

Copyright © 1987, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

Rr

>A VISUAL SHELL INTERFACE TO A DATABASE

by

Lawrence A. Rowe, Peter Danzig, and Wilson Choi

Memorandum No. UCB/ERL M87/2

13 January 1987

A VISUAL SHELL INTERFACE TO A DATABASE

by

Lawrence A. Rowe, Peter Danzig, and Wilson Choi

Memorandum No. UCB/ERL M87/2

13 January 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

/\

A VISUAL SHELL INTERFACE TO A DATABASE

by

Lawrence A. Rowe, Peter Danzig, and Wilson Choi

Memorandum No. UCB/ERL M87/2

13 January 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

t
A Visual Shell Interface to a Database T

Lawrence A. Rowe, Peter Danzig, and Wilson Choi

Computer Science Division - EECS
University of California

Berkeley, CA 94720

Abstract

This paper describes a visual command language for a workstation with
a bit-mapped display and a mouse that can be used to create different user-
interfaces. Primitive interface components can be combined into more com
plex user-interfaces. The user specifies interconnections between these com
ponents over which data and commands can be sent by pointing with a
mouse.

Primitive interface components are described for creating several
different database user-interfaces. The design and implementation of the
software architecture is described including the primitives for database
interfaces and the communication protocols used by the system.

1. Introduction

This paper describes the design and implementation of a visual inter
face to a database. The interface is based on two simple ideas: 1) the
specification of a database query should be separated from the specification
of how the data specified by the query should be displayed and 2) a visual
interface should be used to specify the connections between interface com
ponents. Query specification should be separated from the display
specification (e.g., a report or an interactive browser that displays the data
in a form) so that a user can create new interfaces by connecting different
query specifiers to different data displayers. For example, a user could
create a Query-By-Forms interface [RTI84] by connecting a forms-based
query specifier to a browser that displayed data through a form or he could
create a Query-By-Example [Zlo751 interface by connecting a visual,

This research was sponsored by the National Science Foundation under grant DCR-
8507256. The second author was also supported by an American Electronics Associa
tion Faculty Development Fellowship.

multiple relation query specifier to a displayer that prints the data in a
tabular format. A visual interface is used to specify the connection of a
query specifier to a data displayer because it simplifies the user-interface.

The interface command language, called the Visual Shell (VS), allows
the inputs and outputs of the interface components, called tools, to be
dynamically interconnected to form different user-interfaces. The system
runs on a workstation with a bit-mapped display and a mouse. Figure 1
shows an actual screen dump with three tools connected together to form a
simple database browser. The tools are: a query editor, a table browser, and
a database. The query editor allows the user to compose and edit queries

Figure 1: A simple database interface.

written in a textual query language such as QUEL. The table browser
allows the user to view or update data through a table. And, the database
tool mediates between the other tools and the database.

Each tool has a window through which it interacts with the user and a
collection of input and output ports that can be connected to ports in other
tools. Data and commands are passed between tools over these connections.
Tool connections are shown in the figure as dark lines connecting tool ports.
Each port has a name which is shown in a window on the left edge of the
tool. For example, the Query port in the query editor tool is connected to
the Query port in the database tool. Ports and connections are normally
hidden from view unless the user wants to change the connections. When
they are hidden, the user can enter a query into the query editor tool and
execute a menu operation that causes the query to be executed and the
results to be displayed through the table browser tool. Using the table
browser, the user examine or update the data.

This interface was created by executing the tool programs and specify
ing the connections between them. Tool programs are executed by entering
a command to the command interpreter or by selecting the program from a
menu. The user establishes a connection between two tools by selecting the
two ports and executing the Connect operation in the communications
manager tool (CM) shown in the upper right corner of the screen. Ports and
operations are selected by positioning the mouse cursor on the desired sym
bol and pressing a mouse button.

The novel feature of this database interface is that different tools can

be arbitrarily connected to create different user-interfaces. Conventional
database interfaces support different query specification interfaces (e.g., tex
tual, forms-based, or graphical [McS75,MET8?]) and a variety of display
interfaces (e.g., forms, reports, graphs, and spreadsheets) but they limit the
interconnection of these interfaces to only a few alternatives (e.g., QBF and
QBE). Some systems allow different specifications for input and output
(e.g., QMF allows queries to be specified in SQL or through a QBE query
interface and reports to be specified through forms or in a textual language
[IBM83]) but this flexibility is limited to a few specific cases. Other data
base interfaces that run on workstations support interesting query and
display formats but, they either rigidly proscribe how the tools are intercon
nected or they require the user to program a new interface in a program
ming language [Cat84,FrE86,Goe85,Her80,StK82,The83].

VS was motivated by the Data-Flow Manager (DFM) developed by Hae-
berli for the IRIS workstation [Hae86]. Although the two systems are very
similar, VS differs from DFM in several important respects. First, VS con
nections are bidirectional. The number of connections required in our data
base application is cut in half by the use of bidirectional connections.
Several database tools discussed below synchronize by asking for and then

receiving data from another tool. Twice as many connections would have
been required if a one-directional connection had been used as in DFM
which would complicate the user's model of the connection abstraction.
Second, VS allows tools to create and destroy ports dynamically whereas
DFM required tools to define all ports at compile time. The database tools
we developed use dynamic port creation extensively to allow users to create
interfaces with a variable number of output displayers. Third, VS uses the
Fourth Berkeley Software Distribution (4BSD) socket mechanism to imple
ment connections [LJF831 whereas DFM used shared files which required a
kernel modification. Using sockets permits tools running on different hosts
in a network to be connected together. Lastly, Haeberli developed tools for
interactive graphics applications (e.g., a graphical object viewer, a slider for
specifying view transformations, and a solid object viewer) while we have
developed tools for interacting with a relational database.

VS is closely related to work on operating system command languages,
most notably the Unixt shell language [Bou78]. The shell language allows
simple programs (i.e., tools) to be combined in a flexible way to create more
complex programs. Each tool has one input port and one output port that
can be connected together to create more complex programs. This composi
tion is referred to as piping the output of one program into the input of
another program. In addition, the shell allows input and output to be
redirected to files or I/O devices. The shell language is a textual command
language that allows these complex programs to be created without writing
a program in a programming language. For example, the following com
mand

bib -tstda paper.n | tbl | ditroff -Pip -me -

was used to look up paper references in a database, format, and print this
paper. The pipe operator 0|') signifies that the output of the left operand
should be connected to the input of the right operand.

VS differs from the Unix shell in three ways. First, complex programs
created with the shell language are almost always linear pipelines because
most programs have only two ports and the command language encourages
linear constructions. This limitation is not inherent in the system but, the
vast majority of pipelines are linear. VS encourages users to develop tools
with many ports because of the two dimensional notation for specifying con
nections. Second, Unix does not provide a mechanism to dynamically add
and remove ports and to change connections while a program is running.
VS provides both functions and, in fact, encourages users to construct new
interfaces dynamically. Lastly, the Unix shell language was designed for
an alphanumeric terminal and as a result does not support program

* Unix is a trademark of A.T.&T.

interaction with the user through a window with a mouse. VS, on the other
hand, is inherently a visual interface. Other researchers have explored
extensions to the Unix shell that incorporate more complex connections, but
they have not supported dynamic connection changes or visual interfaces
[Shu83].

The remainder of this paper describes the design and implementation of
the database interface tools and VS. Section 2 shows several different user-

interfaces constructed with the primitive database interface tools. Section 3
describes the design and implementation of the database primitives and the
protocol used between them. Section 4 describes the implementation of the
CM and the library used by tool programs. Section 5 discusses extensions to
the current system and section 6 summarizes the paper.

2. VS Examples
This section describes several user-interfaces to a database that can be

constructed with VS and the primitive database tools.

After creating and connecting the tools, the user interacts with the
interface by issuing commands to the individual tools. Commands are
entered by typing on the keyboard or by selecting operations from a pull
down menu with the mouse. Figure 2 shows the simple database browser

after a query has been entered but before it has been executed.1 The query
is executed by selecting an operation in the Database menu which causes
the selected data to be displayed in the table browser tool. Figure 3 shows
the screen after the query has been executed. At this point the user can
browse the selected data by using the scroll bars, update it by entering a
new value into the table, or change the data being browsed by executing a
different query.

Figure 4 shows a more complex interface composed of multiple
displayers for the data. A graph viewer tool has been added to the interface
which displays a graph of the data specified by the query. This interface is
created by executing the graph tool program, adding an output port to the
database tool {Out~2), and connecting it to the input port in the graph tool
{Data). The graph tool is connected to the database tool so that it will
display all of the data specified by the query. If the user wanted to graph a
different data set, he would have to create another database tool and con
nect the graph viewer tool to it.

The interface shown in figure 4 allows the user to examine a graph of
the entire data set while at the same time browsing the detailed data. The

1The example database used throughout the paper is a single relation that contains
data about computer products along with configuration and performance attributes (e.g.,
manufacturer, model, dhrystone rating, etc.).

Figure 2: The browser after a query is entered.

Figure 3: The browser after the query has been executed.

n8OTS888888888888888883838S8888S88888&S

lllltil

E»»itf*™»«M»i«
Record Pl«»b«ck V«rbo«» Quit

<oaaauUrs.all> «*••» wp*wi.»1och I" 0 «rt an Mnrf

V»rbot« Quit

!5«#Hi«KvJ»i«w3J»}K«5ff»»

mffism

hMWM

tabwai Example

$%$666<i6t

llff<IM
UIUK
•ITS
tin

i*tt*i
•tw
•IM
•tm

ioici

s&sS3s5S5S35S833ffi

X-«xl» V-fixl« VtrtOM Quit

Pt9C4*t*t Ctect i

'®Mt&WM$M&sd?Ms&^WW^&wmfmmiixmwmw

Figure 4: A user-interface with multiple data displayers.

graph tool has menu operations that allow the user to change the attributes
displayed in the graph and other properties of the graph itself (e.g., axis
labels, line style, etc.). If the user changes the data set by executing
another query, the data displayed in the table and the graph is updated.

A different interface can be created by connecting the graph tool input
port {Data) to an output port in the table browser as shown in figure 5. This
interface displays a graph of the data currently visible through the table. It
is created from the multiple viewer shown in figure 4 by adding an output
port to the table browser {Out-D, deleting the connection from the graph
tool to the database tool, and adding a connection between the graph tool
and the table browser. With this interface, the graph is changed whenever
the user changes the data displayed in the table.

8

Figure 5: Another user-interface with multiple data displayers.

The user could also create an interface with two graph displays: one for
the entire data set and one for the data displayed through the table viewer.
This interface is created by executing two graph tools and connecting one to
the database tool and the other to the table browser.

The last example shows how a different query specification tool can be
used with the same data displayers. Figure 6 shows a simple database
browser similar to the one in figure 1 except that the textual query specifier
has been replaced by a forms-based query specifier. The interface behaves
the same way as before except queries are specified differently.

This section showed how different database interfaces could be created
by connecting together simple interface tools. VS provides an abstraction

9

Figure 6: A simple browser with a forms-based query specification tool.

and a visual interface for creating these interfaces.

3. Database Tools

This section describes the design and implementation of the primitive
database tools. The next section describes the CM tool and the library used
by tool programs to manage ports and connections.

The query tools are relatively simple. The user enters a query and
selects a menu operation to execute it. The query tool sends a message con
taining a textual representation of the query to the tool connected to its
Query port. After sending the message, the tool waits for another command
from the user.

10

The database tool is more complicated than the query tools because it
buffers data from the database and responds to requests sent to it by the
display tools. The tool has a Query port, one or more data output Out-i
ports, and a buffer containing the data set specified by the current query.2
When a query arrives on the Query port, the previous query, if any, is ter
minated and the new query is executed.

After the data has been retrieved from the database into the buffer, the
display tools are sent a "new data set" message to notify them that a new
query has been executed. When a display tool receives the message, it
sends a message to the database tool requesting a description of the new
data set (i.e., the number of attributes and the names and types of the attri
butes). After the data set description is received, the displayer sends a mes
sage requesting the database tool to send it some number of data records.
The number of records requested depends on the displayer and the amount
of data needed. For example, the graph tool requests all records while the
table browser requests only enough records to fill the table displayed on the
screen.

The table browser tool maintains a buffer of data that is currently
displayed on the screen. Other tools can access this data by connecting to an
output port in the table browser which supports the same protocol imple
mented by the database tool. "New data set" messages sent to the table
browser are propagated to the other tools when they are received so they
can synchronize with the data being displayed in the table. "New data set"
messages are also sent when the user scrolls the table. This feature was
illustrated in figure 5.

Notice that messages are sent in both directions over the connections
between the database tool and the displayers and the table browser and the
other displayers. Also, notice that the only state maintained by the data
base tool is the current data set. Each display tool keeps track of the data
currently being displayed.

Updates entered to the table browser are sent to the database tool
which is responsible for propagating them to the database. Some updates
may not be possible because the query that retrieved the data is not inverti-
ble (i.e., the view is not updatable).

The graph tool is very similar to the table browser. However, the
current implementation does not support output ports nor does it allow data
to be updated. These restrictions were made to simplify the

2 The current implementation keeps the data set in a file. A future version will only
buffer a subset of the data. The optimum implementation would use a database system
that supported the portal concept [StR84,StR86].

11

implementation.

The fact that these tools are useful yet simple to implement shows that
this approach to building database interfaces is flexible and powerful. For
example, suppose you wanted to build a real-time relation viewer that is
dynamically updated when the relation changes. This interface could be
built by implementing a relation tool that accepted the name of a database
and a relation and that responded to the same data protocol used by the
database tool. This tool could be connected to different displayers (e.g., the
table browser, the graph viewer, etc.) to create different real-time interfaces.
Figure 7 shows a sample relation tool connected to a table browser. To

Figure 7: A relation viewer interface.

12

implement the real-time updating behavior, the relation tool sets a database
alerter on the relation to notify it whenever the relation was changed
[BuC79].

4. Communication Manager
This section describes the CM tool and tool program library which

together define the VS abstraction. The VS software architecture, the proto
col used to implement CM operations (e.g., "show/hide ports and connec
tions," "create/destroy connection," and "add/remove port"), and the general
structure of a tool program are described.

The CM program and tool library are composed of about 3000 lines of
code in C which runs on 4BSD Unix and uses the X window manager
[Get86]. Figure 8 shows the process structure and interprocess communica
tion (IPC) connections for the simple browser shown in figure 1. The CM
and each tool run as a separate process. IPC connections are opened

Figure 8: Process structure and IPC connections.

13

between each tool and the CM and for each connection between tools. Port

names are shown at the ends of the IPC connections in the figure. The IPC
connections are bidirectional, asynchronous message channels implemented
by 4BSD internet domain streams. Consequently, the CM and tool
processes may run on different hosts. The tool windows, however, must be
displayed on the same screen so that connection lines can be drawn.

Tool programs are linked with a library, called UbCM, that executes
commands sent to the process by the CM and that provides the stream
abstraction over which tools communicate. CM operations are initiated by
buttoning a CM command or remotely by invoking a tool command (e.g.,
executing a menu operation to add a port). Regardless of how the operation
is initiated, messages are sent between the tools and the CM to implement
it. For example, suppose the user requested that port PI in tool Tl be con
nected to port P2 in tool T2. To specify this operation, the user executes the
CM Show operation which displays the ports and connection lines. The CM
implements this operation by sending a message to all tools requesting
them to display their port window and then, draws the lines. The CM
knows the location of all tool windows and the number and location of ports

in each tool so that it can calculate where the lines should be drawn.3

After the ports and connections are displayed, the user buttons port PI
in tool Tl to select it as one end of the connection to be established. When

the user selects the port, the libCM code in the tool sends a message to the
CM indicating that the port has been selected. The same thing happens
when the user buttons port P2 in tool T2 to specify it as the other end of the
connection. To keep track of the selected ports, the CM maintains a
"selected ports" list which is updated when it receives one of these mes
sages.

After selecting the ports, the user executes the CM Connect operation to
complete the connection.4 Each tool creates a connection establishment socket
and sends its name to the CM when the IPC connection to the CM is

opened. The CM implements the Connect operation by sending messages to
the two tools. First, the CM sends a message to Tl directing it to execute a
4BSD connect call on T2's connection establishment socket which is included
in the message. Second, the CM sends a message to tool T2 directing it to
execute a 4BSD accept call on its own connection establishment socket. A
connect and accept on the same socket causes the 4BSD kernel(s) to create a
new IPC connection between the two processes. The tools can now

3 It draws them through a transparent X window covering the entire screen.
4 The current implementation only supports connections between two ports. This res

triction could be relaxed to support a form of multicast connections if a multicast communi
cation protocol existed.

14

communicate by calling the libCM routines ReadPort and WritePort which
pass the requests on to the standard 4BSD stream calls (i.e., read and write).

Other CM operations and libCM functions (e.g., adding or deleting a
port) are implemented in a similar fashion. The LibCM code in each tool
maintains data structures describing the tool's ports and the CM maintains
data structures describing the ports, connections, and connection establish
ment socket for each tool. Messages are sent between the tool processes and
the CM process to synchronize the data structures.

The general structure of a tool program will be described by looking at
a tool that copies data from its input port to its output port(s). The tool has
menu operations that allow output ports to be added or removed dynami
cally. Figure 9 shows a skeleton program for this tool. The global data
structures keep track of the input and output ports.

The program itself contains: 1) a main routine {main) that initializes
the tool and dispatches events, 2) a menu routine {MenuOp) that is called
when an AddPort or RemovePort menu operation is invoked by the user,
and 3) a routine {CopyData) that copies data to the output port(s) when data
is received on the input port. Main creates the tool window and menu,
opens the CM connection, initializes the input port {Tee-In) and one output
port {Tee-Out-1), and enters the event dispatch loop. LibCM routines have
names with the prefix CM (e.g., CMOpen and CMAddPort).

The code shown in the figure handles three types of events: menu selec
tions, data available on a port, and port selections. Menu selections and
data available events are handled by the program, while port selections are
passed to libCM to be handled. The routine MenuOp is called when a menu
selection is made. The code for an AddPort menu operation calls the libCM
routine CMAddPort to create the port. The port descriptor returned is saved
in the global data structure. The code for RemovePort (not shown here) is
similar except that it calls the routine CMRemovePort rather than
CMAddPort.

The routine that copies data {CopyData) is called when a data ready
event is received. It just calls the routines CMReadPort and CMWritePort
to read and write the port, respectively.

This section described how the VS abstraction is implemented and illus
trated how a tool is coded in C.

5. Extensions

This section describes several extensions that can be made to the exist
ing system. First, more tools need to be implemented. The relation tool
described above and other browsers are needed to build up the primitives
from which user-interfaces can be constructed. Another useful tool might be
an icon browser such as SDMS [Her801 or TIMBER [StK82]. The icon
browser tool could display the icon representation of the data. Then, when

15

/* TEE - copy input port to all output ports. */

/* Global data structures for ports. */
PORT inport, outportfMAXPORTSl;
int nports = 0;

mainO

{ WINDOW wd;
EVENT ed;

/* Create window and menu. */

wd = CreateWindow(...u/indou; arguments...);
AddToMenuBar("Ports", CreateMenu(...menu items...))',

I* Open CM connection. */
if(CMOpen(wd))

errorOTEE: could not open CM connection.");

/* Open IN port and one OUT port. */
inport = CMAddPort("Tee-In");
outportfnportsl = CMAddPort("Tee-Out-l");
nports = 1;

/* Main loop. */
while(TRUE) {

switch((ed = GetEventQ)) {
case MENUSELECTION: MenuOp(ed); break;
case PORTDATA: CopyDataO; break;
case PORTSELECTION: CMEvent(ed); break;

}
}

}

MenuOp(ed) /* Display menu and execute user selection. */
EVENT ed;

{
switch(DisplayMenu(ed)) {

case ADDPORT:

outportfnportsl = CMAddPort(MakeNamel"Tee-Out-". nports-l-1»;
nports = nports + 1;
break;

}

case REMOVEPORT:

}

CopyDataO /* Copy data from inport to all out ports. */
{ BYTE bufferrBUFSIZl;

int nbytes;

/* Read the IN port 'Tee-In" and write OUT ports "Tee-Out-i." */
nbytes = CMReadPort(inport, buffer, BUFSIZ);
ford = 0; i < = nports; i+ +)

CMWritePortfoutportfil, buffer, nbytes);

Figure 9: Tool program structure.

16

the user selects an icon, the tool could execute an icon-specific tool that
could be connected to other tools. Example icons might be forms, reports,
graphs, or a spreadsheet.

A second extension needed by the current system is a mechanism to
save an interface configuration so that the user does not have to recreate it
each time he wants to use it. A visual specification language is needed that
allows a user to select and configure the tools and to save the definition in a
form that can be executed later. Another useful mechanism that is needed

is a way to close an interface and show it on the desktop as an icon similar
to the way a window can be closed to an icon in a conventional window
manager. This feature could be implemented by designating one or more
tools as "interface configuration tools." These tools could change their win
dow to an icon when they were notified that some tool in the interface
configuration received an iconify operation.

A third extension to the database tools described above would be to

abstract the output destination from the displayers. For example, all of the
current displayer tools (e.g., the table browser, the graph viewer, etc.) have
a fixed output destination. It should be possible to redirect the output of
these tools to a printer, a file, a relation, or another tool.

Finally, the structure of the tools we have created thus far suggests
that there might be a metatool structure. For example, all displayers have a
similar structure. They fetch data, transform it, and display it. It may be
possible to define a "display metatool" that is a parameterized tool which
can be instantiated with different transformation modules.

6. Conclusions

This paper described the design and implementation of a visual shell
that was used to implement a flexible interface to a relational database sys
tem. Our experience with the system has been very good. The user-
interfaces are easy to use and perform acceptably well.

Acknowledgements

We want to thank Deborah Ohlsen for the work she did on an earlier

version of the system and Joe Cortopassi and Peter Schmitz for their sugges
tions on improving the database tool interfaces.

17

References

[Bou78] S. Bourne, "The UNIX Shell", The Bell System Technical Journal
57, 6 (July 1978).

[BuC79] O. P. Buneman and E. K. Clemons, "Efficiently Monitoring
Relational Databases", ACM Trans. Database Systems , Sep.
1979, 368-382.

[Cat84] R. G. G. Cattell, A Paradigm for Database Editing, Browsing,
and Query, Unpublished manuscript, Xerox PARC, 1984.

[FrE86] C. Frasson and M. Er-radi, "Principles of an Icons-Based
Command Language", Proc. 1986 ACM SIGMOD Conf. on Mgt. of
Data, Washington, DC, May 1986.

[Get86] J. Gettys, "Problems Implementing Window Systems in UNIX",
Proc. Winter USENIX Technical Conf., Jan. 1986, 89-97.

[Goe85] K. J. Goldman and et. al., "ISIS: Interface for a Semantic
Information System", Proc. 1985 ACM SIGMOD Conf. on Mgt. of
Data, May 1985.

[Hae86] P. E. Haeberli, "A Data-Flow Manager for an Interactive
Programming Environment", Proc. 1986 Summer USENIX Tech.
Conf., June 1986.

[Her80] C. Herot, "SDMS: A Spatial Data Base System", ACM Trans, on
Database Systems, Dec. 1980.

[IBM83] Query Management Facility: General Information., IBM Form No.
GC26-4071, Armonk, NY, June 1983.

[LJF83] S. Leffler, W. Joy and R. Fabry, A 4.2BSD Interprocess
Communication Primer, Computer Science Division - EECS, U.C.
Berkeley, July 1983.

[McS751 N. McDonald and M. R. Stonebraker, "CUPID - The Friendly
Query Language", Proc. of the ACM Pacific Conf, San Francisco,
CA, Apr. 1975.

[MET8?1 Some reference manual, Metaphor Computers, Inc., Meno Park,
CA, 198?.

[Shu831 J. Shultis, "A Functional Shell", SIGPLAN Notices Notices 18, 6
(June 1983), 202-211.

[StK821 M. Stonebraker and J. Kalash, "TIMBER: A Sophisticated
Relation Browser", Proc. 8th Very Large Data Base Conference,
Sep. 1982.

[StR841 M. R. Stonebraker and L. A. Rowe, "Database Portals: A New
Application Program Interface ", Proc. 10th Int. Conf. on Very
Large Data Bases, Aug. 1984.

18

[StR86] M. R. Stonebraker and L. A. Rowe, "The Design of POSTGRES",
Proc. 1986 ACM-SIGMOD Int. Conf. on the Mgt. of Data, June
1986.

[The83] C. W. Thompson and et. al., "Building Usable Menu-Based
Natural Language Interfaces to Databases", Proc. of the 9th Int.
Conf. on Very Large Databases, Florence, Italy, Oct. 1983, 43-55.

[RTI84] INGRES QBF (Query By Forms) User's Guide, Version 3.0,
VAX/VMS, Relational Technology, Inc., Berkeley, CA, May
1984.

[Zlo751 M. M. Zloof, "Query by Example", Proc. NCC 44 (1975).

19

	Copyright notice1987
	ERL-87-2

