
 

 

 

 

 

 

 

 

 

Copyright © 1987, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



LINEAR TIME-INVARIANT CONTROLLER

DESIGN FOR TWO-CHANNEL

DECENTRALIZED CONTROL SYSTEMS

by

C. A. Desoer and A. N. Giindes

Memorandum No. UCB/ERL M87/27

14 May 1987



LINEAR TIME-INVARIANT CONTROLLER DESIGN FOR

TWO-CHANNEL DECENTRALIZED CONTROL SYSTEMS

by

C. A. Desoer and A. N. Giindes

Memorandum No. UCB/ERL M87/27

14 May 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



LINEAR TIME-INVARIANT CONTROLLER DESIGN FOR

TWO-CHANNEL DECENTRALIZED CONTROL SYSTEMS

by

C. A. Desoer and A. N. Giindes

Memorandum No. UCB/ERL M87/27

14 May 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



LINEAR TIME-INVARIANT CONTROLLER DESIGN

FOR TWO-CHANNEL DECENTRALIZED CONTROL SYSTEMS

C. A. Desoer and A. N. Giindes

Department of Electrical Engineering and Computer Sciences

and the Electronics Research Laboratory

University of California, Berkeley CA 94720 USA

Abstract

A two-channel linear time-invariant system is analyzed using a factorization approach.

The set of all decentralized stabilizing controllers is given in terms of a right-coprime factoriza

tion of the plant
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INTRODUCTION

hi the control of large scale systems, a restriction on the controller structure is often

required. These sytems have several local control stations; each local controller observes only

local outputs and controls only local inputs. Such decentralized control of a large system

results in a block-diagonal controller matrix structure.

In [Wan.1] it is shown that stabilization of the given plant using a linear time-invariant

decentralized controller scheme is possible if and only if the plant has no unstable fixed modes

(natural frequencies of the plant which remain as closed-loop natural frequencies irrespective of

the decentralized controller used). There is a large number of papers on fixed modes and their

implications on transmission zeros (see, for example, [Cor.l], [Dav.l], [Fes.l], [Lin.l], [Tar.l],

[Xie.l]). Some fixed mode characterizations use pole placement methods as in [Bra.l]. Most of

the work on decentralized controller synthesis is based on state-space techniques (see, for

example, [Gucl]).

In this paper we consider a simple linear time-invariant two-channel system, where the

plant has two inputs and two outputs; control of input one uses output one and control of input

two uses output two only. We use the fixed-mode characterization in [And.l] but use a right-

coprime factorization of the plant. Using a factorization approach we give the set of all stabiliz

ing decentralized controllers for our two-channel system and show that these controllers are not

parametrized by a free matrix as in the case of full (unstructured) output feedback.

The paper is organized as follows: Section I has the description and analysis of the sys

tem, stability definitions and theorems. The set of all stabilizing decentralized controllers is

given in theorem 2.4 of section n and is followed by an algorithm to construct stabilizing con

trollers for a given two-channel system based on any right-coprime factorization of the plant

In section III we use this algorithm in two examples.

We use the following symbols and abbreviations:

l.t-i. linear time-invariant



I/O input-output

w.l.o.g. without loss of generality

a := b a is defined as b

cr.o.s elementary row operations

e.c.o.s elementary column operations

r.c.Q.c.) right (left)-coprime

c.f.r. coprime fraction representation

detA the determinant of matrix A

JTKRj^) the set of matrices with elements inRu.
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SECTION I

Analysis

1.1. Notation [Lan. 1, p.71-77], [Vid.l, Appendix A, B]:

U'D C+ is a closed subset of C , symmetric about the real axis, and C\ U is nonempty. U

:= U U{ oo }. .

Ru is the. ring of proper scalar rational functions (with real coefficients) which are analytic in

U.

J is the group of units ofRu ; equivalently, / e J has neither poles nor zeros in U.

I is the multiplicative subset of elements of Ru such that f e I implies /(oo) = a nonzero

constant in C ; equivalently, I c Ru is the set of proper but not strictly proper rational func

tions which are analytic-in U.
• • •

Then Rul I := { nl d : n e Ru,d e I } is the ring of fractions of Ru associated with l\

this ring is the ring of proper rational functions TRp(s).

The set of strictly proper rational functions IR,p(y) is the Jacobson radical of the ring JRp(s);

f € IR,pCs) goes to 0 as s goes to oo.

Note that (I) I = the set of units of IR^Cs) which are in Ru. (ii) Let

A e ITl(R^ ,B e m(JRp(s)). Then a) A"1 e m(R^) iff detA e j and

b) BTl e m<JRp(s)) iff det5 e /. (iii) Let Y s m<JRsp(.s)), X, Z e m(TRp(s)). Then
XYt YZ € m(IR,pCy)), and (/+Xy)_1, (/+EZT1 e m(JRp(s)). (iv) Let a, b e Ru .

• • •

Then ab e J iff a and 6 e J. (v) Let c, rf e /?tt . Then cd & I iff c and d

1.2. Definitions (Coprime Factorizations in Ru ):

(i) The pair (AT, D) € WK/?^ is called right-coprime (r.c.) iff there exist

U, V e m(Rj such that



UN+VD = / (1.1)

(ii) The pair (AT, D) e JTl(R^) is called a right-fraction representation (r.f.r.) of

P e mQRp(s)) iff

D is square , detD € I and P = MT1 (1.2)

(iii) The pair (iV, £>) e J?l(R^) is called a right-coprime-fraction representation

(r.c.f.r.) of? e mQRpis)) iff (JV, £>) is a r.f.r. of P and (AT, D) is r.c.

The definitions of left-coprime (i.e.), left-fraction representation 0.f.r.) and left-coprime-

fraction representation (Lcf.r.) are duals of (i), (ii), and (iii), respectively [Vid.l, Net.l, Des.l].

•

Note that (i) every P g mORp(,s)) has a r.c.f.r. (AT, D) e m(R^) and a l.c.f.r.

(D, N) e Jfl(R^) because Ru is a principal ring [Vid.l]. (ii) Let (N, D) be a r.c.f.r. of

P e ftl(Rp(s)). Then (X, 30 is a r.cfx of P iff (X, 7) = (Wtf, DR.) for some unimodular

/? e m(^„).

1Jo Assumptions: Consider the 2-channel decentralized control system S(P, Cd) shown in

figure 1.

(A) Let P and Cd have no hidden W-unstable modes so that they can be specified by

their I/O representations.

(B)Let P g IRpCs)2*2 be a2-channel plant
Let (N, D) be a r.c.f.r. of P, where

AT =
"i
"2

, z> =
01
£>2 tNltN2fDltD2 e Z?^ ,

with ran/:

and rank

D&)
Ni(s)

D2(s)
N2(s)

>1 , for all 5 e W

£1 , for all j e W

(1.3)

(1.4a)

(1.4b)

(1.5a)

(1.5b)



(C) Let Cd =
Ci 0

0 c2 e IRpCs)2*2 be adecentralized compensator.

Let (£>', N') be a l.c.f.r. of Cd , where

D' =

<?! 0
0 d'2 ,AT' =

h\ 0

0 *'2 , rt'j, rt'2 € -^tt »<*'l» ^2 G ^

(1.6)

(1.7a)

(1.7b)

Note that by definition 1.2, detD' € I ; equivalently, i\ e I and d'2 e /. There

fore, by equations (1.7 a-b), (d'i, rt'i) is a coprime-traction-representation (c.f.r.) of c\ and

(<*'2, n'j) is a c.f.r. of c2.

Assumption (A) holds throughout this paper. The plants under consideration satisfy

assumption (B) except in some cases, where we require in addition that the plant be strictly

proper.

Comments : 1) Assumptions (1.4 a-b) imply that [Cal.1, Vid.l]

rank
\D{s)} _
ms)\" rank

Dx{s)
D2(s)
N&)
N2(s)

= 2 for all s e U. (1.8)

2) Equation (1.8) with assumptions (1.5 a-b) implies that the plant P has no decentralized

fixed modes in U [And.l].

3) Assumption (1.5 a) implies that the "Smith Form" of has at least one "1" in its

two diagonal entries. The second diagonal entry can be zero or some other element of Ru. If

rank (s) = 2 for all s e U , then the second entry is also equal to 1 ; equivalently, the

matrix is unimodular.

If the plant P is strictly proper and assumption (1.5 a) holds, then rank (s) is always

1 at s =oo since Nx e JR^s)1*2 ; therefore the second diagonal entry in the Smith Form can-



not be 1 since
£>i

is not unimodular.

Similar comments can be made about assumption (1.5 b).

Using the representations of P and Cd as in assumptions (1.3)-(1.7) we redraw the decen

tralized control system as in figure 2.

Let y :=

y\ " «i 7i"
/2yi

, u :=

"2 .

.5:=
y\ "'l .'v...' ..'

.?2 . ."2.

. Then S(P, Cd) is described by equations

(1.11H1.12) below.

1 0 -Dx V
0 1 -D2 y{

<?! 0 n\Ni =

0 d'2 : n'2N2 .v.

"1
-l 0 0 o"
0 -1 0 0

"2

0 0 *1 0

0 0 0
2.

.U2'.
0 0 Ni V yi

0 0 N2 y2' y2

1 0 0
= • ••

0 1 0 .?p.

Using obvious notations we write equations (l.U)-(1.12) in the form

DA = NLu

"/£ = y

(1.11)

(1.12)

(1.13)

(1.14)

By inspection (or by exo.'s and e.c.o.'s in /?„), (NR , DH) is r.c. and (DH, N[) is l.c. Let
o

Hyu : k l-> y. If detD// g I (equivalently, if the system S(P, Cd) is well-posed), then

Hyu^NjPdNi. e mORp(s)) (1.15)

In terms of P and Cd, if™ is given by:

Hyu =

PQ+CdTl P(I+CdPTlCd

(7+QP)-1-/ {l+CdPTlCd
(1.16)



1.5. Definition (W-stability) : 5(P, Cd) is called W-stable if and only if Hyu g f7l(Ru).

1.6. Theorem (Z/—stability) : Let Assumptions (A), (B), (C) hold. Then S(P, Cd) is W-stable

if and only if fa\DH g J.

1.7. Comments : 1) Manipulating the expression for 6etDH (see equation (1.11)) we see that

theorem 1.6 can be established as 5(P, Cd) is U-stable if and only if

<=>

<=>

detDtf = det(D'D + N'N) = det
d'xDx + n'xNx

i2D2 + n'2N2

rf'l 0 h\ 0" D

0 i2 0 n\
N

*x n\ 0 o" D

0 0 <£2 n'2
N

= R g Ru, R is unimodular

= R g Ru*2 , R is unimodular.

From equation (1.17) and the c.f.r.'s of P and Cd we get

(1.17)

(1.18)

(1.19)

detD# = det
d'x 0

0 <?2 det(/ + CdP)det £>i
D2 = detD'det(7 + QP)detD. (1.20)

2) Equation (1.18) is equivalent to a Bezout Identity

VdD + UdN = R, R g R^ is unimodular (1.21)

where Vd , Ud g Ru2*2 are diagonal matrices defined in an obvious manner by equation

(1.18).

Proof of Theorem 1.6 : ( => ) The map H2X : l->
y{

-iis given by (/ + CdP)~-1

Since S(P, Cd) is W-stable, H2X g m(Ru) . Therefore, (/ + CdP)~l g m^ and hence,

det[(/ + QPr] g Ru.
From equation (1.20) we get

(detD,/)"1 = (detDO'Meta + CdPy\dctDT\

(1.22)

(1.23)



Since (AT, D) is a r.c.f.r. of P and (D', N') is a Lc.f.r. of Cd , detD g I and detD' e I. By

equation (1.11), detD// e 7?u ; hence, using equations (1.22)-(1.23), (detD//)"1 e IRpCs).

Therefore, detD// € I. Then equation (1.15) holds. Finally, H^ g J7l(Ru) implies that

detD// g J since (NRt DH) is r.c. and (DHf NL) is Lc. [Vid.l].

( <= ) detD// g J implies that Dj} g flt(Ru) . Therefore, by equation (1.15),

Hyu =NrDh1Nl g m(Ru).



section n

Synthesis

Let assumptions (A) and (B) hold.

2.1. Definition (W-stabilizing decentralized compensator ): Cd is called a ^/-stabilizing de

centralized compensator for P (equivalently, Cd Ur-stabilizes P) iff (i) Cd satisfies assump

tion (C), and (ii) 5(P, Cd) in figures 1, 2 is W-stable.

22. Definition (Set of all {/-stabilizing decentralized compensators ):

Sd(P) := { Cd : Cd U-stabilizes P } (2.1)

is called the set of all W-stabilizing decentralized compensators for the given P.

23. Lemma: Let d 2X, n2X , 7^ g Ru, ^ * 0, be such that

Cs) £ 1 for all s g U. (2.2)rank

d2X %i

n2x 0

Then there exists r g Ru such that

rank[d2X+rn2x \ ^ p) =1, for all s g U. (2.3)

Proof: Condition (2.3) clearlyholds for all s g U such that X&s) * 0. Consider

S2 = { s g U: T^jis) =0 }. For s2 e 52, by equation (2.2), S^is^ and n^is^ cannot both

be zero. Hence choose r (•) e /?„ as follows: for s2 g S2, if d2X{si) * 0 , choose rfc^ = 0,

else choose ris^ * 0 ; for s 4 S2> choose r(,s) arbitrarily. Clearly any such r() satisfies condi

tion (2.3).

•

2.4. Theorem (Class of all {/-stabilizing decentralized compensators ):

Let P g TRspis)2*2 satisfy assumptions (1.4 a-b) and (1.5 a-b). Then
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(i) there are unimodular matrices Lx ,RX ,M2,T e Ru such that

i-l 0

' Dx '

Rx=:
0 M2 D2

1 0

0 Xx

d2X h

n2x 0

, Xx, ^ e flM , ^ * 0 , (2.6a)

the pair (<22i . ^) is coprime ;

and for all qx g Ru ,

5d(P)={Q =
d\ 0

0 i2

1 q\

0 1

h\ 0

0 h'2

-M(d2X+rn2X)

(ii) the set of all {/-stabilizing decentralized compensators Sd(P) is given by

-l d\ ii\

0 0

0 0

2 n2d\ «'

[1 ^ilTL!

0

(2.6b)

(2.6c)

0

[1 qi\M2

qx tq2 g Ru such that 1+ [ 1 qx ]T 0

-Xi^r2n2X
j } • (2.7)

2J. Comments: 1) If assumptions (A), (B), (C) hold, then by theorem 1.6, Q {/-stabilizes P

if and only if equation (1.19) (equivalently, equation (1.18)) holds. We use equation (1.19) in

theorem 2.4 for rinding all {/-stabilizing decentralized compensators fo P.

2) Finding a {/-stabilizing decentralized controller Cd is equivalent to solving equation

(1.21) for some diagonal Ud g Ru . Now by assumption (1.4 a), since (AT, D) is r.c, there

existV, U g Ru (not necessarily diagonal) such that

V U

-N 5
D

N

I

OJ
(2.8)

where (D, N) is a Lcf.r. of P.

It is well known (see for example [Vid.l, Net.l, Des.l]) that centralized (full-feedback)

compensators that {/-stabilize P are given by
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C = (V- QN)~\U+ QD) (2.9)

where Q g 17l(Ru) is such that det(V-fiAO e { (in the case that P e mOR^s)) ,

det(V-QW) e l for all Q g m(Ru) ).

If the system 5(P, Cd) in figure 1 used a centralized controller C - i.e., a two-input two-

output controller - then the class of all {/-stabilizing controllers would be parametrized by a

2x2 matrix in Ru as seen from equation (2.9). In the present case, Cd consists of two single-

input single-output controllers, so one would expect a parametrization in terms of two scalar

functions in Ru. Theorem 2.4 shows that this is indeed true with the two scalar functions

qx, q2 chosen so that equation (2.7) holds.

Proof of Theprem 2.4 : (i) Let Lx, Rx g Ru1*1 be unimodular matrices such that

Ox
Nx

tfx is the Smith form of D\
NX

. By assumption (1.5 a), one of the diagonal entries

(the smallest invariant factor) of this Smith form has to be equal to 1. Let Xx denote the second

invariant factor, from comment 1.4.3, Xx e Ru is possibly 0 but not 1 because P is strictly

proper.

Let

rank(

Lx

0

D2

N2
*i=:

^21 ^22

*21 ^
. Since Lx, Rx are unimodular, from equation (1.8) we get

D\

D2 a\x $22

N2 n2X n22

Equation (2.10) implies that d22 and "22 cannot both be identically zero since Xx * 1. Therefore

the pair (^22 >"22) nas a nonzero greatest common divisor (g.c.d.) denoted by ^ € Ru.

Hence there is a unimodular matrix M2 g Ru2*2 such that

#i )(*) - rank

1 0

0 Xx

A D2

.Nl.
A <h\ d22 d2x 7^

M2 RX=M2
n2X /122

—•

n2X 0

(s) = 2, for alls e {/. (2.10)

, A2 g Ru . X2 * 0. (2.11)
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The pair (d2X, Xi) in equation (2.11) is not always coprime; but since Af2 , Rx are unimo

dular, assumption (1.5 b) implies that the matrix in equation (2.11) has rank > 1 V s g U.

Then by lemma 2.3, there is r e Ru such that the pair (d2x+rn2X, X£ is coprime and hence,

assertion (2.6 b) is satisfied. Note that r is not unique.

Let M2 :=

implies that

1 r

0 1
M2 . Then M2 g Ru is unimodular, and hence equation (2.10)

0

rank(

Ll 0

' Dx'
Nx

0 M2 D2

N2

Rx )(s) = rank (s) = 2 , for all s g U

det(

d2x+rn2x Xri

n2X 0

and thus, the pair (Xx, 7^ is coprime. Therefore there is aunimodular T g Ru230, such that

-Xx(d2X+rn2X)

and hence, for a// qx g Ru , equation (2.6 c) holds.

(ii) (a) First we show that Sd(P) given inequation (2.7) is asubset of iS^(P) defined in

equation (2.1); equivalently, with ix, n\ ,<t2,n'2 as in equation (2.7), Cd {/-stabilizes

P g TRspis)*2.

By theorem 1.6, 5(P, Q) is {/-stable if and only if equation (1.19) holds. If

ix, n\ , d'2 »n'2 are specified as inequation (2.7), then by equations (2.6 a-c) and (2.7)

1

LOJ

' Dt
*i n\ • o o" Wl

0 0 : d'2 iif2
D2

Rx) = detD/zdet/?! = det(
[1 q{\TLx

0

= [i *iir
-A.x(d21+rn 2i+^2n2i)

= 1 + [1 ^iir
0

-Xxq2n 2X

0

[1 qiWi

Dx

NX

D2

N2

Rx)

(2.12)
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Since Rx is unimodular, equation (2.12) implies that detD// g J .

From equation (2.7), d'x, h\ , <f2 , n'2 are clearly inRu since Lx %M2,T g Ru*2 and

4i» °2 t ** e /?tt . (d'i , n'i) is a coprime pair since Lx ,RX tT unimodular implies that

ran*!*?! : h\ = 1 \ qx \TLX =1 V s g U. Similarly, M2 unimodular implies that the

"dx 0
pair (d'2 , n'^ is coprime. Therefore (D', iV") = (

and hence, assumption (1.7 a) holds. Now since detD// g J , from equation (1.17),

D'D + N'N = R, R g Ru2*2 is unimodular. (2.13)

By assumption, P 6 IR^C*)2*2 , hence N g IR^Cs)2*2 . Then by equation (2.13), detD' g I

[Vid.l, Net.l, Des.ll; equivalently, <f j e { and <i'2 e { . Therefore assumption (1.7 b)

holds.

Since we have shown that Cd g Sd(P) given by equation (2.7) satisfies assumption (C)

and that 5(P, Cd) is {/-stable, by definition 2.1, Q {/-stabilizes P ;hence Cd g Sd(P).

(b) Second, we show that any {/-stabilizing decentralized compensator Cd is a member

ofSd(P) specified byequation (2.7) for some qx, q2 as in equation (2.7).

Let Cd {/-stabilize P ; by definition 2.1, Cd satisfies assumption (C) and 5(P, Cd) is

{/-stable. Let <f j, h'x, <?2 , n'2 be as in assumptions (1.7 a-b). Then by theorem 1.6, equation

(1.19) holds and without loss of generality, we assume that the corresponding r.c.f.r. (AT, D) of

P is such that R = I in equation (1.19). We rewrite equation (1.19) as:

0 <tr

n'x 0

0 nf2 ) is a l.c.f.r. of Cd

Dx'
d'x n\ : o o" NX 7X n\ : 0 0]
0 0 : d'2 n'2

D2
0 0 : <f2 n'2

dxx dX2

111 nX2
1 0

d2x d22
0 1

n2x w22

(2.14)

Equation (2.14) implies that the pairs (dn , nxx) and (fa *"22) are coprime. Furthermore,

<tx n\

-nxx dxx =: Lx g Ru2*2 is unimodular and
d'2 h'2

~w22 ^22
=: M2 g Ru2*1 is unimodular since
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detLi = 1 and detAf2 = 1 .

Let Xx := -nxxdX2 + dxxnx2 and n2X := -n^d^ + d22n2X . Then

0

M2 Mn

dxx dx2

nxx nX2

<hx fa

Hx n^

0

*1

0 1

n2X 0

(2.15)

Note that with X2=l,r = 0,andrf21=0,the right-hand side of equation (2.15) is of

the same form as that of equation (2.6 a). Qearly, condition (2.6 b) holds since Xi = 1 , and

equation (2.6 c) holds with T = / since d 2X = 0 .

Since (N, D) is a r.c, it is possible to complete
Hi
D2

N2

into a unimodular matrix by

adding two columns; although there are many ways of accomplishing this we choose a simple

one. From equation (2.15), with T -1, it is easy to verify that

1 0 0 0 dxx dx2 *[!] 0

0 0 1 0 TLX 0 nxx nx2

0 1 -xx 0 0 : m2 d2X dii

-n2x 0 0 1 n2X n-22 0 *[\

= /. (2.16)

Then each of the three matrices in equation (2.16) are unimodular. By equation (2.14), with

^i:=[^i n'il^T1[?]=0,^r2:=[J'2 #a]*2l[i] =0,

*x *'x
0 0

0 0

df2 n'2

dxx dX2

nxx nx2

d2X fa

n2x "22

.-[!] o

1 ° : Rx o"
OliO q2

:*[?].

(2.17)
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With qx = 0 , q2 = 0 , from equations (2.16)-(2.17) we get

pi »'l • o o" "l 0 qx oj
0 0 ; d'2 n'2 0 1 . 0 q2\

1 0 0 0 _

0 0 1 0 TLX 0

0 1 -xx 0 0 M2

""21 0 0 1

[1 0]TLx

0

0

[1 0]M2 (2.18)

Since qx = 0 , q2 = 0 , we have 1 + [ 1 qx]T 0

-~Xxq2n2x
= 1 , where T = / . Equation

(2.18) shows that d'x , /t'i , <?2 , h'2 satisfy equation (2.7). Hence, any {/-stabilizing decentral

ized compensator Cd is in the set Sd(P) ofequation (2.7).

2.6. Remarks : 1) The proof of theorem 2.4 suggests the following algorithm for finding a

{/-stabilizing decentralized compensator Cd for a given 2-channel strictly proper2x2 plantP.

Algorithm:

Given: P e IR^Cs)2*2 , and a r.cfr. (N, D) ofP such that assumptions (1.4 a-b), (1.5

a-b) hold.

Step 1 : Put Dx
Nx

such that L
Dx
Nx

*i =

Step 2 : Put
D2
N2

into the Smith form; equivalently, find unimodular Lx, Rx g Ru32

, Xx g Ru . Let
1 0

0 Xx
D2

N2
*i=:

d2x d22

n2x nM

Rx into a triangular (Hermite-like) form; equivalently, find a unimodu

lar M2 g Ru2*2 such that M2
d2X d-xi

n2X n-22

A

d2x t^i

"21 0
,X2 G Ru »^2 * 0 • Then find an

r g Ru such that the pair (<?21 + rn 21 , X$ is coprime . Let M2 :=
1 r

0 1 Mi.
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Step 3 : Find a unimodular T g Ru2x2 such that T

Step 4 : Then for all qx , q2 g Ru such that

X2

-Xx(d2x + rn2x)

1 + [1 qX]T
0

-^1^2" 21

a {/-stabilizing decentralized compensator is given by

= 1,

'^x o' -1 n'l 0"
Q = 0 n'j 0 n'2 , v

~ZX n\ \ 0 0* "El qx]TLx j
o o \ i2 "2

—

0

0

[ 1 q2 }M2

Note that if q2 is chosen as zero, then equation (2.16) holds for all qx g Ru

1

LO

(2.19)

(2.20)

2) If P g IRpCs)2*2 but not strictly proper, then the algorithm above needs slight

modifications. If P is proper, then from comment 1.4.3, Xx in equation (2.6 a) may be equal to

1 ; in that case, fa , n22 in equation (2.10) may both be identically zero. If d22 = n22 = 0 then

in equation (2.11) X2 = 0 and by assumption (1.5 b), rank

equivalently, (fa , n2X) is a coprime pair.

Another consequence of P proper is that equation (2.13) no longer guarantees that d\ and

i2 are in { . Therefore anadditional restriction on qx, q2 g Ru is needed.

Considering these two differences for proper but not strictly proper plants, we modify the

algorithm as follows:

Step 2 : (i) Case 1 : d^ = n22 = 0. Find a unimodular M2 g Ru2*1 such that

M2

Choose r g Ru such that [ 1 r]M2 i € { . LetM2 be the same as in the algorithm.

(ii) Case 2 : at least one of ^22 »"22 is not identically equal to zero. Find M2 as in the

d2X d22 1 0 d2X X2,

."21 "22. 0 0 n2x 0

d2x
"21

(s) = 1 for all s g U ;
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algorithm, but choose r g Ru such that the pair (d2X + rn2X) is coprime and

[1 r ]M2 Io I e I>Let M2 be defined the same way as in the algorithm.

Step 4 :For all qx g Ru such that [1 qx ]TLX lil g I , for all q2 g Ru such that

[1 q2W2 g I with, in addition, qx , q2 such that equation (2.19) is satisfied, Cd is

given by equation (2.20).
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SECT10N m

Examples and Conclusions

In examples 3.1 and 3.2 we follow the algorithm in remark 2.6.1 to find a {/-stabilizing

decentralized compensator for a given strictly proper plant

3.1. Example :

Given P =
1

1

s-2

-fr+D
G TR^s)2*2

.5-1 Cs-1)(j-2) .

and a r.cf.r. (N, D) of P , where

N =

r i
0 [i ±±1^^^^—

s+l •s+l

0
1_ • D = ±£ 0s+l\ Ls+i J

1 -fr-D

Step 1 : With Lx =
1 0

-1 , . *, =
s+l

0 1

s+l

j-2 -Cs-l)(s-2)

we get Xx = ~*J ; . Then
(s+l)2

D2
tf2 Ki =

5+1 (s+l)2
1

s+l

Step 2 : Choose r = 0 . Then M2 =

0

1 5j-1
s+l

1 (j-IXj-2)

s+l (y+1)2

(3.1)

(3.2)

(3.3)

(3.5)

and the pair (d2x , X^) =("^ ' , 1) is coprime. Note that in this case (d2X +rn2x , Xi) is
s+l

coprime for all r g Ru.

Step 3 : T =
1 0

(j-l)(.y-2) -

(s+l)2

(3.6)
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Step 4 : dx ,n'i , d'2 , n'2 of Cd are given by equation (2.20) where T is given by equation

(3.6), M2 is given by equation (3.5) and Lx is given by equation (3.3), and qx , q2 e Ru

satisfy equation (2.19).

32. Example :

Given P =

2(s3-7s2+6s+2) -(s-l)
(s+l)2(s-2)(s-3) (s-2)(s-3)

1 1

s-3 ,s-3

e IR^s)2*2

and a r.c.f.r. (iV, D) of P, where

N =

1

5+1

2s-l 3s2-4s-l

(s+l)2 (s+l)3

0

, D =

1 s+l
0 1

1 izL
s+l

s2-9s+2 2(s3-7s2+6s+2)
(s+l)2 (s+l)3

-(s-l)

(3.7)

(3.8)

Step 1: With Lx =
1 0

-1 , *, =t*M we get, Xx =^±.
(s+lY

Then

D2

N2 *i =

s+l

^-95+2 (s-2)(s-3)
(s+l)2 (s+l)2
2s-l s-2

(s+l)2 (s+l)2

Step 2: Af2 =
1 4

-1 s-3

s+l s+l

. Then d2x =-=^^ , n2l =-^-, ^ =*£>. Now
Zl s+l ^ s+l s+l

we can

choose any r g Ru such that rf2i+r/i21 has no zero at 2 (where A^ has a zero). Choose for

example r =-1. Then d2X+ rn2X = ""^"" * is coprime with X^.
s+l

Step 4 : For all qx ,q2 g Ru such that equation (2.19) is satisfied,

[d'x n'il = [ 1 qx]

^+55+40

(s+l)2
-fr-3)

(s+l)3

-27

s-2

s+l

and [<?2 n'J = [ 1 q2 ]

s+2 3s+7

s+l s+l

-1 s-3

s+l s+l
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Conclusions

Theorem 2.4 gives the set of all decentralized controllers which stabilize a two-channel system,

where each channel has a single input and a single output This class is given in terms of two

scalar rational functions, which are chosen according to equation (2.7); therefore the parametri-

zationis in terms of one free parameter although the system has two local controllers.
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Figure Captions

Figure 1: The system S(P, Cd)

Figure 2: The system S(P, Cd) after factorization
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