

Copyright © 1987, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

BDSYN: LOGIC DESCRIPTION

TRANSLATOR

BDSIM: SWITCH-LEVEL

SIMULATOR

by

Russell B. Segal

Memorandum No. UCB/ERL M87/33

21 May 1987

BDSYN: LOGIC DESCRIPTION TRANSLATOR

BDSIM: SWITCH-LEVEL SIMULATOR

by

Russell B. Segal

Memorandum No. UCB/ERL M87/33

21 May 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

BDSYN: LOGIC DESCRIPTION TRANSLATOR

BDSIM: SWITCH-LEVEL SIMULATOR

by

Russell B. Segal

Memorandum No. UCB/ERL M87/33

21 May 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

The two programs discussed in this report, bdsyn and BDSIM, are front end tools

that are intended to aid a chip designer in creating new systems, bdsyn is a tool

which takes functional description of combinational logic, and create appropriate

logic equations to implement the described logic. BDSIM is a zero-one switch-level

simulator whichprovides the facility for a designer to quicklyverify the functionality

of or locate errors in a digital circuit.

Acknowledgments

I would like to thank Richard Rudell for his help and advice on almost every project

which I worked. Rick was responsible for impementing a large portion of bdsyn

including the parser, inline routine expansion, and macro expansion. In addition, he

supplied many of the algorithms for implementing the rest of BDSYN and provided

direction for the whole project.

I would like to thank Albert Wang for his work on Mis on which bdsyn relies

heavily. In addition, the bdsim front end is based on Albert's Mis code. Also

thanks to Peter Moore for patiently answering my never-ending stream of unix and

'C questions.

I appreciate the work of all the students and industrial visitors who participated

in the Spring 1986 synthesis class, who provided extensive testing for BDSYN. I also

appreciate the efforts of Daebum Lee, Wook Koh, D. K. Jeong, David Wood, and

Shau-Lim Chow for providing testing and many useful suggestions for BDSIM.

Finally, I would like to thank my advisor, Alberto Sangiovanni-Vincentelli, and

Richard Newton for organizing the synthesis project and providing the framework

in which I could work on such interesting projects.

I acknowledge funding for this research under NSF grant UCol-PO-454629.

Contents

Overview v

1 Philosophy of Bdsyn 1
1.1 Combinational versus Sequential Logic 1

1.2 Gate-Level versus Behavioral Descriptions 3

1.3 Two Levelversus Multiple Level Logic 4

1.4 Software versus Hardware 7

2 Processing Steps in Bdsyn 10

2.1 Parsing 12

2.2 Inline Routine Expansion 13

2.3 Meta-variable and FOR Loop Processing 14

2.4 Complex Operator Processing 16

2.5 Expression Evaluation 17

2.6 LEAVE Processing 18

2.7 Multiple Assignment Preprocessing 21

2.8 Multiple Assignment Processing 22

2.9 Cleanup Evaluation 25

2.10 Output Processing 26

3 Bdsim Simulator 28

3.1 Introduction 28

u

3.2 Definitions and Data Structures 29

3.3 Simulation of Transistor Networks 30

3.4 Capacitance and Charge Sharing 33

3.5 Getting Real Circuits to Simulate 34

3.6 Preprocessing Optimizations 36

3.6.1 Pullups and Pulldowns 36

3.6.2 Merging Transistor Networks 37

3.7 Gate-level Instances 39

3.8 Scheduling Algorithm 40

4 Conclusion 42

A Bdsyn Users9 Guide 44

A.1 Introduction 44

A.1.1 What Bdsyn Is 44

A.1.2 What Bdsyn Is Not 45

A.2 Using Bdsyn 46

A.2.1 Describing Logic in Bdsyn 46

A.2.2 Running Bdsyn 46

A.2.3 What is New in Version 1.1 47

A.3 Language Constructs 48

A.3.1 Names and Numbers 48

A.3.2 Reserved Keywords 48

A.3.3 Variables 49

A.3.4 Input Format 50

A.3.5 Declaration Statements 52

A.3.6 Flow-of-control Statements 52

A.3.7 Routines and Routine Calls 54

A.3.8 Assignment Statements 55

in

A.3.9 Expressions 55

A.3.10 Macro Definitions and Required Files 57

A.4 Multiple Assignment 58

A.5 Unspecified Variables 58

A.6 Meta-variables 59

A.7 Complex Operators 60

A.8 Don't Care Conditions 61

A.9 Examples 62

B Processing of a Bdsyn Example 69

C Bdsyn Library 75

D Berkeley Logic Interchange Format (blif) 81

D.1 Modules 81

D.2 Lope Gates 82

D.3 Module (subcircuit) references 83

D.4 PLA References 83

E Bdsim Transistor Merging 85

F Manual Pages 88

IV

Overview

The two programs discussed in this report, BDSYN and bdsim, are front end tools

that are intended to aid a chip designer in creating new systems. BDSYN is a tool

which takes functional description of combinational logic, and create appropriate

logic equations to implement the described logic, bdsim is a zero-one switch-level

simulator which provides the facility for a designer to quickly verifythe functionality

of or locate errors in a digital circuit.

The major portion of this report is devoted to the discussion of bdsyn. The

documentation for BDSYN is split into two distinct parts. Appendix A of this paper

contains the "Bdsyn Users* Guide." This guide is intended to be a self-contained

document introducing the BDSYN program and its input format. Chapters 1 and 2

of this report deal with morein-depth details of bdsyn and its purpose. Chapter 1

addresses issuespertaining to the usefulness of BDSYN andhow it compares to similar

and related programs. Chapter 2 gives a detailed description of the algorithms that

BDSYN uses. Both chapters assume that the reader has a working knowledge of

BDSYN and its constructs. Readers who are unfamiliar with bdsyn should skim

appendix A before reading chapters 1 and 2.

Chapter 3 of this paper is devoted to the discussion of BDSIM. Included is a de

scription of the data structures, simulation algorithms, and optimizationsperformed

by BDSIM. The user commands and directions for using BDSIM are documented in

appendix F.

Chapter 1

Philosophy of Bdsyn

BDSYN is a translator which will generate a multiple level logic network from a

user supplied functional description of combinational logic Much effort has been

invested to make bdsyn both flexible and powerful, bdsyn's input logic description

language isa subset ofthe bdssimulation language.1 Thelogic descriptions that are

written in the BDS subset, resemble traditional procedural programming languages.

Writing a logic description is similar to writing a software program, and, as in

programming software, there are many ways to implement the same function.

BDSYN relies on the logic optimizer Mis to provide a good implementation for

the multiple level logic it extracts, bdsyn and Mis combine to provide the logic

designer the freedom to describe logic inafashion which is suggestive ofits intended

function, rather than worrying about the details ofagate-level implementation. The
implementation details are handled automatically.

1.1 Combinational versus Sequential Logic

One of the primary difficulties in interpreting functional hardware descriptions is
discerning what sections of the description imply pure combinational logic, and
which parts are intended tobe sequential logic. Procedural programming languages

BDS is part ofDigital Equipment Corporation's proprietary multi-level simulator DECSIM.

are basically sequential in nature, and a typical software program executes one state

ment at a time. Sucha language is not wellsuited to describing both combinational

and sequential logic.

In a typical functional hardware description, any particular variable may be

used for one of two very different purposes. It may be intended to hold the state of

some logic variable, implying a latch or memorycell. Or it may be an intermediate

variable in some larger combinational network. In the latter case, the variable

represents a wire, and no physical gates are implied. One approach to solving this

"combination versus sequential logic" problem has been to label explicitly which

variables imply latches [11]. This is a reasonable solution to the problem, but does

not yet address how a translator would interpret general flow-of-control statements

(while, for, goto, etc.) and their interaction with the latch variables.

BDSYN restrictsthe general problem of hardware description translation to deal

ing with the processing of combinational logic descriptions only. BDSYN requires

that latches and other synchronizing circuit elements be integrated into a design

by the logic designer. This task is not difficult. The designer need only combine

latches and combinational logic using a netlist entry mechanismof some kind. This

may be a graphical schematic entry system built on top of VEM [8] or a textual

netlist entry program like bdnet.2 Though this method of latch entry is not as con

venient as simply declaring 'latch variables," it accomplishes the exact same task.

It also allows much greater flexibility in specifying the flow-of-control among the

combinational modules.

There are significant advantages to restricting input descriptions to combina

tional logic. It greatly simplifies the problem of logic translation since there is no

ambiguity in determiningwhat is combinational. More importantly, however, is that

it allows bdsyn to assign very specificmeanings to procedurallanguage constructs.

A FOR loop, for example, could easily be interpreted in two different ways. In the

2See bdnet manual page in appendix F

sequential sense, a FOR loop could signify that acertain piece of logic is to evaluate

repeatedly while a counter circuit counts from 1 to 10. In the combinational sense,

the same FOR loop signifies ten identical pieces of logic that are connected together.

BDSYN will always interpret a FOR as signifying combinational logic.

1.2 Gate-Level versus Behavioral Descriptions

Logic description formats can belumped into two broad categories which I call gate-

level descriptions andbehavioral descriptions. Gate level descriptions are closer to

the actual hardware implementation and are generally meant to serve as a very

accurate model of the real hardware. Functional descriptions look more like software

programs and are generally targeted for efficient simulation.

Systems which use gate-level descriptions of hardware usually give the logic

designer a set of hardware primitives out ofwhich to build his system [1] [3]. These

primatives range in type from mosfet's, to logic gates and register cells. The

primatives are either selected out of a fixed library and/or described with a set

a simple constructs. The designer creates systems by building up a hierarchy of

cells. This is done by specifyinga connection of lowerlevel cellsat eachlevel of the

hierarchy. For example, a one bit ALU might be composed of several logic gates, a

datapath bit slice might be composed of the ALU bit:and some registers, and a full

data path couldbe composed of several bit slices. Notice that this way of describing

logic closely parallels the actual implementationof a design.

Systems which take behavioral descriptions as input generally do not use physi

cal cells as primitives [10] [12]. They instead rely on traditional computer language

constructs, with a few constructs added forsequencing and synchronization. Designs

are usually defined in terms of their intended function, rather than their construc

tion. A "program" which performs the same function as the planned hardware is

written for each main module of a design. The modules are then linked together.

This method of describing logic more closely parallels the actual idea and function

of the design. It is, however, farther from the actual hardware implementation.

It is becoming increasingly popular to integrate both gate-level descriptions and

behavior descriptions together [2]. For a designer, this gives the best of both worlds.

Early revisions of a design can be described behaviorally. Simulation can then be

done on this description to verify architectural soundness of a design. Later, as an

implementation of the design is fleshed out, partsof the behavioral description may

be replaced by gate-level (or eventransistor-level) descriptions. The newdescription

can then be resimulated to check for consistency.

bdsyn, along with the mis logic optimizer (discussed below), begins to bridge the

gap between behavioral hardware descriptions and gate-level descriptions, bdsyn

eliminates the traditionally manual task of translating behavioral descriptions to

gate-level descriptions. Within the realm of combinational logic, BDSYN is quite

general. Any logical behavior that can be described using bdsyn constructs, can

be mapped to logic. Mis then insures that a good implementation of the logic is

generated. This allows the designer the freedom to describe and simulate logic at

a very high level, without worrying about implementation details. The gate-level

description of the circuit is generated automatically by bdsyn and optimized by

MIS. There should be no need to describe directly combinational logic at the gate

level.

1.3 Two Level versus Multiple Level Logic

Today in many design VLSI design centers, the only logic implemented from a high

level language is pla's. PLa's implement what is called "two level logic," which is

characterized by two stages of logic gates. Two level logic is quite useful in many

common applications such as finite state machines, and pla's are commonly used

in many VLSI applications. However, two level logic and PLA implementations are

not useful in all applications.

"Multiple level logic," is characterized by many stages of cascaded logic gates.

Multiple level logic isoften implemented inusing astandard cell technology, where a

setof pre-created gates are placed and routed together, or a gate array technology,

where gates are patterned onto a partially fabricated chip and routed together.

Module generators for multiple level logic are also becoming popular. These systems,

like PLA generators, generally rely on placing and routing transistors in a regular

array.

Implementing logic inmultiple level form has several advantages. Bymanipulat

ing multiple level logic, one can optimize the logic for minimum delay or minimum

area. As the complexity of logic increases, PLA implementations suffer the problem

of declining performance and increasing area requirements. This is not necessarily

the case for multiple level implementations, where tradeoffs between speed and area

canbe made. Anotherimportantconsideration is that certain multiplelevelcircuits

do not map well into PLA structures. The process of collapsing multiple level logic

into two levels may sometimes explode. For example, a PLA implementing an n bit

adder circuit requires 0(2") product terms. This suggests that multiple level logic

structures are preferable to pla's in certainapplications.

A typical PLA description may bespecified in terms oflogic equations [7]. This

can be extended to further by allowing logic to be described in terms of IF and

select statements [17]. The conditions of the IF and select statements are taken

from among the inputsof the PLA, and the outputsof the PLA are set by assignment

statements within the IF and SELECT structures. This set of constructs allows the

designer to choose a value for each PLA output based directly on some combination

of input values.

BDSYN can be used for describing pla's as easily as for describing any other

circuit. However, bdsyn allows for the description of multiple level logic. This is

accomplished by allowing the general use of "intermediate variables," which can be

thought of as intermediate results in a multiple level logic network. Intermediate

variables are defined in terms of inputs and other intermediate variables. They, in

turn, are used to define outputs, bdsyn will generate, as output, a multiple level

gate description called BLIF.3

Most logic translators, YLL [6] being a notable exception, do not allow the use

of intermediate variables in their input logic description. The reason for this can

be found in the nature of pla's. There appears to be little use in describing logic

being mapped to a two level PLA structure in multiple level form. In reality, multiple

level descriptions are quite useful for describing pla's, as well as for multiple level

implementations.

A major reason that PLA description languages have existed for some time is

the availability of PLA logic minimizers. PLA minimizers such as espresso [14] [13]

[5] make it possible to create pla's that areas goodor better than human designs.

Since ESPRESSO can be trusted to implement a "good" PLA, the designer is able to

think in terms of circuit function rather than worrying about circuit implementation.

This paved the way for PLA description languages.

Mis [4] [16] is a multiple level logic minimizer written at Berkeley. Mis preserves

the multiple level structure of logic during minimization, allowing it to avoid the

problem of exponential "blow-up" associated with the collapsing to two level logic.

It takes as input a multiple level gate description of a logic circuit in blif format

and writes its output back to blif or into the Oct database [8]. It is important to

note that if either BDSYN or Mis required logic to be represented in two level form,

many logic circuits could not be processed.

BDSYN relies heavily on Mis to optimize the gate descriptions it creates. The

quality of BDSYN's output depends heavily on the user supplied input description.

Using Mis removes much of this dependence on user input, giving the designer far

more flexibility in the way he describes his design. Without Mis to minimize multiple

level logic, designers would essentially have to describe circuits at the gate-level in

order to assure quality results, and bdsyn would be of very limited utility.

*A specification for BLIF is givenin appendix D.

1.4 Software versus Hardware

BDSYN is unusual in that it draws an association between a software "program" and

a hardware "schematic." The BDS language, upon which BDSYN input is based, is

a programming language. These programs are intended to be compiled and run in

a simulation environment. The BLIF output of BDSYN is a hardware description. It

represents a group of gates connected together in a combinational network. The

ways in which software and hardware behave axe different, but both may imply

similar functions. BDSYN's job is to create hardware that functions similarly to a

software program.

One of the major differences between simulating a hardware description (run

ning a program) and synthesizing gates is that a simulator is given values for the

primary inputs to the network, while a logic synthesizer is not. A simulator can

sequence through the given commands of a description anddetermine values for the

intermediate variables basedon the giveninputs. When a branchingstatement such

as an IF or select is encountered, the simulator can evaluate the branching condi

tion and act accordingly. When synthesizing logic from a description, the network

inputs are not known. BDSYN has no way of determining the value of intermediate

variables. Moreimportantly, there is no way to know in advancewhich of the THEN

or ELSE clause of an IF statement will apply.

bdsyn must accomplish "static evaluation" of the input description. Any pos

sible path through the flow-of-control structures of the description must be repre

sented by corresponding logic implementation, bdsyn must create hardware that

covers all possible combinations of inputs. In a simulation, one of the THEN or

ELSE clause of an IF statement need not be evaluated, bdsyn must consider both

in order to produce logic that will be correct for any input. Static evaluation goes

beyond just considering both the then and ELSE clauses. Correct static evaluation

is even more difficult when processing the LEAVE statement. A LEAVE which is

contained within an IF statement, implements a conditional branch. Care must be

taken to insure that all possible sets of "branches taken" arecovered in the hardware

implementation.

There are certain software structures which can not be statically evaluated.

Consider the general for loop. To do a correct static evaluation of for loops

BDSYN chooses to duplicate the body of the loop an appropriate number of times.

This is only possible if the extent of the FOR loop is bounded by constants, allowing

a calculation of how many copies to make of the body of the loop. If the extent of a

FOR loopis bounded by a variable which depends on the input to the logic network,

bdsyn can not calculate, statically, a tight bound on how many copies should be

created. For this reason, BDSYN only allows constant bounded FOR loops.

There are other structures which are not susceptible to static evaluation. These

include WHILE loops, variable width bit selects, and recursive routine calls. In each

case, the number of loops, bits, or depth of recursion may depend on a variable

which can not be statically evaluated. Since BDSYN,can not calculate, in general,

howmuchlogic is impliedby theseconstructs, it does not supportthem. For similar

reasons, the GOTO statement also can not be supported.

To say that there is no way for BDSYN to handleWHILE loops is a slight exagger

ation. BDSYN could handle this construct if there were some declaration that told

BDSYN the maximum number of times a while loop would execute. This way, bdsyn

could create hardware that for the maximum number of while iterations just as

it does in FOR loops. If the conditions were such that fewer than the maximum

number of loops should be executed, it could be handled in the same manner as

LEAVE statements in FOR loops are handled. Recursive subroutine calls might also

be handled if there were some constant bound on the depth of the recursion.

There is a side issue here which should be mentioned. Constructs such as while

and GOTO, whileless useful for describing combinational logic, are potentiallyuse

ful for describing sequential logic. The use of these statements could correspond

directly to the flow-of-control among activecombinational logic blocks in a sequen-

tial system. A while loop would imply that the logic within the body of the loop

should produce valid outputs for as many clocks as the while loop's condition is

true. A goto implies that a different combinational logic block will be active in

the next clock cycle. "Static evaluation" does not apply to sequential logic as it

does for combinational logic. In a sequential circuit each combinational block eval

uates on every clock phase. Intermediate sequentialvariables (latched signals) are

continuously recalculated, and flow-of-control decisions can be made based on their

value.

Chapter 2

Processing Steps in Bdsyn

This chapter covers the processing steps that BDSYN takes to reduce an input logic

description to the corresponding logic equations, bdsyn is set up in severaldiscrete

phases of operation. All of the phases of operation manipulate the same simple

parse tree data structure. The sequencing of bdsyn's major processing steps is

summarized in figure 2.1. An example of the processing of an actual sample input

file is given in appendix B.

The major phases are:

Parse Each routine of the input file is translated to an internal parse tree. Macro

definitions are expanded, and symbol tables are generated.

Inline Subroutines and main routines are identified. The subroutines are then

copiedand inserted into the main routines, and parameter passingis handled.

Meta The value ofall meta-variables are statically evaluated and the meta-variables

are replaced by constants. As part of this processing, FOR loops are unrolled.

That is, the body of the loop is duplicated the necessary number of times.

Complex Operators which are considered too complex for simple processing are

replaced with calls to BDSYN library routines. The flow of control may loop

back to Inline at this point.

10

/* BDSYI — main routine
NTM refers to a set of parse trees
"tree'* refers to the parse tree for a single routine
"T'M refers to a tree for a single main routine plus trees

for selected library subroutines.

*/

bdayn(input, output)

T « PARSE(input);
T a IILIIE(T);

/* parse all routines in input */
/* inline expand all subroutines *
* leaving only main routines */

foreach. tree in T {

do {
/* process meta-variables and FOR loops */
tree • META(tree);

/• get library routines for complex operators */
T' • CONPLEX(tree);

if (complex inserted a routine) i
tree * IHLIHE(T'); /* expand library routines */

>
> while (complex inserted a routine);

tree • EVAL(tree);

tree » LEAVE(troe);
tree • PREMULT(tree);
tree « NULT(tree);
tree = CLEANUP(troo);

output s LZFZFY(tree);

/• evaluate simple expressions */
/* process LEAVE statements */
/* prepare for multiple assignment */
/* Do multiple assignment ♦/

/* evaluate using info from MULT */
/* convert to output format */

Figure 2.1: Sequencing of Bdsyn's Major Phases

11

Eval bdsyn attempts to evaluate and simplify expressions in the parse tree.

Leave bdsyn processes all leave instructions, replacing them with one or more

equivalent IF statements.

Premult This preprocessing step to multiple assignment handles three tasks. The

nesting structure of IF and SELECT statements is stored in a simple data

structure and each "clause" of each statement is assigned a unique number.

Complicated condition expressions in IF and SELECT statements are assigned

to temporary bdsyn variables as an optimization. The last use of eachvariable

in the parse tree is identified and marked.

Mult This is the multiple assignment step. It performs two interrelated functions.

It makes sequential assignments to a same variable possible by assigning a

unique "revision number" for each assignment to that variable. The mul

tiple assignment step also reduces if and select statements to a series of

assignment statements.

Cleanup This repeats the earlier Eval phase using information provided by mul

tiple assignment. This eliminates much of the meaningless logic that may be

created from a redundant or loosely specified initial description.

Lifify This coverts the contents of the parse tree to BLIF output. As part of this

procedure, Mis may be invoked to collapse the logic of many related blif

tables into one. This is used to decrease the size of the output.

2.1 Parsing

The first phase of BDSYN processingis, ofcourse, the parsingofthe input description.

This is accomplished through the use of a yacc [9] grammar and a custom lexical

analyzer. The lexical analyzer handles much of the input processing, before passing

tokens to the YACC generated program. The lexical analyzer detects where separate

12

files should be inserted into the main text includes those files. It also expands any

macro definitions in the input file. Both require files and the macro definitions

may be nested.

The actual grammar to parse the input waswritten in yacc. The YACC gram

mar was written with the objective of translating our subset of the BDS description

language, while properly handling (ignoring) the BDS constructs that are not sup

ported. While the input file is being parsed, several data structures are built. First,

a symbol table is constructed that contains global variable, input and output port,

global constant, and global synonym declarations. A symbol table for each routine

of the input file is also built. It contains locally declared constructs, as well as

routine parameter variables and statement label declarations.

The yacc grammar then produces a parse tree for eachroutinein the input. The

nodes of the parsetree are of one of two major groups. The first, expressionnodes,

are for manipulating and representing data. These include boolean and arithmetic

operations, shifts, comparisons, bit select operations, routine calls, bit vectors, and

constants. The second major group of nodes in the parse tree are statement nodes.

These include IF, select, for, leave, return, and assignment statements, if,

select, and for nodes point to linked lists of statement nodes which represent the

clauses (e.g. THEN or else) or loop body associated with the statement. Expression

nodes may not contain statement nodes.

2.2 Inline Routine Expansion

The second processing step in BDSYN is the inline routine expansion. For each call

to a subroutine, a copy of that subroutine's parsetree is inserted into the the middle

of the calling routine's parse tree. The local variables of the subroutine are copied

into the global symbol table, and their names are given a unique prefix in order to

avoid name clashes with the global variables.

Passing of routine parameters and return values is handled by creating assign-

13

ment statements before and after the inserted routine, respectively. RETURN state

ments are replaced with leave statements which implement jumping out of routine

blocks. Once a subroutine has been expanded, inline is then called recursively

in order to handle nested subroutines. Recursive routine calls in the bdsyn input

description are disallowed.

The BDS languagehas no concept of a singlemain routine. In fact, many routines

in a BDS input file may be main routines which can be thought of as running in

parallel. This presents a problem for BDSYN. bdsyn must decide which routines in

the input file are main routines and which are subroutines, since only main routines

should be directly represented in the output logic equations. The main routines are

identified by being those which are not called by other routines.

As a result of the inline expansion step, many copies of the same routine may

be created. This duplication, while not absolutely necessary, is useful due to the

nature of the problem BDSYN is addressing. When hardware is being described,

every subroutine call corresponds directly to a physical piece of logic. So, in order

to represent that logic, bdsyn copies a parse tree for each subroutine call.

2.3 Meta-variable and FOR Loop Processing

A major reason for the existence of meta-variables in bdsyn is their property of

being able to be statically evaluated. By definition, meta-variables in bdsyn may

not depend on any logic variable. This means that the value of a meta-variable

will always be the same regardless of the physical inputs to the combinational logic

network. It is a fairly easy task for BDSYN to calculate the meta-variable values,

and that is a major purpose of this stage of processing.

The processing of meta-variables is done in one sequential pass over the parse

tree. Whenever an assignment to a meta-variable is encountered, BDSYN calls its

expression evaluation routine to reduce the right hand side of that assignment. Since

the right hand side must evaluate to a constant (otherwise an error is generated),

14

the constant value of the meta-variable can be stored in the symbol table. From

that point on, any use of the meta-variable is replaced with the stored constant.

A potential problem exists in the meta-variable replacement. The stored value of

a meta-variable is overwritten whenever a second assignment to that meta-variable

is encountered. If the same meta-variable is assigned to in both clauses of an

IF statement, its final value will always be the value of the last assignment. For

example, in the following:

IF cond THEH

aeta • 1

ELSE
neta * 2;

meta will have the value 2 upon exit from the IF statement, regardless of the value

of cond. This is because the assignment meta • 2; comes last in sequential order.

Unfortunately, if cond is not a meta-variable, there is no way to determine the

correct way to handle the value of meta. meta can not be statically evaluated.

If cond in the above example is a meta-variable, the situation can be handled

in a consistent fashion. A meta-variable or constant appearing in an IF or select

condition implies that one or more clauses of that structure can never be executed.

For this reason, BDSYN calls its evaluation routine to reduce all IF and select

conditions. If the condition can be evaluated statically, without using the value

of any logic variable, the clause or clauses which are known to never occur are

deleted. In the above example, the else clause would be eliminated if cond was a

meta-variable with value 1.

FOR loop processing is closely tied to meta-variable processing. The extent of

the loop (the FROM, TO, and BYexpressions) are evaluated. Since the extents may

only depend on meta-variables and constants, a constant result can be found. Once

the extents are calculated, an appropriate number of copies of the loop's body are

generated. For each copy of the for loop body, any use of the loop index variable

is replaced with the appropriate constant value, as shown:

FOR i FROM 0 TO 3 DO
y<i> • x<3 - i>;

15

becomes

y<0> = x<3 - 0>;
y<l> a x<3 - 1>;
y<2> a x<3 - 2>;
y<3> = x<3 - 3>;

The actual replacement of the index variable is accomplished using the same code

as for the regular meta-variable replacement.

2.4 Complex Operator Processing

BDSYN is capable of handling a variety of complex operators. Complex operators

are defined as those operators for whichit is not "easy" to generatelogic. They are

as follows: addition, subtraction, and multiplication of logic variables; greater than

or less than comparison of logic variables; shifts by a variable amount; and selection

of a variable bit from a bit vector.1 Rather than hard-wiring these rather messy

functions into BDSYN, a different approach was taken, bdsyn relies on a small set

of library macro definitions to support the complex operators.

During this stage of processing, bdsyn scans the parse tree for any use of a

complex operation. When one of these operators is found in the parse tree data

structure, it is replaced by a node which implements a bdsyn subroutine call. The

actual bdsyn subroutine is then created using one of the library macro definitions.

Once alluses of complex operations havebeen replaced with subroutine calls,bdsyn

loops back to the inline expansion phase of processing to expand the subroutines.

The looping continues until the inserted subroutines contain no complex operators.

The actual creation of complex operator subroutines deserves a comment. The

BDSYN library contains only macro definitions for subroutines. These definitions

differ from actual subroutines in that the width of the routine parameters are not

fixed. They are, instead, defined as sub-macro definitions. By defining these sub-

macro definitions, BDSYN can create custom subroutines of the any size. When

1Notice: These operators imply adders, multipliers, comparators, shifters, and multiplexors.

16

BDSYN wishes to create a 4 bit adder, for example, it defines a sub-macro definition

to be 4, and then instantiates the subroutine macro into a subroutine with that

width. The BDSYN library, which is shown in appendix C, lists the default set of

sub-macro definitions.

2.5 Expression Evaluation

Expression evaluationin bdsyn is used to reduce trees of boolean, arithmetic, and

bit vector operations to the simplest form possible. Expressions are evaluated in a

recursive fashion. Forany operator being processed, its operands are first evaluated,

then the operator is applied to those operands.

There are two main classes of evaluation that can occur. If all of the operands of

a particular operator are determined to be constant valued, then the given operation

is performed using basic 'C constructs. This is direct to accomplish since bdsyn

constants are stored as 'C unsigned integers. Unfortunately, constants of greater

than 32 bits can not be accommodated using 'C integers. Long bdsyn constants

must be represented as a concatenation of shorter constants. Long constants in

bdsyn are treated in the same manner as variable arguments.

The other main class of evaluation that can occur is simplification of functions

with variable arguments. Because of the complex operator processing step, it is

guaranteed that there will be only "simple" operators to process. These include

boolean operations, equal and not equal comparison, shifts by a constant amount,

bit extraction of constant extend fields, and extensions (e.g. sign extend). The

boolean operators are applied bitwise to their operands. BDSYN will reduce simple

boolean identities such as "NOT(NOT(a))," ttx AND 0," tty XOR 1," etc. The equal

and not equal comparisons are reduced to the equivalent boolean operations. The

extension, bit extraction, and shifts simply involve reshaping of bit vectors.

Upon completion of the expression evaluation, most of the operator types have

been simplified out. The only operators remaining are AND, OR, NOT, NAND, NOR,

17

EQV, and XOR. In addition, BDSYN creates two internal operations ANDR, and ORR

which are multiple operand versions of and, and OR. andr, and ORR are created

when reducing multiple bit equal and not equal comparisons.

Expression evaluation serves one other purpose. It implements the assignment

rules of BDS. If the width of the right hand side of an assignment exceeds that of

the left, the high order bits are truncated. If the width of the left hand side exceeds

that of the right, zeros are added to pad the right hand side.

2.6 LEAVE Processing

LEAVE processing deals with the reduction of trees containing LEAVE statements

to the equivalent tree using only IF statements. The algorithm to process leave

statements is not as straight forward as the other BDSYN algorithms. Forthis reason,

I will be somewhat formal in its definition. I will also step through the processing

of a sample piece of code, which follows:

A: BE6II 1 start block A
IF x THEH

B: BE6II i start block
c a 1;
IF y THE!

LEAVE B;
d • 1;
IF z THEH

LEAVE A;
• • i;

EID;
* • i;

EID; ! end block B

g • l;
EID; f end block A

In the following discussion I will use the concept of a "level." Statements in a

parse tree can be grouped intolevels corresponding to their depth in that tree.2 For

instance, in the above example the following statements occur at the same level:

c « 1;
IF x THEH

'This is equivalent to the level of indentation in nicely formated code.

18

d = 1;
IF y THEH ...
• * i;

The "LEAVE B" and "LEAVE A" statements that were originally in this section of

code are omitted because they occur in the then clause of an IF statement and

therefore occur at a lower level. I will call a lower level, that is contained by a given

level, a "sub-level."

The leave statement in BDS is followed by one argument which is the name

of the labeled statement out of which it is supposed to break. The block of code

that is contained by the labeled statement is the "leave block" corresponding to a

particular leave statement. When conditions exist that cause a leave statement

to take affect, any code following that statement in its leave block is skipped.

The problem is to create IF statements which cause the correct code to be

skipped when a leave is in affect. As a convenience in creating IF statements,

BDSYN introduces a "leave condition" in the leave statements. If the condition is

true, the LEAVE takes affect. If the condition is false the LEAVE is ignored. By this

definition "LEAVE (x) A" is equivalent to "IF x THEN LEAVE A."

The LEAVE processing is done in a bottom up fashion, starting at the lowest

levels of the parse tree and working up. The basic idea is to "push" the LEAVE

statements progressive upward through the levels, until they reach the level of their

corresponding leave block. Each time a leave is pushed up, an IF statement may

be generated which implements the potential skipping of code.

At any particular level of the parse tree, processing occurs in two phases. In the

first phase, all sub-levels are processed recursively. The result of this will be that

leave statements from the sub-levels will be pushed up to the current level. When

a LEAVE statement is pushed up a level, its condition field is update appropriately

to reflect the circumstances under which the leave occurs. As a simple illustration,

the following results after the lowest level of the example is processed:

A: BEGII I start block A
IF x THEH

19

B: BE6II ! start block B

LEAVE (y) B; ! pushed up LEAVE
d = 1;
LEAVE (z) A; ! pushed up LEAVE
• = 1;

EID;
t » 1;

EID; I and block B
g • 1;

EID; ! end block A

The second phase of processing at a level involves replacing leave statements

with IF statements. For any particular leave at a given level an IF statement is

generated that "protects" the following code. Only if the leave condition is false

should the following statements take affect. This suggests a series of nested IF

statements which have complement conditions of the leave conditions:

A: BEGII ! start block A
IF x THEH

c = 1;
IF HOT y THEH BEGII ! generated by "LEAVE (y) BH

d • 1;
IF HOT z THEH BEGII I generated by "LEAVE (z) A"

e = 1;
EID;

EID;
LEAVE (z) A;
« » i;

EID;

8 - i;
EID; ! end block A

Notice that the statement "LEAVE (z) A" has been pushed to the next higher level

of the parse tree. However, the statement "LEAVE (y) B" has been dropped. This

is because it has been pushed to the level of its leaveblock. It therefore no longer

applies and can be dropped. In addition, the "BEGIN" and "END" of block B itself

have been dropped since block B has been fully processed.

Continuing the processing for the next higher levelbetter illustrates the updating

of leave conditions.

A: BEGII ! start block A
IF x THEH BEGII

c • 1;
IF IOT y THEH BEGII

d • 1;

20

IF HOT z THE! BEGII
e = l;

EID;
EHD*

IF HOT z THEH I generated by "LEAVE (z) A"
1 = 1;

EHD*

LEAVE (x AID z) A;
g • i;

EID; ! end block A

Notice that when the statement "LEAVE (z) A" is pushed out of the IF statement,

the condition of that IF statement is logically ANDed into the leave condition to

produce "LEAVE (x AND z) A."

After one more level of processing, the example has been completely converted:

IF x THEH BEGII

c » 1;
IF HOT y THEH BEGII

d » 1;
IF I0T z THEH BEGII

• •> 1;
EID;

EID;
IF HOT z THEH

1 « 1;
EID*

IF HOT (x AID z) THEH I generated by "LEAVE (x AID z) AN
g a i;

The only possible flow-of-control statements remaining in the parse tree at this

point are IF and select statements.

2.7 Multiple Assignment Preprocessing

BDSYN requires three tasks to be performed prior to its multiple assignment phase.

The first task is to define a necessary data structure. The data structure created

represents the nesting of the if and select statements, then or else blocks in IF

statements, or cases in select statements are considered to be "statement blocks."

A simple tree is created, where each node represents a statement block. Each

statement block in given a unique identifying number, the "block number."

The other tasks performed in this processingstep are for optimization ofmultiple

assignment. The first task is to identify and mark the last use of every variable.

21

This is used by multiple assignment to avoid the creation of unnecessary logic.

The second task involves creation of intermediate assignments for IF and SELECT

conditions which are complex. For example:

IF x AID (y OR z) THEH ...

becomes

*$COID = x AID (y OR z);
IF $$COID THEH ...

This has two main uses. It removes considerable overhead in the multiple assign

ment routine. More importantly, however, this prevents multiple assignment from

combining these complex conditions into assignment statements which are within

the scope of the IF or select structure. Conditions in IF and select statements

tend to affect many assignment statements. If conditions were to be combined into

all of those statements, mis would be forced to extract them out again.

2.8 Multiple Assignment Processing

The multiple assignment processing is at the heart of bdsyn. It is this processing

that allows bdsyn descriptions to be sequential in nature. Successive assignments

to the same variable are handled in a consistent manner, in order to create correct

combinational logic. All logic variables are handled one bit at a time. Each time a

bit of a variable is assigned to, a "revision" of that bit is generated. Eachrevision has

a unique "revision number" which is based on the block number of the assignment

statement and the number of revisions to the same variable that precede the current

one.

Multiple assignment for the basic case can be accomplished by creating revision

numbers for each revision to each variable. Whenever a variable is used on the
«

left hand side of an assignment, a new revision is generated. Whenever a variable

is used on the right hand side of an assignment, a reference is made to the most

recently generated revision. For example:

22

x = a;

x « x AID b;

becomes

x.0.1 a a;
x.0.2 s x.0.1 AID b;

Handling multiple assignment gets slightly more tricky when IF or select state

ments are involved. The problem is to make a set of assignment statements which

imply the same logic as the IF or SELECT. For example, after the assignment of

revision numbers a piece of code may look like the following:

IF cond THEH
x.1.1 a a

ELSE
x.2.1 >> b;

Here, the IF statement can be replaced by adding a single assignment statement.

The revision x.0.1 represents the final effect of the IF statement.

x.1.1 a a;
x.2.1 a b;
x.0.1 a (cond AID x.1.1) OR (IOT cond AID x.2.1);

When an assignment statement to a particular variable does not occur in all

clauses of an IF or SELECT statement, it is necessary to reference a previous revision

of the variable in the created assignment statement. This preserves the the sequen

tial nature of the code. In the following example, x.0.1 is used when state is either

1 or 2:

x.0.1 a a;
SELECT state FROM

CO]: x.1.1 a b;
[3]: x.1.2 a c;

EIDSELECT;

becomes

x.0.1 a a;
x.1.1 a b;
x.1.2 a e;
x.0.2 a ((state EQL 0) AID x.1.1) OR

((state EQL 3) AID x.1.2) OR
(((state EQL 1) OR (state EQL 2)) AID x.0.1)

23

When processing a nested structure of IF and select structure, many assign

ments must be generated. For every assigned variable that BDSYN encounters, an

assignment statement must be generated for each level of nesting. This can be

potentially wasteful. If there is no use of a variable after a particular IF or SE

LECT there is no need to create an extra assignment for it. This is the reason for

marking the last occurrence of everyvariable during the preprocessing to multiple

assignment, bdsyn is able to avoid creating superfluous assignment statements, as

shown:

y a o;
z a 0;
IF condl THEH BEGII

IF cond2 THEH
x a a

ELSE BEGII
x a b;
z a c;

EID;
y a x AID d; ! marked as last use of x

EID;

becomes

y.0.1 a 0;
z.0.1 a 0;
x.2.1 a a;
x.3.1 a b;
z.3.1 a e;

! created assignments for inner IF
x.1.1 a (Cond2 AID x.2.1) OR (I0T cond2 AID x.3.1);
z.1.1 a (cond2 AID z.0.1) OR (I0T cond2 AID z.3.1);

y.1.1 a z.1.1 AID d;

! created assignments for outer IF
! no revision for x.0.2 is created here
y.0.2 » (condl AID y.1.1) OR (NOT condl AND y.0.1);
2.0.2 a (condl AND z.1.1) OR (NOT condl AND z.0.1);

By creatingan assignmentstatement for every variable that is assigned to within

an IF or select the input parse tree can be reduced to contain only assignments

of boolean expressions. One should also note that sequential nature of the original

input is eliminated. The set of assignments remaining in BDSYN can be viewed as

a combinational logic network, with each assignment statement corresponding to a

24

complex boolean gate. The remaining phases of BDSYN processing, merely simplify

the network slightly.

2.9 Cleanup Evaluation

One might notice that some of the equations generated by the multiple assignment

processing are trivial. That is, the right hand sideof an assignment containsonly a

simple variable or a constant. In terms of combinationallogic, such an assignment

statement corresponds to nothing more than a wire. Unless told not to (by the -b

option), cleanup evaluation will eliminate the trivial assignment statements in the

parse tree.

At this point in its processing, bdsyn has complete information concerning

the boolean equations of the combinational logic and the interconnection of the

logic gates. This makes it possible for bdsyn to combine and collapse assignment

statements together. Before revision numbers are assigned, bdsyn does not know

where a particular revision of a variable fans out. With revision numbers, it is a

simple matter to 'forward substitute" trivial assignments. For example:

x.0.1 a a;
x.1.1 a b;
x.1.2 a e;
x.0.2 a ((state EQL 0) AND x.1.1) OR

((state EQL 3) AND x.1.2) OR
(((state EQL 1) OR (state EQL 2)) AID x.0.1)

becomes

x.0.2 a ((state EQL 0) AID b) OR
((state EQL 3) AND c) OR
(((state EQL 1) OR (state EQL 2)) AND a)

In addition to performing forward substitutions, cleanup evaluation also calls

the evaluation routines that were used in the earlier expression evaluation phase of

processing. This performs a very simple but effective minimization. If any of the

forwarded variables had constant values, entire blocks of logic may be simplified

25

away. If in the above example the variable a were instead the constant value zero,

the last term of the final equation would just drop out.

In actual BDSYN descriptions, there is a tendency to describe desired functions

in a loose (but more convenient) manner. Usually this results in a set of very

complicated equations which have predominantly constant fanin. The combination

of forward substitutions and expression evaluation reduce these equations to a much

simpler form. Cleanup evaluation typically reduces the number of logic nodes by 20

to 30 percent.

2.10 Output Processing

The final phase of processing is to convert the internal boolean equations to BLIF

format. It is a simple matter to make a series of small BLIF tables to represent a

boolean equation. Unfortunately, bdsyn only knows how to create tables for simple

boolean functions (and, or, etc.). For each complex boolean equation, there may

be many BLIF tables. In order to avoid creating very large numbers of very small

tables, bdsyn calls Mis to collapse many small blif tables into fewer large tables.

BDSYN has some latitude in deciding which and how many boolean equations to

collapse into each final BLIF table. There are many considerations in this making

this decision. There should be enough collapsing done to reduce the output to a

manageable size. The collapsing should not cause the removal of a variable that the

user may have considered important. Most importantly, the intermediate variables

which fan out to several destinations should not be collapsed out. These interme

diate variables could be seen as common factors to gates that follow them. If they

were to be collapsed into their fanout gates, MIS would have to extract them again

(a potentially costly operation). Instead by preservingthese factors, Mis can choose

to reatin these factors or delete them.

In order to preserve important intermediate variables, bdsyn performs a pre

processing step to the output generation. This step marks which equations should

26

not be collapsed by Mis. The algorithm is simple. For each primary output of the

combinational network, a recursive search is made of the transitive fanin to those

outputs.3 Whenever a revision of a variable fans out to revision of a revision of a

different variable, the former is marked to be preserved. This way the revisions that

are collapsed out are those which fan out only to revisions of the same variable.

BDSYN's default algorithm for choosing equations to collapse out is not perfect.

It is possible to describe a circuit in which BDSYN will try to collapse too much logic.

This may result in an exponential blow-up in the size of a BLIF table. It is extremely

difficult for BDSYN to detect when this behavior will be insighted. As a secondary

solution, BDSYN provides an option (-cl) that will change the collapsing algorithm.

The option causes each equation to be collapsed separately with no equations being

collapsed out. This insures that the biggest blif table created is only as complex

as a single equation. If a single user equation proves too complex to collapse, the

option ~c0will turn off collapsing altogether.

As mentioned before, bdsyn calls Mis to do its logic collapsing. This is accom

plished through the use of UNIX4 pipes. The output of bdsyn is "piped" to the input

of MIS and the output of Mis is piped to the input of BDSYN. The two programs

communicate with each other in standard blif format. On non-UNIX systems, it is

not possible to use pipes, and BDSYN can not collapse logic. Although this causes

the amount of BDSYN's output to increase dramatically, the logic can be reduced in

a separate processing step by Mis.

'Transitive fanin is the set of signals which affecta node.
*Unix is a trademark of AT&T Bell Laboratories.

27

Chapter 3

Bdsim Simulator

3.1 Introduction

bdsim is a switch-level event driven simulator written for use with the Oct data

manager. It has three primary goals: loading and executing simulations quickly;

using the circuit hierarchy information provided by Oct to aid the user in ac

cessing data; and providing a powerful user interface for quick circuit debugging.

The first goal is accomplished, in part, through the use of very simplified circuit

models. Transistors are treated as voltage-controlled switches, and capacitance is

completely ignored with all nodes being considered as storage nodes, bdsim also

speeds simulation by using a unique transistor simulationalgorithm and performing

preprocessing optimizations on the input circuit.

BDSIM meets its second goal of using input hierarchyinformation, by providing

the user with a special interface to the simulation data. This interface makes the

data within BDSIM appear to be stored in a hierarchical fashion. The manual page

for bdsim in appendix F contains descriptionsof commands which accessdata using

hierarchy.

To meet its third goal, BDSIM supplies a wide range of user functions that are

intended to make it powerfuland easy to use. Users may create their own commands

through the useof parameterized macros. Users may create source files of commands

28

which they can run in batch mode or single step mode. There are commands to

create and manipulate groups of signals as bit vectors. Output data is easy to

format through the use of 'C-like' format strings, bdsim has two commands that

allow the user to access low level data about nodes and active instances in the

simulation database, bdsim also has a particularly useful command that lets the

user trace the origin of particular signals in a circuit network. The commands to

perform these functions axe discussed in detail in the BDSIM manual page.

3.2 Definitions and Data Structures

BDSIM does most of its processing on two classes of data elements. The first is the

"instance." An instance represents one or more transistors in the logic network,

logic gates, latches, or user described device. Instances predomently represent the

active elements of the circuit, but are also used in representing hierarchy (as de

scribed below). The other major data element is the "node." Nodes represent the

connecting wires between instances and have a voltage level associated with them.

Each "terminal" of an instance may be attached to a node. Each node might fan

out to the terminals of many instances. An instance terminal might drive a node

or might be driven by a node.

BDSIM is set up to handle input from a hierarchical circuit representations such

as the Oct data manager. To the bdsim simulator, the circuit appears to be flat,

but enough information about the initial hierarchy is kept to allow the user to view

the circuit as a hierarchical structure. The data structure can be described as a

pyramid as illustrated in figure 3.1. At the base of the pyramid are the nodes and

instances on which the simulation is actually done. Above this base the hierarchy

information is annotated. Special "module instances1* which do not imply any ac

tual circuit devices are used as internal nodes for a hierarchical tree structure. Each

module instance may contain other module instances or "leaf instances" which are

the actual simulatable devices. The user view of the simulation data is through

29

leaf

instance

module

instance

node
leaf

instance

module

instance

node
leaf

instance

module

instance

node
leaf

instance

Figure 3.1: Storing Hierarchy Information in Bdsim

the annotated data which constitutes the top of the pyramid. The simulator it

self only uses information at the base of the pyramid since it needs only the flat

interconnection information.

The simulation nodes in BDSIM are also accessed through the hierarchy structure.

Each module instance contains a set of "elements" which contain the names of

connections that exist in the original hierarchy.1 Each element points to the node

which implements its connection. It is possible for a connection to extend across

several levels of hierarchy, and in that case there may be several elements which

connect to the same node. This is illustrated in figure 3.2.

3.3 Simulation of Transistor Networks

The algorithmto find the voltageon any particular nodein a circuitinvolveskeeping

two levelized graphs. The nodes of the graph are the BDSIM nodes. The arcs of

1For Oct input, elements represent Oct nets.

30

leaf

instance

module

instance

elem

node

module

instance

/ \
elem elem

node
leaf

instance

module

instance

elem

node
leaf

instance

Figure 3.2: Storing Element Names in Bdsim

the graph are source to drain connections of conducting (active) transistors in the

circuit. The nodes of the respective graphs are given level numbers based on the

length of the shortest conducting paths to power or ground. As transistors switch

off and on, the graphs are updated to reflect the change as shown in figure 3.3. If

at any time a node is connected by a path to ground and not connected to power,

the voltage on the node would be low. If a node is connected by a path to power

and not to ground, the voltage on the node would be high. If a node is connected

to both, its voltage is unknown. And if a node is connected to neither rail, it will

be charged to the voltage level at which it was last driven.

Keeping a levelization of nodes offers several advantages for speeding up pro

cessing. MOS transistors are bidirectional in nature and can conduct from source to

drain or from drain to source. By using the level information of the nodes, every

conducting transistor can be given a direction. When a transistor switches off, it

is easy to determine which nodes will be cut off from the power or ground rail and

which nodes will not. The nodes that are closer to a rail than the given transistor

31

Active

transistor

Inactive

transistor ^

distance from ground /
distance from Vdd

oo/O

oo/l

n

E/o

[3/1

\
00/2

1'00 1/3
O/OO J O/OO r

J_0/oo J_ 1°/4

2/2

Figure 3.3: Levelization of Transistor Networks

need not be re-evaluated. Conversely, when a transistor switches on, it is easy to

determine in which direction it will drive. Only nodes which "follow" the transistor

need to be considered.

A further optimization is also done. For each node a count is kept of how many

transistors are driving it at the current level. This is quite useful in determining

whether a transistor affects the node to which it fans out. For instance, if two

transistors drive a node at a certain level and one of the transistors switches off,

the levelization of the graph does not change. In general this scheme may prevent

a large majority of transistors and nodes from being evaluated when a transistor

switches. Figure 3.4 gives an example where only two of seven node are affected by

a switching transistor.

32

level-

number of drivers

....

2-2

c 1

....

2-1

c }
I nl-2 1-1 I "1-2 3-1

Figure 3.4: Using Driver Counts on Nodes

3.4 Capacitance and Charge Sharing

In a physical circuit, two oppositely charged nodes that are electrically connected

affect each other by "chargesharing." Depending on the relative magnitudes of the

capacitance on the two nodes, both nodes may be charged high, low, or unknown

after charge sharingoccurs. Someexisting switch level simulatorsattempt to model

charge sharing by doing pairwise comparison of node capacitances [15]. If one

node's capacitance is suflidentiy larger than the others, then both nodes receive

the voltage of former node. If the nodes have comparable capacitance, they both

receive an "undefined" voltage. The problem with this approach is that it may give

an incorrect result if more than two nodes contribute to the charge sharing. The

correct, but very expensive, solution to this problem is to determine the result of

chargesharingby taking the capacitance weighted average of voltages over all nodes

which contribute to the charge sharing.

33

BDSIM assumes that every node in a circuit has infinite capacitance. That is,

when a driver to a node is removed, that node will retain its original voltage until it is

driven in the opposite direction. When two chargednodes are electrically connected

to each other, bdsim assumes that they do not affect each other. In effect, bdsim

ignores charge sharing altogether. This is a disadvantage, but it does allow BDSIM

to run faster. Handling chargesharing correctly can be very expensive and, indeed,

may not be possible in a zero-one simulator, bdsim defers the simulation of charge

sharing to systems that can better model electrical effects.

3.5 Getting Real Circuits to Simulate

There are several dassic circuits which switch level simulators have trouble simu

lating. Some of them are difficult to handle because they rely on analog effects and

voltages that are between high and low for their operation. Some circuits rely on

certain timing characteristics that a simple event driven simulator can not handle.

bdsim supports two constructs which help to deal with difficult circuits. These

constructs are indicated by the user to give bdsim hints on how to simulate.

The most common situation that is difficult to simulate is when one transistor

is expected to "over-drive" another. That is, when two transistors are driving the

same node in opposite directions, one is expected to win. The usual result when two

transistor are fighting is that the node receives a value of "unknown.** BDSIM resolves

the problem of fighting transistor by allowing the spedfication of "weak** transistors.

A signal which is passed through a weak transistor can always be overcome by a

signal from a regular transistor. Weak transistor are selected in one of two ways. A

weak transistor is created if a transistor's W/L ratio is less than some user specified

threshold. Alternatively, the user may label individual transistor as weak.2

Figure 3.5 illustrates two examples of where weak transistors are required. The

example on the left is a NMOS inverter. Transistor 2 must be weak so that tran-

aThis is done with properties in Oct,or gate attributes in Magic.

34

M
Output

Input | r

t

Load

H>-t>

X

Figure 3.5: Using Weak Transistors

sietor 1 can pull output low. The example on the right is a static transparent latch.

The feedback transistor 4 must be weak so that transistor 3 can place a new value

in the latch.

A classic circuit that is difficult for switch level simulators is the exdusive OR

gate shown in figure 3.6. The problem in simulating this circuit occurs when the

inputs change. It is possible for some of the internal nodes to take on undefined

values during the switching time and get stuck at undefined. As a concrete example

assume that the B input of the exdusive OR gate is set high and the A input

makes a low to high transition. During transition, node A is driven low by the

input transistor, but is also driven high by a signal propagating downward through

transistor 1. This causes node A to take on a value of undefined, and transistor 2

to be stuck on rather than turning off as it should. :

BDSIM allows the user to label transistors as bdng unidirectional. This can be

used to fix the particular problem described by telling BDSIM that transistor 1 is

intended to propagate signals in the upward direction only. This breaks the feedback

loop described in the last paragraph and guarantees node A can only be affected

35

*=J, ,_- = 1

;4 = 0 —1

0 ABB

Figure 3.6: Using Directions on Transistors

by the input inverter. Of course the user should do a thorough circuit simulation

to assure that the gate really does behave in the expected manner.

3.6 Preprocessing Optimizations

As part of its read-in phase, bdsim performs two types of optimization on the

topology of givencircuits. Both of these optimizations simplify the circuit and try

to decrease the work that the simulator has to do during simulation. While these

optimizations do change the leaf instances in the given circuit, they do not change

the behavior of the circuit or the results of the simulation.

I

3.6.1 Pullups and Pulldowns

The first preprocessing optimization that bdsim makes is a simple one. All transis

tors whose sources or drains are attached directly to power or ground are replaced

with "pullups" or "pulldowns" respectively. Pullups and pulldowns, as defined by

BDSIM, are two terminal devices with a gate and an output. When the voltage on

the gate is such that the pullup (pulldown) is active, a high (low) voltage will be

driven at the output. When the voltage on the gate is such that the device is inac-

36

tive, the output will be high impedance. Pullups and pulldowns act exactly as the

transistors they replaced would have, with one important exception. The pullups

and pulldowns are unidirectional devices which only propagate signals away from

the rails. They never attempt to drive the power and ground rails. MOS transistors

are bidirectional devices to BDSIM. If the transistor replacement is not done, bd

sim spends a significant amount of effort trying to propagate signals through the

transistors toward the rails. This effort is serves no purpose and is avdded by the

transistor replacement.

3.6.2 Merging Transistor Networks

bdsim performs a second preprocessingoptimization step on the input circuit. This

step involves identify and merging together series-parallel connections of similar

transistors (all NMOS or all PMOS) into one simulatable instance. These "transistor

networks** are a multi-terminal devices. They have one source terminal, one drain

terminal, and one gate terminal foreach transistor that comprises it. When the gate

terminals have voltages on them such that a certain boolean equation is satisfied,

the network conducts between the source and drain.! Otherwise, the network is off.

Transistor networks are very similar to simple transistors and, in fact, are scheduled

and simulated in much the same way.

The advantage of creating transistor networks is fairly obvious. Several transis

tors can be compressed into one BDSIM instance. This eliminates the overhead of

scheduling many instances. The merging process also eliminates some of the circuit

nodes completdy, again decreasing overhead. The actual evaluation of boolean ex

pressions in transistor networks is done by table lookup. This makes simulating a

transistor network virtually as fast as simulating a simple transistor. In fact, the

percentage of simulation time saved by this optimization is potentially as great as

the percentage of transistors merged away.

The algorithm for generating transistor networks involves a recursive merging of

37

small transistor networks into larger ones. In the following discussion I will consider

simple transistor to be the same as a transistor network with one transistor.3 The

algorithm incorporates twotypes of merging - series and parallel. A paralld merge

is indicated when two transistor networks share the same source and drain nodes. To

perform a paralld merge, a new network is created with the correct number of gates

andanappropriate boolean function. The two original networks are then eliminated

and the new network is inserted with source and drain terminals connected to the

original source and drain nodes.

A series merge of networks is slightly more tricky. When two networks are

merged in series, thenodethat originally joined the twonetworks iseliminated. Care

must be taken to avoidmerging away important nodes. The criteria for performing

a series merge is that two networks must have a common source or drain on a node.

The node may have no other connections to any other instance. The series mergeis

performed by creating a new networkand repladngthe two original networks. The

node that formerly joined the two discarded instances then has no connections and

is also discarded by bdsim.

Notice that eliminatingnodesfrom alogic circuitis not necessarily a safepractice

for circuit simulators. When a node is eliminated so is its associated capadtance.

If bdsim performed calculations involving capadtance, some amount of processing

would be required to accommodate for eliminated capadtance. As bdsim stands,

eliminating nodes does not present a problem.

A key problem in defining a strategy for merging transistors is that the number

of permutations for constructing series-parallel networks grows extremely quickly

as more merging is done. Since it was desired that lookup tables be used for the

evaluation of the networks' boolean equations, it was necessary to limit the number

of possible networks that could be created. The number of permutations are limited

somewhat by the fact that bdsim will only create networks of five transistors or

*In fact, this is what bdsim docs internally.

38

fewer. The number of permutations is limited further by applying an ordering to

the merging operation. The smaller of two networks is merged into the larger.

With a maximum network size of live transistors, the smaller network in a merge

can contain only one or two transistors. This schemeresults in a fairly small table

of possiblemerge operations which are outlined in appendix E.

3.7 Gate-level Instances

BDSIM is capable of handling gate-level constructs as well as transistors. These gate-

level constructs may range in complexity from inverters and buffers to latches, sense

amps, and memory cells. Simulating higher level gates in BDSIM is quite simple.

Gate constructs are treated as BDSIM instances, just like transistors and transistor

networks. Gate instances, like transistor instances, are connected to a number of

nodes. Gates typically sense the voltages on the nodes at some of its terminals and

drive a voltage onto other nodes.

Gate constructs are read into bdsim from Oct and are identified by properties

attached to the Oct instances. When bdsim is unable to find identifying properties

on an instance, it assumes that it is a "module instance" and looks at lower levels

of the hierarchy searching for construct it recognizes. Currently, there is no way

to read gate structures from the sim files produced by Magic. BDSIM has only one

built-in type of gate construct - the logic gate. The logic gate is special in that

it has a variable number of terminals associated with it (depending on the gate's

function).

All gate-level structures other than logic gates are integrated into BDSIM by

linking user supply subroutines with the bdsim code. BDSIM expects a set ofroutines

for each gate type. These include routines for reading the gate from Oct, initializing

the gate, simulating the gate, saving the state of the gate (for the BDSIM "save state"

command), loading the state of the gate, and printing information about the gate

(for the "instanceinfo" command), bdsim supplies a set of interface routines to aid

39

the user in defining gates.

3.8 Scheduling Algorithm

BDSIM uses an "event driven" scheme to accomplish simulation. Events, such as

changes in node voltages cause, cause other events, such as re-evaluation of gates,

to be scheduled. When an event is scheduled, it is put in a queue with other events.

These events are processedin a first in first out (fifo) manner. Events are scheduled

and processed until there axe no more events on the queue.

BDSIM has three distinct event queues. The first queue must always be empty

before the second queue can be processed. The second queue must be empty before

the third queue is processed. This results in a three tier priority system, with

events being processed in a FIFO manner on each tier. The three queues, in order

of priority, operate on levelized graphs described in section 3.3, bdsim nodes, and

BDSIM instances.

The highest priority queue is used to keep the levelized graphs of transistors up

to date. Whenever a transistor is switched on or off, it is necessary to assure that

the levelized graphs axe still correct. This is done by scheduling the transistors that

are directly affected by the switching transistor. As the scheduled transistors axe

processed, changes in the levelization of the graph are propagated. Processing asso

ciated with the first scheduling queue can be viewed as a separate mini-simulation

that deals only with small networks of transistors. Once these networks are pro

cessed, the second and third queues are used to simulate the entire circuit.

The second queue contains nodes which were touched as graph levelization was

done. The nodes are processed to ascertain if the graph relevelization caused the

voltage on the node to change. If the voltage did indeed change, any instance

affected by the change is added to the third queue. When instances on the third

queue are evaluated, their outputs may change causing farther scheduling in the

first two queues.

40

bdsim's scheme for identifying instances to be scheduled is based on "terminal

types." Each instance has several terminals which attach to nodes. These termi

nals axe given types whichsuggest their function and how their associated instance

should be scheduled. The most inactive terminal is the output. These are ter

minals that are not affected by a change in node voltage. When a node voltage

changes, instances whose connection to that nodeis an OUTPUT need not be sched

uled. The next type of terminal type is the voltage sensitive input, vsi. Instances

connected to a node by one of these terminals are scheduled whenever the node

voltage changes. Transistor gate terminals axe vsi*s.

Instances with drive sensitive inputs, DSi's, axe scheduled whenever the node

associated with the terminal changes state in any way. For instance, a node may

change from being driven high to being chargedhigh. This change in a node would

schedule DSi'sbut not vsi's. DSi's axe useful in implementing bidirectional terminals

which output signals when they are not being driven.

The final type of terminal is the transistor input. These axe used exclusively

for transistor source and drain terminals. They are used to indicate which instances

should be considered when processing the first scheduling queue. Instances which

are scheduled in association with transistor inputs are scheduled on the first

queue. All other instances, including transistors that were triggered by their gate

terminals, axe scheduled on the third queue.

41

Chapter 4

Conclusion

I have described two programs which can be used as part of a VLSI design system.

bdsyn can be used to describe and implement logic quickly and easily. It allows

a designer to worry about the high level issues of design. Many of the low-level

details axe abstracted away. BDSIM allows a designer to test the soundness of a

design, and attempt to convince himself of a design's correctness. It is hoped that

the powerful user commands and speed optimizations in bdsim provide the designer

with an environment where he can quickly locate errors in a design.

There are a few projects in the realm of these two programs that would be useful

to attack in the future, bdsim could be extended to incorporate functional descrip

tions. High-level, gate-level, and transistor-level descriptions could be integrated

together in one simulation to allow testing of partially implemented circuits. Also,

large sections of a design could be described at a high level to afford faster simula

tion. It would be particularly useful to support the simulation ofbdsyn descriptions,

allowing a designer to simulate and synthesize from a common source.

Probably, the most useful work that could be done in the realm of these programs

(and certainly the most interesting) would be to extend bdsyn (or rewrite it) to

allow combinational and sequential descriptions. In my opinion, this could best be

done by defining a language which used combinational logic blocks as basic units.

Each block could look identical to current bdsyn syntax. These blocks could then be

42

connected together by flow-of-control structures whichindicated which blocks were

active at any one time. The program that read such a description could infer the

logic was needed to implement sequencing between logic blocks, the logic needed

to arbitrate the outputs of the logic blocks, and where latches would have to be

inserted to make the circuit work correctly.

43

Appendix A

Bdsyn Users' Guide

A.l Introduction

Bdsyn is a hardware description translator. It takes as input a textual description

of a blockof combinational logic and produces a collection of logic functions which

implement the described function. Bdsyn was written to be a front end to the

Berkeley Synthesis System. Work on bdsyn was begun in the springof 1986 as a

class project for Berkeley's synthesis class. For the synthesis class, we were given

permission to useDigital Equipment Corporation's proprietary multi-level simulator

DECSIM. The functional simulation language BDS is used for high level simulation

in DECSIM. We have chosen to use a subset of the BDS language as the input

language to BDSYN. The output of BDSYN is a multiple-level logic representationof

the described function. The output created is in BLIF (Berkeley Logic Interchange

Format). This output is suitable input for Mis which is the multiple level logic

minimizer in the Berkeley Synthesis System.

A.l.l What Bdsyn Is

Bdsyn is a tool for quickly describing and implementing combinational logic. It

allows the user to describe a circuit function and produce an implementation of

that circuit automatically. Bdsyn's output is given in a "multiple-level" format.

44

This means that BDSYN is capable of translating many types of logic configurations

that would be impractical to represent in a two-level pla form. Bdsyn supports

many high-level language constructs: subroutines, if-then-else, select, con

stant bounded FOK loops, multiple assignment to variable, and multiple returns

from a single routine. In addition, BDSYN supports complex operators such as ad

dition, and shifts by a variable amount. (Note that complex operators may imply

a large number of gates.)

When bdsyn is used in conjunction with Mis, it can be used to describe logic

in standard cell, pla, or a more complicated module generated form.

A.1.2 What Bdsyn Is Not

It is very important to keep in mind that bdsyn can be used for describing com

binational logic blocks only. We define combinational logic to be any block of logic

whichdoes not use system clocks orsignal latching of any kind. Combinational logic

does not hold state information. In particular, describing a finite state machine in

BDSYN requires the logic designer (or a program) to add external latches to the

described combinational logic block that hold the current state of the machine.

The limitation of describing only combinational logic is common to pla descrip

tion programs as well as bdsyn. (Although there may be provisions for automat

ically adding the required external latches.) The reason we find it necessary to

describe this limitation in such detail here, however, is that some of the bdsyn

constructs (e.g. for loops and multiple assignment) appear very sequential in na

ture. In reality, they are merely interpreted as a short hand for describing parallel

structure. There axe many examples of the use of sequential-like descriptions in the

last section of this guide.

45

A.2 Using Bdsyn

A.2.1 Describing Logic in Bdsyn

Bdsyn descriptions axevery similar to standard procedural programming languages

(Pascal, C, etc.) Describing logic in BDSYN amounts to writing a program that

accomplishes the desired function. Each flow-of-control structure and operation

corresponds roughly to a small block of logic. Each variable corresponds to "bit

vector," which is a group of single bit signals in the hardware.

At the top of the bdsyn description it is necessary to define input and output

"ports." In a programming point of view, these ports can be viewed as external

variable declarations. In a hardware point of view, these ports represent primary

input andoutputsofthe combinational logic block. Once the portsaxe declared, the

logic designer should define a set of values for the input ports for which he wishes

the hardware to operate. If he then writes a program that will generate desired

output values for eachof the interesting input combinations, this constitutesa legal

description.

To say it in a different way, suppose a BDSYN "program" has been written.

Bdsyn will create logic that will act in an identical manner to that program. If a

set of inputs were to be introduced to the bdsyn program and the program were

executed (run in a software sense), a particular set of outputs would be generated.

If these same inputs were introduced to the combinational logic block created by

BDSYN, the same set of outputs would result.

A.2.2 Running Bdsyn

Once a hardware description has been written, it can be converted to logic by

running bdsyn. The input description is read from the file givenon the command

line. The BLIF output is returned to standard output. There are several command

line options for BDSYN which axe outlined in the bdsyn manual page. Two of the

options, however, will be discussed here. '

46

The -b option tells BDSYN not to doits cleanup evaluation. This cleanup evalu

ation process in bdsyn eliminates redundant andunnecessary logic. Unfortunately,

it mayalso havethe undesired effect ofeliminating userspecified intermediate vari

ables that BDSYN considers unimportant. The -b makes sure that the variable are

preserved, at the priceof extra logic.1

The -c option is followed by a numberwhich tells BDSYN howmuch "collapsing"

of logic that it should do. Collapsing is done in order to decrease the amount of

output which bdsyn creates. Although quite rare, it is possible to create an input

description which causes bdsyn to collapse too much logic and run for inordinate

amounts of time. The option -cl will limit the amount of collapsing that is done,

and will alleviate the problem. Bdsyn uses Mis do to logic collapsing for it. The

actual communication with Mis is accomplished through the use of UNIX pipes. On

non-UNIX systems or on a system where Mis is not available, the option -cO should

be used to turn off collapsing altogether.

A.2.3 What is New in Version 1.1

There are two main changes in BDSYN since version 1.0 that users may notice. The

first change is that the intermediate variable names created by BDSYN axe shorter.

Each variable is followed by two numbers. The first number is the block in the

description in which the variable is set. The second number represents how many

times the variable has been revised in the block.

The second change is that BDSYN will create its own intermediate variables cor

responding to routine return values and condition expressions from IF and select

statements. These variables are good candidates for having a large fanout. They are

created in the hope that it will save Mis some work in extracting common factors.

On occasion, bdsyn may create an internal variable which does not fan out. mis

will give a warning when such a variable is created. In general, it is safe to ignore

lThe extra logic could easily be reduced by MIS at a later time.

47

these warnings for variables whose name begin with u$$COND."

A.3 Language Constructs

A.3.1 Names and Numbers

Bdsyn accepts a subset of the BDS language as input. BDS is a Pascal-likelanguage.

The input consists of names, numbers, and reserved keywords separated by white

space. White space is spaces, tabs, and carriage returns. Any characters following

a'!' (exclamation point) are interpretedas comments by bdsyn. Legal names may

contain the characters a-z, A-Z, 0-9,4J (underscore), and T. Other characters axe

legal in the nameas longas the name is quoted with double quotes ("). Names may

not be any of the reserved keywords (given below) unless they are quoted. Names

that begin with *$' are illegal. Bdsyn, like decsim, is caseinsensitive, so the name

"signal" is the same as the name "SIGNAL."

Numbers in BDSYN must be positive and may be given in any one of base 2,

4, 8, 10, or 16. Decimal numbers are represented as a simple integer (e.g. 511).

Other base numbers are represented as an integer followed by a **' and the base

(e.g. IFF*16). The width, in bits, of a decimal number is the minimum number of

bits required to represent that number. The width of a number with a '#' is equal

to the number of bits required to represent a number in that base with the given

number of digits. For example 001*2 has width three, 123*8 has width nine, and

12345678*16 has width thirty-two. BDSYN has the limitation that numbers in the

input must be thirty-two bits or fewer. This limitation may be overcomeby the use

of the concatenation operator, (e.g. 12*16 k 34567890*16 is a forty bit constant.)

A.3.2 Reserved Keywords

Table A.1 gives a list of reserved words for bdsyn. These may not be used as names

unless they are quoted. In addition to the reservedwords there axeseveral keywords

48

AND BEGIN BUF BY CONSTANT

DO DOWNTO ELSE END ENDMODEL

D ROUTINE ENDSELECT ENDSELECTALL ENDSELECTONE EQL

EQV FOR FROM GEQ GTR

IF LEAVE LEQ LSS MACRO

MOD MODEL NAND NEQ NOR

NOT OR OTHERWISE OXT REQUIRE

RETURN ROUTINE SELECT SELECTALL SELECTONE

SLO SLl SLR SRO SRl

SRR STATE SXT SYNONYM THEN

TO WIDTH XOR ZXT

Table A.1: Bdsyn Reserved Words

BEHAVIOR ENDBBHAVIOR ENDMODULE ENTRY FORWARD

FOURSTATE HALT INFORM INPUT INVALID

MODULE NOENTRY OUTPUT PORT REPEAT

REVISION STATIC TWOSTATE UNTIL WHILE

Table A.2: Keywords Ignored by Bdsyn

which BDSYN explicitly ignores but are included so that complete BDS descriptions

(not just our subset) may be parsed. They are listed in table A.2

A.3.3 Variables

Bdsyn has two types of variables which it understands. The first, "logic variables,"

imply actual logic and can be thought of as wires in the actual layout. Logic

variables axe declared with bit subscripts that define their width. The lower bit

numbers correspond to the less significant bits, and bdsyn requires that the high

bit be first.

STATE n&B«l<7:0>;

If the bit range of a variable is omitted in its declaration,

STATE namo2;

49

BDSYN will assume a single bit vector (name2<0>).

When using a logic variable (as opposed to specifying one), the bit subscript is

used to choose certain bits from the bit vector. If the bit vector is left out, the the

entire bit vector is used.

In addition to logic variables, bdsyn defines "meta-vaxiables." Their main ap

plication is as the index variable for FOR loops. Loop index variables are required

to be meta-vaxiables. Meta-variables are declared with null bit subscripts:

STATE nam«30;

Meta-vaxiables do not imply any logic, and are used for temporaxy storage of

constants. When meta-vaxiables appeax on the left hand side of an assignment, the

right hand side is evaluated and assigned to the meta-vaxiable. The right hand side
of this assignment must be a meta-variable expression (i.e., an expression written

from meta-variables and constants). When meta-vaxiables appeax onthe right hand

of an assignment, they are treated exactly like constants. This means that meta

variables may be used in places where logic variables are disallowed by bdsyn.

Section A.6 covers more about meta-vaxiables.

A.3.4 Input Format

The following is a BNF description ofa typical input program for BDSYN. Keywords

are given in capital letters, and user names and productions are given in small

letters. Optional phrases are given in square brackets ' []'. Phrases in curly

braces '{."}' manybe repeated zero or more times in the input. The character T

(vertical bar) represents a choice of many lines.

The basic bdsyn input file consists of a "model":

MODEL modal.name [output.var {, output.var}] •
[input_var {, input.varJJ ;

{global.declaration ;>
{routine}

EHDMODEL Dnod©l_name];

A "globaLdeclaxation" is defined as the following:

50

I STATE global.var {, global.var}
I CONSTANT constant.namo = number {, constant_name = number}
I SYNONYM var.name = var.name {, var.name » var.name>

A "routine" is defined as the following:

ROUTINE routine.name [bit.subscripts] [(var.param {, var.param})] ;
{ local.declaration ;}
{ C label.name:] statement ;>

ENDROUTZNE [routine.name];

A "locaLdeclaration" is defined as the following:

I STATE local.var {, local.var}
I CONSTANT constant_name » number {, constant.name • number}
I SYNONYM var.name « var.name {, var.name = var.name}

A statement of a routine is defined below. Note: The square brackets in the

SELECT statements represent actual brackets in the input.

I BEGIN {statement ;} END
I variable a expression
I IF expression THEN statement [ELSE statement]

I FOE meta.var FROM const.expr TO const.expr
[BY const.expr] DO statement

I FOR meta.var FROM const.expr DOVNTO const.expr
[BY const.expr] DO statement

I SELECT expression FROM {[expression {, expression}]: statement;}
{[OTHERWISE]: statement ;} ENDSELECT

I SELECTALL expression FROM {[expression {, expression}]: statement;}
{[OTHERWISE]: statement ;} ENDSELECTALL

I SELECTONE expression FROM {[expression {, expression}]: statement;}
{[OTHERWISE]: statement ;} ENDSELECTOHE

I RETURN [expression]
I LEAVE label.name

Note that these tables imply that a semicolon V separates every statement. As in

Pascal, there is no semicolon before ELSE, but unlike Pascal there is a semicolon

before end. Expressions and const.expr's (constant expressions) will be described

in later sections.

51

A.3.5 Declaration Statements

The model statement defines the primary inputs and outputs to the combinational

logic block being described. The declared "ports" maynot be meta-vaxiables.

The STATE, constant, and synonym maybe used as either globaldeclarations,

applying to all routines, or local declarations, applying to only one routine. The

STATE statement is for declaration of variables. All variables must be declared prior

to use. Local variables can be used only within the scope of a routine and their

values axe lost between consecutive calls to a routine. Constant declarations axe

used to assign a name to a constant. Declared constants can be used anywhere

a constant can. Synonyms are used to create an alternate name for a previously

defined variable. They are particularly useful for defining subfields of a variable:

SYNONYM opcode<6:0> * instruction<31:25>;

A.3.6 Flow-of-control Statements

Bdsyn offers a rich selection of flow-of-control statements. They axe IF, select,

selectone, selectall, FOR, return, and leave. The IF statement implements

optional execution of a statement. If the least significant bit of the IF expression

evaluates to one, the THEN clause is used. If the low bit evaluates to zero, the

ELSE clause (if present) is used. The select statement is used to execute one

statement out of many. If the expression following the SELECT keyword is equal

to the expression appearing in the square brackets, the corresponding statement is

executed.

SELECTONE and SELECTALL are simply a shorthand for several IF statements.

SELECTONE implies nested IF statements:

SELECTONE expr FROM
[exprl, expr2]: statomentl;
[expr3]: statement2;
[OTHERWISE]: statements;

ENDSELECTONE;

<

is equivalent to:

52

IF (ezpr EQL exprl) OR (expr EQL expr2) THEN
statementl

ELSE IF expr EQL expr3 THEN
statement2

ELSE

statements;

SELECTALL is equivalent to sequential IF statements:

SELECTALL expr FROM
[exprl, expr2]: statementl;
[expr3]: atatement2;
[OTHERWISE]: statements;

ENDSELECTALL;

is equivalent to:

IF (expr EQL exprl) OR (expr EQL expr2) THEN
statementl;

IF expr EQL expr3 THEN
statement2;

IF (expr NEQ exprl) AND (expr NEQ expr2) AND (expr NEQ expr3) THEN
statements;

selectall is different than select in that selectall implies sequentiality in its

case evaluation. The SELECT statement can be viewed as having all of its cases

evaluated in parallel. A selectall allows two cases to evaluate to true. If two

cases are true in a SELECT, incorrect logic may be produced. SELECT generally

implies much less logic, however, because there is no implied ordering of the cases.

FOR statements are used to iterate a single piece of code several times. As

a hardware description language, bdsyn must enforce several rules on the FOR

statement. The expressions which specify the start, end, and step values for the

loop index must be either constants, or constant expressions. This is because the

number of iterations must be fixed. Bdsyn also requires that the index variable of

the FOR statement is a meta-variable. FOR loops may be nested, and since meta

variables are treated as constants by BDSYN, the inner loop may depend on the

outer loop.

FOR i FROM 0 TO 7 DO
FOR j FROM i TO 7 DO

statement;

53

The return statement is used to break out of a subroutine and return to the

calling routine. If the subroutine returns a value (as described below) the return

statement must be followed by an expression which is the return value. The leave

statement is similar to return in that can be used to break out of a block of

statements. When a leave statement is encountered, control will break out of a

labeled statement. The leave must occur within the labeled statement to which it

points. For example:
loop: FOR i FROM 1 TO 10 DO BEGIN

statementl;
IF condition THEN LEAVE loop;
statement2;

END;

Notice that by using the leave it is possible to describe a loop whose number of

iterations depends on a logic variable (condition in this case). It is only important

that the for statement itself have extents which are constants or meta-variables.

A.3.7 Routines and Routine Calls

Bdsyn has no concept of a main routine, per se. At runtime, bdsyn routines are

classified as main routines or subroutines depending on whether or not they called

by another routine. Bdsyn allows many main routines in the same model, and

these routines can be viewed as running in parallel. It is an error in bdsyn for two

disjoint routines (one is not called by the other) to set the same global variable or

primary output of the block. Two disjoint routines may call the same subroutine,

however. It is illegal to have recursive routine calls.

Subroutines may return a singlevariable(regular or meta) to the callingroutine.

A subroutine that returns a value is declared by placing a bit subscript after the

routine name in the routine declaration. The bit subscript specifies the width

of the return value or if the value is a meta-variable. If the subscript is missing,

the routine returns no value. Parameters passed to subroutines must be declared

as part of the routine declaration. Parameter passing has the same semantics as

assignment statements (described below).

54

A common error in bdsyn is to havea subroutine whichis not called by another

routine. This causes bdsyn to treat the subroutine as a main routine.

A.3.8 Assignment Statements

Assignment statements are written in the form:

variable » expression

They result is that the variable receives the value of the expression. If the width

of the variable is wider than the width of the evaluated expression, extra zeros will

be added to pad the high bits of the variable. If the expression is wider than the

variable, the highbits axe truncated. If the variable is a meta-variable the expression

may contain only constants and other meta-variables.

It is possible to assign a value to the same variable twice in the same program.

Bdsyn will treat this situation in the same manner as any sequential programming

language. In particular the following works correctly.

x » 1; y » z; x « 0;
IF x NEQ y THEN is.ok * 1;

Section A.4 contains further details on multiple assignment.

A.3.9 Expressions

Legal expressions areof the following form. They arelisted in orderof precedence,

and expressions higher on the list are evaluated first. The curly braces in the ZXT,

OXT, and SXT expressions represent actualcharacters in the input, not a repeatable

phrase.

number ! number as described above
constant ! a declared constant
meta_variable
regular.variable
(expression) I parenthesized expression
expre88ion<expre8sion> ! choose a bit
erpression<const.expr:const.expr> I choose several bits
expression t expression i concatenation
expression SRO expression ! shift right filling with zeros

55

expression SRI expression
expression SRR expression
expression SLO expression
expression SL1 expression
expression SLR expression
expression * expression
const.expr / const.expr
const.expr MOD const.expr
expression + expression
expression - expression
expression EQL expression
expression NEQ expression
expression LSS expression
expression LEQ expression
expression GTR expression
expression GEQ expression
BUF expression
NOT expression
expression AND expression
expression HAND expression
expression OR expression
expression NOR expression
expression XOR expression
expression EQV expression
WIDTH expression
ZXT {WIDTH = const.expr} expression
OZT {WIDTH » const.expr} expression

shift right filling with ones
rotate right
shift left filling with zeros
shift left filling with ones
rotate left

multiplication
integer division
mod operation
addition

subtraction
Equal comparison
Not equal comparison
Less than comparison
Less than equal comparison
Greater than comparison
Greater than equal comparison
null operation
bitwise NOT
bitwise AND
bitwise HAND
bitwise OR
bitwise NOR
bitwise XOR
bitwise XNOR
return number of bits

! zero extend
! one extend

SXT {WIDTH » const.expr} expression ! sign extend

In the above uconst_expr" represents a constant expression. A constant expression

is an expressionthat containsonly numbers, declared constants, and meta-vaxiables.

It may not contain regular variables.

The single bit selection operator, <0>, may take an arbitrary expression as the

bit selector. When the bit selector is not a constant, a multiplexor is implied. The

multiple bit selection operator, <31:0>,requires that both expressions be a constant

expression and that the first number is larger than the second. The concatenation

operator '&' joins two bit vectors into one. The expression before the '&' becomes

the high order bits, the trailing expression becomes the low order bits.

The shift operations shift the first expression by an amount given by the second

expression. When the shift amount is a variable expression, a barrel shifter is im

plied. Note: the shift operation does not change the width of the shifted expression.

This means it is possible to shift bits off the end of the expression accidentally. Care

should be taken to extend the expression (using ZXT) so no bits axe lost.

56

«-f', *-*, •*', */*, and MOD implement integer arithmetic and are supported for

constant expressions. In addition, *+', *-', and '** are supported for variable expres

sions. '+• and •-* imply a combinational adder in this case, and •*' implies a full

combinational multiplier. The '*' operation should be used sparingly on variable

expressions since it implies so much logic. In particular, '*' should not be used

where a shift would be sufficient.

The comparison operators evaluate to a single bit 1if the condition is true anda

single bit 0 if the condition is false. If anexpression in the comparison is a variable,

a comparator is implied. The bitwise boolean operators take two bit vectors and

perform the desired operation bit by bit. If one of the expressions is smaller than

the other, it will be automatically zero extended. The width operator returns a

constant which is the number of bits in the given expression. ZXT, OXT, and sxt

will add more significant bits to the given expression to make it the given width. It

is an error to specify a width that is smaller than the given expression.

A.3.10 Macro Definitions and Required Files

BDSYN has the facility for definingmacro definitionsin the input description. Macro

definitions may appeax anywhere in the input description and have the following

format:

MACRO macro.name « macro.body SENDMACRO

Following a macrodefinition,any useof macrojname willbe replaced by the macrojbody.

The macrojbody is expanded exactly as typed (including comments). It may span

more than one line and may contain uses of other macro definitions.

Bdsyn also allows distinct input files to be included within other files. This is

done using the REQUIRE command. A REQUIRE may occur anywhere in a BDSYN

file and has the syntax:

REQUIRE 'filename.ext';

i

The text of the required file will be inserted in place of the require command.

57

A.4 Multiple Assignment

As mentioned in the introduction, bdsyn's input descriptions appeax very sequen

tial in nature yet axe intended to describe combinational logic. We feel that our

form of sequential description gives the user a great deal of power and flexibility in

specifying logic. The translation of sequential description to combinational logic is

accomplished by correctly handling "multiple assignment."

Our definition of multiple assignment is the correct and consistent handling of

many sequential assignments to the same variable. For example:

x s default.value;
IF condition THEN x = new.value;

describes a multiplexer which is controlled by "condition." The above example

could be rewritten in a more conventional way:

IF condition THEN
x * default.value

ELSE

x * nev.value;

At first glance, one might think that multipleassignment is not particularly useful.

In fact, multiple assignment is the heart of bdsyn's ability to process sequential

descriptions. Several examples of this can be found in the "Examples" section at

the end of this guide.

A.5 Unspecified Variables

In BDSYN input descriptions, as in any programminglanguage, it is possible to have

variables which are not always defined. For instance, in the following code:

IF cond THEN
x « expr;

the variable s, if it has not previously been assigned to, is unspecified when cond is

false.

58

Under normal circumstances bdsyn will assume that when variables axe unspec

ified, they should have the value zero. This assumption is probably not a good one.

In some cases, the unspecified variables could be caused by a mistake in the user

specification. In other cases theuser maynot care about avariable value under cer

tain conditions. In this case the user should probably specify DONT.CARE conditions

as discussed in section A.8.

In general, it is verydifficult for bdsyn to detect the useof unspecified variables.

However, unspecified variables may be detected by using Mis. First, bdsyn should

be run using the -n flag. This will cause bdsyn to create a group of variables that

end with the characters "**". (Also, the "inputs" line in the BLIF output will not

be printed.) The BLIF file containing the "**" variables should then be read into

MIS and minimized. After minimization, if any of the "**" variables fan out to any

gates, this corresponds to the use of an unspecified variable.

A.6 Meta-variables

Meta-variables have a very separate use from logic variables. They can be used

within constant expressions because they represent constant values. Unlike logic

variables, they axe guaranteed to always assume the same particular value. The

value of a logic variable may change based on the primary inputs to the bdsyn

combinational block.

Because BDSYN is able to statically evaluate the value of meta-variables, it is

able to perform some simple logic minimization when meta-variables are involved.

In the following example, functionl and function2 axe complex functions, (t is a

meta-variable.)

FOR i FOR 0 TO 5 DO
IF i MOD 2 EQL 0 THEN

x • functionl(x)
ELSE

x » function2(x);

After BDSYN minimization this becomes:

59

x ° functionl(x);
x a function2(x);
x = functionl(x);
x = function2(x);
x s functionl(x);
x « function2(x);

Had the condition in the IF statement above depended on a logic variable, no such

minimization would have been possible inside of bdsyn. This is because the value

of a logic variable is generally unpredictable.

One non-obvious problem with meta-variables is the following. A meta-variable

is definedwithin a branching structure (i.e. if, select, etc.). If the conditionof the

branching structure depends on a logic variable, the meta-variable is not correctly

defined upon exit from that structure. For example:

meta » 3;
IF X EQL 1 THEN BEGIN

meta * 4;
a<0> « v<meta>; ! This works correctly

END
a<l> • v<meta>; ! This uses meta * 4 even if (x NEQ 1)

This problem stems from indirectly trying to define the meta-variablemeta in terms

of the logic variable x. For similar reasons, meta-variables that are used for loop

counts are not necessarily correct upon exit from the loop. For example:

loop: FOR i FROM 1 TO 10 DO BEGIN
x * function(x);
IF x EQL 1 THEN LEAVE loop;

END;
y » i; 1 y gets the value 10 regardless of the function

A.7 Complex Operators

Bdsyn supports severaloperations which can not be implemented by just one or two

gates. These include'+','-', '*', leq, geq, lss, gtr, shifts, and singlebit selection

when they areoperating on non-constants. The operationsimply complex structures

such as adders, multipliers, comparators, barrel shifters, and multiplexors. The

complex operators areimplemented through a set of library routines found in the file

60

"bdsynJib". The macros in the libraryaxe used to createroutinesof an appropriate

size (a3bit adder, ora 4 bit comparator, etc)which are then inserted into the code.

A.8 Don't Care Conditions

It is often the case that it makes no difference what the value of an output is. For

example, in a finite state machine with seven states encoded in three state bits,

state 7 never occurs:

SELECT state<2:0> FROM
[0,1,2,3]: output « 0;
[4,5,6]: output = 1;

ENDSELECT;

Here, the output for state 7 would be unspecified. To resolve this, a default value

for output might be added.

output « 0;
SELECT state<2:0> FROM

[0,1,2,3]: output a 0;
[4,5,6]: output « 1;

ENDSELECT;

The problem is that this is unnecessarily restrictive, and does not allow for all of

the potential logic simplification. In actuality, it may make no difference whether

"output • 0" or "output • 1" in state 7, because state 7 never occurs. For this

reason, BDSYN has the special variable DONT.CARE, which will allow logic optimiza

tion tools to choose the optimal value for output. DONT.CARE is used as any other

variable:

output • DONT.CARE;
SELECT state<2:0> FROM

[0,1,2,3]: output s 0;
[4,5,6]: output » 1;

ENDSELECT;

Inside of bdsyn, assignments from this variable will automatically be extended to

fit the size of the destination. When DONT.CARE is used, it will automatically be

added to the input port list in bdsyn's blif output. There is no need to declare

the DONT.CARE variable.

61

The current version of Mis can not process the don't care conditions produced

by BDSYN. This is because don't care specifications in multiple level descriptions

can be ambiguous in their meaning. Until a uniform method for handling multiple

level don't caresis implemented, it is still possible to use espresso to make partial

use of the don't care specification. This can be accomplished by the following (in

UNIX):

bdsyn input_descr I mis -c dp -T pla I \
espresso -Dmapdc I espresso > output.pla

The resulting pla can then be read into Mis.

If a description has been written that includes a don't care specification and the

use of the don't care specification is not desired, the -z option should be used. The

-z option maps every use of D0NT.CARE to zero. The effect will be that in places

where DONT.CARE is specified, the result will be forced to the value zero.

A.9 Examples

Figures A.1 through A.5 contain five examples of various bdsyn descriptions. The

first is a generic finite state machine. It merely generates the next state and control

signals based on the present state. The next three descriptions implement the exact

same pieceof logic. They areincluded to demonstrate the flexibilityof bdsyn. Note

that the second implementation (C0UNT2) uses intermediate variables seenZero

and aeenTrailing as state holders. The variables do not really imply latches to hold

the state. They are simply a convenient way to describe an idea.

The fifth example is a complicated decoder circuit. Particular attention should

be given to the last statement of the main routine. It illustrates an important

aspect of BDSYN. The decoder is described as a barrel shifter which shifts a single

bit 1 onto the correct word line. This is obviously a very inefficient way to build

a decoder. It is important to note, however, that bdsyn and mis are capable of

reducing the hardware to a more sensible implementation. There is generally no

62

penalty associated with a quick and dirty shortcut description. The logic that is

generated is the same.

63

i The classic traffic light controller finite state machine from
! Mead and Conway, Introduction to VLSI Technology, page 85
MODEL traffic.light

hl<l:0>, ! control for highway light
fl<l:0>, ! control for farm light
•t<0>, ! to start the interval timer
neztState<l:0> =
c<0>, ! indicating a car on the farm road
ts<0>, ! timeout of short interval timer
tl<0>, ! timeout of long interval timer
presentState<l:0> ;

! state assignments
CONSTANT HG e 0, HY a 2, FG « 3. FY • 1;
I symbolic output assignments
CONSTANT GREEN » 0, RED » 1, YELLOW = 2;

ROUTINE traffic.light.controller;
! set up default outputs (use of multiple assignment)
neztState = presentStato;
st s 0;

SELECT presentStato FROM
[HG]: BEGIN

hi » GREEN; fl a RED;
IF c AND tl THEN BEGIN

nextState = HY; '
st « 1;

END;
END;

[BY]: BEGIN
hi * YELLOW; fl « RED;
IF ts THEN BEGIN

neztState a FG;
st a 1;

END;
END;

[FG]: BEGIN
hi s RED; fl = GREEN;
IF NOT c or tl THEN BEGIN

nextState = FY;
st a 1;

END;
END;

[FY]: BEGIN
hi « RED; fl = YELLOW;
IF ts THEN BEGIN

nextState = HG;
st a 1;

END;
END;

ENDSELECT;
ENDROUTINE;
ENDMODEL;

Figure A.1: Traffic Light Controller

64

I C0UNT1 (Count Zeros):

! The input is an 8 bit binary string expected to consist of
! a string of l'a, a string of O's, and a string of l's. Any
! of these strings may be zero length.
! For example, '11000111', '10000001', and '11110000' are all
! valid strings, and '10001100' is a mal-formed string.

iThe problem is to design a circuit which, given the 8 bit
I string, returns the count of number of consecutive zeros in
! the string, or returns an error condition if the string is
f mal-formed. The output is undefined if the input string is
(mal-formed.

MODEL count1 error<0>, out<3:0> a in<7:0>;

! find first bit matching 'val' (return index of the bit)
ROUTINE ff<3:0>(x<7:0>, val<0>);

STATE iO;
FOR i FROM 0 TO 7 DO

IF x<i> EQL val THEN
RETURN i;

RETURN 8;
ENDR0UTINE;

ROUTINE main;
STATE x<7:0>;

! Shift off the first string of l's
x a in SRI ff(in, 0);

! Count is where the first 1 is
out a lf(Xi 1);

! Check for a mal-formed string:
f shift off O's, and check for any more O's
x a x SRI out;
error a if(x, o) NEQ 8;
IF error THEN

out a DONT.CARE;

ENDROUTINE;
ENDM0DEL;

Figure A.2: Countl

65

! C0UNT2 (Count Zeros)
I A different implementation for the last example.

MODEL count2 error<0>, out<3:0> a in<7:0>;
CONSTANT TRUE a i, FALSE = 0;

ROUTINE legal<0>(x<7:0>);
STATE i<>;
STATE seenZero; I there has been a zero
STATE seenTrailing; I we have hit the trailing ones field

seenZero a FALSE;
seenTrailing a FALSE;
FOR i FROM 0 TO 7 DO

IF seenTrailing AND (x<i> EQL 0) THEN
RETURN FALSE ! Illegal string

ELSE IF seenZero AND (x<i> EQL 1) THEN
seenTrailing a TRUE

ELSE IF x<i> EQL 0 THEN
seenZero a TRUE;

! If we made it to here then the input is legal
RETURN TRUE;

ENDROUTINE;

ROUTINE zeros<3:0>(x<7:0>);
STATE i<>, count<3:0>;
count a o;
FOR i FROM 0 TO 7 DO

IF x<i> EQL 0 THEN
count a count ♦ 1;

RETURN count;
ENDROUTINE;

ROUTINE main;
IF legal(in) THEN BEGIN

error a FALSE;
out a zeros(in);

END ELSE BEGIN

error a TRUE;
out a DONT.CARE;

END;
ENDROUTINE;
ENDMODEL;

Figure A.3: Count2

66

I C0UNT3 (Count Zeros)
! Yet another implementation

MODEL count3 error<0>, out<3:0> a in<7:0>;
CONSTANT TRUE a 1, FALSE a 0;

I check for a legal string
ROUTINE legal<0>U<7:0>);

STATE iO, j<>, k<>;

) Look for a ...0...1...0...
FOR i FROM 0 to 6 DO

FOR j FROM i+1 to 6 DO
FOR k FROM j+1 to 7 DO

IF (x<i> EQL 0) AND (x<j> EQL 1) AND
(x<k> EQL 0) THEN

! The input is illegal
RETURN FALSE;

! If ve made it to here then the input is legal
RETURN TRUE;

ENDROUTINE;

ROUTINE zeros<3:0>(x<7:0>);
STATE iO, count<3:0>;
count a o;
FOR i FROM 0 TO 7 DO

IF x<i> EQL 0 THEN
count a count + 1;

RETURN count;
ENDROUTINE;

ROUTINE main;
IF legal(in) THEN BEGIN

error a FALSE;
out a zeros(in);

END ELSE BEGIN
error a TRUE;
out a DONT.CARE;

END;
ENDROUTINE;
ENDMODEL;

Figure A.4: Count3

67

! Register decoder for the SPUR cpu chip.
! The register file of the SPUR cpu uses a Berkeley RISC
! type register windowing scheme. The register file is
! divided into 8 overlapping register "windows". Each
! register window can access 32 of SPUR's 138 registers.
! The first 10 registers of all of the windows point to
I the same 10 "global1* registers. The next 6 registers
! are shared with the top six registers of the previous
I window. The 6 top registers of each window are similarly
! shared with the next window. The last window wraps
I around and shares registers with the first window.
MODEL reg_decode

addr<137:0> ! one-hot decoded output (word lines)
s

cwp<2:0>, ! Current window pointer
reg<4:0>; I Current register in the window

CONSTANT
NUMREGS a 138, ! total number of registers
NUMGLOBALS =10; ! number of global registers

ROUTINE REG.DEC0DEO;
STATE

sum<7:0>, i temporary variable
decAddr<7:0>; I decoded address (number of the word line)

1 calculate the correct register number
IF (reg LSS NUMGLOBALS) THEN

! point to the global registers
decAddr a regSpec

ELSE BEGIN
sun a (cwp t 0000#2) + regSpec;

! Check for wrap around. If so, need to subtract an offset
IF (sum GTR (NUMREGS - 1)) THEN

sum a 8um - (NUMREGS - NUMGLOBALS);

decAddr a sum;
END;

I Do the actual decoding (**♦ See main text for details ***)
addr a (zzt <width=138} 1) SLO decAddr;

ENDROUTINE;
ENDMODEL;

Figure A.5: Register file decoder

68

Appendix B

Processing of a Bdsyn Example

The following is an example of the processing done by BDSYN. While the actual

input example is somewhat contrived, it illustrates almost all of the aspects of

BDSYN. On the foiling pages results of each BDSYN processing step are given in a

BDS description format. This is not terribly misleading, since bdsyn actual does

store its intermediate results in a BDS parse tree. The example program follows.

The function of the logic is to take a four bit input vector in and rotate it until its

low bit is a 1 (one). If none of the bits are 1, an the flag erroris set.

MODEL rotate out<3:0>, error a in<3:0>;

ROUTINE main;
STATE i<>, zeros<2:0>;

I find the number of trailing zeros
block: BEGIN

FOR i FROM 0 TO 3 DO
IF in<i> EQL 1 THEN BEGIN

zeros a i;
LEAVE block;

END;
zeros a 4;

END;

I rotate by correct amount
out a in SRR zeros<l:0>;
error a zeros EQL 4; ;

ENDROUTINE;
ENDMODEL;

After the parse stage of BDSYN a single parse tree has been generated (corre

sponding to the single routine called main).

69

block: BEGIN
FOR i FROM 0 TO 3 DO

IF in<i> EQL 1 THEN BEGIN
zeros a i;
LEAVE block;

END;
zeros a 4;

END;
out s in SRR zeros<l:0>;
error a zeros EQL 4;

The inline processing stage has very little to do, since there is only one routine.

It does, however, give unique names to main's local variables. This avoids name

clashes with global variables (and local variables of other routines).

block: BEGIN
FOR main.O/i FROM 0 TO 3 DO

IF in<main.O/i> EQL 1 THEN BEGIN
main.O/zeros a main_0/i;
LEAVE block;

END;
main.O/zeros a 4;

END;
out a in SRR main.O/zeros<l:0>;
error a main.O/zeros EQL 4;

The meta processing stage unrolls the FOR loop and substitutes constants for

the meta-variable main.O/i.

block: BEGIN
IF in<0> EQL 1 THEN BEGIN

main.O/zeros » 0;
LEAVE block;

END*

IF in<l> EQL 1 THEN BEGIN
main.O/zeros a j;
LEAVE block;

END;
IF in<2> EQL 1 THEN BEGIN

main.O/zeros a 2;
LEAVE block;

END*

IF in<3> EQL 1 THEN BEGIN
main.O/zeros a 3;
LEAVE block;

END;
main.O/zeros a 4;

END;
out a in SRR main_0/zeros<l:0>;
error a main.O/zeros EQL 4;

The next stage of processing, complex, detects that the function SRR is a

complex operator and performs two tasks. It calls the parser to create a shifting

70

routine called $SRR„4„2 from the library macro $SRR.

ROUTINE $SRR.4.2(a<3:0>, b<l:0>);
STATE pou<>, iO;

POW a 1
FOR i FROM 0 TO 1 DO BEGIN

IF b<i> THEN a = a SRR pov;
pov a pov * 2;

END;
RETURN a;

ENDROUTINE;

It then replaces the second to last line of mainwith:

out a $SRR.4.2(in, zeros);

BDSYN, detecting that complex has inserted a subroutine, then goes back to

the inline step. After inline and meta have been repeated, the following results.

Notice that pow disappears because it is a meta-variable.

block: BEGIN
IF in<0> EQL 1 THEN BEGIN

main.O/zeros a 0;
LEAVE block;

END;
IF in<l> EQL 1 THEN BEGIN

main.O/zeros a %•
LEAVE block;

END;
IF in<2> EQL 1 THEN BEGIN

main.O/zeros a 2;
LEAVE block;

END;
IF in<3> EqL 1 THEN BEGIN

main.O/zeros a 3;
LEAVE block;

END;
main.O/zeros a 4;

END*

$SRR.4.2/a a in;
$SRR.4.2/b a main.O/zeros<l:0>;
IF $SRR.4.2/b<0> EQL 1 THEN

$SRR.4.2/a a $SRR.4.2/a SRR 1;
IF $SRR.4.2/b<l> EQL 1 THEN

$SRR.4.2/a a $SRR.4.2/a SRR 2;
S$SRR.4.2 a $SRR_4.2/a;
out a $$SRR.4_2;
error 3 main.O/zeros EQL 4;

The next phase of processing is evaluation. The only things in the given input

that can be reduced at this stage are the SRR and EQL operations. From this point

on, I will shorten the names of the variables to save space and improve readability.

71

block: BEGIN
IF in<0> THEN BEGIN

zeros a 0;
LEAVE block;

END*

IF in<l> THEN BEGIN
zeros a 1;
LEAVE block;

END;
IF in<2> THEN BEGIN

zeros a 2;
LEAVE block;

END;
IF in<3> THEN BEGIN

zeros a 3;
LEAVE block;

END;
zeros a 4;

END;
a a in;
b a zero8<l:0>;
IF b<0> THEN

a<3> a a<0>; a<0> a a<l>; a<l> a a<2>; a<2> a a<3>;
IF b<l> THEN

a<3> a a<l>; a<0> a a<2>; a<l> a a<3>; a<2> a a<0>;
$$SRR.4.2 a &;
out a $$SRR.4.2;
error a zeros<2> AND NOT zeros<l> AND NOT zeros<0>;

After evaluation is complete, leave processing is done. Notice how consecutive

leaves become nested ifs.

IF in<0> THEN
zeros a o

ELSE IF in<l> THEN
zeros a i

ELSE IF in<2> THEN
zeros a 2

ELSE IF in<3> THEN
zeros a 3

ELSE
zeros a 4;

a a in;
b a zeros;
IF b<0> THEN

a<3> a a<0>; a<0> a a<l>; a<l> a a<2>; a<2> a a<3>;
IF b<l> THEN

a<3> a a<l>; a<0> a a<2>; a<l> a a<3>; a<2> a a<0>;
$$SRR.4.2 a a;
out a $$SRR.4.2;
error a zeroe<2> AND NOT zeros<l> AND NOT zeros<0>;

The next stage, premult does not change the parse tree. It merely records data.

Folloing premult, multiple assignment assigns revision numbers and reduces the

72

IF statements. Multiple-bit vector assignments are also, by necessity, expanded to

many single-bit assignments.

zeros<2>l.1
zeros<2>3.1
zeros<2>5.1

0; zeros<l>l.l a o
0; zeros<l>3.1 a o
0; zeros<l>5.1 a l

zeros<2>7.1 a 0; zeros<l>7.1 a l
zeros<2>8.1 a l; zeros<l>8.1 a o

zeros<0>l.l a 0;
zeros<0>3.1 a 1;
zero8<0>5.1 a 0;
zeros<0>7.1 a 1;
zero8<0>8.1 a 0;

zeros<2>6.1 a (in<3> AND zeros<2>7.1) OR (NOT in<3> AND zeros<2>8.1
zeros<l>6.1 a (in<3> AND zeros<l>7.1) OR (NOT in<3> AND zeros<l>8.1
zeros<0>6.1 a (in<3> AND zeros<0>7.1) OR (NOT in<3> AND zeros<0>8.1

zeros<2>4.1 a (in<2> AND zeros<2>5.1) OR (NOT in<2> AND zeros<2>6.1
zeros<l>4.1 a (in<2> AND zeros<l>5.1) OR (NOT in<2> AND zeros<l>6.1
zeros<0>4.1 a (in<2> AND zeros<0>6.1) OR (NOT in<2> AND zeros<0>6.1

zeros<2>2.1 a (in<l> AND zeros<2>3.1) OR (NOT in<l> AND zeros<2>4.1
zeros<l>2.1 a (in<l> AND zeroa<l>3.1) OR (NOT in<l> AND zeros<l>4.1
zeros<0>2.1 a (in<l> AND zeros<0>3.1) OR (NOT in<l> AND zeros<0>4.1

zeros<2>0.1 a (in<0> AND zeros<2>l.l) OR (NOT in<0> AND zeros<2>2.1
zeros<lX).l a (in<0> AND zeros<l>l.l) OR (NOT in<0> AND zeros<l>2.1
zeros<0>0.1 a (in<0> AND zeros<0>l.l) OR (NOT in<0> AND zeros<0>2.1

a<3>0.1 a in<3>; a<2>0.1 a in<2>; a<l>0.1 a in<l>; a<0>0.1 a in<0>;
b<l>0.1 a zeros<l>0.1; b<0>0.1 a zeros<0>0.1;

a<3>9.1 a a<0>0.1; a<0>9.1 a a<l>0.1;
a<l>0.1 a a<2>0.1; a<2>9.1 a a<3>0.1;

a<3>0.2 a (b<0>0.1 AND a<3>0.1) OR (NOT b<0>0.1 AND a<3>0.1);
a<2>0.2 a (b<0>0.1 AND a<2>9.1) OR (NOT b<0>0.1 AND a<2>0.1);
a<l>0.2 a (b<0>0.1 AND a<l>9.1) OR (NOT b<0>0.1 AND a<l>0.1);
a<0>0.2 a (b<0>0.1 AND a<0>9.1) OR (NOT b<0>0.1 AND a<0>0.1);

a<3>ll.l a a<l>0.2;
a<l>ll.l a a<3>0.2;

a<0>ll.l a a<2>0.2;
a<2>ll.l a a<0>0.2;

a<3>0.3 a (b<l>0.1 AND a<3>ll.l) OR (NOT b<l>0.1 AND a<3>0.2);
a<2>0.3 a (b<l>0.1 AND a<2>ll.l) OR (NOT b<l>0.1 AND a<2>0.2);
a<l>0.3 a (b<l>0.1 AND a<l>ll.l) OR (NOT b<l>0.1 AND a<l>0.2);
a<0>0.3 a (b<l>0.1 AND a<0>ll.l) OR (NOT b<l>0.1 AND a<0>0.2);

$$SRR_4.2<3>0.1 a a<3>0.3; $$SRR.4.2<2>0.1 a a<2>0.3;
$$SRR.4.2<1>0.1 a a<l>0.3; $$SRR.4.2<0>0.1 a a<0>0.3;

out<3> a $$SRR.4.2<3>0.1; out<2> a $$SRR_4_2<2>0.1;
out<l> a $$SRR.4.2<1>0.1; out<0> a $$SRR_4.2<0>0.1;

error a zeros<2>0.1 AND NOT zeros<l>0.1 AND NOT zeros<0>0.1;

Cleanup is the next step in the BDSYN processing. Because of forward substi

tution of simple assignments, many assignments statements are eliminated. Also,

because of forward substitution of constant assignments, much simple boolean min-

73

imization can be done.

zeros<2>6.1 a HOT in<3>;

zeros<2>4.1 a HOT in<2> AND zeros<2>6.1;
zeros<l>4.1 a in<2> OR (NOT in<2> AND in<3>);
zeros<0>4.1 a HOT in<2> AND in<3>;

zeros<2>2.1 a (HOT in<l> AND zeros<2>4.1);
zeros<l>2.1 a (HOT in<l> AND zeros<l>4.1);
zeros<0>2.1 a in<l> OR (NOT in<l> AND zeros<0>4.1);

zeros<2>0.1 a (HOT in<0> AND zeros<2>2.1);
zeros<l>0.1 a (HOT in<0> AND zeros<l>2.1);
zeros<0>0.1 a (HOT in<0> AND zeros<0>2.1);

a<3>0.2 a (zeros<0>0.1 AND in<0>) OR (NOT zeros<0>0.1 AND in<3>);
a<2>0.2 a (zeros<0>0.1 AND in<3>) OR (NOT zeros<0>0.1 AND in<2>);
a<l>0.2 a (zeros<0>0.1 AND in<2>) OR (NOT zeros<0>0.1 AND in<l>);
a<0>0.2 a (zeros<0>0.1 AND in<l>) OR (NOT zeros<0>0.1 AND in<0>);

a<3>0.3 a (zeros<l>0.1 AND a<l>0.2) OR (NOT zeros<l>0.1 AND a<3>0.2);
a<2>0.3 a (zeros<l>0.1 AND a<0>0.2) OR (NOT zeros<l>0.1 AND a<2>0.2);
a<l>0.3 a (zeros<l>0.1 AND a<3>0.2) OR (NOT zeros<l>0.1 AND a<l>0.2);
a<0>0.3 a (zeros<l>0.1 AND a<2>0.2) OR (NOT zeros<l>0.1 AND a<0>0.2);

out<3> a a<3>0.3; out<2> a a<2>0.3; out<l> a a<l>0.3; out<0> a a<0>0.3;
error a zeros<2>0.1 AND NOT zeros<l>0.1 AND NOT zeros<0>0.1;

The final stage of processing maps the internal equations to BLIF. Notice that

several equations axe collapsed out. The data is presented in bds format for conti

nuity.

zeros<0>0.2 a HOT in<0> AND NOT in<l> AND NOT in<2> AND NOT in<3>
zeros<l>0.2 a (HOT in<0> AND NOT in<l> AND in<2>) OR

(NOT in<0> AND NOT in<l> AND NOT in<2> AND in<3>)
zeros<2>0.2 a (HOT in<0> AND in<l>) OR

(NOT in<0> AND NOT in<l> AND NOT in<2> AND in<3>)

a<0>0.2 a (in<l> AND zeros<0>0.2) OR (in<0> AND NOT zeros<0>0.2)
a<l>0.2 a (in<2> AND zeros<0>0.2) OR (in<l> AND NOT zeros<0>0.2)
a<2>0.2 a (in<3> AND zeros<0>0.2) OR (in<2> AND NOT zeros<0>0.2)
a<3>0.2 a (in<0> AND zeros<0>0.2) OR (in<3> AND NOT zeros<0>0.2)

a<0>0.3 a (a<2>0.2 AND zeros<l>0.2) OR (a<0>0.2 AND NOT zeros<l>0.2)
a<l>0.3 a (a<3>0.2 AND zeros<l>0.2) OR (a<l>0.2 AND NOT zeros<l>0.2)
a<2>0.3 a (a<0>0.2 AND zeros<l>0.2) OR (a<2>0.2 AND NOT zeros<l>0.2)
a<3>0.3 a (a<l>0.2 AND zeros<l>0.2) OR (a<3>0.2 AND NOT zeros<l>0.2)

out<3> a a<3>0.3; out<2> a a<2>0.3; out<l> a a<l>0.3; out<0> a a<0>0.3;
error a zeros<2>0.1 AND NOT zeros<l>0.1 AND NOT zeros<0>0.1;

74

Appendix C

Bdsyn Library

This library implements the macro expansions for complex
operations on variables. The standard procedure is that
bdsyn creates the macro's

$a the highest-bit number of the left operand
$b the highest-bit number of the right operand
$max the maximum of $a and $b
tpow 2 to the power $b - 1
Sname the name of the routine to be created

Then the complex operator macro is invoked which creates
a routine which implements the complex operation for
the given bit widths.

+ operator

MACRO N$PLUSN a
ROUTINE $name<$max+l:0> (a<$max:0>, b<$max:0>);

STATE io, c<0>, sum<$max + 1:0>;

c a 0;
FOR i FROM 0 TO $max DO BEGIN

sum<i> a a<i> XOR b<i> XOR c;
c a (a<i> AND c) OR (b<i> AND c) OR (a<i> AND b<i>);

END;
sum<$max + 1> = c;
RETURN sum;

ENDROUTINE Sname;
tENDMACRO;

75

MACRO "$MINUSM a
ROUTINE $name<$max+l:0> (a<$max:0>, b<$max:0>);

STATE i<>, c<0>, sum<$max+l:0>;

b a HOT b;
C a 1 •

FOR i'FROM 0 TO $max DO BEGIN
sum<i> a a<i> XOR b<i> XOR c;
c a (a<i> AND c) OR (b<i> AND c) OR (a<i> AND b<i>);

END;
8um<$max+l> a c;
RETURN sum;

ENDROUTINE Sname;
lENDMACRO;

I * operator

MACRO M$TIMES" s
ROUTINE $name<$a+$b*l:0> (a<$a:0>, b<$b:0>);

STATE rosult<$a+$b+l:0>, i<>, pow<>;

result a O;
FOR i FROM 0 TO $b DO BEGIN

IF b<i> THEN
result< i+$a+l : i > a result< i+$a : i > ♦ a;

END;
RETURN result;

ENDROUTINE Sname;
SENDMACRO;

! EQL operator (for comparison of two variables)

MACRO N$EQLH a
ROUTINE $name<0> (a<$max:0>, b<$max:0>);

STATE io, test<0>;

FOR i FROM $max DOVNTO 0 DO BEGIN
test a a<i> xor b<i>;
if test then

return 0;
END;
RETURN 1;

ENDROUTINE Sname;
$ENDMACR0;

! NEQ operator (for comparison of two variables)

MACRO N$NEQN a
ROUTINE $name<0> (a<$max:0>, b<$max:0>);

STATE i<>, test<0>;

FOR i FROM $max DOVNTO 0 DO BEGIN
test a a<i> xor b<i>;

76

if test then

return 1;
END;
RETURN 0;

ENDROUTINE $name;
$ENDMACRO;

MACRO M$LEQH a
ROUTINE tname<0> (a<$max:0>, b<$max:0>);

STATE i<>, test<0>;

FOR i FROM $max DOVNTO 0 DO BEGIN
test a a<i> zor b<i>;
if test then

return b<i>;
END;
RETURN 1;

ENDROUTINE $name;
SENDMACRO;

!•

I GEQ operator
!•

MACRO M$GEQM a
ROUTINE $name<0> (a<$max:0>, b<$max:0>);

STATE io, test<0>;

FOR i FROM $max DOVNTO 0 DO BEGIN
test a a<i> xor b<i>;
if test then

return a<i>;
END;
RETURN 1;

ENDROUTINE $name;
$ENDMACR0;

!•

I LSS operator
!•

MACRO N$LSSN a
ROUTINE $name<0> (a<$max:0>(b<$max:0>);

STATE i<>, test<0>;

FOR i FROM $max DOVNTO 0 DO BEGIN
test a a<i> xor b<i>;
if test then

return b<i>;
END;
RETURN 0;

ENDROUTINE $name;
SENDMACRO;

77

! GTR operator

MACRO "$GTRM a
ROUTINE $name<0> (a<$max:0>, b<$max:0>);

STATE io, test<0>;

FOR i FROM $max DOVNTO 0 DO BEGIN
test a a<j> xor b<i>;
if test then

return a<i>;
END;
RETURN 0;

ENDROUTINE $name;
9EHDMACR0;

(SLO operator

MACRO H$SL0N a
ROUTINE $name<$a:0> (a<$a:0>, b<$b:0>);

STATE pow<>, iO;

pow a 1;
FOR i FROM 0 TO $b DO BEGIN

IF b<i> THEN a = a SLO pow;
pow a pow * 2;

END;
RETURN a;

ENDROUTINE $name;
SENDMACRO;

MACRO M$SL1H a
ROUTINE $name<$a:0> (a<$a:0>, b<$b:0>);

STATE powO, iO;

pow a 1;
FOR i FROM 0 TO $b DO BEGIN

IF b<i> THEN a = a SL1 pow;
pow a pow * 2;

END;
RETURN a;

ENDROUTINE Sname;
tENDMACRO;

I SLR operator

MACRO "$SLRH a
ROUTINE $namo<$a:0> (a<$a:0>, b<$b:0>);

STATE pow<>, iO;

POW a 1;

78

FOR i FROM 0 TO $b DO BEGIN
IF b<i> THEN a = a SLR pow;
pow a pow * 2;

END;
RETURN a;

ENDROUTINE Sname;
$ENDMACBO;

! SRO operator

MACRO MSSROM a

ROUTINE $name<$a:0> (a<$a:0>, b<$b:0>);
STATE powO, iO;

pow a 1;
FOR i FROM 0 TO $b DO BEGIN

IF b<i> THEN a a a SRO pow;
pow a pow * 2;

END;
RETURN a;

ENDROUTINE $name;
SENDMACRO;

I SRI operator

MACRO NSSR1N a

ROUTINE $name<$a:0> (a<$a:0>, b<$b:0>);
STATE powO, iO;

pow a 1;
FOR i FROM 0 TO $b DO BEGIN

IF b<i> THEN a a a SRI pow;
pow a pow * 2;

END;
RETURN a;

ENDROUTINE $name;
SEHDMACRO;

!•

! SRR operator

MACRO M$SRR" a
ROUTINE $name<$a:0> (a<$a:0>, b<$b:0>);

STATE powO, iO;

POW a 1;
FOR i FROM 0 TO $b DO BEGIN

IF b<i> THEN a a a SRR pow;
pow a pow * 2;

END;
RETURN a;

ENDROUTINE $name;
$EHDMACRO;

79

! <> 8ingle-bit select operator

MACRO "$BIT" *
ROUTINE $name<0> (a<$pow:0>, b<$b:0>);

STATE i<>, powO;

pow a $pow + 1;
FOR i FROM $b DOVNTO 0 DO BEGIN

IF b<i> THEN a< pow/2 - 1 : 0 > a a< pow - 1 : pow/2 >;
pow a pow/2;

END;
RETURN a<0>;

ENDROUTINE $name;
SENDMACRO;

I This is for anyone who needs '/.overflow, Scarryin, %carryout
! It is not currently called automatically.

MACRO M$—M a
ROUTINE $name<$max + 2:0> (a<$max:0>, b<$max:0>, carryin<0>);

STATE i<>, c<$max -> 1:0>, sum<$max ♦ 2:0>;

c<0> a carryin;
FOR i FROM 0 TO $max DO BEGIN

sum<i> a a<i> XOR b<i> XOR c<i>;
c<i+l> a a<i> AND c<i> OR b<i> AND c<i> OR a<i> AND b<i>;

END;
8um<$max+l> a c<$max+l>;
sum<$max+2> a c<$max+l> XOR c<$max>;

RETURN sua;
ENDROUTINE $name;
$ENDMACRO;

80

Appendix D

Berkeley Logic Interchange Format

(blif)

The goal of BLIF is to describe a Boolean network in textual form. A Boolean

network is a representation of an arbitrary combinational logic network, and is an

acyclic directed graph with a logic function attached to each node. Each node in

this representation has a single output. Therefore, each net (or signal) has only a

single driver, and we can therefore name either the signal or the gate which drives

the signal without ambiguity.

In this section, angle-brackets surround nonterminals, and vertical bar separates

choices in a pseudo-BNF style. Bdsyn uses only the logic-gate construct of BLIF.

Bdsyn uses the the keywords .module, .inputs, .outputs, .end, and .names. The

module-reference construct of BLIF is not implemented.

D.l Modules

A module is declared by:

.module <decl-module-name>

.inputs <decl-input-list>

.outputs <decl-output-list>
<logic-gate> | <pla-reference> I <module-reference>

81

<logic-gate> I <pla-reference> I <module-reference>
.end

decLmodule-name is a string giving the name of the module.

decUinput-list is a white-space-separated list of strings (terminated by the end

of the line) giving the formal parameters for the module being declared. If this is

the last or only module, then these signals can be identified as the primary inputs

of the circuit. Multiple .inputs lines are allowed, and the lists of inputs are merely

concatenated.

decUoutput-list is a white-space-separated list of strings (terminated by the end

of the line) giving the formal parameters for the module being declared. If this is

the last or only module, then these signals can be identified as the primary outputs

of the circuit. Multiple .outputslines are allowed, and the lists ofinputs are merely

concatenated.

It is expected that a BLIF parser may allow the .inputs and .outputs statements

to be optional. If they arenot specified, the primary inputs canbe inferredfrom the

signals which are not the outputs of any other logic block, and the primary outputs

can be inferred from the signals which are not the inputs to any other blocks. This

makes the serious assumption that no primary output is used as an intermediate

signal. Also, these assumptions are only useful for the "root" module. Subdrcuits

are invoked with positional arguments and hence the specified order for the inputs

is significant in a subcircuit.

The keyword .end is optional, and is implied at the end of the file.

Anywhere in the file, a 'V (backslash) as the last character on a line indicates

concatenation of the subsequent line to the current line.

D.2 Logic Gates
•i

A logic-gate is:

.names <in-l> <in-2> ... <in-n> <output>

82

<single-output-cover>

single-output-cover is an n-input, 1-output PLA description of the logic function

corresponding to the logic gate. {0,1, -} is used in the "input plane" and {0, 1, -,

"} is used in the "output plane". The logic gate can have only its ON-set specified

with l's in the "output plane", or can also have a DC-set and an OFF-set specified

with -'s or O's in the "output plane". ~ means no connection. For a more complete

description of the PLA input format, see espresso(5).

D.3 Module (subcircuit) references

A module-reference is
.subckt <module-name> <input-list> <output-list>

module-name gives the name of a module being included. It must be previously

defined in the file, input-list are the actual parameters and are matched one-to-

one with the corresponding decl-input-list inside the module declaration. Likewise,

output-list are the actual parameters and are matched one-to-one with the corre

sponding decUoutput-list inside the module declaration.

input-list and output-list are white-space separated sequence of tokens ending

with the end of the line. A "/" mav De use<^ to separate input-list from output-list

The end of input-list and the start of output-list is, however, always inferred from the

number of inputs and outputs in the module declaration (i.e., from decl-input-list

and decUoutput-listof the module which is being called).

If both input-list and output-list axenot given, then the formal parameters within

the module declaration become the actual parameters. It is an error if the input-list

and output-list are given and the number of inputs or outputs does not match the

"call" and the definition.

D.4 PLA References

A pla-reference is

83

.pla <pla-name> <input-list> <output-list>

pla-name gives the name of a file containing a pla description in the format

understood by espresso(5). input-list and output-list are matched 1 for 1 with the

inputs and outputs of the PLA (which, for arcane reasons are given via Jib and .ob

keywords within the PLA). Similar to .subckt, a "/" may separatethe input-list and

the output-list and if both are missing, the formal parameters become the actual

parameters.

84

Appendix E

Bdsim Transistor Merging

As explained in section 3.6.2 of the main text, bdsim merges two networks together

by adding, in series or in parallel, a small network to a larger one. This makes

six different types of merges possible: adding a transistor in parallel; adding two

parallel transistors in parallel; adding two series transistors in parallel; adding a

transistor in series; adding two parallel transistors in series; and adding two series

transistors in series. Figures £.2 and £.3 contain pictures representing all of the

possible merges that bdsim can perform.

PARALLEL SERIES

E MMMt k&k
Figure £.1: Six Different Types of Merges

85

G3

GE

El

f

Q

02 an

GE GEJ

S G 8 a

8 & 0 i f

isi sj (h ,cb

a u

QEJ

58

fl

HE

fa

Figure £.2: Merging of Transistor Networks in Bdsim

86

0

G

Qi

G

0

e

03 Oh IB

a a a

S3

a

a

a

91

a

33

a

i3

G

in

i

a

Figure £.3: Merging of Transistor Networks in Bdsim (continued)

87

Appendix F

Manual Pages

Following are the UNIX manual pages for the programs on which I have worked at

Berkeley. They are as follows:

bdnet A program to parse a user supplied net list of instances and create an

appropriate Oct file. Bdnet also has provisions for producing net lists from

existing Oct cells.

bdsim Zero-one simulator as described in the text of this report.

bdsyn Textual description to logic network translator as described in the text of

this report.

octflat Program to produce a flat representation of an Oct hierarchy.

88

BDNET(l) UNIX Programmer's Manual BDNET(1)

NAME
bdnet - Net-list to Oct Translator

SYNTAX

bdnet [filename]
bdnet -n[c] ceUname[:viewname]
bdnet -l[s] ceUname[:viewname]

DESCRIPTION
Bdnet is a translator which reads a net-list format and generates an Oct cell. The Oct cell is created to
the Oct Symbolic Policy Specification. An extra degree of freedom allows general properties and Oct
objects to be created and placed in either the contents or interface facet of the cell. Constructs allow
for the automatic attachment of actual terminals on an instance, and for the creadon of arrays of
instances.

The command line options are:

-n The complete net-list is written to standard output, representing in detail the Oct cell which has
been created. (This output is suitable as input to a subsequent run of bdnet) The resulting
net-list shows all connections explicitly.

< If this option is selected along with -n instances in the •CONNECTORS" bag will be
displayed. The default is to only show instances that are in the "INSTANCES" bag.

•i Prints an inverted net-list which lists all connections to each net An inverted net-list is written
to standard output The fonnat for the inverted net-list is:

netjname: mstjname/term_name(s) formal_term_name(s) _
with a single line per net

-t If this option is selected along with -I then only nets with single connections or no connections
arelisted. This is useful in finding incomplete connections.

SYNTAX jjf ^
The following is a description of the input fonnat in a pseudo-BNF style. Uppercase is used for key
words, lowercase is used for productions, vertical bars separate a choice of items, braces indicate an
optional item, and an asterisk indicates that an item may be repeated zero or more times.
The net-list is described as follows:

MODEL modeljname;
{policyjoops}*
{terminaljype {fonnaljenninal_spec}* ;}•
{instance! array of instance}*
ENDMODEL;

modeljiame has the form cettriew to specify the cell name and view name of the cell to be created.
The policy_prop statements set properties on the facet The statements are:

TECHNOLOGY techname; ,
VIEWTYPE viewjiame;
EDITSTYLE edit name;

If VIEWTYPE orEDITSfYLE are not given, they default to "SYMBOLIC". TECHNOLOGY has no
default andwillnotbesetifitisnot stated.

The terminaljype keywords are used to set the TERMTYPE and DIRECTION properties for declared
formal terminals as shown:

KEYWORD TERMTYPE DIRECTION

INPUT SIGNAL INPUT

OUTPUT SIGNAL OUTPUT

INOUT SIGNAL INOUT

TRISTATE TRISTATE OUTPUT

7th Edition 7 May 1987

BUMUl (I) w»*i*^ * *«6"

CLOCK CLOCK INPUT
OUTCLOCK CLOCK OUTPUT

SUPPLY SUPPLY
GROUND GROUND

formaljerminaljpec may be in either of two forms:
terminaljiame
terminaljiame: netjist

netjist has one of two formats, with *&' implying aconcatenation operation:
netjiame
net name & netjiame & ... & netjiame

When no net is spedfied~in the formaljerminalmspec, anet is created for each formal terminal with the
same name as the formal terminal. The the formal terminals are connected to the appropriate net
Each formal terminaljiame, actualjerminaljiame, and netjiame is of three forms: name<bit>,
name<hi:lo>7oT name? bit, hi, and to"may be constant-valued expressions as described below. The first
two formats are shorthand for the names name<bit>t and name<ht>t..., name<lo>. If no bit subscript
is given on an actual terminal name, acheck is first made for aterminal with this name. If not found,
a further check is made for the terminal name<D>. (This allows compatibility with bdsyn(l).)

Each instance is described as follows:
INSTANCEmasterjiame {modifiers}*
{terminal attachment}*

master name has The format cellriew to specify the cell name and view name of the instance. The
masterluid interface facet of the instance mustexist prior to running bdnet

The allowed modifiers are:

[xjwsition, yj>osition]
CONNECTOR
NAME - instance name

PROMOTE

Two expressions in square brackets can be used to specify aspecific oct coordinate for an instance. If
this modifier is missing, bdnet will use the coordinates [0,0].
The CONNECTOR modifier will cause the instance to be attached to the "CONNECTORS" bag rather
than the "INSTANCES" bag.

The NAME modifier assigns an instance name to the instance. (By default the instance name is the
same as the cell name; however, all instance names will be made unique by appending an underscore
and an integer as necessary.)

The PROMOTE modifier automatically assumes connections from each actual terminal of the instance
to a net of the same name for each actual terminal which is otherwise not specifically connected or
unconnected.

terminaljutachment takes three forms:
"actualJerminaljiame: netjist;
actualjerminaljiame # formaljenninaljist;
actual"terminaljiame: UNCONNECTED;

The first form"attaches the actual terminals to the given nets. The second form attaches the actual ter
minals to the given formal terminals. If the current instance is not aCONNECTOR instance, the actual
terminal terminal is also connected to the netof the given formal terminal. Qf this seems contusing,
refer to the Oct Symbolic Policy.) The third form is for specifying explicitly that an actual terminal is
not connected.

An array of instance has the form
ARRAY ^variable FROM startTO end {BY increment} OF
{instance | arrayjofjnstance}

start, end, and incremenTmay beconstant-valued expressions as described below. Within the scope of

7th Edition 7 May 1987

BDNET(l)
UNIX Programmer's Manual BDNET(l)

the ARRAY statement variable takes on the values start, start +increment,..., end. variable may be
used within the bit subscripts to connect the nets to each instance.

&PreS5!Impressions composed of constants and ARRAY indices are are allowed mbit-subscripts. Consents are
KaTb^ W. but arbitrary bases may be specified using the bdsyn notation valuetbase. The
operators are "+","-", "•" and "0" with their usual meaning and precedence.

MMro^Mac^oefi^ They niay appear anywhere in the
file, and are defined for the remainder of the file.
Include files are supported using the bdsyn syntax of:

REQUIRE 'filename.ext';

Bdnet Keywords
The following is a listof keywords used by
as user names.

ALIAS
BY

ENDMACRO
GROUND

LAYER
OUTCLOCK

RPROP

TO

ARRAY
CLOCK

ENDMODEL

INOUT

MACRO
OUTPUT
SUPPLY

UNCONNECTED

bdnet These words must be quoted if they are to be used

ATERM
CONNECTOR

FACET

INPUT

NET

PATH

SPROP
VIEWTYPE

BAG
CREATE

FROM
INSTANCE

NAME
PROMOTE

TECHNOLOGY

BOX

EDITSTYUE
FTERM

IPROP

OF

REQUIRE
TRISTATE

^^.^TrSSTr^ «« of Oc.Objec.su> be placed in »Oc«fac«. T*e anno«*m
must occur outside of a model block and has the form:

(FACET ceUiviewrfacet {list}*) A»f9«ksThe crf/\kw and/ace* q The facet iiaine niay be left out and defaults
to "contents".

A for is one of the following:
(INSTANCE instancejiame {list}*) I
(NETnetjiame {list}*) I
(FTERM7c*maljerminaljiame {list}*) I
(ATERM acmallerminaljiame {list}*) I
({CREATE} IPROP propertyjiaine integer_value {list}* {alias}) I
({CREATE} RPROP propertyjiame "realjrahie" {list}* {alias}) I
({CREATE} SPROP propertyjiame string_value {list}* {alias}) I
({CREATE} BAG bagjiameflist}* {alias}) I
({CREATE} LAYER layerjiame {list}* {alias}) I
(BOXllxllj urjt ur_y {list}* {alias}) I
(ALIASalias {list}*) I

The meaning is straightforward, Atree of attachments is built which foUowedtetree of ^- <ArM-
SrVS are pJsible using ALIAS.) INSTANCE. NET. FIERM, and ATERM »«»*«*»
o^ dready exSTin the given facet They can not be created using the annotanon njechanism.
Al^M^mTl actual terinmal of the bst^ This implies that INSTANCE must
precede ATERM.
IPROP, RPROP. and SPROP took for an existing Oct property of me same name. If it exists it is
modified tothe given property value. If not it iscreated.
BAG and IAYER look for an existmgOa object* If it does not exist it is
created.

7th Edition 7 May 1987

BDNET(l)
UNIX Programmer's Manual BDNET(l)

BOX creates the specified box.
IPROP. SPROP. RPROP. BAG. and LAYER all use an existing object if it is there. If the keyword
CREATE is present bdnet will create anew object whether one already exists or not
IPROP. SPROP, RPROP, BAG, LAYER, and BOX definitions may contain astring **."£»««"
"alias" for that object Denning an alias for an object allows referencing this object via the ALIAS
definition. In this way, arbitrary graphs ofOct structures may be built (as shown below).

C°MM^dnet differs from bdsyn in that afl names (except keywords) are case sensitive. Names in bdnet must
be quoted if they contain special characters such as T, *;\ 7, §#\ **\ *-\ *+»)# (• !»<* !• ™°'
names that start with digits, RPROP values, and bdnet keywords that are being used as names should be
quoted,

EXAMPLE .. .
This example connects abdsyn logic block (trafficjighclogic) to aset oflatches.

MODEL trafficJighusyitibolic;
INPUT c<0> ts<0> tl<0>;
OUTPUT hl<l:0> fl<l:0> st<0>;
SUPPLY vdd;
GROUND gnd;
CLOCK phil;

INSTANCE trafficjightlogic PROMOTE;
pState<l:0>: presentState<l:0>;
nState<l:0>: nextState<l:0>;

i

ARRAY %i FROM 0 TO 1 OF
INSTANCE latch

d: nextState<%i>;
q: presentState<%i>;
elk: phil;
vdd: vdd;
gnd: gnd;

ENDMODEL;

(FACET traffic lightsymbolic
(NET vdd(SPROP NETTYPE SUPPLY))
(NET gnd (SPROP NETTYPE GROUND))
(LAYER MET1

(BOX 00 2000 2000 boxjdias)) ! For floor-planning
(BAG floorj)lan (ALIAS box_alias)7)

SEE ALSO

bdsyn(l) vulcan(l)
Oct Symbolic Policy Specification
'cad/doc/bdsyn.doc (BDSYN Users' Manual)

AUTHOR

Russell Segal

hugs

All instances are assumed to reside in the current directory. Eventually we will rely on the PATH
mechanism ofOct to remove this restriction; however, this will require the addition ofamechanism to
insert a path into a celL

7th Edition ? May 1987

BDNET(1) UNIX Programmer's Manual BDNET(1)

It is possible to specify a connection of nets which does notconform to symbolic policy. In particular,
two distinct nets may be attached to JOINEDTERMS.

7th Edition 7 May 1987

BDSIM(l)

NAME

bdsim - Multi-level simulator

SYNTAX
bdsim [-cmuw] octjcell[:view]
bdsim -s[-cmuw] sim_file(s)

DESCRIPTION

UNIX Programmer's Manual BDSIM (1)

Bdsim is a multi-level simulator. Its primary mode of operation is switch level simulation of MOS
transistors. Provisions have been made within bdsim to allow simulation of higher level constructs such
as logic gates, latches, and memory cells. The interface to these functions is not yet complete. An
interface wifl also be provided to allow stand-alone programs to drive simulations. This will hopefully
be achieved by linking user modules to bdsim or through the use ofUNIX pipes.
Bdsim performs preprocessing steps on traiisisuir networks to increase me speed of stoutoti This is
includes]merging of series-parallel transistor networks, and recognizanon of pull-down and pull-up
transistors.

The command line options are:

-s The list of files that follow the options are standard sim(5) format
-c By default instances in ahierarchy are displayed using their "instance path" using the character

T as aseparator (i.e. /topfimVidle/bottom). The -c option is followed by asingle character to
be used instead of V as a separator.

4i Turn off the merging optimization (described below).
-p Turn off the puUdown/pullup optimization (described below).
-w The floating point number that follows -w specifies the threshold for weak transistors. Transis

tors with W/L ratios that are strictly less than the threshold are considered weak. The default
threshold is 1.0.

fl?1tfFI! AL STRUCTURE
The bdsim data structure is set up as acollection of instances and nodes. (See iwdeinfo and instinfo
commands described below.) Each instance represents a functional unit An iiistancemay be atransis
tor, anetwork of transistors, alogic gate, or some more complex, user-defined umt The instances have
connections to one or more nodes. (e.g. A transistor connects to three nodes - one at its gate, one at
its source, and one at its drain.)
Anode may be in any one of8states. Each state has arepresentative letter as shown:
V Charged low T Charged high
•0' Driven low '1' Driven high
•O' Set low by the user T Set high by die user
V Uninitialized 'X* Driven both high and low
Unlike many other simulators, bdsim treats every iiode as astorage node. Ot^Jtiodtisc^edm
or low, itwill remain that way until the node is driven by an mstam» or set by tte user, ft is important
to note that bdsim does not model charge sharing. If a'o' node and aV node are ***&**£
nected by atransistor, the nodes will not change in value. This would not be the case maphysical
system.

Each node in bdsim has acounter associated with it The counter is used to detectosdflationsin the
simulation. Ohis could be caused by aring of inverters, for example.) If anode is dttn^lm
made more than 256 transitions in one simulation step, awarning will be printed, and the simulation
will be interrupted. Bdsim wfll find and report all of the nodes which contribute to osciUauon in acir
cuit

7thEdition 12February 1987

BDSIM(l)
UNIX Programmer's Manual BDSIM (1)

Bdsim has two different transistor models, regular and weak. The current earned b^*«£v^%*
such that it may be overdriven. The classic use of aweak transistor is in an NMOS inverter. The
pull-up device of an NMOS inverter is weak. When the pull-down transistor is off. the output is puUed
high by the weak transistor. When the pull-down device is on, the pull-up is oyerdnven and the output
is pulled low. If the pull-up device were to be regular, the result of both transistors being on would be
an^X' at the output Another use of aweak transistor is astatic memory cell, where values are wntten
by overdriving the cell's internal transistors.

- When sim(5) fonnat files are being used as input weak transistors are recognized in two ways. Aweak
transistor is generated if its width/length ratio is less than 1(or the value specified by -w). Alterna
tively, aweak transistor is generated ifthe sim transistor has a"weak" gate attribute:

ng nodes noded node2400g-weak ,. , wi .. v» •«
MaeicO) gives an easy mechanism for entering the gate attribute. Simply place the label weak m
thTactive region of the transistor. In Oct weak transistors can be selected by attaching aproperty
"BDSIM WEAK" to either the transistor instance or the instance's interface facet
Switch level simulators have a fundamental flaw in that they cannot conectiy handle certain transistor
configurations (eg. Pass gate exclusive OR circuits). This limitation may be overcome by^restricting
certam transistors to be uiudirectional. When sim(5) format files are being used as input this is done
by giving the "in" attribute for either the source or drain ofthe transistor

ngitodesnodedjiode2400g.weakd-in + ,M
Magicd) gives an e^sy mechanism for entering the source or dram attribute. Simply place Ae label
"inS" on the edge of the active region of the transistor adjacent to the source or dram. In Oct urn-
directional transistor are selected by attaching a property "BDSIMJN" to either the SOURCE or
DRAIN terminal of the transistor instance.
In the following sections, the term "element" is used. An element is the user's name for anode.
Many element names may correspond to the same node.

HIGHER LEVEL GATES .*-•-.. .~
Bdsim will also simulate higher level gates which it reads from the Oct database. (There is noway to
specify high level gates in sim(5) fonnat) These gates may be logic gates, as specified ini the Oct sym-
bolfc policy, or they may be latches. Latches are specified via aset of Oct properties. Firstly alatch
must beCELLTYPE MEMORY and have the property "SYNCH-MODEL" in its interface fecetThe
"SYNCH-MODEL" property may take on the values "TRANSPARENT-LATCH" or "MASTER-
SLAVE-LATCH" (The Master-Slave latch is two cascaded transparent latches with the slave clock
fed by the inverted master clock). A further property, called "SYNCH-ACTIVE", attached to the
interface facet specifies whether the transparent latch (or master latch) conducts when the control signal
is tow or high. If"SYNCH-ACTIVE" has the value "LOW" the latch is active low. Latches default
to active high.
The terminals oflathes are identified aproperty called "SYNCH-TERM" attached to the »terfacefor-
mal ternunals. The legal values for this property are INPUT, OUTPUT. OUTPUTBAR, and CON
TROL. A latch must have exactly one control, exactly one input and at feast one type ofoutput termi
nal

An industrious iHOgrammer may create his own bdsim gates. Several routines must be written and
linked into the bdsim program. Details may be found in the file "USER_GATES" in the bdsim source
directory.

SYNOPSIS OF COMMANDS
Commands in bdsim are invoked by typing acommand name followed by a vanable number of argu
ments. Each command has a two letter abbreviated form which can be used in place of the command
name.

7th Edition 12February 1987

BDSIM(1) UNIX Programmer's Manual BDSIM(1)

help(T)
This prints a short synopsis of each command.

lopen logjile (to)
Open a file to record all transactions within bdsim.

Iclose (k)
Close the current log file.

macro macrojiame (ma)
Define a macro command. After typing the macro command, bdsim will give a *>' prompt At this
point the user should type a sequence of commands that make up the macro. Macros may be nested,
as long as the nested macro is defined prior to the current macro. The macro definition is concluded by
typing "Send".

Macro commands may have arguments that are used in the definition. In the definition, these argu
ments are written as €$r for the first argument *$2* for the second, etc. As an example, the following
macro sets the first argument to one, sets the second argument to zero, evaluates, and prints some infor
mation.

macro seteval

set $11
set $20
evaluate

show "cycle %d0 #cycle
set #cycle - #cycle + 1

Send

The "seteval" macro would be invoked by typing:
seteval phil philjbar

savestate savejile (ss)
Save the current state of the simulation. It is required that there be no pending events when a savestate
is attempted.

hadstate savejile (Is)
Load a previously saved state back into bdsim. The circuit itself may not be changed between savmg
state and loading state back.

evaluate (ev)
Cause all pending changes to be propagated through the network.

source[options] sourceJde (sr)
Runcommands from a file. (See the section below for adetailed description of theoptions.)

step [[options] sourceJUe] (st)
The "step" command, when followed by asourceJHe name will begin executing the commands in the
file one at a time. (See the section below for a"detailed description of the options.) When "step" is
given with no arguments, the next command in the current source file will be run in a single step
fashion.

continue (co)
Continue an running a "evaluate" or "source" that has been interrupted. Using continue wuT preserve
the event count and preserve the node transition counts that are used to detect cycles in the network.
watch watch set [vectors | elements] (wa)
Listed vectors and elements are added to the given watch set All elements of a particular watch setare
listed together, when a watch set is used in the "show" command.

listsinsts [instancejiame] (li)
Mtt the name of"all instances that are contained in the given instance. If no instance name is given,
the current working instance is used. This is used when examining instance hierarchies and is not use
ful for sim(5) format input

7th Edition 12 February 1987

BDSIM(l) UNIX Programmer's Manual BDSIM(1)

Ustelems [instance name] (le)
Print the name of"all elements that are contained in the given instance. If no instance name is given,
the current working instance is used. This is used when examining instance hierarchies and is not use
ful for sim(5) format input

Frintfte name of the working instance that is currently being used as the default for referencing ele
ments (like aworking directory in UNDO- This is used when examining instance hierarchies and is not
useful for sim(5) format input

changeinst instance name (ci)
Change the working instance that is currently being used as the default for referencing elements (like a
working directory in UNIX). This is used when examining instance hierarchies and is not useful for
sim(5) format input

equivalent element (eq)
List all equivalent names (aliases) for an element
makevector vector name [elements] (mv)
Define the set ofgiven elements (node names) to be avector named "vectorjiame . The elements are
listed from most significant bit to least significant bit Once avector is defined, it may be set (set com
mand) and displayed (show command) as one unit
Makevector assigns special meaning to the colon (*:') character. When acolon is encountered, bdsim
will generate aseries ofelement names that are numbered consecutively from the number preceding the
colon to the number following the colon. For example:

makevector busA busA<4.*0>
is equivalent to

makevector busAbusA<4> busA<5> busA<2> busA<2> busA<0>
Similarly:

makevector ceUvalues ceU7lvalue

is equivalent to
makevectorceUvalues cell/value cell2value celtfvalue

show[dsh)*now i (snj _-
Print out the current value of all given vectors, elements, and all members of given watch sets, if a
constant (denoted by aleading '#') is given, the current value ofthe constant is printed in decimal. By
default vectors are printed in hexadecimal and elements are printed in binary. The optional
fonnat string is aquoted string which resembles *C printf fonnat string. It may contain regular char
acters which are echoed in the output %b to insert the binary representation of numbers, %h to insert
the hexadecimal representation of numbers, for carriage returns, and for tabs.
set [vector | element] value (se)
Assign the value to the given vector or element The value is assumed to be abinary number (1 s and
O's). When an element is set it is held at the given value, regardless ofthe state ofthe simulation. An
V may be used in place of the binary digit will allow the corresponding node to change as the simula
tion dictates. Hexadecimal values may be specified by preceding the number with an'H'. In the case
of a hexadecimal number, an V represents four V bits.

set Constant expression (se)
Set may also be used to set the value of constants. Constants are denoted by a leading #. Tne
expression from which the constant is set is evaluated from left to right and may contain other con
stants, integer numbers, •-',V, 4-\ •♦', V, and '%\ Be careful to assure that all operators, numbers,
and constants are separatedby spaces.

verify [vector] element] value (ve) #
Check to see if the vector or element has the given value. The value maycontain ls,Os,AS,ano.s.
An 4X* will match the *X» or *x* node states in the vector or element A V is a don't care and will
fP?trii any value in the vector or element Hexadecimal values may be specified by preceding the

7th Edition 12 February 1987 4

BDSIM(l) UNIX Programmers Manual *-'

number with an 4H'. In the case of ahexadecimal number, an 'X* represents four 'X* bits, and aV
represents four V bits. If the verify fails, an error message is printed.

%£££$£*. about anode. Tl. value of the node is printed along with the node's fanin
andfanout. This command is very useful in inspecting the state ofthe network.

SStSdotation about an Instance (transistor or more complex insttnces). *f«*«
networks, thetogic Junction is listed along with its current state (off or on). Also, the nodes tha are
Strf to thetastance's terminals are listed. This command is very useful in inspecong the state of
the network.

55^ backtrace will be called recursively on nodes which fanin to the given instance.
The levels parameter tells bdsim how many levels to backtrace.
Backtrace does not simply list the instances that are connected to anode, it lists instances which drive a
nodeVTWs makes it particularly useful for answering the question, "What caused this node to be this
valuer

setbreak [vector | element] value (sb)
Not implemented yet

MOREUTILITY ANDSOURCE CONTROL ^^^
B^includes abuilt in -more- utility. This utility is used to control the output ofdatato me scree*
After bdsim has printed an entire screeriful rf data, Uwffl pause wim the message -more-. Tnere
a^ouT^al^relWes to the more prompt Typing carriage return will cause the listing to conunue
£ anoto j£S?p«m+ •- ntoT^once again. Typing "C will cause the bsung to ,«,nnnue
ta^ito SipleticKTwXut any further interruption. Typing "S" will «tt the hstmg And
ryjmigV will direct the listing to only the current log file (if there is one) without dumping the infor
mation to the screen.

The bdsim environment works on the concept of levels. When it is first started, bdsim is_in tot* 0.
ta 1TJS2SZ* (or macro) conuriaiui the kvd is increased by 01^
several environment variables may be set via cptta to the "source^ ^ There are
four mainlisting modes options. They are:

M use the regular More utility
C output data Continuously, without the more utility
L output data only to the current Log file
O output One page to the screen, then only to the log file u~™-ii

In addition, anumbi may be specified to set the number of ^ * •"^ »^,^"S""^be u*a a?me number of lines between •- more -• prompts, and the page lengtJi forthe O^nort
For example, if one wanted only 5lines of output for each command to be printed on the screen, he
could type:

If hewamedto run all the commands in a sc>urce ffle, without any out^
source -L source file . ,Note that the 405' option above applies to the current levd, but the 4U option in te second example

applies only to the level of "source_file."
Commands in asource file are normally executed without stopping, but the wiining of source files; can
be stopped by anumber of causes. The execution of source files is halted by an mterrupt (control C), a
break generated by the •setbreak" command, or ahard error (such as asyntax error mthe source file).

7th Edition 12 February 1987

BDSIM(1) UNIX Programmer's Manual BDSIM (1)

There are also two soft errors that may interrupt the running of a source file. The first is a verify
failure, generated by the "verify" command. The other is a"not found" error, which occurs when an
element is accessed but does not exist Bdsim will stop on these errors based on the status of the 4V
and *P flags. The flags are set by preceding the option by aV, and cleared by preceding the option
by a4-\ For example, to run asource file stopping on verify errors but not on "not found" errors, one
would type:

source +V -F sourceJile

- If one wished to stop processing after-every command ofa source file. The processing should be ini
tiated as follows:

step sourceJile
Each following command could then berun by typing "step".
The *R' option ofthe "source" command resets the level ofdie source file. This allows one to skip the
remaining commands in asource file, and return to the "level 0" interactive mode ofbdsim.

OPTIMIZATION .
Bdsim performs two optimization steps to the transistor networks as they are read m to memory. The
first is to recognize pull-up and pull-down transistors. A pull-up transistor is a transistor with either its
source or its drain tied to Vdd. Similarly a pull-down transistor has its source or drain tied to GND.
Recognizing this special case of transistor is important since it may be treated as aunidirectional dev
ice. Regular transistors are bidirectional and are therefore slower to simulate.
The second optimization is the merging of transistors into series-parallel networks of transistors. For
example, three PMOS transistors in parallel may be modeled as one instance. The 44instinfo" com
mand gives a representation of the function of the transistor network. .A '•' denotes transistors in
series, anda V denotes transistors in parallel. For example:
(* (+ 1 2) 3) would represent the following network:

1 3

COMMENTS ... j
When reading sim(5) fonnat files, bdsim will ignore everything except the transistor declarations and
node aliases. The read-in time for a circuit may be decreased by removing extraneous resistor and
capacitor declarations.

When creating pullups and pulldowns bdsim keys off the elements named "GND" and "Vdd". If
these names are not found, no pullups or pulldowns are created.

SEE ALSO

sim(5), magic(l)
sic/bdsmVUSER_GATES
The General Structure of Oct
Oct Symbolic Policy Specification

AUTHOR

Russell Segal

BUGS

The default names Vdd and GND can not be overridden.

The savestate command will not save the internal state of instances. For this reason, it is impossible to
save the stateof a circuit containing master-slave latches.

7th Edition 12 February 1987

BDSYN(l) UNIX Programmer's Manual BDSYN (1)

NAME
bdsyn - BDS subset translator for describing logic networks

SYNTAX

bdsyn [-bcdensuz] [filename]

DESCRIPTION . , . . _ .
Bdsyn is atranslator which supports the generation ofmultiple-level logic networks. It takes as mput
programs written in the hardware behavioral language BDS, and generates a BUF (Berkeley Logic

' Intennediate Fbnnat) description of an equivalent multiple-level logic network. BDS is a behavioral
description language which is part of Digital Equipment Corporation's hardware simulation system
DECSIM. BLIF is suitable input for the multiple-level logic optimization tool mis(l). Usmg mis, BUF
can be converted into either Oct symbolic view or aPLA in Berkeley PLA format (pla(5)).
Bdsyn generates only combinational logic equations. In order to generate entire sequential systems,
latches and tri-state devices must be integrated with the combinational logic from bdsyn in an Oct sym
bolic view. This can be accomplished using anet list translator such as bdnet(l).
The command line options are:
-b Tells bdsyn not to do its cleanup evaluation. This cleanup evaluation process in bdsyn elim

inates redundant and unnecessary logic. Unfortunately, it may also have the undesired effect
of eliminating user specified mtermediate variables that bdsyn considers unimportant The -b
makes sure that the variable are preserved, at the price of extra logic

-c is followed by anumber which tells bdsyn how much "coUapsing" of logic that it should do.
Collapsing is done in order to decrease the amount ofoutput which bdsyn creates. Although
quite rare, it is possible to create an input description which causes bdsyn to collapse too much
logic and run for an inordinate amount oftime. The option -cl will limit the amount ofcol
lapsing that is done, and will alleviate the problem. Bdsyn uses MIS to do logic collapsing for
it The actual communication with MIS is accomplished through the use of unix pipes. On
non-unix systems or on asystem where MIS is not available, the option -cO should be used to
turn off collapsing altogether.

-a Bdsyn assumes that any variable that is not assigned to has the value of zero. The -o option
causes a table to be printed in the output for each variable for which this assumption is made.
The user should refer to the "Bdsyn Users' Manual" for details on how to make use of this
information.

-« Causes all SELECTALL's to be changed into SELECT'S. This isonly useful if you are using
DECSIM and wish to use expressions in SELECT cases.

-a Bdsyn win provide periodic updates as to the progress of its execution.
-z Causes DONTjCARE's in the input file tobe assigned the value zero.
The debugging options (notintended for general users) are:

-d Dumps the lexical tokens as the input file is parsed.

-e execute level
-e"must be followed by anumber which specifies to what stage the translation should be run.
The default is to run through completion.

Bdsyn Filet
Bdsyn uses a standard library ofmacro definitions to implement complex operations on logic-variable
arguments. The library is written in standard BDS syntax and is automaticaUy loaded at run time.
Bdsyn will first look in the current directory for "bdsynJib". If it is not found, it will look in
••-cad/Ub/bdsyn/bdsynJib" for the standard library.
On unix systems, bdsyn forks mis(l) as achild process. Unless the option -cO is used, bdsyn expects
that the mis program can be found in the users search path.

7th Edition 7 May 1987

BDSYN(l) UNIX Programmer's Manual BDSYN (1)

FILES

mis
./bdsynJib
*cad/lib/bdsyn/bdsyniib

SEE ALSO
mis(l), espresso(l), bdnet(l), pla(5)
-cad/doc/bdsyn.doc (BDSYN Users' Manual)

* ~cad/doc/blif.doc (BLIF description document)

MISCELLANEOUS
To generate aPLA in the Berkeley standard format use the command

mis -c dp -Tpla file.blif > file.pla

AUTHORS

Richard Rudell
Russell Segal

7th Edition 1 May 1987

OCTFLAT(I)
UNK Programmer's Manual OCTFLAT(l)

NAME
octflat - OCT symbolic hierarchy flattener

SYNTAX . . „
octflat [-1 level! [-o outceU[:outview]] incell[:mview3

DESCIumON h fQct syn^iic cells and flattens it to the eqmyalent smgle level mei^
The^eU must be created to the Oct Symbolic Policy Specification. All connecnvity mformation is
correctly translated.

The command line options are:
.1 level The -1 option must be followed by anumber which specifies at what level octflat will stop

flattening.

Level 0 (the default) flattens until noinstances remain.
Level 1stops when cells with VIEWTYPE ofPHYSICAL are reached.
Level 2stops based on auser specified function, if the function has been linked using "make userflat".
Level 3stops when acell with CELLCLASS ofLEAF is reached.
-o This option is used to specify the output facet The default is to flatten in place.
Flattening may be stopped at alevel other than that given by the -1 option. To do this the property
FLAT STOP must be attached to either the instance that should not be flattened, or to the interface
facet of the instance.

The user may specify his own stopping criterion for the flattener by linking in his own function. The
function must be called userStop and must take an instance and an interface facet as arguments:

int userStop(instance, interface)
octObject 'instance, ♦interface;

If the function returns true (!- 0) the the instance is not flattened. To link in userStop, create a file
containing userStop called "userflatc" and make anew executable using "make userflat .

SEE ALSO

bdnet(l)
Oct Symbolic Policy Specification

BUGS

This is a bit of a hack.

AUTHOR

Russell Segal

7th Edition 2 April 1987

Bibliography

[I] The Ella System Overview. Praxis Systems pic, Bath, England, 1985.

[2] VAX DECSIM Reference Manual Digital Equipment Corporation, Hudson,
Mass., 1986.

[3] VHDL User's Manual Intermetrics, Bethesda, Maryland, 1985.

[4] B. Brayton, E. Detjens, S. Krishna, T. Ma, P. McGeer, L. Pei, N. Phillips, R.
Rudell, R. Segal, A. Wang, R. Yung, and A. Sangiovanni-Vincentelli. Multiple-
level logic optimization system. In ICCAD, pages 356-359, November 1986.

[5] R. K. Brayton, C. McMullen, G. D. Hachtel, and A. Sangiovanni-Vincentelli.
Logic Minimization Algorithmsfor VLSI Synthesis. Kluwer Academic Publish
ers, 1984.

[6] N. Brenner. The yorktown logic language: an apl-like design language for
vlsi specification. In IEEE International Conference on Computer Design,
pages 11-15, 1984.

[7] B. Cmelik. Eqntott manual page. 1986 VLSI Tools: Still More Works by the
Original Artists, 1986. Report No. UCB/CSD 86/272.

[8] D. S. Harrison, P. Moore, R. L. Spickelmier, and A. R. Newton. Data man
agement and graphics editing in the berkeley design environment. In ICCAD,
pages 20-24, November 1986.

i

[9] S. Johnson. Yacc: yet another compiler-compiler. Unix Programmer's Manual,
March 1984. Report No. UCB/CSD 86/272.

[10] G. M. Ordy and C. W. Rose. Functional simulation shortens the development
cycle of a new computer. In ACM IEEE 20th Design Automation Conference,
pages 520-526, Miami, Florida, June 1983.

[II] D. L. RavenScroft and M. R. Lightner. Functional language extractor and
boolean cover genrator. In ICCAD, pages 120-124, November 1986.

89

[12] C.W. Rose, L. A. Rogers, and R. V. Straubs. The njnpc system description
facility. In 16th Design Automation Conference, pages 520-528, San Diego,
California, June 1979.

[13] R. Rudell, A. Sangiovanni-Vincentelli, and G. De Michelli. A finite-state ma
chine synthesis system. In International Symposium on Circuits and Systems,
1984.

[14] Richard Rudell. Multiple-Valued Logic Minimization for PLA Synthesis. Mas
ter's thesis, University of California, Berkeley, 1986. Memorandum No.
UCB/ERL M86/65.

[15] C. Terman. Esim manual page. 1986 VLSI Tools: Still More Works by the
Original Artists, 1986. Report No. UCB/CSD 86/272.

[16] A. Wang. Mis manual page. OCT Tools Distribution 1.0,1987.

[17] D. Wood. Meg manual page. 1986 VLSI Tools: Still More Works by the
Original Artists, 1986. Report No. UCB/CSD 86/272.

90

	Copyright notice1987
	ERL-87-33 (1 of 2)
	ERL-87-33 (2 of 2)

