 11 132 6 3
f

P2

fp2
11 132 6

compl
11 132 6

fcompl

p2compl
11 132 6

fp2compl

Random
trials:100 area-aver:132

styr states:30 111 bits prods area bits prods area sat unsat
? ? ? " """ mm5 101

f

4343 27 20

P2
92

fp2
3956 22 2

compl
101

fcompl
4343 27 20

tav

p2compl
92 3956 22 2

fp2compl

Random
trials:? area-aver:?

states:4 12 bits prods area bits prods area sat unsat



tbk states:32 173

trainll states:11 11

P2
11 198 0

fp2

compl
11 198 0

fcompl

p2compl
11 198 0

fp2compl
•»»»»»»•

Random
trials:100 area-aver:198

bits prods area bits prods area sat «*»?>
77? 5 178 5340 118 2507

(warning: too many constraints)
f

P2

fp2

compl

fcompl

173 5190 40 64

fp2compl

Random
trials:? area-aver:?

bits prods area bits prods area sat unsat
6 10 230 4 12 204 8 3

f

P2
11 187 6

Random
trials:11 area-aver:241

RESULTS OF THE PERFORMANCE OF KISS AND NOVA ON THE FSMs OF THE SBC

FSM #symbols lh-prods
master states:15 79
physrec states:10 38
slave states:10 46
virmach states:4 16
wdcnt states:9 19

KISS
bits prods area
4 72 6408

34
35
14

16

1564
2555
532
352

NOVA
bits prods area sat
4 74 6586 3

34
35
14

16

1462 10
2555 8
532 0
352 2

unsat

0
1
0

0
0
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NAME
nova - State Assignment Program for PLA-based Finite-State Machines

SYNOPSIS

mov*file

DESCRIPTION ^ ^ , _. . - ^
nova is aprogram that performs an optimal assignment of binary codes to the states ofaFinite State
Machine (FSM). It does the same job as the program Aim and they are perfectly compatible , Le. the
same input file can be given to both programs without any change . Ifyou are already familiar with Aim
you will find easier the following pages . The state coding generated by nova minimizes the number of
product-terms required by aPLA implementation of the machine, subject to the condition that the shor
test code is used, kiss , on the other side, increases the code length as much as needed to satisfy the
lower bound on the product term cardinality obtained by minimizing the one-hot coded cover . On the
average you can expect shorter codes and more product terms with nova , longer codes and fewer pro
duct terms with kiss ;experimental results show that as for the overall area nova does abetter job than
Aim . Anyway, you are advised to run both programs on your specific inputs, keeping the best results (
sometimes you could also favor one pla ratio over the other, besides being concerned with the area).
Amore capable program (supernovaT) driven by the area cost function is currendy under development.
It should be able to trade-off between product terms cardinality and code length to find aminimum of
the cost function.

The FSM is described by a symbolic cover which is read from standard input A symbolic cover is a
set of symbolic implicants consisting of four fields corresponding to the FSM inputs, present-states,
next-states and outputs respectively. The fields are separated by either blanks or tabs, and all four fields
must fit on a single line. To allow comments within the input file, any characters after apound sign
C#v) are ignored.
The FSM states are represented by strings ofcharacters (at most 30 characters). Either the present-state
or the next-state may be given as ANY to indicate that the state is adon't care. (This is useful, for
example, indescribing the reset logic for the FSM.)
The inputs to the FSM are represented by astring of characters of 0.1, and - (where - indicates the
symbolic implicant does not depend on the corresponding input). The inputs may also be treated as
symbolic inputs (analogous to the way that the present-state is asymbolic input), and nova will deter
mine an optimal assignment for the inputs as well (see below).
The outputs from the FSM are also given as astring of characters from the set 0,1, and-. A0or a1
indicates that the output must be either low or high (respectively) for this transition. A- indicates that,
for this transition, the output may beeither low orhigh.

.list

# dk!4

input.
input.
input.
input.
input.
input.
input.

Sample Input File

state 1 state.3 00010
state"2 state~l 01001
state~3 state.3 10010
state~4 state~3 00010
state~5 state.l 01001
state~6 state~l 01001
state~7 state_3 10010

input 2 state.2 state.2 01001
input~2 state~5 state.2 01001
input~2 state~6 state.2 01001
input~2 state.l state_4 00010

CAD Software 5/16/86
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input.2 state.3 state_4 10010
input~2 state~4 state~4 00010
input~2 state~7 stated 10010

input.3 state.5 state.l 10001
input~3 state~6 state'l 10001
input~3 state~7 state'l 10001
input~3 state'l state~3 01010
input~3 state~2 state~3 00100
input~3 state~3 state~3 01010
input~3 state~4 state~3 00100

input.4 state.5 state.l 10101
input^4 state~6 state~l 10101
input~4 state'7 state~l 10101
input~4 state~l state~4 01010
input~4 state~3 state~4 01010
input~4 state~2 state~5 00100
input~4 state~4 state~5 00100

input.5 state.2 state.2 00101
input~5 state's state~2 00101
input~5 state'l state~3 01000
input's state~3 state~3 01000
input~5 stated state~3 10100
input's state~6 state~3 10100
input~5 state~7 state~3 10100

input.6 state.2 state.l 00101
input~6 state's state~l 00101
input~6 state'l state's 00010
input~6 state~3 state's 10010
input~6 state~4 state~5 00010
input~6 state~6 state's 10100
input~6 state~7 state's 10010

input.7 state.2 state.l 00001
input~7 state^S state~2 10001
input"7 state~6 stated 10001
input~7 state~7 state~2 10001
input~7 state'l state's 01010
input~7 state~3 state~5 01010
input^7 state~4 state.S 10100

input.8 state.2 state.2 00001
input's state~5 state~2 10101
input~8 state~6 state~2 10101
input~8 state~7 state~2 10101
input's state~l state.6 01000
input~8 state~3 state~6 01000
input~8 state~4 state~7 10000
.end
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