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Abstract

Results of a previous comparison study [KUMA87] between a conventional transaction
manager and an operating system (OS) transaction manager have indicated that the OS
transaction manager incurs a severe performance penalty and appears to be feasible only
in special circumstances. The present study considers two approaches for enhancing the
OS transaction manager performance. The first strategy is to enhance OS performance by
reducing the cost of lock acquisition and by compressing the log. The second strategy
explores the possibility of still further improvements by using additional semantics. The
results of this study show that the OS will have to implement essentially all of the special
ized tactics for transaction management that are currently used by a database manage
ment system (DBMS) in order to match DBMS performance.

1. INTRODUCTION

In recent years there has been considerable debate concerning moving transaction
management services into the operating system. This would allow concurrency control
and crash recovery services to be available to any client of a computing service and not
just to clients of a data manager. Moreover, such services could be written once, rather
than individually implemented within several subsystems. Early proposals for operating
system-based transaction managers are discussed in [MITC82, SPEC83, BROW81]. More
recently, additional proposals have surfaced, e.g: [CHAN86, MUEL83, PU86].

On the other hand, there is some skepticism concerning the viability of an OS tran
saction manager for use in a database management system. Problems associated with
such an approach have been described in [TRAI82, STON81, STON84, STON85] and
revolve around the expected performance of an OS transaction manager. In particular,
most commercial data managers implement concurrency control using two-phase locking
[GRAY78]. A data manager has substantial semantic knowledge concerning its processing
environment; hence, it can distinguish index records from data records and implement a
two-phase locking protocol only on the latter objects. Special protocols for locking index
records are used which do not require holding index locks until the end of a transaction.
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On the other hand, an OS transaction manager cannot implement such special tactics
unless it can be given considerable semantic information.

Crash recovery is usually implemented by writing before and after images of all
modified data objects to a log file. To ensure correct operation, such log records must be
written to disk before the corresponding data records, and the name write ahead log
(WAL) has been used to describe this protocol [GRAY81, REUT84]. Crash recovery also
benefits from a specialized semantic environment. For instance, data managers again dis
tinguish between data and index objects and apply the WAL protocol only to data
objects. Changes to indexes are usually not logged at all since they can be reconstructed
at recovery time by the data manager using only the information in the log record for the
corresponding data object and information on the existence of indexes found in the system
catalogs. An OS transaction manager will not have this sort of knowledge and must rely
on implementing a WAL protocol for all physical objects.

As a result, a data manager can optimize both concurrency control and crash
recovery using specialized knowledge of the DBMS environment. In a previous study
[KUMA87], we have quantified the effect of these factors on the performance of the OS
transaction manager and have shown that the OS transaction manager performs substan
tially worse than the DBMS in most situations. This paper examines various approaches to
overcoming this drawback and enhancing OS transaction manager performance. First, we
consider the possibility of performance improvement by setting locks more cheaply and
from compressing the log. These could be easily provided by some sort of hardware assist,
and we will term these tactics as hardware assistance. Next, we simulate the effect of
providing semantic assistance in the OS transaction manager, similar to the semantic
features used by a DBMS transaction manager. Since the complexity of the OS will
increase with increasing degrees of semantics, we consider introducing semantics in stages
and determine how the performance of an OS transaction manager improves at each
higher semantic level.

In section 2 we highlight the salient features of an OS transaction manager and com
pare it with one implemented within a DBMS. The basic simulation model, borrowed from
the companion study [KUMA87], is summarized in section 3. Section 4 describes two per
formance improvements using hardware assistance and gives the results of simulation
experiments to quantify their effect. Section 5 gives a framework for introducing alterna
tive levels of semantics into an OS transaction manager and presents the results of addi
tional experiments which show how the gap between the OS and the DBMS performance
narrows as the OS becomes "smarter".

2. TRANSACTION MANAGEMENT APPROACHES

In this section, we briefly review schemes for implementing concurrency control and
crash recovery within a conventional data manager and an operating system transaction
manager and highlight the main differences between the two alternatives.

2.1o DBMS Transaction Management

Conventional data managers implement concurrency control using one of the follow
ing algorithms: dynamic (or two-phase) locking [GRAY78], time stamp techniques
[REED78, THOM79], and optimistic methods [KUNG81].



Several studies have evaluated the relative performance of these algorithms. This
work is reported in [GALL82, AGRA85b, LIN83, CARE84, FRAN83, TAY84]. In
[AGRA85a] it was pointed out that the conclusions of previous studies were contradictory
and the differences were explained as resulting from differing assumptions that were made
about the availability of resources. It was shown that dynamic locking works best in a
situation of limited resources, while optimistic methods perform better in an infinite-
resource environment. Dynamic locking has been chosen as the concurrency control
mechanism in our study because a limited-resource situation seems more realistic. The
simulator we used assumes that page level locks are set on 2048 byte pages on behalf of
transactions and are held until the transaction commits. Moreover, locks on indexes are
held at the page level and are released when the transaction is finished with the
corresponding page.

Crash recovery mechanisms that have been implemented in data managers include
write-ahead logging (WAL) and shadow page techniques. These techniques have been dis
cussed in [HAER83, REUT84]. From their experience with implementing crash recovery in
System R, the designers concluded that a WAL approach would have worked better than
the shadow page scheme they used [GRAY81]. In another recent comparison study of
various integrated concurrency control and crash recovery techniques [AGRA85b], it has
been shown that two-phase locking and write-ahead logging methods work better than
several other schemes which were considered. In view of these results a WAL technique
was simulated in our study. We assume that the before and after images of each changed
record are written to a log. Changes to index records are not logged, but are assumed to
be reconstructed by recovery code.

2.2. OS Transaction Management

We assume an OS transaction manager, which provides transparent support for
transactions. Hence, a user specifies the beginning and end of a transaction, and all
objects which he reads or writes in between must be locked in the appropriate mode and
the locks must be held until the end of the transaction. Clearly, if page level locking is
selected, then performance disasters will result on index and system catalog pages. Hence,
we assume that locking is done at the subpage level, and assume that each page isdivided
into 100 byte subpages which are individually locked. Consequently, when a DBMS record
is accessed, the appropriate subpages must be identified and locked in the correct mode.

This particular granule size was chosen because it is close to the one proposed in an
OS transaction manager for the 801 [CHAN86]. The suitability of this granule size was
further confirmed by an experiment comparing the performance of the OS transaction
simulator at several different granularities. This experiment will be discussed in section 3.

Furthermore, the OS must maintain a log ofevery object written by a transaction so
that in the event of a crash or a transaction abort, its effect on the database may be
undone or redone. We assume that the before and after images of each 100 byte subpage
are placed in a log by the OS transaction manager. These entries will have to be moved
to disk before the corresponding dirty pages to obey the WAL protocol.

2.3. Main Differences

The main differences between the two approaches are:

the DBMS transaction manager will acquire fewer locks

3



the DBMS transaction manager will hold some locks for shorter times
the DBMS will have a much smaller log

The data manager locks 2048 byte pages while the OS manager locks 100 byte subpages;
hence, the DBMS transaction manager will acquire far fewer locks and spend less CPU
resources in lock acquisition. Moreover, the DBMS sets only short-term locks on index
pages while the OS manager holds index level locks until the end of a transaction. The
larger granule size in the DBMS solution will inhibit parallelism; however the shorter lock
duration in the indexes will have the opposite effect.

Moreover, the log is smaller for the DBMS transaction manager because it only logs
changes made to the data records. Corresponding updates made to indexes are not logged
because each index entry can be reconstructed at recovery time from a knowledge of the
data updates. For example, when a new record is inserted, the data manager does not
enter the changes made to any index into the log. It merely writes an image of the new
record into the log along with a header, assumed to be 20 bytes long, indicating the name
of the operation performed. On the other hand, the OS transaction manager will log each
index insertion. In this case half of one index page must be rearranged for each index that
exists, and the before and after images of about 10 subpages must be logged.

These differences are captured in the simulation models for the data manager and
the OS transaction managers described in the next section.

3. SIMULATION MODEL

A 100 Mb database consisting of 1 million 100-byte records was simulated. Since
sequential access to such a database will clearly be very slow, it was assumed that all
access to the database takes place via secondary indexes maintained on up to 5 fields.
Each secondary index was a 3-level B-tree. To simplify the models it was assumed that
only the leaf level pages in the index will be updated. Consequently, the higher level pages
are not write-locked. The effect of this assumption is that the cost associated with split
ting of nodes at higher levels of the B-tree index is neglected. Since node-splitting occurs
only occasionally, this will not change the results significantly.

The simulation is based on a closed queuing model of a single-site database system.
The number of transactions in such a system at any time is kept fixed and is equal to the
multiprogramming level, MPL, which is a parameter of the study. Each transaction con
sists of several read, rewrite, insert and delete actions; the exact number is generated
according to a stochastic model described below. Modules within the simulator handle lock
acquisition and release, buffer management, disk I/O management, CPU processing, writ
ing of log information, and commit processing. CPU and disk costs involved in traversing
the index and locating and manipulating the desired record are also simulated.

In order to simulate an interactive transaction mix, two types of transactions were
generated with equal probability. The number of actions in a short transaction was uni
formly distributed between 10 and 20. Long transactions were defined as a series of two
short transactions separated by a think time which varied uniformly between 10 and 20
seconds. A certain fraction, frael, of the actions were updates and the rest were reads.
Another fraction, frac2, of the updates were inserts or deletes. These two fractions were
drawn from uniform distributions with mean values equal to modifyl and modifyft,
respectively, which were parameters of the experiments.



Every action identifies a single record through one secondary index and then reads,
rewrites, deletes, or inserts it. Rewrite actions are distinguished from inserts and deletes
because the cost of processing them is different. It is assumed that a rewrite action affects
only one key. However, an insert or a delete action would cause all indexes to be updated.
The index and data pages to be accessed by each action are generated at random. Assum
ing 100 entries per page in a perfectly balanced 3-level B-tree index, it follows that the
second-level index page is chosen at random from 100 pages, while the third-level index
page is chosen randomly from 10,000 pages. The data page is chosen at random from
71,000 pages. (Since the data record size is 100 bytes and the fill-factor of each data page
is assumed to be 70%, there are71,000 data pages.)

For each action, a collection of pages must be accessed. For each page the first step
is to acquire appropriate locks on the page or subpages. If a lock request is not granted
because another transaction holds a conflicting lock, the requesting transaction must wait
until the conflicting transaction releases its lock. Deadlock detection is implemented
through a timeout mechanism. Next a check is made to determine whether the requested
page is in the buffer pool. If not, a disk I/O is initiated and the job is made "not ready".
When the requested page becomes available, the CPU cost for processing the page is simu
lated. This cycle of lock acquisition, disk I/O (if necessary), and processing is repeated
until all pages in a given action have been processed. The amount of log information that
will be written to disk is computed for the action and the time taken for this task is
accounted for. When all actions for a transaction have been performed, a commit record is
written into the log in memory and I/O for this log page is initiated. As soon as this com
mit record is moved to disk the current transaction is complete and a new one is started.
Checkpoints [HAER83] are simulated every 5 minutes.

Table 1 lists the major parameters of the simulation and their default values. The
parameters that were varied are listed in Table 2. Here the default value of each parame
ter is indicated as well as the range of variation simulated. For example, the number of
disks available, minidisks, was varied between 2 and 10 with a default value of 2. The
CPU cost of each action was defined in terms of the number of CPU instructions it would
consume. For example, cpu_lock, the cost of executing a lock-unlock pair, was initially set
at 2000 instructions and reduced in intervals down to 200 instructions.

The main criterion for performance evaluation was the overall average transaction
throughput rate, throughput defined as:

Total number of transactions completed

Total time taken

Another criterion, performance gap, was used to express the relative difference between
the performance of the two alternatives. Performance gap is defined as:

The maximum time allocated to a transaction is a function of its number of actions and the
maximum time for an action denoted by the variable max.actionjen. The best value for
max.actionjen is determined adaptively by varying it over a range of values and choosing the
one which maximizes transaction throughput.



Parameter Name Description Default Value

buf„size size of buffer in pages 500

cpu ins^del CPU cost of insert or delete action 18000 instructions

cpu.lock cost of acquiring lock 2000 instructions

cpu./O CPU cost of disk I/O 3000 instructions

cpu.mips processing power of CPU in MIPS 2.0

cpu^present CPU overhead of presentation services 10000 instructions

cpu_read CPU cost of read action 7000 instructions

cpu_write CPU cost of rewrite action 12000 instructions

diskJO time for one disk I/O in mili sec 30

fill—factor percentage of bytes occupied on a page 70

modify! average fraction of update actions in a transaction 25

modify2 number of inserts, deletes as a fraction of all updates 50

MPL Multiprogramming Level 15

numdisks number of disks 2

numindex number of indexes 5

page_size size of a page 2048 bytes
sub_page_size size of a subpage in bytes 100

Table 1: Major parameters of the simulation

Parameter Range Default Value

buf_size 250, ,1000 pages 500

cpu^lock 200, 2000 instructions 2000

modify 1 5,....,50 25

MPL 5, ,20 15

numdisks 2, ,10 2

numindex 1,2, ,5 5

Table 2: Range of variation of the parameters

(throughputDBMS —throughput^) X 100

throughput^

where

throughput^: throughput for the OS transaction simulator
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throughputDBMS: throughput for the DBMS transaction simulator

In order to determine the best locking granularity for the OS transaction manager,
its throughput was determined for 4 different granule sizes with the other parameters
fixed at their default values given in Table 1. The granule size was set at 1 record (100
bytes), 2 records (200 bytes), half-page (1024 bytes) and full-page (2048 bytes). The
corresponding throughput rates are shown in Table 3, and it is evident that the OS tran
saction manager performs best with a granule size of 100 bytes. Notice that a granule is
the basic unit for both locking and logging. When the granule size is increased, the cost of
locking declines because fewer locks are acquired while the cost of writing the log increases
since the before and after images become larger. This experiment shows that the net effect
of having a coarser granularity is an increase in transaction processing cost. Hence, the
best granule size (100 bytes) was used in all experiments.

In the DBMS transaction manager performance is not very sensitive to granule size.
Moving to record level locking would allow the DBMS to lock smaller data objects; how
ever, index locking would be unaffected. Hence, some improvement would be expected.
We chose page level locking because it is popular in current commercial systems (e.g. DB2
[DATE84]). Repeating the experiments for record level granularity is left as a future exer
cise.

4. HARDWARE ASSISTANCE

4.1. Introduction

In an earlier study [KUMA87], we have compared the OS transaction manager
against a DBMS system in a variety of situations. For instance we varied the multipro
gramming level, transaction mix, conflict level, number of disks, buffer size, and the
number of indexes. In the first of these experiments, the multiprogramming level was
varied between 5 and 20 while the number of disks, numdisks was set at 2 and the cost of
executing a lock-unlock pair, epu_lock was 2000 instructions. All other parameters were
set at their, default values of Table 1. The throughput rates for various multiprogramming
levels are given in Figure 1.

This figure shows that the throughput rises sharply when the multiprogramming
level increases from 5 to 8 due to increases in disk and CPU resource utilization. The

Granule Size (bytes)

100 200 1024 2048

Throughput 0.50 0.49 0.45 0.34

Table 3: Throughput of the OS transaction manager
for various locking granularities



improvement in throughput, however, tapers off as MPL increases beyond 15 because the
utilization of the I/O system saturates. The figure also shows that the data manager con
sistently outperforms the OS alternative by more than 20%. When MPL is between 15
and 20, the performance gap is 27%. This gap results from increased contention for the
indexes and the extra cost of writing more information into the log. The OS transaction
manager writes a log which is approximately 30 times larger than that of the data
manager. The results of the other experiments were similar and the details are in
[KUMA87]. It was found that the DBMS consistently outperformed the OS transaction
manager with the performance gap approximately 30%.

In an effort to reduce this gap we simulated the effect of two hardware-oriented pos
sibilities: log compression and cheaper locking. These two factors were chosen
because the previous study showed that they contributed significantly to the inferior per
formance of the OS transaction manager. Compressing the log would reduce the amount
of data that must be written out to disk at transaction commit time; thus decreasing the
I/O activity and raising throughput. The extent of improvement would depend upon the
compression ratio, compntio. Consequently, in section 4.2 we describe experiments to
measure throughput at various values of compmUb. Section 4.3 turns to a study of the
effect of a lower locking cost on the performance of the OS transaction manager.

4.2. Log Compression

As stated above, the OS transaction manager writes a much larger log than the
DBMS and therefore suffers a performance setback. The rationale for log compression is
that, typically, before and after images have bytes that are identical. Therefore, the after
image can be differentially encoded against the before image and the identical bytes stored
just once. The degree of compression depends, among other factors, on the efficiency of
the data compression algorithm. A standard algorithm would simply suppress identical
bytes in the before and after images. However, a smarter algorithm would also be able to
detect situations where an after image is derived by inserting or deleting a field into a
before image. This is a common occurrence in the case of insertions and deletions into an
index. Such encoding will be beneficial to an OS transaction manager which has a very
large log. Although a DBMS can also apply log compression, it would have much less
impact because of the smaller log size. Consequently, we varied the compression factor,
compnHo by which the OS transaction manager compresses its log leaving the DBMS log at
its full size.

The compression factor, compMlio was increased in intervals from 0 to 0.8 in order to
study how it affects the performance of the OS transaction manager relative to the DBMS.
A compfaUo of 0 corresponds to no compression while a compmt{o of 0.8 means that the log
can be reduced to 20% of its original size by compression techniques. Experiments were
then conducted to measure the throughput rate of the OS transaction manager compared
to that of the DBMS system for various values of compnifo over this range. The multipro
gramming level was set at 20, while all other parameters were set to their default values
given in Table 1.

The results of these experiments are shown in Figure 2. The throughput of the OS
transaction manager rises steadily as compnUo increases. On the other hand, the
throughput of the data manager stays constant because there is no change in its log size.
The performance gap which is 27% when compmiio is 0 decreases to 10% when compnUo is
0.8. These experiments show that compressing the log assists the OS transaction manager
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Figure 1: Throughput as a function of multiprogramming level

dramatically.

4.3. Cheaper Locking

The OS transaction manager consumes greater CPU resources than the data
manager in setting locks because it has to acquire more locks. In this section we varied the
cost of lock acquisition in order to examine its impact on the performance gap. Basically,
the cost of executing a lock-unlock pair, originally 2000 CPU instructions, was reduced in



O - OS Transaction Manager

1.0 -i

0.8

0.3-

0.0

+ Data Manager
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Compression Factor (comp ..)
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Figure 2: Throughput as a function of compression factor

intervals to 200 instructions. The purpose of this experiment was to evaluate what benefits
were possible if cpu_lock could be lowered, say by hardware assistance.

It is obvious that a lower cost of locking would improve system throughput only if
the system were CPU-bound. This was done by increasing the number of disks to 8, and
the multiprogramming level was kept at 20. Figure 3 shows the throughput of the two
alternatives for various values of epujock. The performance of the OS transaction
manager improves as cpujock is reduced while the data manager performance changes
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dost of Locking (#of Instructions) 2000

Figure 3: Effect of cost of locking on throughput

very marginally. Consequently, the performance gap declines from 54% to 30%
cpujock falls from 2000 instructions to 200 instructions. In the case of the data manager,
the cost of acquiring locks is a very small fraction of the total CPU cost of processing a
transaction; hence, a lower cpujock does not make it significantly faster. On the other
hand, since the OS transaction manager acquires approximately five times as many locks
as the data manager this cost is a significant component of the total CPU cost of process
ing a transaction and reducing it has an appreciable impact on its performance.
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These experiments show that a lower cpujock would improve the relative perfor
mance of the OS transaction manager in a CPU-bound situation. However, inspite of this
improvement, the data manager is still 30% faster.

4.4. Analysis

The above experiments demonstrate that noticeable improvements in the OS perfor
mance are possible from cheaper locking and log compression. An interesting observation
is that both factors affect the data manager performance only slightly. Moreover, log
compression decreases the burden on the I/O resources and is, therefore most effective in
an I/O-bound environment while cheaper locking speeds up a CPU-bound system by
reducing the CPU cost. This means that the benefits from the two performance improve
ments are greatest in different environments. Lastly, it should be pointed out that a pro
cessing cost should be associated with implementing a data compression algorithm.
Because this cost has been neglected the results of experiments in section 4.2 are optimis
tic. In the next section we couple the advantages from these improvements with increased
semantic knowledge by the OS in order to further improve OS performance.

5. ADDING SEMANTICS TO THE OS

5.1. Introduction

The experiments reported above show that inspite of the simulated tune-up, a perfor
mance gap remains between the OS transaction manager and the DBMS. Clearly, if
enough semantic knowledge could be built into the OS transaction manager this gap
would disappear. Additional semantics may be provided to varying degrees and we would
obviously expect to see the performance gap shrink as the semantics became more com
plex. In this section we examine semantic alternatives for further improving the OS per
formance. Consequently, a framework for introducing semantics into the OS in stages was
first developed. Experiments were then conducted to evaluate the improvements that are
attainable at each higher step on this semantic ladder. The framework is discussed in sec
tion 5.2 and the experiments are described in section 5.3.

Level Description

locking and logging on 100 byte physical subpages
short-term index locking
short-term index locking + 40% log compression
short-term index locking + no index logging

Table 4: Alternative semantic levels for the OS transaction manager
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5.2. Semantic Framework

Table 4 shows alternative schemes for providing semantic capabilities within the OS.
Each proposal in this table is linked to a semantic level and the complexity of the seman
tics increases at higher levels. The OS transaction manager discussed in previous sections
is placed at level 0 on this semantic scale. At level 1 an OS transaction manager would
possess the additional capability to distinguish data from index pages, and perform short-
term locking on index pages, thereby increasing the degree of parallelism. The perfor
mance of the OS alternative may be further improved by using data compression tech
niques to reduce the size of the log. Therefore, the semantics at level 2 is characterized by
a combination of short-term index locking and data compression on the log. An estimated
40% compression factor has been used in our experiments. A further step beyond level 2 is
to eliminate the need for index logging altogether in the OS solution. This would require
the notion of "events" [STON85] in the OS transaction manager and is represented by
level 3, the highest semantic level on our scale.

5.3. Experiments

The level 0 OS transaction manager of the previous section was suitably modified to
simulate each of the other three levels. Then, using the above framework, experiments
were conducted to study the performance gap between the DBMS and an OS transaction
manager operating at the 4 different levels. The multiprogramming level was set at 20 in
all the experiments and all other parameters were set to their default values of Table 1.
Figure 4 is a plot of performance gap as a function of the semantic level for both I/O-
bound (with 2 disks) and CPU-bound (with 8 disks) systems when the value of cpujock is
2000 instructions. Figure 5 is a similar plot with cpujock set at 200 instructions.

Figures 4 and 5 show that the performance gap drops at each higher semantic level
in both environments and for both values of cpujock. However, this drop is sharper at
levels 2 and 3. In the case when cpujock is 2000 instructions and the system is I/O-bound,
the performance gap of the level 3 OS transaction manager is down to 7% (from 27% for
the level 0 OS transaction manager). The corresponding value for a CPU-bound system is
35% (down from 55% for the level 0 OS transaction manager). This means that the per
formance improvement from writing a smaller log is greater in the I/O-bound system than
in the cpu-bound one. On the other hand, when cpujock is reduced to 200 instructions,
the performance gap of the level 3 OS transaction manager is down to 7% in both the
cpu-bound and I/O-bound environments. Thus lowering cpujock results in a large
improvement in the performance of a cpu-bound system but has no effect on an I/O-
bound system.

These experiments illustrate that a combination of additional semantics and lower
locking cost are necessary to make the OS proposal viable in both I/O-bound and cpu-
bound systems. However, in the absence of a lower locking cost, it appears to be viable
only in an I/O-bound environment.

6. CONCLUSION

A previous study has shown that the performance of an operating system transaction
manager is substantially worse than its DBMS counterpart, typically by 30%. The objec
tive of this study was to investigate the effect of performance tune-ups and semantics-
based approaches to reduce this gap. Consequently, several new experiments were devised
and their results were reported in sections 4 and 5. The experiments of section 5 show
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Figure 5: Performance gap at different semantic levels (cpujock = 200)

that a combination of level 3 semantics and cheap locking are necessary to offset the OS
disadvantages and bring its throughput close to that of the DBMS. The major conclusion
of this study therefore, is that an operating system based transaction manager will have to
implement most of the specialized features of a DBMS transaction manager in order to
perform at par with the DBMS system.

Finally, it should be clearly noted that some assumptions of our model lead to esti
mates of performance gap which are too small. First, as stated earlier, the contention in
the root and the second level index pages of the B-tree was ignored. This assumption
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tends to favor the OS alternative because in the absence of short-term locks, conflict in
the higher level index pages would tend to slow it down further. Second, the read and
write-sets of each transaction were drawn from a uniform distribution. This means that
the likelihood of conflict was constant over the entire database. A different distribution
would divide the database into certain areas of high conflict and others of low conflict.
Since, as shown in [KUMA87], the relative performance of the OS deteriorates in a higher
conflict situation, a non-uniform assumption would tend to widen the performance gap.
Furthermore, the CPU cost of compressing the log was ignored in section 4.2. Lastly, the
assumption that the log can be easily compressed is an optimistic one. Hence, all of these
assumptions tend to bias the results in favor of the OS alternative, and one would expect
peformance gaps in real systems higher than the ones reported here.
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