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ABSTRACT

The Linear Programming Problem is manipulated to be stated as a Non-Linear
Programming Problem in which Karmarkar's logarithmic potential function is minim
ized in the positive cone generated by the original feasible set The resulting problem
is then solved by a master algorithm that iteratively rescales the problem and calls an
internal unconstrained non-linear programming algorithm. Several different procedures
for the internal algorithm are proposed, giving priority either to the reduction of the
potential function or of the actual cost We show that Karmarkar's algorithm is
equivalent to this method in the special case in which the internal algorithm is reduced
to a single steepest descent iteration. All variants of the new algorithm have the same
complexity as Karmarkar's method, but the amount of computation is reduced by the
fact that only one projection matrix must be calculated for each call of the internal
algorithm.
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1. Introduction

The Linear Programming Algorithm createdby Karmarkar [9] is based on the use of typical non
linear programming techniques, evolving by a sequence of line searches along internal feasible descent
directions for his logarithmic potential function. It has been noticed [13],[3] that the method resembles
barrier function methods and methods of centers, but the precise role of non-linear programming pro
cedures in his approach has not yet been clearly stated. The nature of the projective transformation used
in Karmarkar's algorithm is vaguely understood, as well as the role played by the unit simplex on
which the action takes place.

In this paper we intend to provide answers to these questions, and show that the unit simplex is
not needed at aU. By isolating the utilization of non-linear programming procedures the path to improve
the algorithm performance is opened, resulting in greater reductions of the objective function between
computations of the projection matrix.

We shall present an algorithm with two levels of hierarchy, composed of a "master" algorithm
that manipulates the Linear Programming Problem and calls an "internal" non-linear programming algo
rithm that provides a strategy for improving the current solution. The master algorithm re-scales the
LinearProgramming Problem by meansof a linear transformation that places the current solution at the
point e = [1,1 1]'. An "internal problem" is then defined, consisting of a non-linear potential
function to be minimized in a linear space with positivity constraints, and any non-linear programming
algorithm can be used to reduce the value of its objective function. An approach similar to this was
independently developed by Ye [14], allowing for multiple feasible descent iterations in a more struc
tured internal problem.

In section 2 we state the linear programming problem and show how to manipulate it into a for
mat that allows the application of projective techniques. The manipulation results in a problem that is
equivalent to the original one in the strong sense of having the same feasible set, same dimension and
cost Section 3 describes the complete algorithm, section 4 shows how to generate lower bounds to the
value of an optimal solution, and section 5 describes different options to the choice of descent direc
tions for the internal algorithm. This choice can have two preferred goals: reducing the potential func
tion or reducing the cost We study both possibilities of priorizing one goal over the other, by generat
ing steepest descent directions for the potential function subject to non positive variations of the cost,
and steepest descent directions for the cost subject to a minimum descent for the potential. The first
possibility was already studied by Anstreicher [2], with similar results.

Section 6 will discuss the convergence of the algorithms based on the first line-search performed
by the internal algorithm in each iteration, with the following results: polynomial convergence is
achieved if the feasible set is compact reproducing Karmarkar's [9] result The same polynomial bound
is achieved by the other descent directions under a weaker condition, requiring compactness only for
the optimal set
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2. The Linear Programming Problem

The algorithms described in this paper will deal with linear programming problems in the follow
ing special format:

minimize c'x

subject to Ax = 0 (P)
a'x=l

x£0

where n>m>0,cjczRH, a zRm tA is an mxn matrix.

The following hypotheses must be satisfied:

An initial non optimal feasible solution x° >0 is known as well as a lower bound v° for the value
v of an optimal solution.

We shall define the following sets:

5= {x zR* I Ax = 0,<rx = l, x £0}

c={x£rux = o,^>o,^o) (i)

Z>= [xzR* IAjt=0,x>0}

These three sets are respectively die feasible set for (P), the positive cone generated by it and
the subspace generated by S and the origin intercepted with the positive orthant Conical projection
methods will work in C . Since D is simpler than C , the following lemma will be useful in the
future:

2.1 Lemma: If a £ 0 or S is compact then DcC .

Proof: If a £ 0 , then for any x > 0 , ctx > 0 , since a * 0 . This proves the first assertion.
By contradiction, assume that x >0 is such that Ax =0 and dx = 0 . Since D is convex and

x° zD , then for any integer i >0 the point xl =4-x0+-*~x zD ,and oV' =-^r-=4- .
Consequently, i xl z S , since o'i xl = 1, A xl = 0 .
This contradicts the compactness assumption, sincethe sequence (lit x1 II) is unbounded.

Problem manipulations

We now show that the formulation (P) is quite general, and completely equivalent to the usual
format for the linear programming problem:

minimize c'x

subject to Ax = b (P0)
x£0

Several methods have been proposed for the reduction of (P0) to (P), usually based on the addi
tion of a compactifying constraint e'x £ M , where e = [ 1 1 • • • 1 ]', and M is a large number.
We now show how the reduction can be made without changing neither the objective function nor the
feasible set

22 First manipulation: constraint reduction:

Let a/ , i = 0,1 • • • m be the rows of A , and assume (exchanging indices if necessary) that

6<j*0 . Define a := -r- • C cannow be described by



Oi'x=bi i = l,2,--.m

«'x = l

x £0

The constraints can be rewritten as a/x = dx bi , or finally,

( Oi -bia )'x = 0 i - 1,2, • • • jn

a'x = l

x £0

The manipulation is completed by defining A with rows ( a,- -bta )'. The following facts are evi
dent

i) The Null space of A is the subspace generated by C and the origin, and does not depend on the
choice of a0 among the rows with non-zero right-hand side.

ii) The dimension of Null (A) is one unit higher then the dimension of Null (A) .

iii) The cone S generated by C defined in (1) does not depend on the choice of a0 .

iv) Although the vector a obviously depends on the choice of a0 , its projection ap onto Null (A)
is the unique (up to a constant) direction in Null (A) that is orthogonal to C . Consequently ap does
not depend on the choice of a0

We conclude from these observations that there exists a set of equivalent manipulations (one for
each choice of ao) that producea unique totally equivalent problem with the desired format We stress
the fact that the projected vector ap is determined by the geometry of the problem and therefore
unique.

2.3 Second manipulation: space augmentation:

A second manipulation into the format (P0) was proposed in [61, and also in [11], [2], obtained
simply by introducing a new variable x„ into a problem originally defined in RH"1 . The new variable
is constrainedby x„ = 1, and it is enough to set A := [ A -b ].

This reduction does change the original problem, but produces a new problem that is equivalent
in the usual sense that optimal solutions to each of the problems are related by an isomorphism. We do
not see any advantage in this reduction process, besides minorsimplification in some proofs brought by
the fact that now a £ 0 , and the property in lemma 2.1 is always trivially satisfied.

The Potential Function

We shall denote the value of an optimal solution by v and we shall make use of Karmarkar's
logarithmic Potential Function /(.) defined for all x>0 by

f(x) =nlogfc'x -v)- tlogxy (2)

The logarithmic form is used for convenience, since it leads to simpler expressions. Its multiplica
tive formulation

hM=<£±ZlL (3)

gives identical search directions in all algorithms, and can be used instead of / (.) . The function can
not be evaluated, since v is unknown. The algorithm uses instead lower bounds for v , calculated at
each iteration. Given the lower bound u , the problem can be restated with the objective function
c'x-u , and with a potential function defined for all x £0 :
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fu(x) = n log(c'x -u) - ^logXj

The objective function c'x-u can be put in the standard format by using the following lemma:

2.4Lemma: For all xzC , c'x-u=(c-ua)'x .

Proof: Immediate, by noticing that for all x zC , ua'x = u ,since a'x = 1.

3. The algorithm

In this section we present the complete algorithm, structured in two levels: the master algorithm
and the internal algorithm.

The master algorithm

The algorithm will generate a sequence of points (x*) and an increasing sequence of lower
bounds (v*) for v , in such a wayas to guarantee a substantial decrease in /(.) in each iteration.

Each iteration of the master algorithm will perform the following operations:
- Scaling: a linear transformation brings the current solution x* to the point e =(l,l,..l).
- Projection: calculate the projection matrix onto the new linear space. This time-consuming operation
is done only once for each iteration of the master algorithm.
- Calculation of a new lower bound to v .

- Definition of the internal problem, computation of a solution with a low value and then back to the
original problem.

The internal algorithm makes use of the number a, to be defined in (6.1.4), and in this section
we shall assume that the potential function defined in the internal problem can be reduced by a in
each iteration. The proof of this fact will be the object of sections 5 and 6 .



3.1 Algorithm: Given a precision e>0 , a lower bound v°£v and x°eC , x°>0 .
Set *:=0.

While c'x*-v*>e do

Define D ^diag{x\,x\ x*).
(scaling) Define A* :=AD , ak v=Da , ck ?=Dc .
(projection) Calculate the projection matrix P onto Null{Ak).
Set cp :=Pc* , Op :=Pak .
(internal algorithm)

Calculate a lower bound u such that v*£u£v .

Set ri-cp-uap .
Define the Internal Problem

minimize g(y):=n logc'y -£logyy- (Pi)
y=l

subject to Aky =0

y £0

a*'y >0

Use a non-linear programming algorithm to find a feasible point y* for (Pi) such that
*(y*)<S(e)-a.

(conical projection) calculate

_1
ak'y*

(back to the original space) Set

xk+l^Dy

v*+1?=u

k^k + 1

The internal problem

To each internal problem (Pi) we shall associate the sets Sk , C* , Dk , defined as in (1),
corresponding to the feasible set the cone and subspace generated by it and the origin.

The internal problem (Pi) is not well defined, since for y near the origin, g(y) can assume
any value. We shall nevertheless keep this formulation with the understanding that the desired result is
a truncated sequence of pointswith decreasing values of the objective function.

The feasible set for (Pi) is the cone C* . This set has the complicating constraint dx > 0 , but
it will be irrelevant whenever we can guarantee that D*c Ck , like in the compact case or as a result
of the second manipulation (see lemma 2.1). In this section we shall assume that at least in the first
iteration of the internal algorithm, the search directions will not cross the null space of a' in the first
orthant We stress the fact that this is guaranteed in the two cases mentioned above, and we shall prove
that this is also true in the non-compact cases to be studied in section 5.

The actual feasible set for the internal problem is then Dk , simply the intersection of
Null(Ak) and the interior of the first orthant C* ( or Dk ) is interesting for two reasons: first,

because it is easy to use search methods on it since the projection matrix is known; secondly, because
it is a cone with the property that the potential function is constant on each of its rays, as we formalize

7=-i7-ry* W



in the following lemma:

32 Lemma: For all yeC*, for any X>0 ,

8$>y) = g(y) •

Proof: by direct substitution in the definition of gQ .

Consequently, to each feasible point x >0 for (P), a ray [%D~lx I X>0} of constant potential
in (Pi) is associated. Conversely, given a point y*zCk resulting from the internal algorithm, the point
yzCk given by the expression (4) satisfies g(y)=g(y*) and aky-\ , as can be trivially verified.
y is the conical projection of y* onto Sk , i.e. the intersection of the ray through y* and
e +Null(ak') . The existence of the conical projection is guaranteed by y*>0 and the assumption

that ak'y > 0 discussed above. The subject of conical projections will be further studied in section
5.1.

If v* =v , men the internal problem is equivalent toproblem (P), and the problem can in princi
ple be solved by a single application of a good non-linear programming algorithm. The potential func
tion has a bizarre behavior near the boundaries of the orthant it tends to +<» near any non-optimal
boundary point x *0 , to -<» for a sequence convergent to an optimal solution, and to any number for
sequences convergent to 0. This can lead to the conclusion that the potential function has an ill-
conditioned Hessian matrix near an optimal solution, but it is not necessarily the case

Iri [7] shows that when restricted to Sk and under suitable compactness conditions, the potential
function in form (3) is strictly convex and well conditioned on Sk . This reference shows that a New
ton method to minimize h(x) on S has asymptotic superlinear convergence, and discusses several
examples.

An affine Newton method on S is scale invariant thus making irrelevant the master algorithm,
but it is expensive and has no guarantee of descent in the beginning iterations (only asymptotic conver
gence is assured). The use of conical projections and scaling associated to an internal algorithm with
good initial behavior (like conjugate gradients) remedy these problems, not guaranteed near optimal
solutions. Such non-linear programming methods can be very effective in reducing the value of the
potential function while far from the boundary of C* , and this can bedone ata low cost since no pro
jection matrices must becalculated while iterating on the internal problem.

The internal algorithm iterates while a substantial decrease in the potential function is obtained.
It will be shown that if the problem is compact and its first iteration is a steepest descent search, then in
this iteration the potential function gQ drops by at least a fixed constant a>0 . This choice for the
first iteration is actually equivalent to the line search done in Karmarkar's method, and a is the con
stant found in his work [9].

Before we state the internal algorithm, the following lemma resumes useful properties of projec
tions and scalings.

33 Lemma: Let y and x berelated by Dy =x in an iteration k of the algorithm. If Aky =0
then Cp'y =c'x , Op'y =ak'y =a'x . Furthermore, if ak'y =1 then Ty -c'x-u .
Proof: Immediate consequences of the definitions of ap and cp , since for any vector zzRn , for
yzNull(£k) , z'y - (Pz)'y . The last equality isaconsequence of lemma 2.4 .

The Internal Algorithm

The Internal Algorithm performs three operations: calculation of a new lower bound, calculation
of a sub-optimal solution for the Internal Problem defined in the master algorithm 3.1, and conical pro
jection. The calculation of a new lower bound is done by a simple algorithm to be presented now; the
proofs and motivation will be the subject of section 4. In all the development to follow we use the



notation introduced in the master algorithm.

3.4 Algorithm: Calculation of a new lower bound.

If cp - vkap has a non-positive component then u := v*

Else u :- min { — I aB, >0 IMA..* * a?i pi 3

As we shall prove in the next section, this algorithm finds a lower bound for v , and guarantees
that the cost vector c~ used by the internal algorithm has at least one non-positive component An
equivalent result can be found in [13], obtained by a different approach.

3.5 Algorithm: (model) given a precision 5>0

i:=0; y°v=e
Repeat

Calculate PVg(y>) -Z7jc-P[ (yj)"1 (y^)"1 •••(v*)"1 Y
Choose a descent direction hzNull(Ak) such that h'PVg(yl)<0.
Find X>0 such that *(y/+XA) =min{g(yl'+A,/0 I X>0,y'+AA>0}

i :=i + l

Until «(yl'-l)-g(yl*)<5

The algorithm above is no more than the general model for a non-linear programming feasible
directions search, for a special case in which the result of the line searches is guaranteed to lie in the
interior of the feasible set The choice of the descent directions was not specified and can be the result
of any strategy like conjugate gradients or variable metric methods [5]. The line search is well defined,
since the potential function grows indefinitely near the frontier of the feasible set (except for the lucky
case of hitting an optimal solution for u =v ). It has been proved in [13] that the potential function
restricted to the line y'+Xh is unimodal, and reference [10] gives a method for the search.

We shall then assume hereafterthat the line search in 3.5 always has a unique solution X.

4. Determination of lower bounds for the value of an optimal solution

In the beginning of iteration k of the master algorithm, a feasible solution xk is known. A
linear transformation on the original problem (P) brings this point to the vector e in the new coordi
nates. Using the notation introduced in Algorithm 3.1, a Linear Programming Problem can be written in
the new coordinates:

minimize cp'y (Pk)

subject to Aky =0

(h'y = 1
y £0

This problem is equivalent to (P), in the sense that each feasible point x for (P) is univocally
associated to a point y =D~1x feasible for (Pk), and their costs are related by cp'y =c'x , as was
shown in lemma 3.3. The value of an optimal solution for (Pk) is then equal to the value v of an
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optimal solution for (P).

In the beginning of iteration k a value v* £v is known. If c~=cp -vkOp has a non-positive
component, then a reduction of at least a for the potential function will be guaranteed by the results
in section 6. If this is not the case, a new lower bound for v must be found, so that the new c" has a
non-positive component in this section we show that this is always possible, and it is accomplished by
algorithm 3.4, repeated below:

Algorithm: Calculation of a new lower bound.

If c9-vkOp has anon-positive component then k:=v*
Q

Else u := min { — I a. >0 I (5)>oiA-3 «• Op} ^

4.1 Theorem: Algorithm 3.4 generates a lower bound u for v , and cp-uap has a non-positive
component

Proof: If cp-vkap has a non-positive component then the result is trivial. Suppose then that
cp -vkap > 0 .

Consider the following relaxed version of (Pk):

minimize cp'y (6)

subject to Op'y = 1

y £0

The dual of this LinearProgramming problem is given by:

maximize z , zzR (7)

subject to zap <, cp

Byhypothesis, vkap < cp , and consequently (7) is feasible. It follows that (6) has an optimal solution
y* , (7) has an optimal solution u > v* , and u =cp'y* .

Since (6) was obtainedby relaxing(Pk), u is a lower bound for v .
(7) can be rewritten as

maximize z

C"Jsubject to zZ—*- j = h../i such that dL,>0Op} pJ

cp
The solution for this problem is given by (5), and for some index k , u = — . It follows that

aPu
cPk ~u aPk ~ ° • completing the proof.

42 Remark: The following consequence of the definition of u will be useful later: for any z >u
yCp-zap has a non-positive component



5. Descent directions for the internal algorithm

We now describe several possible choices for the descent directions used by the internal algo
rithm. This section will be dedicated to the description of the procedures, and the next one will concen
trate all convergence proofs for these procedures. We begin by showing that due to the homogeneity of
gQ , each possible direction belongs to a class of equivalent directions that lead to the same reduction

in gQ.

5.1. Equivalent Directions

Each iteration of the internal algorithm starts with a point y1 and performs a line search along a
direction h , resulting in a point yi+1 = y* +XA . We will show that due to the 0-degree homogeneity
of gQ , there exists a cone of directions leading to the same decrease in gQ as h , and the minim-
izers for all these directions lie on the same ray.

Consider a set T in the first orthant of Rn . The cone generated by T is defined as
£(7)= {aye/?" I a>0,y zT).

Since the potential function gQ is 0-degree homogeneous, i.e, g(ky) = g(y) for any \>0,
it follows that

infg(y)= *yL,8<y)
yzT y *K(T)

If two sets T ,T1 in the first orthant generate the same cone, then inf g(y)= inf g(y).
yeT yzTx

This shows that the minimization of gQ along two different lines lead to the same optimal
value whenever both lines generate the same cone.

We shall say that two directions h1, h2 are equivalent from y >0 , whenever minimizers
y1, y2 of gQ respectively along h1 and h2 in the first orthant exist and lie on the same ray (and

consequently g(yl) = gfy2) ). Some facts are straightforward:

5.1.1 Lemma: Let h be such that_y* +h >0 in some iteration of the internal algorithm, and that the
line search from y1 results in X<1. Then for any a>0 , the direction h = a(y'+A)-y' is
equivalent to h from y' .

Proof: It is sufficient to see that the line segments (y'+Xh I A, e [0,1]} and
{y1 +Xh I Xz [0,1 ]} generate the same cone, defined by the extreme rays {5y' I 5 > 0) and
(8(yl'+A) I 5>0) .

5.1.2 Lemma: If two directions are equivalent from y > 0 , then positive multiples of these directions
are also equivalent from y .

Proof: Straightforward, since scaling the directions does not change the result of the line search.

5.1.3 Lemma: Let h be as in lemma 5.1.1. Then for any \i z (-*», 1), the direction h=h+[iyl is
equivalent to h from y* .

Proof: By lemma 5.1.1, for any a>0 the direction aA+(a-l)y' is equivalent to h from y* .

By lemma 5.1.2, we can multiply this direction by a"1, obtaining h = h+(1 ) y1 , a >0 .
a

Setting u,= l , the directions are defined by h = h+\iyi , ne(-«»,l), completing the
a

proof.

In particular, given any direction h from y e Sk such that y+h zCk , its conical projection
Ky(Ji) onto the feasible set Sk is given by



-10-

*>(*>= ^-^Tn^^-^^ (8)1 ar'(y+h) 1+a* h
This direction is of special interest it is a search direction in Sk equivalent to h , and the points
y+h and y+Ky(h) lie on the same ray.

5.2. Steepest Descent Directions : Karmarkar's algorithm

The first natural choice for the descent directions is given by the projected gradient direction,

h=-PVg(y') o--^r c+P [(yj)"1] (9)
ry'

In particular, the first iteration uses (since P e = e )

A°= T+e , with w :=c"e .
w

The line defined by h° lies on the unit simplex, defined by the equation e'x-n. This is an immedi
ate consequence of the zero degree homogeneity of gQ : since g(Xe) is constant for X>0 , neces
sarily e"Vg(e) = Q.

By lemma 5.1.3, in the first iteration, any direction of the form

is equivalent to h(

--2-c+<?+u,e = —— g-+ve t ve(-»,2) (10)
c e c*e

This set of directions includes for instance h =-c , which consequently is as good as the gradient
direction as a search direction.

A0 is actually the Karmarkar direction, with well known properties that will be discussed in sec
tion6 . The fact that it lies on the unit simplex seems to attach a great importance to this set In reality
the properties of h° are by no means connected to the simplex, since by (10) there is an infinite set of
directions that share the same properties. The only advantage that seems to arise from the fact that h°
lies on the unitsimplex is in theease with which the guaranteed decay of g(.) is proved: direct proofs
for other equivalent directions may not be so elegant The most important directions equivalent to the
projected gradient for the first iteration are summarized in the following lemma:

5.2.1 Lemma: The following directions are equivalent in the first iteration of the internal algorithm:

(0 -Vg(e) = -2-c+e
w

(k) -c

(iii) -Jc+ak'ce (conical projection onto Sk )
Furthermore, Vg(e) is proportional to the conical projection of -c" onto the unit simplex, defined by

n

Proof: (i) to (iii) are direct consequences of (9) and (10). To prove the last assertion, use (8) with
** = £

n

e' w
^#/»(-c) = -c (-c)e = -c + — e , proportional (i) .

n n

The discussion above is useful for two reasons: first because it indicates that no improvement in
the convergence rates can be obtained by trying other directions generated by linear combinations of
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c~ and e (or h and [(yj)'1] in the general case); the second reason is more appealing: the line
searches can be executed in the original space, by projecting the search direction conically onto Sk ,
by the expression in lemma 5.2.1.

S3. Directions of non-increasing costs

In each iterationof the internal algorithm the function gQ is reduced by a search along a direc
tion h . The point resulting from each search corresponds to a vector in Sk with identical value of
gQ by conical projection, and there is no guarantee that the cost decreases from the first to the

second point in Sk . Monotonically decreasing algorithms were studied in [11] and [2], and we now
show a procedure that is closely related to the results in this last reference.

Assume that y1 e Sk (otherwise, set y' := T . ), let h° be the steepest descent direction
ar'f

(9). Its conical projection onto £* is proportional to

A=A°-fl/A°y1' , by (8) , (11)
and the variation in cost in this direction is given by

rK^Qc-w'apYh0 , with w''=cy (12)
This expression defines a hyperplane

g= [h I dh =0} , where (13)

d = c~-w'ap

To guarantee non-increasing costs, it is sufficient to choose the descent direction by the procedure:

53.1. Search direction for non-decreasing costs:
Set h°=-P V#(y*) (or an equivalent direction).
If <F-wiarYh0Z0 then A1 :=/i°
Else set hl equal to the (orthogonal) projection of h° onto Q .
Notice that this is simply a projection onto a hyperplane with known normal d , with little

computation involved. To show that the direction is well defined, we must show that y'+Xhl does
not leave C* in the first orthant Two things must be proved: Akh1 =0 and ak'(yl +Xhx) >0 for
all X>0 such that yi+Xh1>0 . The first one is easy: the projection onto Q has the form

h^hP-yQT-w'a,) (14)
Since all vectors involved in (14) are in the null space of A* , then so is h1 . The second one is not
immediate, and the cases in which it is true depend on the following lemma:

532 Lemma: Let A be a direction such that yl +h zDk and assume that oneof the following con
ditions is satisfied:

(i) Sk is compact,
(ii) dh<0
(iii) dh <r0 and the optimal setfor (P) is compact. Then yl +h zCk .

Proof:

By contradiction to all cases , suppose that ak'(yl+h) <. 0 .
Since_a*'(yi+XA) =1 for X=0 , there must exist a X such that ak'(yi+ih)=0 .
Let h-h-ap'hy1 be the direction on Sk constructed as in (11) . Then h (conical projection of
h) is equivalent to h . To each point y=y*+Xh with A,e[0,fc) corresponds a point
y=K(y)=—%— on the line generated by h. It follows that when X->% , \\K(yl+Xh) -♦ «>

or y
We are ready to examine each alternative hypothesis:
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(i) Ready, since the argument above contradicts the compactness of Sk .
(ii) If (jc-w'apYh <0 then by (12) Th <0, and the problem is unbounded, contradicting the gen
eral hypotheses for (P).
(iii) If QT-w'opYh £ 0 then the level set [y zSk \Ty<, wl} is unbounded. Bya known result
in Convex Analysis [12] , if a level set in a convex programming problem is unbounded then so are all
non-empty level sets. In particular, the optimal set {y z Sk I Ty £ c~$ } must be unbounded, where
$ is an optimal solution to (Pi).

This completes the proof that yl +h zCk with contradictions established for all cases.
It is nowclear that yl +Xh does notcross theboundary of ck in the first orthant If conditions

(i) or (iii) in lemma 53.2 is satisfied, then there are only two possible outcomes for the line search
along h : either the potential function grows indefinitely when the boundary of Ck is approached and
there exists a unique minimizer X , or the search finds a global optimum for (P), and the potential
function decreases indefinitely.

Returning to the study of hl , it follows from lemma 53.2 that if the optimal set is bounded,
then ak'(yl +Xhl) > 0 for all X>0 such that y1' +XA1 >0 , and we conclude that in this case the
search direction is well defined and the line search in (Pi) has a unique solution.

In the next section we shall prove that the resulting direction has the same properties as A0 with
respect to the decrease in the potential function, and this completes our derivation. It is nevertheless
interesting to compute an explicit formula for A1 in the first iteration of the internal algorithm, since it
has a nice interpretation.

Explicit computation of A1

The first thing to notice is that any among the equivalent directions to A0 can be projected onto
Q instead of A0 . In particular, projecting -c" produces simpler formulas.

Let A = -c", and assume that h'd > 0. Then

/fci=_g-_yd f where y= ,,, >0
ad

A1 =-(l+i)'c+ywOp , or

-— A1 = -( c~-z a„ ) , with z - —*— < 1
1+7 p 1+Y

Substituting the value of y in the expression above and simplifying, we get

c*d c/(c"-wap)
z = —— = ^" , 0 < z < w (15)

flp a Op (T-wap)

This result is summarized in the following lemma:

53.3 Lemma: In the first iteration of the internal algorithm, if the gradient direction leads to increasing
costs in Sk , then the following directions are equivalent, guarantee non-increasing costs and have the
same convergence propertiesas -Vg(e):
(i) -c, := -(fi-z ap) , with z given by (15).
(ii)--77- cs+e

cx e

(iii) The projection of -Vg(e) onto Q
Furthermore, directions (ii) and (iii) are proportional to the conical projection of direction (i) onto the
unit simplex.

Proof: The equivalence between (i) and (ii) stems directly from iemma_5.2.1, with cx substituting c*.
To see that (iii) is proportional to (ii), compute the conical projection A of A1 , proportional to -cz ,
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onto the unit simplex:

_ g
A =-c-yd (-c-yd)e

n

But e'd = efc-e'apW - 0 , since e'ap = 1 and eT= w . Consequently,

A = -c-yd +—e
n

wIt follows that A = A*+— e . is in Q , since <fe = 0
n

Since this last expression can be regrouped as A = (-c+—e)-yd , it must be the projection of
n

-c+^-e^^(-Vg(e)) onto Q.
n n

Our final conclusion is that to achieve non-increasing costs, the direction to be followed must be
equal to the steepest descent direction that would be associated to the cost

c, =c~-z ap =Pck -(u+z)ap
This can also be interpreted as the steepest descent direction associated to an estimate u+z for the
lower bound to v in iteration k of the master algorithm.

This result is closely related to the result obtained in [2], and expression (15) relaxes a similar
formula presented in that reference.

We are nowready to prove important properties of A0 and A1 for the first iteration of the inter
nal algorithm:

53.4Lemma: Let A° =-Vg(e) and consider the direction A1 defined in 5.3.1 . Then II A0II £ 1 ,

IIAMl^l ,and A0 ~rrnr*l .
HA1 II

Proof: Initially, note that by lemmas 5.2.1 and 5.3.3, both A0 and A1 have the form

n cz+e , with 2 tu (16)
c/e

By remark 42, c, has a non-positive component and consequently (16) has a component greater than
1 . This implies in IIA°II £ 1 and IIAMl^l.

Since A1 is the projection of A0 onto Q , A^A^ IIA1 II2.

Consequently, A^-V" =M*i H*1.
KAMI

5.4. Strictly decreasing costs

The former approach can only guarantee non-decreasing costs, and will actually generate direc
tions of constant costwhenever dh° £ 0 . In this case, if the optimal set is unbounded (or very large),
the potential function can be unbounded (or decrease very much) along A1, without any improvement
in cost

Trying to decrease the cost instead of the potential function can, on the other hand, lead to direc
tions that approach the frontier of Sk too fast with slow convergence. We now present what seems to
be the best of two worlds: a direction of steepest descent for the cost subject to a minimum guaranteed
decrease for the potential function.
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Steepest descent direction for the cost

Given any point y zCk t the cost associated to the corresponding point on Sk ,

K(y)=—£— e Sk is given by p(y) :- -£-?- . The steepest descent direction in Ck from a point
Op y apy

y' zSk is given by the gradient of this function:

W) =t4t2 W&-*y flp> =c-^ap =d (17)(ap yf

We conclude that -d is the steepest descent direction for the cost in Ck .
Notice that this is in general not equivalent to the orthogonal projection of -c~ onto Sk . The

projected cost gives the steepest descent direction among the directions in the intersection of 5* and a
ball B centered in e ; -d is the best among the directions in a larger region B (~}Ck , and thus
is more promising as a descent direction.

A simple procedure to decrease the cost while assuring good convergence properties is obtained
by the following algorithm:

5.4.1: Search direction for decreasing costs:
Set A^-PV^OO , d ^r-w'flp
If A°-r4n-£-0.5 thenA2:=-rf

II a II

Else set

h2:=h°-Xd

h1
To show that the algorithm is well defined, use lemma 5.3.4 : II A0II £ 1 and -A0* " £ -1

IIAMl
. It is then immediate that the value of X is always greater than the value of the same variable
corresponding to A1 (14). This means that whenever A0 leads to an increase in cost we now cross
the hyperplane Q and plunge as deep as possible while keeping a substantial decrease in gQ , by
assuring -A* £ -0.5 (see 6.1.4 in the next section).

IIA II

The direction A2 is then always a direction of strict decrease in cost, and by lemma 53.2 it is
always feasible in D* . It corresponds to the direction of steepest descent for the cost, subject to a
guaranteed substantial decrease for the potential function.

6. Convergence of the algorithms

Our aim is to prove that all the algorithms proposed are linearly convergent in the following
sense: the sequence of values c'x*- v generated by any of the algorithms is dominated by a sequence
that decreases by a constant ratio at each iteration. The sequence (c'xk) is not necessarily monotoni-
cally decreasing, and its values can increase in thebeginning orwhen the lower bound v* changes.

This will be done in two steps: we first show what behavior can be expected in each iteration of
thealgorithms, and then use these results to prove theoverall convergence properties.

6.1. Variation of the potential function in the internal algorithm

We shall consider only the first iteration of the internal algorithm, since afterwards gQ can only
decrease. The most important properties of the potential function were shown in Karmarkar [9] , and
willbe reviewed and extended here. The first lemma resumes properties of the logarithm function.
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6.1.1 Lemma (Karmarkar [9]):
a) The logarithm function xzR+ -»logx is strictly concave and differentiable, and for any X such
that \X\<1 ,

log(l+X) = X-o(X) , (18)

where °<to*YT^X\ ' °^)^° •
b) Given a direction A e Rn such that IIA II = 1, the function

*>0 -» ^OO-ZlogXy (19)

satisfies (with o (.) defined above)

gAe+Xh) = XVg&e)'h +o(X) = Xe'A -o(X)

Pro^:
The results were proved in [9], in different formulations, (b) is obtained directly from (a) by performing
the summation and using:

» „ » (Xhj)2 i

The fact that IXhj I £ IXIIIA II for j = 1, • • • ,n leads immediately to the expression in (a).

6.12Lemma: Consider a direction A £ R* such that IIA II = 1 and X z [0,1) . Then

g(e+U)-g(e)ZXVg(e)'h+£j±jj (20)
Proof: Let $(y) = gi(y)-g2(y), where £i(y):=nlogc~'y , £2(y):=2>gy; .

Since gi is concave,

gKe+XA^fcOsaV^e/A

Using lemma 6.1.1,

-(g2(e+Xh)-g2(e))Z-XVg7Le)'h+¥- j^j
The proof is completed by adding the two last inequalities.

Consider now a direction A , and assume that the line search along e+Xh has a unique solu
tion X . Since the right hand side of (20) depends only on the value of Vg(e)'h , the following is
true:

6.1.3 Lemma: Given any fixed number ji<0 , there exists a fixed number a>0 such that if

Vg(e)'Y£j£)i then g(e+Xh)Zg(e)-a .
In particular, for u,= -1 , a = 026 satisfies the inequality; for \i = -0.5 , a = 0.086 .

The lemma above shows that a fixed descent in the potential function is achieved in the first itera
tion of each application of the internal algorithm whenever the search direction has Vg(e)'h bounded
away from 0 by a negative constant u,. (we then say that" A has a guaranteed descent of a ") We
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are nowready to show that this is true for the directions A0 , A1 , A2 defined in section 5 , under suit
able compactness conditions.

6.1.4 Theorem: Let A° =-Vg(e) and consider the directions A1 and A2, defined respectively in
53.1 and 5.4.1. There exists a fixed number a 2 0.086 such that

(i) If the feasible set S for (P) is compact then A0 has a guaranteed descent of a .
(ii)If theoptimal set for (P) is compact then both A1 and A2 have a guaranteed descent of a.

Proof: The compactness conditions in both cases guarantee that the line search has a unique solution,
as was shown in lemma 5.3.3. To prove the hypotheses in lemma 6.1.3 , we shall use lemma 5.3.4 :

(i) -A0/-V-=S-«A°" £-1 •
IIA°II

A A2(ii) -A0*..... <-1 , by lemma 5.3.4 . By construction, -A07—r— <-0.5 .
KAMI IIAZII

We conclude that all directions in consideration satisfy the hypotheses of lemma 6.13 with \i < -0.5 ,
completing the proof.

62. Proof of Linear Convergence

We begin by stating without demonstration two well known lemmas. Proofs can be found in [9]
and [61.

6.2.1 Lemma: For any xzC , for r £s £v , ft(x) £/r(x) .

622Lemma: At any iteration k , if g(y*)<, g(e)-a then

/¥U**+Wv*(**)-a . (21)

This lemma associated to theorem 6.1.4 show that under the compactness conditions in that
theorem all our descent directions generate sequences (/*v*(**)) that decrease at each iteration by at
least a . The sequence (f(xk)) is dominated by it as a direct consequence of lemma 6.2.1. It is gen
erally not true that the objective function of (P) decreases at each iteration, but the following results
guarantee the overall convergence.

First case: S compact

Let

y:= max { ^logx^ IxeS ,x>0 } (22)
z=i

y is well defined, since S is compact the argument is continuous in its interior and decreases
indefinitely near its frontier. If x* is a maximizer of this expression, then it can be thought of as a
"point of minimum potential in S ".

,fAx°)+y \
Define K = exp ( ).

n

6.2.3 Theorem: At any iteration k of the algorithm 3.1,

c'xk-v£Kexp(-— ).
n

Proof: Using lemma 6.2.2 , at an iteration k , f(xk) £fyk(xk) £/v0(x°)-ifc a . Using the definition
of /(.) ,



17

nlog(c'x*-v) S/^VZlogx,-* a
y=l

*fvo(x°)+y-ka ,

by definition of y. Now, removing the logarithm,

,k , /yo(*°)+Y *«>>
c'x* -v £ exp ( — )

n n

and the final result is obtained by using the definition of K .

Second case: non-increasing costs and compact optimal set

_ If the costs are non-increasing, all action takes place in the set
S = {x e S \ c'x <, c'x0} . This is a level set for the convex programming problem, and is compact

as a consequence of the compacmess of the optimal set The analysis is then reduced to the case
already studied, with

Ys= max { Jlogxy IxeS ,x>0 }
i»i

The discussion above shows that the algorithms are linearly convergent with a convergence speed equal
to exp (a/n)

Polynomial convergence

To show that the algorithms converge polynomially, the only necessary step is to notice that K
is polynomially bounded in relation to the input length L , and then repeat the analysis done by Kar-
markar [9]. For compact feasible sets, xj < exp (L) in (22) , and consequently y<nL. Similarly,
we conclude that /vo(x°) £ nL , and finally K £ exp (2L) .

7. Conclusions

We undertook a systematic effort to understand why Karmarkar's algorithm is so efficient, and
believe to have found an answer in two fundamental mechanisms: conical projections and barrier func
tions. Conical projections expand the scope of each search, by trying to reduce an objective (potential
function or cost) in a large trust region (the cone generated by a spherical region), instead of the sphere
that determines orthogonal projections. Barrier functions - the potential function - avoid approaching
too much the boundary of the feasible set a feature that cannot be reproduced by cost minimizations in
those trust regions.

The main features of the resulting algorithms are:

(i) The Linear Programming Problem in its usual formulation can be manipulated into the ideal
format for the use of conical projections without any modification of the original problem, by describ
ing the unique positive cone generated by its feasible set No new constraints are addedand the prob
lem dimension is notchanged. The resulting projected vectors cp and ap are uniquely determined by
the geometry of the feasible set

(ii) The unit simplex is not used at all.

(iii) Each expensive projection computation can be followed by several iterations of the internal
algorithm, obtaining a greater reduction of its objective per projection.

(iv) Search directions belong to equivalence classes by conical projections, and Karmarkar's algo
rithm is reproduced by a single line search in the steepest descent direction for the potential function, or
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equivalently, by a line search on the direction -c*.

(v) All line searches can be done on the feasible set for the scaled problem by using the conical
projections of the search directions, or equivalently on the original feasible set by inverting the scaling
transformation. This may be interesting if the LP problem has been obtained by transforming or approx
imating some parent problem (e.g. in internal or external linearizations, or in dealing with inequality
constraints): in these cases it may be possible to further transform the search directions so as to perform
the line searches in the feasible set of the parent problem.

(vi) Finally, different options are available for the choice of search directions, as a result of a
"goal programming problem" that weights the objectives of decreasing costs and decreasing the poten
tial functions. These objectives are not always conflictive, and the resulting search directions are all
equivalent to directions of the form -c; = -(cp -(u+z)ap), where z £ 0 .

The computational aspects must now be studied in two lines: efficient calculation of the projec
tion matrices, and efficient algorithms for the solution of the internal problem. Much work has already
been done in the first direction [7],[13],[3],[1]. These results are directly applicable to the present
method.

The second direction consists in trying to reduce the projection computations to the minimum
possible number , and the best techniques are still to be detected. We hope to have contributed to this
goal by making clearer what the options are.
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