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ABSTRACT

The evaluation of uncertainties in robotic manipulators is important to several
areas of robotics. Of special interest is the estimation of the actual kinematic parameters
of a manipulator. In this paper, geometric and non-geometric error sources are con
sidered. These error sources can be further subdivided into systematic and non-
systematic types. The systematic error sources of a manipulator are those which can be
estimated before the manipulator is built Systematic error sources are modelled, and
from these models, bounds on these error sources are determinedfor a given positioning
accuracy. These bounds are determined for two general types ofmanipulators.
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Modelling and Analysis of Systematic Errors and their Effects on
Positioning Accuracy of Manipulators

TimothyJ. Hahn*

Department of ElectricalEngineering and Computer Science
Electronics Research Laboratory

University ofCalifornia, Berkeley CA 94720

1. Introduction.

Of growing interest to the robotics community today is the representation and

evaluation of uncertainties in a robotic workcelL Estimation of these uncertainties is

important to three aspects of robotics. In offline programming systems, estimation of

uncertainty is necessary in order to evaluate the feasibility of a task. Also, estimation of

these uncertainties can result, through better design of fixtures in the environment or use

of sensors, in an improvement in the reliability of an action. A recent paper addressing

these topics is Brooks [1] in which tasks are broken up into smaller sub-tasks called

plans. These plans are then evaluated, changed to include sensing operations if neces

sary,and a resulting planis developed Unfeasible tasks arerejected if increased sensing

does not guarantee completion. The estimation of uncertainties for use in offline pro

gramming systems is also addressed, in a different fashion, by Foulloy and Kelley [6]. In

this scheme, local calibration of an environment is used to improve the reliability of

actions performed in that local region.

Another aspect of robotics related to the representation and evaluation of uncertain

ties online is that which is concerned with online fusion of sensor data. In the estimation

of an object's location, a certain uncertainty persists via the uncertainties in sensor data

* Research supported input by NSF undergrauDMC-8451129
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coordinate transformations by approximate transformations using random variables as

inputs.

In addition to the above areas of robotics, still another area concerned with the

design of robotics systems requires the evaluation and representation of uncertainties in

robotic workcells. These uncertainties must be accounted for in estimating the perfor

mance of the workcell, and in improving it A special topic in this area of robotics is

concerned with finding the actual kinematic parameters of a manipulator. With a precise

estimation of these parameters, improved positioning accuracy can be achieved since the

kinematic model of the manipulator will moreclosely resemble the actual manipulator.

In this paper, possible error sources and their effects on manipulator positioning

accuracy are considered. These errors stem from errors in the actual kinematic parame

ters of the manipulator and in the effects of actual motors used in each joint of the mani

pulator. In addition,the effects of machining tolerances on each of the links of a manipu

lator is developed. As a result, bounds on machining and joint tolerances can be found

for a desired positioning accuracy.

Section 2 of this paper gives a literature review of papers in the areaof error sources

in a manipulator and their estimation. Both the estimation of the actualkinematic param

eters of the manipulator (identification of arm signature) and effects of joint motors are

considered. In section 3, error sources and modelling of these is developed. Section 4

deals with the representation of these error sources and how machining and motor toler

ances affect positioning accuracy. In section 5, the kinematics and thus the kinematic

parameters susceptible to errors of the Intelledex 605T and Adept manipulators are for

mulated. Also, required machining and motor tolerances for positioning accuracy in

several nominal positions for these manipulators is given. Section 6 gives conclusions.
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2. Past Literature.

Several papers, [5][7][8][14][15][16], have attempted to estimate the actual

kinematic parameters of the manipulatorand thus determine a manipulator's arm signa

ture. Each of the papers discusses possible error sources in manipulators. In all papers,

errors in the links of the manipulator areconsidered to contribute to the positioning accu

racy. In addition to these error sources, errors in the joint motors of the manipulator such

as motor compliance and gear backlash are considered.

There are three main topics to be considered in evaluating and estimating the actual

kinematic parameters of a manipulator. These are the choice of the parameters to be

used, how errors in these parameters relate to positioning accuracy, and how experiments

are conducted to estimate these parameters.

Some general remarks on kinematic parameter selection have been noted by Everett

et aL in [5]. In this paper, the notions of completeness, proportionality, and equivalence

of kinematic parameters are developed. Completeness refers to the minimal number of

parameters needed to completely specify the kinematics of a manipulator. It was shown

that four parameters are needed for each revolute joint in the manipulator, two parame

ters are needed for each prismatic joint, and six parameters are needed to specify the zero

configuration of the manipulator. Added to these is the number of joint inputs. Propor

tionality of these kinematic parameters refers to the quality that small changes in position

and orientation correspond to small changes in these parameters. Finally, equivalence is

defined as the property that two kinematic parameter models which are complete should

be related by some equivalence relation. The modified set of kinematic parameters

satisfies the conditions ofcompleteness and proportionality.

In choosing the parameters to model the manipulator, a number of different schemes

have been proposed. First, in two papers by Stone and Sanderson [14][15] a set of six

parameters termed S parameters defining each link of a manipulator are developed and

used to represent coordinate transformations between links in the manipulator. These S
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model parameters resemble a more common set of parameters, the Denavit-Hartenberg

parameters, which also accomplish the same function. The S model parameters are

chosen for a number of reasons. First, small changes in position and orientation are

modelled as small changes in these parameters. Second, the S model gives a flexibility in

assigning coordinate frames to each link of a manipulator, and third, the Denavit-

Hartenberg parameters can be derived from the S model parameters.

In Judd and Knasinski [8] and Veitschegger and Wu [16], a modified set of the

Denavit-Hartenberg parameters of a manipulator is used. This modified set of parame

ters, suggested in [7] by Hayati, uses three, four, or five parameters to define each link.

This number is dependent upon the type of joints and their ideal relation.

As with the S parameter representation, it is very desirable that these small position

ing errors correspond to small errors in the defining parameters of the manipulator. In

this way, the effects of these parameterscan be approximated by a linear relation.

In the case of nearly parallel revolute or prismatic joints, small errors in position do

not correspond to small errors in the Denavit-Hartenberg parameters defining the mani

pulator. For this reason, an additional rotation is introduced into the definition of

transformations between coordinate frames attached to each link of the manipulator [7].

In this way, the Denavit Hartenberg parameters are modified giving the desirable quali

ties mentioned in the previous paragraph.

These modified Denavit-Hartenberg parameters represent a well known formulation

of the kinematics of a manipulator. In addition, error sources due to machining and

motor tolerances can be related to these parameters. For these reasons, the modified

Denavit-Hartenberg parameters will be used for analysis in this paper. A detailed review

of these parameters will be given in the section 4.

The second topic in evaluating and estimating the actual kinematic parameters of a

manipulator is establishing the relation between positioning accuracy and errors in the

kinematic parameters.
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In Stone and Sanderson [14][15], tests are performed which model the actual S

model transformation between each joint of the manipulator. This transformation is

modelled by two transformations: one using the nominal S model parameters followed by

an additional transformation representing S parameter errors. From this additional

transformation, the errors in the S model parameters are determined. These parameters

are ultimately related back to the Denavit-Hartenberg parameters of the manipulator. A

more direct approach to parameter estimation uses the modified Denavit-Hartenberg

parameters to define the manipulator.

In [8], Judd and Knasinski model errors in the modified Denavit-Hartenberg param

eters of the manipulator, errors due to gear train inaccuracy between motor and joint

encoder, and errors due to gravitational effects of manipulator position. For the modified

Denavit-Hartenberg parameters and gear train effects, only linear effects of errors are

considered and least square estimation techniques are employed to estimate them. For

errors due to gravitational loading, only one joint was considered, and its effect was

estimated empirically. This effect was compensated for by changing the transformation

relating the effects of this link.

In [8], errors in position and orientation due to the unmodelled effects above are

modelled as cyclic functions of the joint angles as in the following equation

w COS (fix) 51/1(0!)"

\ £05(62) 51/1(02)

A,

7,
=a0+Ax

aw(63)

075(84) +*i
sin (83)

5/n (84)

7, cos(Q5) 5tn(8s)

7« cosd&d 51/1(66)

(2.1)

The left side of Eq. (2.1) is in twist coordinate form [11]. Using test data, a0, Al9 and B,

are estimated via least squares fit techniques. In this way, positioning accuracy is related

to errors in the kinematics and motors of the manipulator.
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The relation between positioning accuracy and kinematic parameter errors is, in

Veitschegger and Wu [16], approximated asa linear correspondence. The linearization is

taken as the partial derivative matrix of the forward kinematics representing position and

orientation evaluated at the nominal position and orientation of the manipulator. This

linearity assumption is justified due to the choice of kinematic parameters. Veitschegger

andWu utilize the modified Denavit-Hartenberg parameters suggested by Hayati [7]. In

thiscase, positioning accuracy is represented by a 6x1 vectorwhichis related to differen

tial changes in position and orientation.

The remaining topic of consideration in the estimation of the actual kinematic

parameters of a manipulator is the subject of experiments. The purpose of these experi

ments is to collect data from two sources. Hrst, joint parameters are read from the joint

encoders. Second, the actual position and orientation of the end effector is measured

using either an external sensor or special tool. In either case an external system must be

used to actually collect data. It is obviously necessary that this system be much more

accurate that the manipulator in question. Also, tests must be performed so that all

modelled error sources will be detected. This usually corresponds to gathering test data

throughout the workspace of the manipulator. Indeed, if experiments do not permit the

effect of a certain error source to be seen due to the position in the workspace or other

experimental conditions under which the test data was collected, then this error cannot be

estimated.

In Stone and Sanderson [14][15] a special test is performed to determine the axis of

rotation of each of the revolute joints of a manipulator. Each joint is considered

separately. The joint is rotated through its full range of rotation with measurements

made in a number of places using ultrasonic range sensors. This test is repeated indivi

dually for each joint in the manipulator. In this way, the actual S model transformation

matrix can be estimated and errors in the S model parameters are determined. Perfor

mance has been shown to improve a PUMA 560 by about a factor of 5 in position and
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improve orientation by about a factor of 20.

In Judd and Knasinski [8], approximately 500 "arbitrarily" chosen positions were

used to estimate the kinematic parameters and errors of an Automatix AID-900 manipu

lator. These positions cover the workspace of the manipulator, including the range of

each of the manipulator's joints. Improvements in angular offset in the joints of the

manipulator are by approximately a factor of 2 for the final estimation. In this paper,

compensation is performed for a seemingly endless number of error sources. A level of

diminishing returns seems to have been attained, however, in that later compensations do

not increase the overall positioning accuracy by very much.

Veitschegger and Wu [16] use a specially designed pointed tool to be placed in the

end effector of the manipulator. This tool precisely locates a point in the workspace of

the manipulator. The transformation between the end effector and this tool is assumed

exact, and measurements are taken on the actual position of the tool point A number of

these measurements were made across a plane of the workspace of the manipulator. This

plane corresponds to the stand on which the manipulator is mounted. From these meas

urements, the modified set of Denavit-Hartenberg parameters is estimated. Using this set

of modified Denavit-Hartenberg parameters, the greatest measured position error for a

PUMA 560 was reduced from 21.7 mm to .3 mm.

In all of the papers reviewed above, improvements in positioning accuracy are

attained by estimating the actual kinematic parameters of the manipulator. In the follow

ing sections, the effects of machining and motor tolerances are related to these kinematic

parameters and hence to the positioning accuracy of the manipulator. Possible error

sources and their modelling is now addressed.
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3. Error Sources and Modelling.

Sources of error in manipulators are numerous. Consider a simple two link planar

manipulator: errors may occur in the machining of the links, in the discretization of the

joint encoder readings of the joints, and in the compliance and gear backlash in the

motors. A natural separation of error sources will be used here. Errors can be thoughtof

as either geometric or non-geometric in nature. Geometric errors correspond to errors in

the links of the manipulator. Non-geometric errors include gear backlash, motor compli

ance, and discretization ofjoint encoder readings.

A separation can also be made between systematic and non-systematic errors. Sys

tematic errors can generally be estimated with some accuracy before the manipulator is

used for applications. Non-systematic errors are those errors in the manipulator which

result from actual use of the manipulator in an environment.

3.1. Geometric Errors

Geometric errors correspond to errors in the mechanical links, i.e. offsets between

the design values of the parameters of each link of the manipulator and the actual values

of these parameters. These errors come about in a number of ways. First, machining

tolerances give an evaluation of the maximum error which can affect the actual machined

link. Tolerances on distance between joint axes and angle between joint axes are evalua

tions of geometric errors in the links.

In most machining situations, dimensions of parts are defined in units of mils or

thousands of an inch. Accuracy of the machines in the shop directly affect the machining

tolerance of the manufactured part. Typical accuracy of these machines in on the order

of J to 1 mil. The accuracy of CNC (numerically controlled) machines is higher. Many

times, however, accuracy is given proportional to the design values via some percentage.

While machining tolerances in the links of the manipulator give an evaluation of the

systematic geometric errors of a manipulator, other error sources also contribute to these
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geometric errors. Over-exertion or misuse of the manipulator may result in the deforma

tion of one or more links of the manipulator. With this deformation, the manipulator no

longer corresponds to its defined kinematics and thus, errors result. Also, shipping of the

manipulator between factory and plant may result in a deformation in the links of the

manipulator. Small deformations in the links may not be noticeable when the manipula

tor is installed but could become apparent when highly accurate positioning is requested.

All of these factors contribute to geometric errors in the links of the manipulator.

Assuming that these situations do not occur on a regular basis, the geometric errors of the

manipulator can be thought to be time-invariant Hence, an estimation of these would be

desirable in order to get a kinematic model of the manipulator which is closer to the

actual manipulator in question.

In relating the effects of machining errors and misuse on the link parameters as

defined above, two assumptions are made: first, machining errors in the links are assumed

to be small in comparison to the ideal link parameter values. Second, since misuse and

shipping problems do not (hopefully) occur on a planned basis, errors due to them occur

randomly between manipulators. It is the purpose of this paper to relate the manufacture

of manipulators to their positioning accuracy. For this reason, errors due to misuse and

shipping will not be considered. In an actual situation, the best method to account for all

geometric errors in manipulators is to perform positioning tests on the manipulator in the

environment in which it will be used. As in many of the papers reviewed in section two,

this test data can be used to estimate the actual geometric parameters defining the mani

pulator.

The two machining tolerances which affect this relation most are the tolerance in

the distance between joint axes and the tolerance in the angle between these axes. These

two quantities will be denoted by rm and rA for nominal distance and distance tolerance

respectively, and ym and ys for nominal angle and angle tolerance respectively.
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With this introduction to geometric error sources and notation for defining the sys

tematic part of these sources, their relation can be developed. This will be done in sec

tion four. Attention is now turned to non-geometric error sources in manipulators.

3.2. Non-geometric Errors.

Non-geometric errors in the manipulator consist of all other error sources which

may affect the positioning accuracy and repeatibility of the manipulator. Sources of

non-geometric errors are even more numerous than for geometric errors. Non-geometric

errors can occur in the manipulator due to motor compliance and gear backlash in the

joint motors of the manipulator. Since each motor has a certain compliance, the required

input torque to the motor may have to be higher than the nominal desired input torque.

These effects are due to unmodelled forces which act on the manipulator but were not

accounted for at path generation. These errors are a control problem related to the

dynamics of the manipulator. In this paper, only static positioning errors are considered.

In addition to motor compliance, gear backlash in the motors can affect the actual joint

angle or length. The joint encoder is usually positioned so that the effects of gear back

lash are undetectable by the encoder. As shown in figure 3.1, the joint encoder is posi

tioned at the output of the DC motor. With the encoder placed here, any effects of gear

backlash would not result in a change in the value returned by the encoder.
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Encoder

-Gear

Backlash

DC Motor

Figure 3.1

Typical joint motor and encoder.

Depending upon the configuration of the manipulator, the mass of each link of the

manipulator may affect the actual joint angle or length. In addition, if the manipulator is

holding an object in the end effector, and its mass is large, it too will affect the actual

joint angle or length via the motor compliance and gear backlash in the motors. In gen

eral, any object of sufficient mass held in the end effector of the manipulator will affect

the positioning accuracy.
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In addition to these effects, the control loop for each motor may introduce some bias

in the actual joint parameter obtained. The input values supplied to each motor of the

manipulator are affected by the controller. While this inner, or low-level, control loop

may introduce some bias into the actual joint parameters, an outer control loop which

depends on the feedback signals from sensors can also introduce biases in the joint vari

ables. These biases will depend both on the outer control loop and the accuracy of the

sensors used in the feedback loop. In the computed torque method of control, the inertial

effects of the configuration of the manipulator are only estimated. This estimation is

done via an adaptive algorithm so that the estimated effects and the actual effects may

not be the same. While the adaptive algorithm is guaranteed convergence, inside the

convergence time of the algorithm, calculated input values to the joints of the manipula

tor will not be exactly what they should be thus resulting in an error in the joint parame

ter. To. summarize this point, inputs are determined using only approximate models of

the manipulator. In addition, these calculations are not performed in infinite precision.

As a result, errors are introduced.

In all of the non-geometric error sources given thus far, the revolute joint angle or

prismatic joint length is the affected joint parameter. In each case, the effect will be that

the actual joint angle or length will be different than the requested input by some small

amount It should be noted, however, that this effect will, in general, be dependent upon

manipulator position and mass held in the end effector.

Non-geometric errors can be divided into systematic and non-systematic types. The

non-geometric error sources given above correspond to systematic error sources in a

manipulator. They can be estimated before the manipulator is constructed given the

estimated mass of the links and the mass in the end effector.

Non-systematic non-geometric error sources from operating conditions in the

workcell may affect the manipulator's positioning accuracy. Factors such as tempera

ture, humidity, and vibration of the environment may affect the positioning accuracy.
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Indeed, if the required positioning accuracy is very high, the vibration induced by the

passing of a truck outside may result in positioning errors.

With these error sources outlined, it is necessary to model these sources so that their

effect can be estimated. It is the purpose of this paper to estimate the effects of those

error sources which come from the design of the manipulator and can be estimated before

the manipulator is built Hence, non-systematic error sources will be ignored. In an

actual situation, positioning tests should be conducted under actual operating conditions

so that accurate estimates of all modelled errors will be determined.

The overall effect of these systematic non-geometric error sources is to produce

some offset value in each joint parameter of the manipulator. This offset will be

represented as 8A(m,8) for revolute joints and as dA(m,8) for prismatic joints. It must be

clarified that these values are defined for each individual joint Hence, m is the effective

mass seen by the joint in question and 6 is the vector of joint parameters which

corresponds to the manipulator's actual position.

With these parameters for systematic geometric and non-geometric error sources

developed, their effects on the manipulator kinematics are now addressed.

4. Positioning Error and Modelling.

From the discussion above, error sources in manipulators can be divided into two

natural categories, namely geometric error sources and non-geometric error sources. Fol

lowing in a like manner, in this section modelling of geometric error sources is addressed

first, and then non-geometric error sources are modelled.

4.1. Geometric Errors.

From the last section, it has been determined that systematic geometric error sources

have origins in the machining tolerances in the manufacture of the individual links of a

manipulator. The modelling of these systematic geometric error effects will be a two-
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step process: first, a modified set of the Denavit-Hartenberg parameters which represents

small errors in the links as small errors in these parameters will be used to represent error

sources in position and orientation. Second, functions relating the machining tolerances

of the links to these modified Denavit-Hartenberg parameters will be developed. In this

way, machining tolerances can berelated to position andorientation accuracy.

4.1.1. Modified Denavit-Hartenberg Parameters.

It is desirable that only the linear effects of errors in the defining parameters of a

manipulator need beestimated. Inorder tomake this assumption, small errors in position

andorientation must correspond to small errors in the defining parameters of the manipu

lator. By far the most popular method of defining a manipulator is via its Denavit-

Hartenberg parameters. For this reason, these parameters are chosen as a starting block

in a set of defining parameters satisfying the above conditions.

The Denavit-Hartenberg parameters of a manipulator are a set of parameters, four

for each link, which can be used to define the kinematic transformation between the base

of the manipulator and the end of the manipulator. These parameters can be derived for

any manipulator by proper attachment of coordinate frames to each link of the manipula

tor. The Denavit-Hartenberg parameters characterize the transformation between these

coordinate frames. A crucial rule in using these parameters is that the origins of succes

sive coordinate frames for parallel joints can be chosenat one's discretion along the joint

axes. This is possible since the perpendicular distance between parallel joints remains

constant A problem arises, however, when it is desired that small changes in the posi

tion of a manipulator of the same structure be reflected as small changes in the defining

parameters of each link of the manipulator. This can be seen by the following: if two

successive joints are not exactly parallel, the origins of the coordinate frames attached to

each link are fixed, no longer arbitrary. Hence, small deviations in the structure of a

manipulator can result in large deviations in the defining parameters of the manipulator.
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This effect is shown in figure 4.1.

Figure 4.1

Effect of non-parallel joints on defining link parameters.

This effect has been compensated for by modifying the Denavit-Hartenberg param

eters. This modified set of parameters, suggested by Hayati [7], introduces an additional

rotational parameter, p, to be defined in the case of nearly parallel joints. Now, coordi

nate frames are attached to each link of the manipulator by the same convention as for

the Denavit-Hartenberg parameters. The transformation between successive links in the

manipulator takes the form:

/-|T=/?^(zw,6i)rrflii5(0M)rran5(j|.,0,0)/?<7/(xi,a)/?o/(y.Pi) (4.1)

as shown by Veitschegger and Wu in [16]. This transformation is explained as follows
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(see figure 4.2) the i* coordinate frame is first rotated about its yt axis by an angle p to

lineup the jc{ axis with the direction of the perpendicular line giving distance between the

two joint axes (assuming that the two joint axes were parallel). This new coordinate

frame is then rotated about its x axis by an angle a* to line up the z, axis with zw. This

frame is translated by a, in the x direction, then by a) in the zw direction. Finally, this

frame is rotated about the zw axis by an angle 6{ to lineup the x axes.

yn

Figure 4.2

Relation between coordinate frames for modified

Denavit-Hartenberg parameters.

In general, this has the form:
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(C8,Cp,. -S8l5a,-5PI) (SBiCattKCQiSh + 58,5<x,Cp{) (a,C8,) -\
(SQiCh + CQiScttSh) (CQiCctt) (58l-5P,-Cei-5a,CP,)(fll58l)

(-Cct,Sp,) (5a.) (Ca,Cpf) (d)f

0 0 0 1

(4.2)

where C signifies cosine and S signifies sine. This transformation is frequently parti

tioned as follows

• i P A 'pl

where/"U is a 3x3 rotation matrix, and 'p is a 3x1 positionvector.

(4.3)

However, all of these parameters are used only in the case of parallel or nearly

parallel prismatic joints. In the three other possible cases: for parallel or nearly parallel

revolute joints a, is assumed zero, for non-parallel revolute joints P, is assumed zero, and

for non-parallel prismatic joints at andp* are assumed zero. Details of these results can

be found in Hayati[7].

4.1.2. Differential notation of coordinates.

It has been developed in Paul [10] and by Paden [11] that small changes in position

and orientation can be represented by a transformation matrix

* =

<sXb

0 0
(4.4)

where oK is a skew-symmetric rotation matrix and b is a position vector. The twist coor

dinates of this transformation matrix,defined as a vector in R6, is given as follows

= rc

•0 -©, COy v,

0), 0 -HOx vy

-co, ©, 0 v,

0 0 0 0

(4.5)
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Since the difference between the ideal position and orientation and the actual posi

tion and orientation is assumed to be small, this differential notation should give a good

parameterization. The following relation holds

Taa^^ig+nTuUal (4-6)

where T signifies the forward kinematics of the manipulator. For the remainder of this

paper, e„=tc (g).

Assuming that the difference between the actual and ideal position and orientation

is small, and that small errors in the defining parameters of the manipulator correspond to

small errors in position and orientation, only the linear effects of these errors in the

defining parameters need be considered. It has been shown by Hayati in [7] that if dif

ferential changes in coordinate frames arerepresented in twist coordinates (Paden [10]),

differential changes in the the modified Denavit-Hartenberg link parameters can be

related to e* by the following:

c^ =Ax (4.7)

where A is a matrix in R*" where n is the number of required defining modified

Denavit-Hartenberg parameters andx is a vector in R* of errors in each of these parame

ters. In this way, £» represents a differential position and orientation expressed in the

base or world coordinate frame of the manipulator.

As reviewed by Hayati [7] and Paul [10], these differential positions and orienta

tions can be related betweencoordinate frames by the following

*.= 0 JA «*-/>«/ (4.8)

This relation requires some clarification. e< and e^ are the twist coordinate form of a dif

ferential position andorientation in terms of coordinate frames i and j respectively. }A

is a rotation matrix defined by the transformation between coordinate frames i and j as

shown in Eq. (4.3). Finally, lpX is the position vector of the transformation matrix
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between coordinate frames i and j expressed in terms of a skew symmetric matrix (see

upper left 3x3 partition of 4x4 matrix in Eq.(4.5)). '"p is defined as in Eq. (4.3). This

operation results in a vector cross-product between 'p andeachof the columns of JA.

With this relation between the twist coordinates of different coordinate frames, a

relation is needed between the differential position and orientation in each link / due to

small changes in the link parameters. Since the proportionality property defined in [5]

holds for the modified Denavit-Hartenberg parameters of a manipulator, only the linear

effects of these parameters will be considered while higher order effects will be assumed

to be much smaller and negligible. This relation will be different for each of the four

possible combinations of prismatic and revolute joints. In general, this relation can be

expressed as

ti^GiXi (4.9)

where jq is the vector of link parameter changes for link i. Depending upon the number

of kinematic parameters needed to specify a given link of a manipulator, G{ can have

dimension 6x3,6x4, or 6x5.

In this way, the effects of small errors in each link of a manipulator are related to

the positioning accuracyof the manipulator. This relation is given by the following

where -V is defined in Eq. (4.8) and G, and jc, are given in Eq. (4.9) This relation can be

expressed in terms of matrices as follows

t^^Ax (4.11)

where
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'JG- \qJGx J*. :jg. 7JGt ]

x = (4.12)

and n is the number of links of the manipulator and t represents the tool frame of the

manipulator. Thus, positioning accuracy is related to errors in the kinematic parameters

of the manipulator. The analysis above is a review of the work of Hayati in [7].

Using this representation, the nonlinear relationship between link parameters and

manipulator kinematics is approximated by a linear relationship with the assumption that

the errors in the link parameters are small in comparison with their actual values. In this

way, link parameter errors can be related to positioning errors expressed in twist coordi

nate form.

4.13. Machining Tolerances and Geometric Errors.

The second step in geometric error representation will now be developed. Machin

ing errors in the links are assumed to be small in comparison to the ideal link parameter

values. As developed in section three, the two machining tolerances which affect the

relation between two consecutive joint axes most are the distance and angle between

them.

Distance between joint axes is first addressed. This was parameterized as r„ for

nominal distance and rA for distance tolerance. The two link parameters affected by the

distance between joint axes are at and a\. Since only one link will be considered at a

time, the subscript i will be dropped in the interests of notation. In each of the four pos

sible representations of the error sources due to the link parameter errors at least one of
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these two link parameters is specified. Now,

(r, + rA)2 = («„+02 + (4.+<**)2 (4.13)

In general, both a and d are affected by this machining tolerance and the range of aA and

dA is shown graphically in the following figure.

Figure 43

Range of possible effects of machining distance tolerance

on link parameters.

It can be shown by straightforward calculation that the range of possible errors for some

special cases is as follows: when dA=0

and when a A= 0

^=-rf-+VdL2 +2r<lrA +r2

and the special case that aA=dA

a*=dA=H**+dJ +^(am +dm)2+2(2rmrA +rl)

In general, aA and dA satisfy the Eq. (4.13).

(4.14)

(4.15)

(4.16)
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For the four possible cases of link representation given above, both aA and dA are

included in the case of non-parallel revolute joints and parallel or nearly parallel

prismatic joints. For non-parallel prismatic joints only dA is defined, and for parallel or

nearly parallel revolute joints, only aA is defined. The above equations relate machining

distance tolerances to link parameter errors.

The other possible error source in machining is the angle between the joint axes and

its machining tolerance given by ym and yA respectively. This machining tolerance will

affect only the link parameters which define the angle between successive joint axes.

These parameters are a* and ft. Again, in the interests of notation, the subscript / will

be dropped. Also, by the definition, ym corresponds to a. If only the value of the angle

tolerance is given, no assumption on the direction of this angle's effect on the joint axis

in question can be made. Thus, the possible actual joint axes lie inside a cone as shown

by the following figure. In all possible cases of joint pairing, a machining angle toler

ance affects only the angles a and p.
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Figure 4.4

Cone of possible joint axes for given machining angle tolerance.

These effects are as follows: the maximum value of each link parameter angle error

will be the machining angle tolerance and the minimum will be zero. This is can be seen

by considering the range of possible angle errorsas the edge of the cone is traversed (see

figure 4.4). Also, a link parameter angle can achieve its maximum error only when the

other link parameter error is zero.

If it is assumed that the machining angle tolerance affects both link parameter

angles equally, the rangeof possible link parameter erroris

Oa=Pa«5 -ftw",(«^toii(YA)).tan-I(-irto«(YA)) (4.17)

In general, however, this is not the case,andthe actual values of the link parameter errors

due to the machining angle tolerance is given by

Cfe e Utan"l(cos (Q)tan (yA)).tair1(aw ($)tan Cfo))1 (4.18)
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PAe [-ten-1(jM»(<|>)wn(YA)),tan-1(«n((|))ran(YA))] (4.19)

where <t> is the angle between the nominaldirection of a* and the direction of the machin

ing angle error yA (see figure 4.5).

Figure 4.5

Relation between yA and link defining parameters.

4.2. Non-geometric Errors.

Non-geometric error sources and their effects on the defining link parameters will

now be addressed. From the previous section, non-geometric error sources include com

pliance and gear backlash in the individual joint motors, the effects of the internal and

external control loops on the joint input angle or length, and the effects of a mass held in

the end effector of the manipulator. These systematic non-geometric error sources will

be parameterized.

As discussed in the previous section, the total effect of all of these error sources

results in an offset in the actual joint value by some small value. This relation will be
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represented as 8, +8A(m,8) for revolute joints and dH +dA(mjJ) for prismatic joints where 6

is the vector of all the joint input variables and m is the effective mass for each joint of

the manipulator. The effective mass is given by the center of mass of links i -n and the

mass of an object held in the end effector. In general, BA will depend on the position of

the end effector and the mass held in the end effector.

The effect of gear backlash in a motor is to introduce an offset between the

requested and actual joint input This offset is given by the angular gap between the gear

teeth in the motor. The value of the offset is not dependent upon the effective mass seen

by the joint motor, but gear backlash is introduced by the effective mass. Hence, in order

to examine its effect, it is assumed that the effective mass is large enough to induce its

effect on the joint angle or length.

Motor compliance is also induced by the effective mass seen by the joint in ques

tion. In the case of a revolute joint, the amount of offset is proportional to the moment

induced by the effective mass of the manipulator about the joint axis. For a prismatic

joint, this offset is proportional to the force induced by the effective mass in the direction

of the joint axis.

The total of these two effects gives the following

8A(« ,8) s 9^3 + 8awc(C x m),) (revolute)

dA(m ,6)=dMa +dAMC({m),) (prismatic) (4.20)

where / is the vector from the joint axis to the effective center of mass and (), is the

joint axis direction component of the moment and force. This relation is only approxi

mate due to the as yet unmodelled effects of errors induced by the control loop including

external sensors.

The effects of the control loop and sensors is modelled as follows: the sensor value

returned to the external control loop of the manipulator will normally have some nominal

value coupled with a bias and randomness about this bias. Hence, on average, the error
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due to sensors can be modelled as just the mean of these values, or the nominal value

plus the bias term. So, another constant term should be added to the above equations to

model non-geometric error effects on the manipulator.

4.3. Establishing Sufficient Machining and Motor Tolerances.

It is certainly interesting to see what error sources most affect the positioning accu

racy of a manipulator. This type of analysis is useful in determining which kinematic

type of manipulator should be used in a given situation. Another interesting analysis can

be done, however, to examine the sufficient conditions on the machining and motor toler

ances in order to achieve some specified level of positioning accuracy. This analysis can

be performed when designing manipulators for certain tasks.

From Eq. (4.11) it was shown that, assuming only systematic errors,

Ax=e^ (4.21)

If a desired positioning accuracy is specified, hence specifying e», conditions on the

tolerances of each of the defining parameters can be determined.

This equation deserves some investigation in itself. Looking at the elements of e^

and x, this equation has the following form

«A1 w
eAi a>

• a.
•

=

Y*

.V

7,

7,

(4.22)

First, the vector x contains errors in both angles and lengths. It is clear that errors in the

length of a link of a manipulator do not affect the orientation error. Thus, ifx is reorgan

ized with A reorganized accordingly, Eq. (4.22) takes on a more orderly form. Taking FA

as the vector of distance errors and 6A as the vector of angle errors, Eq. (4.22) can be
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Ax =

27

*,"

An A12 ?A

*>
*,

0 AB eA
=

Y,
U J k J

Y,

Y»

(4.23)

with x =[rj ej]r. With this relation, sufficient bounds on both TA values and 6A values

can be found.

In order to determine a sufficient bound on x such that the desired positioning accu

racy is attainable, the following relation must hold.

ILif/llSKeJjl (4.24)

for the j* row of A. This bound on x will guarantee that its effects on position and

orientation will be less than or equal to the desired accuracy. This relation will be

satisfied in two steps: Hrst, sufficient bounds on 6A will be found under two constraints.

These are

IIAlyeAll£l(Oyl (4.25)

for the last three rows of e* and

I\ATX2fiA\I * KOyl -5< KO/I (4.26)

for some 0<5< l(Oy'» This condition will, in general, produce more stringent bounds

on 6A than the constraint of Eq. (4.25). This is due to the fact that errors in position due

to angle errors are amplified by the length of the link in question. Hence, errors in posi

tion will be moreaffected by joint angle errors than by the joint lengtherrors.

This gives

11AT2/8AII £ I\Ajy11 118AII (4.27)

Now, a sufficient condition on 8A such that Eq. (4.27) holds is
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II0JI <, min
KO^I-8

IAT
(4.28)

12/'

This is a requirement that all the elements of 8A stay within a sphere of given radius.

Similar conditions can be found from Eq. (4.25). By taking the minimum of these two

constraints, a bound on 8A can be determined.

In order to determine a bound for 7A, the triangle inequality is used.

I^7A+Aj2fiA\ I<; IlA'Ii/J I+IIA72,8AI I (4.29)

With this relation, and the constraintson 6A found above, constraints on 7A are given by

IIA"[j/Al I<; l(0;I - IWwAl' *5 <4-3°)

So that

I \7A I £ min
/=IA3

KzJi\-WATX2fiA\\
IA[lyll

(4.31)

In this way, sufficient conditions on x, and hence on the link parameter error tolerances,

can be found for a given positioning accuracy. It should be emphasized that these condi

tions are only sufficient In order to obtain less conservative bounds, an optimization of

x could be performed. For instance, maximize I \7A\ I and II8AII under the constraints

that each element of 7A and 6A be positive and also that Eq. (4.24) is satisfied for

To relate these sufficient conditions in terms of link parameter errors to sufficient

conditions on machining and motor tolerances, the same relations as developed in the

first part of this section are used.

Foreach link in the manipulator, sufficient conditions on the defining parameters for

link distance can be found from Eq. (4.31). From this, the following relation gives a

sufficient condition for these distances in terms of the machining distance tolerances:

rA£ -r„ +Vr.2 +<2a„ +a^ +(2dm +d^A (4.32)
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For machining angle tolerances,

YA^min(aA,pA) (4.33)

These two relations give sufficient conditions on the machining tolerances of each link of

the manipulator needed in order to obtain the desired positioning accuracy.

Bounds on the motor tolerances required to obtain the desired positioning accuracy

are directly related to the bounds given for the link parameter errors found by Eq. (4.28).

Using these bounds on the link parameter errors sufficient bounds on the motor compli

ances and gear backlashes are given by

Gact + 9awc((J x m\) £ 8A (revolute)

dACB + d^Mcdm )t)£dA (prismatic) (4.34)

with all variables defined as in Eq. (4.20).

Thus, sufficient conditions have been derived for machining and motor tolerances in

order to achieve a given positioning accuracy. By formulating this matrix A for a

number of nominal configurations of the two manipulators in question and supplying

desired positioning accuracy, sufficient bounds can be determined for machining and

motor tolerances for the manipulators. This analysis is now done for the Intelledex 605T

and the Adept manipulators.

5. Manipulator Kinematics and Data.

5.1. Manipulator Kinematics.

The Denavit-Hartenberg parameters of each link of the manipulator can be deter

mined to give the ideal manipulator kinematics. As discussed in the last section, a

slightly modified version of this method proves to be better for the purposes of error

representation in the links of the manipulator. Hence, the kinematics both the Intelledex

605Tand theAdept will bedefined using these modified Denavit-Hartenberg parameters.
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By concatenating each of these link transformations, the total forward kinematics of

the manipulator can be found. For the case of the Intelledex 605T, the nominal, or ideal,

modified Denavit-Hartenberg parameters are given as

Parameters for link i

of Intelledex 605T

i <* «i di e* ft
1 -90" 0 0 e, 0

2 90* 0 0 Oj 0

3 0 h 0 9s 0

4 0 h 0 % 0

5 90" 0 0 05 0

6 0 0 0 e6 0

Figure 5.1

Ideal modified parameters for Intelledex 605T.

In the table, 0 signifies values which are identically zero and are not used in model

ling errors in the transformation. These kinematic parameterscan be shown to define the

transformation between the properly defined coordinate frames for each link of the mani

pulator. These coordinate frames are shown in the following figure.
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Figure 5.2

Link coordinate frames for Intelledex 605T.

In addition, two transformations are needed to relate the base or world to frame 0 and

frame 6 to the tool frame. These are given by
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$J = Trans(0,QJx)

fT = Rot(ztt9(f)Trans(QtQ,U)

(5.1)

(5.2)

Errors in these transformations are also modelled in a similar fashion. Thus, the forward

kinematics of the manipulator are determined in terms of the modified Denavit-

Hartenberg parameters. These areused to model geometric erroreffects in the manipula

tor.

In a likewise fashion to the above derivation, the forward kinematics of the Adept in

terms of the modified Denavit-Hartenberg parameters are determined. These parameters

are given by

Parameters for link i

of Adept

i a. a* di e,- &
1 0 0 0 e, 0

2 0 h 0 % 0

3 0 h 0 e* 0

4 0 0 d* 0 0

Figure S3

Ideal modified parameters for Adept.

These parameters define the coordinate transformations between each link coordinate

frame. The link coordinate frames are defined in the following figure. As in the case of

the Intelledex, two additional transformations are required. These are given by

(5.3)JT=/?o/(z0.180fl)rraiw(0,0^0

fT =/?^(zr,180a)Traw(0,0^4) (5.4)

Again, error sources in these transformations are modelled in a similar fashion.
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Figure 5.4

Link coordinate frames for Adept.

With the kinematics of these manipulators defined, the effects of errors in the defining

link parameters can be determined.
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5.2. Data.

In this section, data representing sufficient bounds on machining and motor toler

ances is presented. This data has been found for two positions of both the Intelledex and

the Adept manipulators. In order that a comparison can be made between the two mani

pulators, these positions were chosen as the same for both manipulators.

The first position corresponds to a place on the work surface of the manipulators

and could be a desired position in pick-and-place operations. This position is described

by

x = 200.000000 8, = 1.571237
y= 200.000000 8j= 1.063532
z= 0.000000 83= -0.944167
Y= 0.000000 84= 1.754183
p= 1.570000 6S= -0.810926
o= 0.000000 86= -0.507265

for the Intelledex 605T where x, y, and z are in units of millemeters and y, p, and a are

euler angles in units ofradians. The corresponding position for the Adept is given by

x = 200.000000 &! m -0.262798
y = 200.000000 82= 2.429293
z= 0.000000 83= -2.166495
8= 0.000000 d4 =-203.199997

with xt y, and z in units of millemeters and 6 in units of radians.

For this position, sufficient bounds are determined for the link parameter error toler

ances by the procedure described in Eqs. (4.23)-(4.31). For the Intelledex manipulator,

the values of II6AII and I \7A\ I are given by

II8AII £0.000370 rod

I \7A\ I 50.035243 mm

Forthe Adept manipulator, these values are given by

II6AII £0.000508 rod
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IF J I £0.043655 mm

These values were computed using tolerances of

and 5 given by

0.500000

0.500000

0.500000

0.100000

0.100000

0.100000

5=0.100000

Sufficient machining and motor tolerances were computed for this position of both

manipulators. In order to do this, it was assumed that machining tolerances were equal

for all distance measurements (aA=<iA). For the Intelledex, it was found that sufficient

machining tolerances were given by

'A*

0.0501771

0.070956

0.070956

0.050177

0.050178

0.070956

0.070956

0.050186

mm

with rAthe vector of machining distances. Also,

YA£ 0.004537 rod

for all links of the Intelledex manipulator. This gives sufficient bounds on the machining

tolerances of the Intelledex for the specified positioning accuracy.

Sufficient bounds on the motor tolerances are the same as for the angle tolerances

and are given by

8A£ 0.004537 rod
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For the same tolerances in position and orientation, sufficient bounds on machining and

motor tolerances for the Adept manipulator are given by

for the first three joints, and

rA£

0.055848

0.078971

0.055844

0.055845

0.055833

0.078971

mm

yA<0.005313 rod

8A£ 0.005313 rod

dA <0.055833 mm

for the fourth (prismatic) joint

It is noticed that the required bounds on the motor tolerances are much higher than

the bounds on the machining distance tolerance. This is due to the amplificationof angle

errors by the length of the link in question.

In observing the data for each manipulator, the derived bounds on distance tolerance

vary for each link. This is due to the fact that as am and dH increase, the effect of a

machining tolerance becomes smaller. Thus, for different size links, the machining toler

ances can be different In comparing the two manipulators, it is noticed that the required

machining and motor tolerances are much more strict for the Intelledex. This could be

due to both the requested position and increased complexity of the Intelledex over the

Adept

In the same fashion, this procedure was carried out for a second position and orien

tation given by
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x= -200.000000 ei = 1.571408

y = 200.000000 e2 = 0.914246

z = 100.000000 e3 = 1.416886

Y= 0.000000 e4 = -1.666827

0= 1.570000 e5 = 0.248936

a= 0.000000 o« = -0.656550

for the Intelledex manipulator, and by

x= -200.000000 8,=: 1.307998
y « 200.000000 82= 2.429293
z » 100.000000 83= -3.737291
6= 0.000000 dA =-103.199997

for the Adept

With the same desired position and orientation tolerances, sufficient bounds on

angle and distance parametersare given by

II8AII £0.000440 rod

IIFAII £0.041592 mm

for the Intelledex, and for the Adept manipulator

II6AII £0.000666 rod

I \7A\ I £0.045870 mm

As above, these parameters are used to compute sufficient bounds on the machining and

motor tolerances of each manipulator. These aregiven by

rA£

0.0545101

0.077083

0.077083

0.054510

0.054511

0.077083

0.077083

0.054521

with rA the vector ofmachining distances. Also,

mm

YA£ 0.004946 rod
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for all links of the manipulator. This gives sufficient bounds on the machining tolerances

of the Intelledex for the specified positioning accuracy.

Sufficient bounds on the motor tolerances are the same as for the angle tolerances

and are given by

8A£ 0.004946 rod

Sufficient bounds on machining and motor tolerances for the Adept manipulator are

given by

for the first three joints, and

rA£

0.057248

0.080950

0.057244

0.057245

0.057224

0.080950

mm

YA£ 0.006081 rod

0A£ 0.006081 rod

d A£0.057224 mm

Again, sufficient machining and motor tolerances for the Adept are less strict than

for the Intelledex. While two positions cannot give a full picture, it seems that there is a

trade off. This being between flexibility of the manipulator's possible configurations,

and tolerances in parts to give positioning accuracy.

In each case, the machining tolerances are within the accuracy of machining equip

ment This is encouraging in that sophisticated machining equipment is not necessary to

obtain the machining accuracy needed to get the specified positioning accuracy. The

motor tolerances in all four cases are very strict This was expected, however, and shows

that most problems in manipulator accuracy probably arise out of their inaccuracies. An

explanation is given as follows: errors in joint angles are amplified by the length of the
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links whereas errors in joint lengths are not This results in angle errors having a much

greater effect on the accuracy of the manipulator. A possible approach to compensating

for this is the use of direct drive motors. In this way, gear backlash does not affect the

actual angle of the joint and errors stem only from the discretization of the joint encoder

readings and the control loop of the joint With asymptotic tracking controllers, the

errors in the joint angles of the manipulator can be gready reduced. In fact the Adept

uses direct drive motors.

In this section, it has been shown that the calculation of sufficientmachining motor

tolerances given a desired positioning accuracy is possible and that these tolerances are

in all likelihood attainable. With this information, more accurate manipulators can be

manufactured

6. Conclusion.

The representation and evaluation of uncertainty is important to many areas of

robotics. Accounting for uncertainty is needed by offline programming systems to esti

mate the feasibility of tasks during the planning process. Also, estimation of uncertain

ties in manipulators is important toonline robotic systems in order to raise reliability. In

addition to these, the evaluation of uncertainties in manipulators is important in the

evaluation and improvement of performance of roboticworkcells.

A special topic in this last area is concerned with estimating the actual kinematic

parameters of a manipulator. This paper addresses the topic of howcertain error sources

affect these kinematic parameters and how these parameters affect the positioning accu

racy of the manipulator.

In this paper, many possible error sources are noted for manipulators. These error

sources can be divided into geometric and non-geometric types. Under these two types,

error sources can becategorized further as systematic or non-systematic.
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In designing of manipulators, systematic error sources' effects on positioning accu

racy can be estimated before the manipulator is built This paper has given a relation by

which, given a desired positioning accuracy, sufficientbounds on the systematic errors of

the manipulator are determined. This relation is used to determine sufficient bounds on

systematic error sources (machining tolerances and joint motor tolerances) for two types

ofmanipulators.

In summary, this paper has given a method to determine sufficient bounds on sys

tematic error sources of manipulators in order to attain a desired positioning accuracy.
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8. Appendix. Source Code.



intella.c

/* This program develops the linear approximating A matrix which
relates small errors in the defining modified Denavit-Hartenberg
parameters (from Paul [10]) to the twist coordinate representation
of position and orientation error.
The routines in intelledexJi use Denavit-Hartenberg parameters
as defined in Craig [4J.
These are used to find the inverse kinematics of the manipulator.
These two parameterizations give the same kinematic map for
the IDEAL form of the manipulator. * /

I* output from this program is put into two files, intin* which
gives the requested input position of the manipulator, and
into.* which gives the A matrix transposed. * /

#fnciude <stdio.h>
#include "mteUedexJT
#include Mkinematic2JiN
l*modified Denavit-Hartenberg parameters of Intelledex 605T* I

#def!nc OUTPUT "inta.r
#dcflne OirrPUT2 Mintat,r
#dcfine OUTPUT3 -inttoLl"
#dcf!ne OUTPUT4 "intmach.l
tfdcflne PI 3.14159
#dcflne MAO (0.)
#dcflne MAI (0.)
#doflne MA2 (0.)
#dcflne MA3 (373.4)
#dcflne MA4 (279.4)
#dcflne MAS (0.)
#dc(1ne MA6 (0.)
#dcftne MA7 (0.)
#dcflne MALPHAO (0.)
#dcfine MALPHA1 (-PI/2.)
#dcflnc MALPHA2 (PI/2.)
#dcflne MALPHA3 (0.)
#dcflne MALPHA4 (0.)
#dcflne MALPHA5 (PI/2.)
#dcfine MALPHA6 (0.)
#dcflne MALPHA7 (0.)
#deflne MOO (359.7)
ffdcflne MD1 (0.)
ffdoflne MD2 (0.)
#dcnne MD3 (0.)
#dcflne MD4 (0.)
#dcflne MDS (0.)
#dcf1ne M06 (0.)
#dcflne MD7 (100.)
ffdcflne MBETAO (0.)
#deflne MBETA1 (0.)
ftdcflne MBETA2 (0.)
#dcflne MBETA3 (0.)
#dcfine MBETA4 (0.)
ffdeflne MBETA5 (0.)
#dcflnc MBETA6 (0.)
#deflne

mainOl

float

MBETA7

a[8],
atpha(8],
d[8],
delta,
tol(6],
toIo[6],
noim[6J,
mint.

(0.)
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a[3] a MA3
a(4] a MA4
a[5] = MA5
a[6] = MA6
al7J = MA7
alpha[0]
alpha(l]
alpha[2]
alpha(3]
alpha[4]
alpha(5]
alpha(6]
alpha{7]
dlO] a

= MD1
a MD2;

M03
MD4

MD5
MD6

MD7

MBETAO.

MALPHAO
MALPHA1
MALPHA2

a MALPHA3

a MALPHA4;
a MALPHA5
= MALPHA6

• MALPHA7
MDO

d[l] a
d[2] «
d[3] a
d(4] a
d[5] «
d[6] »
d[7] =
bcta[0]
bctafl]
bcta{2]
bcta{3]
bcta(4]
bcta[5]
beta(6]
beta(7]

MBETA1;
MBETA2;
MBETA3;
MBETA4;
MBETA5;
MBETA6;
MBETA7;

I*get input thetas for desired position orientation. * /
for(i=0;i<6;i++) tckuetf] a 0.;
fprintf(stderr,Nenter desired position: ");
(scanf(stdin,"%f %t %i %f %t %r,&x[0],&x[l].&x[2].&x[3].&x[4],&x(5]);
mvinteUfotclosejtheta);
ford=0u<6u++) fprintf(stdeir,'1theta[%d] a %fSn"J,ithcta(i]);
mteUcdcx(itheta,t00);
gculerzyx(tOO,check);
forCi=0;i<6p++) fpr&ttf(stderr,Ncheck[%d] a %f\n"J,check[i]);
thcta(0] a 0.;
for(i=0;i<6;i-H-){

theta[i+l] a itheta[i];
)

theu[7] « PI/24

l*form transformations between each coordinate frame
mtransf(a[0),alpha[0].d(0].theta[0].beta[0].twO);
mtransf(a(l].alpfaa[l],d[l].theta[l],bcta(l],i01);
mtransf(a(2]^lpha[2].d[2].theta{2].bcta[2],tl2);
nuransf(aP],alpha(3],d[3],theta(3],bcta[3],t23);
mtran$f(a[41.alpha{4J^(4].iheta(4]tbcta(4J,t34);
mtransf(a(5],aipha[5]^[5],thcta(5].beta{5],t45);
mtransf(a(6].aJpha(6].d[6],thcta(6].bcta(6],t56);
mtransf(a(7J,alpha(71rfl[71.ihctat71.bcta(7I,t6t);

I*form g transformations for each transformation* /
grtpr(a[0],alpha(0],gO);
gnpr(a(l]^ilpha(l)tgl);
gnpr(a(2].alpha(2),g2);
gppr(alpha{3I.d(3].bcta[3]^3);
gppr(alphaI41.d(4Jtbcta(4]^4);
gnpr(a[5].alpha{5].g5);
«npr(al6].alpha{6],g6);
gnpr(a(7].alphaI71^0;

May U 09:44 1987

/

intella.c

...main

Page 3 of intella.c



intella.c

l*form J's * I
gctj(tw0,jw0);
gcij(iOljOl);
gctj(tl2jl2);
getj(t23j23);
gcij(t34J34);
gctj(t45,j45);
getj(t56j56);
getj(t6t,j6t);

Inform partitions of A matrix* /
mpy664(jw0,g0,a0);
mpy666(jwO,j01Jwl);
mpy664(jwl,gl,al);
mpy666(jwljl2j'w2);
mpy664(jw2,g2,a2);
mpy666(jw2J23ow3);
mpy664(jw3,g3,a3);
mpy666(jw3o34Jw4);
mpy664(jw4,g4,a4);
mpy666(jw4j45,jw5);
mpy664(jw5,g5,a5);
mpy666(jw5J56jw6);
mpy664(jw6,g6,a6);
mpy666(jw6j6to'wt);
mpy664(jwt,gt,at);

l*now form A* I
for(ia0;i<6;i++){

k=0;
for(ja0a<4y++)f

aaCilfj + 4*k]
}

k++;
for(ja0y<4;j-H-){

aa[i][j -i- 4*k]
)

k++;
for(ja0a<4y++){

aa[i]fj + 4"»k]
)

k++;
for(j=0-j<4a-H.){

aa[i][j + 4*k]
)

k++;

for(ja0a<4a++){
aatilfj + 4*k]
}

|r | J*

for(i«0a<4;j-H-){
aa[i]|j + 4*k]
}

k++;
for(ja0u<4;j>+){

aa[»llj + 4*k]
J

k++;
for(ja0;j<4;j++){

aaUirj + 4*k]
J

)

May 11 09:44 1987
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a2[i]Dl;

a3[iirjl;

a4ti][j];

a5[i](j];
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...main

I* output A matrix * I
file = fopcn(OUTPUT,"w");
for(i=0;i<32;i++){

fprintf(filc,"%11.6f %11.6f %11.6f %11.6f %11.6f %H.6f\n'\aa[0][i], aa[l][i],aa(2][i],aa(31[i].aa[4][i],aa[5][i]);
)

fclosc(filc);

I* now rearrange the columns of A to give proper form * I
for(ia0y<6;i++){

aat(i][14] a aa[i][0];
aat(i][6] a aa[i][l];
aat(i][0] a aa[i][2];
aat(i][22] = aa(i][3J;
aat(i][15] a aa(i][4];
aat(i][7] = aa[i][5];
aat(i][l] a aa[i][6]:
aat(il[23] a aa[i][7];
aat(i][16] a aa(i][8];
aat(i][8] a aa[i][91;
aat(i][2J = aa[i][10];
aat[i][24] a an[i][ll];
aat(il[17] a aaCi](12];
aatli][9] a aa[i][13];
aat[ij[251 « aa[i][14];
aaifi][301 « aa[i1[15];
aat[i][18] a aa(i][16];
aat(i][10] a aa[i][17];
aat(i][26] a aa[i][18];
aat(i][311 - aa(i][19];
aat(i][19] a aa[i][20];
aat(i][ll] a aa[i][21];
aat(i][31 a aa[i][22];
aat(t][27] a aa[i][23];
aat(i][20] a aa[i][24];
aai(i][12] a aa[i][25];
aat[i][4] a aa[i][26];
aat{i][28] a aa[i][27];
aat(i][21] a aa(i][28];
aat(i][l3] a aa[i](29];
aat(i][51 a aaCi]{30];
aat(i](291 a aa[i][31];

)
file a fopcn(OUTPUT2,"w");
for(ia0u<32;i++){

fprintf(ffle,ai%U.6f %lL6f %11.6f %11.6f «11.6f %11.6f\n'\aai[0][i], aat[i][i],aai[2][i].aat(3][i],aai[4][i],aai[5][l

fclose(file);

I* now find bounds on link parameter tolerances * I

rprintf(stderr,"enter desired position and orientation tolerances: ");
fscanf(stdin,"%f %f %t %t %f %r,&tol[0J,&toi[l],&tol(21.«fetol[31,&tol[4].&tol[5]);
rprintf(stdcn,,Menter desired delta: ");
fscanf(stdin,M%f\&dclta);
for(i=0u<6U-H-){

normfi] a 0.;
tolop] a iol(i];
)

for(i=0;i<6;i-M-){
for(j«14a<32u-M-){

norm[ij +« aat(i]rj]*aat[i]|j];

normfi] a sqrt(norm[i]);
)
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for(i=0;i<3;i-H-) col[i] = tol[il - delta;
mint a tol[0] /norm[0];
for(i=l;i<6;i++){

ir(toi[i] /norm[i] < mint) mint a tol[i] /norm(i];
}

for(i=!0;i<6;i++) normfi] a 0.;
for(iaO;i<3;i-H-){

for(j=0;j<14;j++){
norm[i] += aat[i](j]*aat[i](j];
}

norm[i] a sqrt(norm[i]);
}

for(i=0;i<3;i++) tol[i] a delta;
minr a tol[0] Aiorm[0];
for(i=l;i<3u++){

if(tol(i] Aiormfi] < minr) minr a tol[i] /normfi];
J

file a fope^OUTPinVw");
rprintf(file,Tor the Intelledex 605T>n\nM);
fprintf(file,Nwith input:>nn);
fprintftfile." x a %11.6f thcta(l] = %U.61\nM,x[0],ithcta[0]);
fprinif(filc.- y a %11.6f thcta(2] a %11.6{VnH.x(l].ithcta[l]);
fprintf(nic,- z a %ll.6f thcta[3] a %11.6(VnNtx[2].ithcta[2]);
fprintf(filc," g a %H.6f thcta[4] a %11.6(\n".x[3J.uheta[3]);
fprinlf(^lle,,• b « %u.6f thcta[5] a %11.61\n'\x[4],uhcta[4J);
fprintf(file." a a %11.6f thcta[6] a %11.6f\n\nH,x[5].iihcta[5]);
fprintf(filc,"A bound on the error in distance parameters a %11.6f\n\n",minr);
fprintf(filc,MA bound on the error in angle parameters a %11.6Ni\nN,mint);
fprintf(filc,Mfor tolerances of:\nM);
fprintf(file," dx « %11.6fVn".tolo[01);
fprintf(fuV dy a %11.6f\n".tolo(l]);
fprinif(filc" dz a %11.6faN,tolo[2]);
fprintf(file," dwx a %11.6Ni*\tolo(3]);
fprintf(fiie,H dwx a %U.6NT.tolo[4J);
rprintf(file." dwx a %\ 1.6[Vn\nH,tolo[5J);
fprmtf(file/and\n");
rprintfOuV delta a %11.6Ni",dclta);
fclosc(filc);

I* now relate these bounds to machining tolerances * I
I* assume ad and dd equal * I

ad a dd a sqrt(minr/14.);
gd a md a sqrt(mint /18.);
for0=0;i<8u++){

mach(ad,dd,a[i],d[i],&rd[i]);
ggd[i] a gd;
)

for(i=0;i<6;i++){
td(i] a md;
)

file a fopCT(OUTPUT4."ww);
rprintf(file,NFor the Intelledex 605Tn\nH);
fprintf(file,Mmachtning distance tolerances:^");
for(i=0u<8;i-H-){

fprintf(file.M rd[%ld] a %11.6NiM,rd(i]);
}

fprintf(file,MVnmachining angle tolcranccsta");
for(i=0;i<8;i++)(

fprintf(filc," ggd[%ld] a %U.6NiM,i,ggd[i]);
}

fprintf(file,H\nmotor angle tolcranccs:\n");
for(i=0u<6;i-M-){

fprint«^llc,, td[%ld] a %11.6fa".i,id(i]);
}

...main
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...main

)

I* function to relate parameter tolerances to machining tolerances * /
mach(a,b,c,d,c) mClch
float a,

b,
c,

d,
*e;

{
float dummy;
dummy a sqrt(c*c + d*d);
*e a -dummy + sqrt(dummy*dummy + 2.*c*a + 2.*d*b + a*a + b*b);
}
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/* This program develops the linear approximating A matrix which'
relates small errors in the defining modified Denavit-Hartenberg
parameters (from Paul [10]) to the twist coordinate representation
of position and orientation error.
The routines in intelledexJi use Denavit-Hartenberg parameters
as defined in Craig [4J.
These are used to find the inverse kinematics of the manipulator.
These two parameterizations give the same kinematic map for
the IDEAL form of the manipulator. * I

I* output from this program is put into two files, intin.* which
gives the requested input position of the manipulator, and
into,* which gives the A matrix transposed. * I

#include <stdioJi>

#include "adepUi"
^include Nkmematic2JT

l*modified Denavit-Hartenberg parameters of Adept AdeptOne* I
#dcfine OUTPUT "adpta.!"
#dcfine OUTPUT2 "adptaLl"
#dcfine OUTPUT3 "adpttoLl"
ffdcflne OUTPUT4 Nadptmach.l
ttdcflne PI 3.14159
#dcflne MAO (0.)
#dcfine MAI (0.)
#deflnc MA2 (425.)
#dcfine MA3 (375.)
#dcflne MA4 (0.)
#dcflne MA5 (0.)
#dcfine MALPHAO (0.)
#dcfine MALPHA1 (0.)
#dcfine MALPHA2 (0.)
#dcflnc MALPHA3 (0.)
tfdefine MALPHA4 (0.)
#dcfine MALPHA5 (PI/2.)
#dcflne MDO .(203.2)
#dcflne MD1 (0.)
#dcfine MD2 (0.)
#dcflne MD3 (0.)
#dcfine MD4 (0.)
#dcflne MD5 (0.)
#dcfine MBETAO (0.)
#dcflne MBETA1 (0.)
#dcfine MBETA2 (0.)
#dcfine MBETA3 (0.)
tfdcflne MBETA4 (0.)
#dcflne MBETA5 (0.)

mainOl

float a[61.
alpha[6],
d[6],
delta,
tol(6],
tolo(6],
nonnio],
minr,
mint,
ad,
dd.

gd.
md,
td[4].
ggd[6],
rd[61.

May 11 09:45 1987
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x[4].
thcta(6],
bcta[6].
ithcta[4],
tclose{4].
chcck{4J.
t00[4][4].
tw0[4][41.
t01[4][41.
tl2[41[41.
t23[4][41.
t34[4][4].
t4t[4J[4],
jw0[6][6].
j01[61[6].
J12[6][6].
J23[6][6],
j34[61[6].
j4t(6][6].
jwl[6][6j.
jw2[61[6].
jw3[6][6].
jw4(6][6].
jwt(6][6].
g0[6][4],
gl[6][41.
g2[6][4].
g3(6][41.
g4[6H5],
gt[6][4].
aO[61[41,
al[61[4].
a2[61[4],
a3[6][4], .
a4[6][5].
«(6][4].
aat(6][25].
aa[6][251;

hit l
J.
k;

FILE *file,*fopen0;

a[0] a MAO;
all] - MAI;
a[2] a MA2;
a[3] a MA3;
a[4] a MA4;
a[5] - MA5;
alpha[0 a MALPHAO;
alpha[l a MALPHA1;
alpha[2 a MALPHA2;
alpha[3] a MALPHA3;
alpha[4] a MALPHA4;
alpha[5] a MALPHA5;
d[0) a MDO;
d[l] a MD1;
d(2] a MD2;
d(3J a MD3;
d[4] a MD4;
d[5] a M05;
bcta[0] a MBETAO;
bctaf.ll a MB ETA1;
beta[2] a MBETA2;

Afay 77 09:45 1987
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bcta[3] = MBETA3;
bcta(4J = MBETA4;
bcta{5] a MBETA5;

I*get input thetas for desired position orientation. * /
for(i=0;i<4;i-H-) tclosefi] a 0.;
fprintf(stdcrr,"cntcr desired position: ");
fscanf(stdin,M%f %f %f %rt&x[0],&x(l],&x[21,&x[3]);
invadcpt(x,tclose,ithcta);
adcpt(ithcta,i00);
chcck[0] a t00[0][3J;
chcck[l] a t00[l][3];
chcck[2] a iO0[2][3];
chcck[3] a atan2(t0O[l][0],t00[0][0]);
for(ia0;i<4;i++) fprintf(stdcrr,"ithcta[%d] a %(\nM,i.ithcta[i]);
for(i30u<4u++) fprintf(stdcrr,Nchcck(%d] a %{\n",i,chcck[il);
theta[0] a PI;
for(ia0u<4»++){

thcta[i+l] a ithcta[i];
}

thcta[5] a PI;
t*but joint 4 is prismatic* I

thcta[4] a 0.;
d[4] a ithcta(3];

l*form transformations between each coordinate frame * I
mtransf(a[0],alpha[0],d[0],theta(0],bcta[0],twO);
miransr(a[l],alpha[l],d[l],thcta(l].beta[l].t01);
mtransf(a(2],alpha[2].d[2],theta[2],bcta[2].tl2);
mtransf(a{3].alpha[3],d[3].theta[3],beta[3].t23);
nuransf(a[4],aIpha[4]^i(4],theta(4i,beta[4J,t34);
nitransf(a[5i,alpha(5],d[5i.theta[5J,beta[5].t4t);

l*form g transformations for each transformation* /
gnpr(a[0],alpha[0].gO);
gppr(alphall].d[l].bctam,gl);
gppKalpha{2],d[2],bcta[2],g2);
gppr(alphal31,d[3].bcta[3],g3);
gppp(a[41,alpha[4JtbetaI4],g4);
gnpr(a[5],alpha[5],gt);

/•form J's * I
gctj(twO,jwO);
gctfttOljOl);
gctj(tl2jl2);
gctj(t23j23);
getj(i34j34);
gctj(t4g4t);

l*form partitions of A matrix* I
mpy664(jwO,gO,aO);
mpy666(jwO,j01,jwl);
mpy664(jwl,gl,al);
mpy666<jwljl2tjw2);
mpy664(jw2,g2^2);
mpy666(jw2j23jw3);
mpy664(jw3,g3,a3);
mpy666(jw3j34jw4);
mpy665(jw4,g4,a4);
mpy666(jw4J4tJwt);
mpy664(jwt,gt,at);

.main
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..jnain

I*now form A* I
for(i=0;i<6;i++){

k=0;
for(j=0;j<4;j-H-){

aatijrj + 4*k] = aO[i][j];
}

k++;
for(j=0;j<4;j-H-){

aatfjrj + 4*k] a al[i]rj];
)

k++;
for(i=0;j<4;j++)(

aa(i][j + 4*k] a a2[i][j];
}

k-H-;
for(ja0-j<4;j++){

aafiirj + 4*kJ = a3[i][j];
}

k++;
for<ja0;j<5;j++){

aatiJU + 4*k] = a4[il[j];
}

k++*

for(ja0;j<4;j++){
aa(i]rj + 4*k + 1] a at[i]rj];
}

}

I* output A matrix * I
file a fopen(OUTPUT,"w-);
for(iaO;i<25;i++)(

fprintf(file."%11.6f %11.6f %11.6f %\\M %11.6f %U.6faN.aa[0][i]. aa[ll[i],aa[21[i].aa[3][i].aa[4][i].aa[5][i]);
)

fclosc(file);

I* now rearrange the columns of A to give proper form * I
for(i=Ou<6-4-H-){

aat[i][91 » aa[i][0];
aat(i][3] a aa[i][l];
aat(il[01 a aa(il[2];
aat(ilI15] a aa[i][3];
aat(il[101 a aaffl[4];
aat(il[4] « aa(i][5];
aat(i][161 a aa[il[6];
aatfi][2l] - aafil[7];
aat(i][ll] - aaril[8];
aat(i][51 a aa[i][9];
aat[i][17] a aafiUlO];
aat(i][221 a aa(i][ll];
aatfi][l2] a aa[i][12];
aatfi][6] a aa[i][13];
aat(i][18] a aa[i][14];
aat(i][23] a aa[i][15];
aatfij[7] a aa(i][16];
aat(i][13] « aa{i][17];
aat(i)(l] a aa[iH18];
aat(i][19] a aa(i][19J;
aatfi][241 a aa[i][20);
aatfi][14] - aa{i][21];
aatti][8] a aa[i][22];
aat(i][2J - aa(iH23);
aai(i][20J a aafi][24];

)
file a fopcn(OUTPUT2,"w");
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...main
for(i=0;i<25;i++){

fprintf(fiIc."%U.6f %11.6f %11.6f %ll.6f %11.6f %U.6Ni",aal[0J[i], aai(l][il,aat[2ini.aai(31[il,aat[4)[il,aat[5][}

fclosc(filc);

/* now find bounds on link parameter tolerances * I

fprinif(stderr,"enter desired position and orientation tolerances: ");
fscanf(stdin,M%f %f %f %f %f %r,&tol[0].&tol[ll,&tol[2],&tol(31,&tol[41,&iol[5]);
fprintf(stderr,"cntcr desired delta: ");
fscanf(stdin,N%r,&dclta);
for(i=0;i<6u++){

norm[i] a 0.;
tolo(i] a tol[i];

}
for(ia0;i<6u++){

for(ia9;j<25;j-H-){
norm[i] +a aat[i]rj]*aat[i](jj;
}

norm[i] a sqrt(norm[i]);
)

for(ia0n<3n++) tol[i] a tol[i] - delta;
mint a tol[0]/norm[0];
for(iam<63++){

If(tol[i] /normfi] < mint) mint a toI[i] /norm[i];

for(i=0n<6-4++) norm[i] a 0.;
for(ia0u<3;i++){

for(ja0a<9;j++){
normfj] -h= aai(i](j]*aat[i][j];
)

norm[i] a sqrt(norm[i]);
)

for<i=0u<3;i-H-) tolfi] a delta;
minr a tol(0] /normfOJ;
for(i=ilu<3u++){

If(toI[i] /norm[i] < minr) minr a tolfi] /nornifi];

file a fopen(OUTPUT3."w");
fprintf(file,Tor the Adept AdeptOncNnNn");
fprintf(file,Nwith inpuuVT);
fprintf(file." x a %11.6f thctafl] a %11.6(\n",x[0].ithcia[0J);
fprintf(file." y a %11.6f thctaI2] a %11.6NT.x[l],iihcta[l]);
fprintf(file," z a %11.6f Utetat3J a %11.6(\nH,x[21,ithcta[2J);
^0X016." t a %H.df d(4] a %11.6[\n\nH.x[3],ithcta(3J);
fprintf(file,"A bound on the error in distance parameters a %11.6f\nW,minr);
fprintf(fiIe,NA bound on the error in angle parameters a %11.6f\n\n",mint);
fprintf(filc,Tor tolerances ofcW);
fprintf(file." dx a %1l.6f\n*\tolo[01);
fprinif(file," dy a %11.6f\nM.tolo[lJ);
fprinUXfile." dz a %n.6faN,tolo(2]);
fp^int^(file.,, dwx a %11.6f\n",tolo[31);
fprintf(file." dwx a %11.6fW,tolo[41);
rprinu*(file," dwx a %11.6fSn\nM,tolo(5]);
fprinif(nic"and\n");
fprin^filc," delta a %11.6fW\dclta);
fclosc(fiIc);

I* now relate these bounds to machining tolerances * I
I* assume ad and dd equal * I

ad a dd a sqrt(minr /14.);
gd a md a sqn(mint /18.);
for(i=0;i<6;i++){

mach(ad,dd,a(i]>d[i].&rd[i]);
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...main

ggdfj] = gd;
1

for(i=0;i<4;i++){
td[i] a md;
}

td[31 a rd(41;
file a fopcn(OUTPUT4,"w,,);
rprintf(file,Tor the Adept AdcptOneVnVi");
fprinlf(file,"machining distance tolcranccs:\n");
for(ia0;i<63++){

fprintf(file," rd(%ld] = %11.6fVn",i^d[i]);
1

fprintf(file,'\unachining angle tolcranccs:Vn");
for(ia0;i<6u++){

fprintf(file.M ggd[%ldj = %11.6f\nM,i,ggd[i]);
1

fprintf(filc,'\imotor angle tolcranccsta");
for(ia0;i<43-H-){

fprintf(file," td[%ld] = %U.6faw.i.td[i]);
}

}

I* function to relate parameter tolerances to machining tolerances * /
mach(a.b.c,d,e) mack
float a,

b.
c,

d,
♦e;

{
float dummy;
dummy a sqrt(c*c + d*d);
*e a -dummy +• sqrt(dummy*dummy + 2.*c*a + 2.*d*b + a*a + b*b);
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^include <stdio.h>

^include <math.h>

#include "kincmaticJi"

/* these are the ideal D-H parameters of the manipulator * I
I* as defined by Craig [4] * /

#dcflne PI (3.14159)
#define AO (0.)
ftdefine Al (425.)
#doflnc A2 (375.)
#dcfine A3 (0.)
#dcfinc ALPHAO (0.)
fcteflnc ALPHAl (0.)
#dcfinc ALPHA2 (0.)
#dcnne ALPHA3 (0.)
tfdcflnc 00 (2032)
#dcnne Dl (0.)
JWcflnc D2 (0.)
#dcnnc D3 (0.)
#dcflne THETA4 (0.)

adcpl(ithcta,tw4) adept
I* performs ideal kinematics of intelledex manipulator * /
/* itheta[0-2] input joint angles 1-3, itheta[3] input joint length * I

float ithcta[4].
tw4[4J[4];

(
float a[4],

alpha[4],
d[4J.
dummy,
iw0[4][4],
t01[4][4],
tl2[4][4],
t23[4][4],
t34[4]l4],
twlt4][41,
tw2[4][4].
tw3[4][4];

bit i,

j;
I* define parameters to be used * /

a(0] a AO.
a[l] a Al;
a[2] a A2;
al3] a A3;
alpha[0] a ALPHAO;
alpha(l] a ALPHAl;
alpha[2] a ALPHA2;
alpha[3] a ALPHA3;
d[0] » Dl;
d[l] a 02;
d[2] a D3;
d[3] a ithcta[3];
dummy a THETA4;
I* get transformations * /

for(i=0;i<4;i++){
ror(ja0;j<4;j++){

tw0[i][jl a 0.;
)

twotfim = u
)

tw0[2][3] a Do,
transr(a(0],alpha(0].d[0].ithcta(0],t01 Y,
transf(a(l].alpha[l],-d[l].ithcta(l).tl2);

May 13 09:19 1987 Page 1 of adept.h



adept.h adept.h

...adept
cransf(a[21.alphaf2|.df2],ithcta[2],t23);
transf(a[3 ),alpha(3 j,d[3 j,dummy,t34);
/* get forward kinematics * I

mpynn(twO,tO1,tw 1);
mpynn(tw I,tl2,tw2);
mpynn(tw2,t23,tw3);
mpynn(tw3,t34.iw4);
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#includc <stdioJi>

^include <math.h>

#lnciude "kinematich"

/* these are the ideal D-H parameters of the manipulator * /
I* based on D-H definitions in Craig [4] * /

ffdcflnc PI (3.14159)
#dcflne AO (0.)
#dcflne Al (0.)
#dcflne A2 (0.)
#dcflne A3 (373.4)
#dcfine A4 (279.4)
#dcflne A5 (0.)
#dcflne ALPHAO (0.)
#dcflne ALPHAl (-PI /2.)
#dcflne ALPHA2 (PI /2.)
#dcflne ALPHA3 (0.)
#deflne ALPHA4 (0.)
#dcflne ALPHA5 (PI 12.)
#dcflne DO (359.7)
#dcfine Dl (0.)
#dcflne D2 (0.)
#dcflne D3 (0.)
tfdcflne D4 (0.)
#dcflne D5 (0.)
#dcflne D6 (100.)

intelledex(itheta,tw6) intelledex
I* performs ideal kinematics of intelledex manipulator * I

float itheta[6],

/
tw6[4J[4];

l
float a[6],

alpha(61,
d[61.
tw0{4H4].
t01[4][4],
tl2[4J[4].
t23[4][4],
t34[4][4],
«45[4][4].
tS6[4][4].
twl[41[4],
tw2(41[4].
tw3[4][4],
tw4[41[4J.
tw5[4][4];

Int i.

1* define parameters to be used */
a[0] a AO;
a(l] a Al;
a[2] a A2;
a(3] a A3;

m ** A4;
a(51 a A5;
alpha[0] a ALPHAO;
alpha[l] a ALPHAl
alpha[2] a ALPHA2
alpha[3] a ALPHA3
alpha[4] a ALPHA4

alpha(5] a ALPHA5
d(0] a Dl;
d[l] a D2;
d(2] » D3;
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...intelledex
d[3] a D4;
d(4] = D5;
d(5] = D6;
/* get transformations * /

for(ia0;i<4;i++){
for(j«0;j<4;j-H.){

twO[il[j] = 0.;
}

twO[i][iJ a 1.;

)
tw0[2][3] a DO;
transf(a(0],alphaCO],d[0].itheta[0],tOl);
transf(a(l],alpha[l],d[l],itheta[l].tl2);
transf(a[2],alpha(2].d[2]>itheta[2],t23);
traiisf(a(3],alphat31.-d(3].itheta(31.t34);
transf(a(4],alpha(4],--d[4].itheta[4]>t45);
transf(a(5].alpha(5],d(5].itketa(51,t56);
I* get forward kinematics * I

mpynn(tw0,t01,twl);
mpyrm(twl,tl2,tw2);
mpyrm(tw2,t23,tw3);
mpyrm(tw3,t34,tw4);
mpyrm(tw4,t45,tw5);
mpyrm(tw5,t56,tw6);
}

May 13 09:181987 Page 2 of intelledex.h



kinematich kinematic.h

^include <stdio.h>
#lnclude <math.h>

^Include "matrix4.h"

transf(ka,kaIphaJcd,ktheta,out) tl'CMSf
I* forms link transformation matrix based on Denavit-Hartenberg parameters * I
I* as defined by Craig [4] * /

float ka,
kalpha,
kd,
ktheta,
out(4][4];

{
float nl,

n2,
n3.
n4;

nl a sin(kalpha);
n2 a cosQcaipha);
n3 a sin(ktheta);
n4 a cos(ktheta);
out(0][0] a n4;
out[0][l] a -n3;
out[0][2] = 0;
out[0][3] a ka;
oui{l][0] a n3*n2;
out(l][l] a n4»n2;
out(l][2] a -nl;
out(l]P] a -iil*kd;
outpHO] a n3*nl;
outt2][l] a n4*nl;
oui[2][2] a n2;
out(2][3] a n2*kd;
oui(3J[0] a 0;
out(3]Ilj a 0;
out[3][2] a 0;
out{3][3] » l;
}

invtrf(tin,tout) iflVtrf
I* inverts transformation matrices using properties of these matrices * I

float tm[4][4],
tout(4][4];

{
Int i,

j;
for(i=0p<43-H-){

for(i=0y<4;j-H-){
tout[i][j] a 0.;
}

}
for(ia03<3a++)(

for<ja0y<3;j-H.){
tout(i][j] a tin(j][i];
)

tout{3][i] a 0.;
1

fora=0u<3;i-H-){
forXjaOaOyVt-)!

tout(i][3] -»« (-tout(i]rj])*tinrj][3];
)

)
tout(3H3] a u
)
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geulerzyx(ux) geitlerzVX
I* extracts zyx euler angles 'from a transformation matrix * /
I* order is 0-S:x,ya,gammaa,beta,alpha * /

float t[4][4J,
x[6];

{
x(0] = t[0][3];
x(U = t[U[3];
x(2] a t(21[3];
x(3] a atan2(u:2][l],t[2][2]);
x[4] a atan2R(2][0].sqrt(t[0][0]*t[0][0] + t[ll[0]*t(l][0]));
x(51 a atan2(t[l][0].tt0][0]);

}

euierzyx(x,t) eulerzyx
I* forms transformation matrix from offsets and zyx euler angles * I
I* order of inputs is O-S^y&gammaajbetajtipha * I

float x[6].
t[4][4];

l

float eg.
sg.
cb.
8b.
ca.

sa;

eg a cos(x[3J);
sg a sin(x[3J);
cb a cos(x(4]);
sb a sin(x(4]);
ca a cos(x[5]);
sa a sin(x[5]);
t(0][0] a ca*cb;
t(0][l] a ca*sb*sg - sa*cg;
t(0](2] a ca*sb*cg + sa*sg;
t[01[3] - x[01;
t(l][0] a sa*cb;
t(l][l] a sa*sb*sg + ca*cg;
t(ll[21 a sa*sb*cg - ca*sg;
ttUPl » x[l];
421[0] a -sb;
U2U1] a cb*sg;
t(2][2] a cb»cg;
U21P] - x[2];
U3M0] - 04
OT1] - 0a
K3][2] a 0.;
U3K3] a u
)

solve(px,py,d,tclose,theta) Solve
I* solves for theta in eq. px*cos(theta) + py*sin(theta) a d * /
I* in addition, it picks theta closest to telose * /

float px,
py.
d,
telose,
•theta;

{
float thctal,

theta2,
tl.

*q.
distl.
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...solve
dist2;

if(d aa 0.)

{
♦theta a atan2(px,(-py));
}

else

{
tl a atan2(px,(-py));
sq a sqrt(py*py + px*px - d*d);
thetal a atan2(px,(-py)) - atan2(d\sq);
theta2 a atan2(px,(-py)) - atan2(d,(-sq));
dtstl a (telose - thetal)*(tclose - thetal);
dist2 a (telose - theta2)*(tclose - theta2);
if(distl <a dist2 )

{
•theta a thetal;
}

else

{
•theta a theta2;
)

}
1
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^include <stdioJi>
#Include <math.h>

mtransf(kaJcalphaJcd\ktheta,kbeta,out)
/* forms link transformation matrix based on Denavit-Hartenberg parameters * I
/* as defined by Paul [10J * /

float ka,
kalpha,
kd,
ktheta,
kbeta,
out[4][4];

nl.
n2,
n3,
n4.
n5,
n6;

nl a cosQcalpha);
n2 a sin(kalpha);
n3 a cos(ktheta);
n4 a smOctheta);
n5 a cos(kbeta);
n6 a sinflcbeta);
out(0][0] a n3*nS - n4*n2*n6;
out[0][l] > -n4*nl;
out(0][2J « n3*n6 + n4*n2*n5
outjojpj a ka*n3;
out(l][0] a n4*n5 + n3*n2*n6
out(l][l] a n3«nl;
out(l][21 a n4*n6 - n4*n2*n5
outtlJPl a ka*n4;
ottt[2][0] a -nl*n6;
oui(2][l] » n2;
out(2][2] « nl*n5;
out(2]P] a kd;
out(3][0] a 0;
out(3][l] a 0;
outP][2] a 0;
OUtPlPJ - 1;
}

{
float

gnpr(kaJcalpha,out)
I* forms 6x4 matrix which relates errors in link parameters to

twist coordinates for non-parallel revolute joints * I
float

{
float

int

j;
nl a cosOcalpha);
n2 a sin(kalpha);
ror(i=0u<6p++){

for(ja03<4a++){
out[i][j] a 0.

ka,
kalpha,
out(6][4];

nl,
n2;
i.

1
out(0][2] a U
out(l][0] a ka*nl;
out(l][ll a n2;
out(2][0] a -ka*n2;
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...gnpr

out[2][l] a nl;
out(3][3] = 1.;
out(4][0] a n2;
out(5][0] = nl;
}

gnpp(kalpha,out) 8nPP
I* forms 6x3 matrix which relates errors in link parameters to

twist coordinates for non-parallel prismatic joints * I
float kalpha,

out[6][3];
{
float nl,

n2;
int i,

j;
nl a cosQcalpha);
n2 a sin(kalpha);
forfi=03<63++){

for(p0u<3;j++)(
out[i][j] a 0.;
}

)
out[l][l] a n2;
out[2][l] a nl;
out(31[2] a lA
out[4][0] a n2;
out[5][0] a nl;
}

gppr(kah>haJatfbeta,out) SPPr
J* forms 6x4 matrix which relates errors in link parameters to

twist coordinates for parallel or nearly parallel revolute joints * I
float kalpha,

kd,
kbeta,
outt6][4];

{
float nl,

n2,
n3,
n4;

int i,

j;
nl a cos(kalpha);
n2 a sin(kalpha);
n3 a cosQcbeta);
n4 a sinQcbeta);
for(i=0n<6u-H'){

foitKhj^y-H-X
oui[i][j] a 0.;
)

}
out[0](0] a -kd*n2*n4;
out[0][l] a n3;
out(l](0] a kd*nl;
out(2]I0] a -kd*n2*n3;
out(2][l] a -n4;
out(3][0] - nl*n4;
out[3](2] a n3;
out(4J[0] a n2;
out(41P] a -14
ouU5]I0J a nl»n3;
out(5][2) a -n4;
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...gppr

}

gppp(kaJcalpha,kbeta,out) SPPP
I* forms 6x5 matrix which relates errors in link parameters to

twist coordinates for parallel or nearly parallel prismatic joints * I
float ka,

kalpha,
kbeta,
out(61[5];

{
float nl,

n2,
n3.
n4;

int . i,

j;
nl a cosQcalpha);
n2 a sinQcalpha);
n3 a cosQcbeta);
n4 a sinQcbeta);
for<i=0rf<6;i-H-){

for<j=0-d<3u++)(
out[i][j] a O4
)

)
out(0][0] a nl*n4;
out(0](l] a -Icalpha«n2*n4;
out[0](2] a n3;
out(l][0] a n2;
out{l][l] a kalpha*nl;
out{2][0] a nl*n3;
out(2][l] a -kalpha«n2*n3;
out(2][2] a -n4;
outPUl] a nl*n4;
out(3][3] a n3;
out[4][l] a n2;
out[4][4] a -L;
out[5][l] a nl*n3;
out(5]P] a -n4;
)

getjQn.out) ge(j
/* function to get J from T* / °

float in[4][4],
out[6][6];

{
float skewPIP],

rotPlPl,
temp(3]P];

int 1,

j;
for0=0u<63-H-){

for<ja03<6^H.){
outfi][j] a 0;
}

)
for<i«0u<3u+-t-){

for(ja0u<3U++){
rot(i]rj] » m(ilfjj;
outpirj] a rot(i]fj];
ouiP+i]P+jl a rotfilfj];

)
skew[0][l] a -in[2]P];
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>»getj
skew[0][2] a in[l][31;
skew(l][0] a in[2]P];
skew[l][2] a -in[0][3];
skew{2][0] = -in[l]P];
skew[2][l] a in[0]Pl;
mpy333(skewjot,temp);
for(ia03<3u++){

for(j=0a<3;j++){
out(i]P+j] = temp[i](fl;
)

}
}
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^include <stdio.h>
#dcflne NN 4

/* multiplys two NNxNN matrices * I
mpynn(inl,in2,out) mpVJUl
float inl[NNl[NN],

in2[NNl[NN],
out(NN][NNl;

{
int i,

j.
n;

forQa0»<NNa-H-){
for(H)U<NN;j++){

out[i][fl = 0.;
}

)
for(i=0n<NN;i++){

for(i=0y<NNy-H-){
for(na03i<NN3i++){

outfflfj] 4= inl[i][n]*in2[n](j];
)

}
}

}

I* multiplies an NNxNN matrix by an NNxl matrix * /
mpynl(inl4n2,out) mpytll
float inl[NN][NN], *J

in2[NN],
out(NN];

{
int i,

j*.
for(i=03<hfNu-H-){

out[i] a O4
}

fora=0u<NN;i++){
for(p0a<NNa++){

outfi] •*» inl(i][j]*m2(j];
)

}
J

I* multiplies 6x6 by 6x6 matrices * /
mpy666Cml4n2,out) mpy666
float inl(6][61, ^J

in2[6][6],
out(61I6];

{
int i,

j.

for(i=0u<6a++){
for<j=0y'<6;j++){

out(i](j] a 0.;
1

J
forQaO?<6;i++){

forQa0-J<6;j++){
for(n=0m<6^m-){

out{i][fl +« tnl(i][nl*in2[nlfjj;

)
}

Afay 713:151987 Page 1ofmatrix4.h



matrix4.h matrix4.h

..jnpy

)

l* multiplies 6x6 by 6x4 matrices * I
mpy664finl,in2,out) mpy664
float inl[6][6],

in2[6][4],
out(6K4];

{
int i,

j.
n;

Tor(ia0;i<6u++){
for(ja0;j<4;j4-+-){

outHlfj] » 0.;
}

1
foKi=03<6n++){

for(j=0a<4;j++){
for(n=0;n<6;n++) (

out[i]fj] *» inl[i][n]*in2[n]0];
}

)
}

}

I* multiplies 6x6 by 6x5 matrices * I
mpy665finl.in2.out) mpy665
float inl(6][6],

in2(6][5],
out(6][5];

{
int i,

j.
n;

forQa02<6;i++)(
for(ja0a<5a++){

out[i]fj] a 04
)

)
for(i=0;i<6a-H-){

for(ja03<S;j++){
for(n=03i<6pi-H-){

out(i]rj] +« inl[i][n]*in2[njrj];

)
}

I

I* multiplies 6x6 by 6x3 matrices * /
mpy663(inl,inZout) mpy663
float inl(6][6],

in2[6]P],
out(6]P];

{
int i,

j.
n*

for(i=0;i<6;i-H-){
for(H>U<3;j-H-){

out[i]rj] a 0.;
)

}
forCi=0;i<6u-t-+){

for(ja0g<3;j«H.){
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...mpy663
for(n=0;n<6;n++){

out[i][j] += inl[i][nj*in2[n][j];
}

}
}

}

I* multiplies 3x3 by 3x3 matrices * I
mpy333(inljn2^ut) mpy333
float inipiP],

in2P!P],
outPIP];

{
int i,

j.
n;

forQa0a<3a++){
for(ja0a<3;j++){

out[i]fj] a 0.;
)

}
forQa03<3n++){

for(ja03<3-j+-».){
for(na0m<3;n++){

outfflfj] +a inl(i][n]*in2[n]rj];

)
}

J
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