

Copyright © 1987, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AN ALGORITHM FOR SOLVING LINEAR PROGRAMMII

PROBLEMS IN 0{n3 L) OPERATIONS

by

Clovis C. Gonzaga

Memorandum No. UCB/ERL M87/10

5 March 1987

AN ALGORITHM FOR SOLVING LINEAR PROGRAMMING

PROBLEMS IN 0{n3 L) OPERATIONS

by

Clovis C. Gonzaga

Memorandum No. UCB/ERL M87/10

5 March 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

AN ALGORITHM FOR SOLVING LINEAR PROGRAMMING

PROBLEMS IN 0(n3 L) OPERATIONS

by

Clovis C. Gonzaga

Memorandum No. UCB/ERL M87/10

5 March 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

An Algorithm for Solving Linear Programming
Problems in 0(nzL) Operations

Clovis C. Gonzaga *
Dept. of Electrical Engineering and Computer Sciences

University of California
Berkeley, California 94720

March 5, 1987

Abstract

This paper describes a short-step penalty function algorithm that
solves linear programming problems in no more than O(n0'5L) it
erations. The total number of arithmetic operations is bounded by
0{n3L) , carried on with the same precision as that in Karmarkar's
algorithm. Each iteration updates a penalty multiplier and solves a
Newton-Raphson iteration on the traditional logarithmic barrier func
tion using approximated Hessian matrices. The resulting sequence
follows the path of optimal solutions for the penalized functions as in
a predictor-corrector homotopy algorithm.

*On leave from COPPE-Federal University of Rio de Janeiro, Cx. Postal68511,
21941 Rio de Janeiro, RJ, Brasil
Research partly sponsored by CNPq - Brazilian NationaLCouncil for Scientific and Techno
logical Development, by National ScienceFoundation grant ECS-8121149, Office of Naval
Research contract N00014-83-K-0602, AFOSR grant 83-0361 and State of California Mi
croelectronics Innovation and Computer Research Opportunities Program and General
Electric.

1 Introduction

The complexity of linear programming problems was lowered to 0(n3SL)
arithmetic operations by Karmarkar [10], beginning a new cycle in opti
mization research. The algorithm is based on solving an equivalent problem
that has as objective his "logarithmic potential function", which was im
mediately recognized as a penalized objective function, his method being a
smooth barrier function algorithm.

Each iteration of Karmarkar's algorithm is a steepest descent search with
scaling, aswasfirst notedin [15] andcarefully formalized in [7]. This brought
linear programming algorithms into the realm of nonlinear programming
techniques, where smooth penalty function methods were then out of fashion
due to the ill-conditioning that often happens near an optimal solution.

The surprisingly good properties of Karmarkar's algorithm gave rise to
investigations in several directions, reviving common procedures in nonlin
ear programming. The simplest of all is the projected gradient algorithm
with scaling, applied to linear programming in [17], with amazing com
putational results. The logarithmic potential function is not convex. Its
antilogarithm, the multiplicative potential function, is convex and can con
sequently be minimized by a Newton-Raphson algorithm. This was done
by Iri and Imai [9], who proved asymptotic quadratic convergence. Their
algorithm is actually equivalent to Karmarkar's method, as we prove in [8],
both being quadratically convergent.

Other variants of Karmarkar's algorithm were presented in [1] and [7].
A generalized algorithm using bi-directional searches combines properties of
all previous projective and affine variants [8].

A second stage in this line of research led to the study of trajectories fol
lowed by several algorithms. The "yellow brick road" to an optimal solution,
which will be the object of this paper, is the "center trajectory", described
by Megiddo [12] and by Bayer and Lagarias [2].

The breakthrough was obtained by Renegar [14], who used an approach
based on methods of centers to follow the center trajectory. He achieved for
the first time a speed of convergence leading to a solution of the problem in
O(n0*L) iterations, but each iteration needs 0(n9L) computations, with a
total figure of0(n35L) computations, the same asin Karmarkar's algorithm.
The same approach was followed by Vaidya [16], who proved a complexity
bound equivalent to ours, obtained simultaneously and independently.

Our result is also based on following the center trajectory, but using a
barrier function approach. The final result is a practical algorithm for which

we preview good computational characteristics. The algorithm follows the
trajectory by a predictor-corrector scheme and has the following advantages
over the existing methods: there is no need of knowing the value of an
optimal solution, and no lower bounds to an optimal solution are used. No
special format for the problem is needed, with the exception of the first
iteration that needs a point near the center. No projective transformations
are used. Finally, the algorithm is well adapted to use large steps instead of
the small steps needed for the convergence proofs, which is usually not true
for methods of centers.

Our algorithm follows the path of optimizers for penalized problems
using the logarithmic barrier function. The same results could be obtained
by using Karmarkar's potential function or the multiplicative potential: the
curves would then be parameterized by the values of the lower bounds v in
the expression

n

/„(x) = nlog(c'x - v) - ^ log Xi
t=i

We chose the barrier function because the mathematical treatment is sim
pler, and so are the resulting procedures.

Barrier function methods and homotopies: Logarithmic barrier func
tion methods were introduced in [4] and systematically formalized in [3]. A
small-step barrier function method tries to follow the path of optimizersfor
the penalized functions very closely, staying always comfortably in the re
gion of convergence for Newton method. This, characterizes the method as a
path-following procedurein the homotopy approach. Specifically, the barrier
method is a predictor-corrector algorithm with the simplest of all schemes:
each iteration is composed of an elevator step (decrease in the penalty pa
rameter) followed by a Newton correction (internal niinimization).

Garcia and Zangwill havean extremely clear presentation of homotopies
and path-following algorithms in [5]. They point out that the approach has
been known since the nineteenth century, and that it has been rediscovered
several times. We shall try not to inventthe methodsoncemore,but weshall
not profit much from the existing theory. This is so because in complexity
studies all epailons and deltas must be carefully bounded in opposition to
what is done when deriving differential properties of the paths.

The homotopy approach to barrier functions is also old, and the idea
of following the path of optimizers is already present in [3]. An important
reference for this study is the book by Lootsma [11], and recent results
for linear programming problems were published by Megiddo [12]. The

logarithmic barrier function approach with large steps was already applied
to linear programming in [6].

The approach to be followed in this paper can be considered either as
a barrier function method or as a predictor-corrector algorithm. Instead
of trying to adapt known results to our needs, we decided to write a self-
contained paper, and prove all results, excepting the complexity of the pro
jection operation needed at each iteration, proved by Karmarkar [10].

1.1 The problem

We shall use a very general format for the linear programming problem,
working on a bounded feasible set in the first orthant. One additional as
sumption must be made with the only purpose of finding an initial penalty
multiplier, and the easiest way to achieve it is to impose the presence of a
simplex constraint. Adding a simplex constraint to a given problem is easy,
as we comment ahead. We shall also study scaled problems, that have the
same format as the original one, but without the simplex constraint.

Consider the following format for all linear programming problems to be
studied in this paper:

minimize dx

subject to Ax = b (1)
x > 0

where 6,c, x € 272", A is an m x n matrix, m < n. We assume that the
feasible set is bounded.

Our algorithm will always work in the relative interior of the feasible set,
and the following notation will be used:

S = {xeE?t\Ax=bix>0}
Q = {x e mr\ Ax = 6} (2)
d = {x € mr\Ax = o}

1RJ = {x € lR*\x > 0}

S is the relative interior of the feasible set, Q is its affine hull and
D = Nxdl(A) is the set of feasible directions from any point in S . iRJ
will denote the interior of the first orthant.

The problem: The problem to be solved in this paper is (1), with two
additional assumptions: (i) that the simplex constraint is used, that is,

for any feasible x , e'x = n; (ii) e = [11 ... 1]' is a non-optimal feasible
solution. If an initial feasible point is know, then these conditions can be
easily obtained for an arbitrary problem (1) by means of a scaling, the
introduction of a constraint of the form e'x < M , where M is a large
number and two new variables. The complete procedure is detailed in Todd
and Burrell [15].

The role of the simplex constraint: it is important to point out that the
simplex constraint will be used at only one point, in lemma 4.1, to choose
the initial penalty multiplier. With the exception of the first iteration of
the algorithm, the simplex constraint is not used at all, and nothing like
Karmarkar's "projective transformation" is needed.

Projection matrices: We shall denote by P the projection matrix onto
D , or equivalently onto the feasible set. The computation of this matrix
for the scaled problems that we shall use is studied in [10].

1.2 Outline of the algorithm

A barrier method breaks the constrained problem (1) into a sequence of
non-linear programming problems with the format

n

(flfe) min e'x - €k £ log a* (3)
1=1

where €* are positive penalty multipliers such that c* —• 0. Problems (P*)
are constrained only by linear equality constraints and can thus be solved
by algorithms for unconstrained minimization.

Following the methodologyin Polak [13], webeginby studying properties
of a conceptual algorithm, and then evolve into an implementable method,
followed by a practical algorithm.

A conceptual barrier function algorithm assumes that an exact solution
xk can be found for each (P*). In this case it is well known that any
accumulation point of the sequence (xk) is an optimal solution for (1). The
speed of convergence is dictated by the speed with which the multipliers
converge to zero.

An implementable algorithm does not assume exact solutions. Each
penalized problem is approximately solved and generates a point zk that
must be near the unknown xk . This vector zk will be the starting point
for (Pfc+j). If subsequent points xk are near each other (in some sense to

be explained later), then one Newton-Raphson iteration provides the good
approximations that we need.

We begin by studying the conceptual algorithm and show that "short
steps" are obtained by using a fixed sequence €* = (1 —0")*€o, where €o is
an initial penalty multiplier and a = 0.005/a/tT. At this point it is already
possible to prove the bound of O(n05L) for the number of iterations. This
will be done in section 3.

The next step, to be done in section 4, is to show that good approxi
mations to the conceptual solutions are obtained by scaling each penalized
problem (P*) about zk and solving one Newton Raphson iteration to gen
erate zk+1 . A further improvement in complexity is obtained by using
approximated Hessian matrices in these computations. A low complexity
procedure to achieve this is presented, as well as a method to compute the
initial penalty multiplier.

Before we start studying the conceptual algorithm, section 2 will be
dedicated to listing some basic results on barrier functions and scalings.

All action will take place in JR" . We shall denote vectors by lower case
letters, matrices by upper case letters. The transpose of a matrix A will
be denoted by A* . The vector with components X{ will also be denoted
by [««•], and the letter e will be reserved for the unit vector e= [11... 1]'.
To each vector zk , an. upper case Zt will denote the diagonal matrix
diag(zk,zkt... ,zk), to be used in scaling operations. The norms 1,2,3 and
oo for JRn will be denoted by || • \\lt || • || , || • ||3 and || • ||oo, respectively,
and other norms will be defined in section 2.

2 Scalings, barrier functions , quadratic approx
imations

This section concentrates basic results related to logarithmic barrier func
tions and their quadratic approximations. They are mostly "common knowl
edge" results, and our purpose is to present the notation and specialize the
results to our needs.

2.1 Scalings

We shall be working with the affine set Q defined in (2) and with the
relative interior of its restriction to the first orthant S . We assume that

S is nonempty. Given a point x € 2RJ, we define a scaling about £ as a
change of coordinates x = Xy> where JC = diag(xi, £2,..., xn). Notice that

since x > 0, the transformation is well defined, and it defines new norms
||• ||* for JR", such that for all z € 2R",

IHU = II*-1*!! (<)
\\4? = \\x-*z\\M

Given a point x € 2R+ and the linear programming problem (1), scaling
about x produces an equivalent problem

minimize [Xc)'y
subject to [AX)y = b (5)

V > 0

For this problem y = e corresponds to x . If x € 5, then y = e is feasible
for the scaled problem.

Now define A = AX, c = Xc. The scaled linear programming problem
will then be

minimize c!y
subject to Ay = b (6)

y > 0

This problem has the same format as (1). We shall denote by S , Q , D
the sets corresponding respectively to S , Q , JD in (1).

Dealing with the scaled problem will need the projections of the vectors
c and e onto D, and this is the most time-consuming operation of all
necessary to algorithms based on scaling.

Scaling affects the steepest descent direction in an optimization algo
rithm, and it can be used to improve the performance of first-order feasible
direction methods. This is the case with Karmarkar's algorithm, which
computes at each iteration a steepest descent direction for his "logarith
mic potential function". On the other hand, Newton-Raphson method is
scale-invariant, and no change in its performance can be gained by such co
ordinate changes. In our approach, scaling will be used with the purpose of
simplifying the mathematical treatment.

Our first lemma asserts that scalings about points "near" each other have
similar effects on the scaled norms. In this lemma proximity will be mea
sured in the norm of the sup, and is obviously valid for any other standard
norm for JET1 .

Lemma 2.1 Let a, b € 2RJ be such that \\a - 6||2° < 0.1. Then given any
hemn,

0.9 <Hi <1.1
16

6

Proof: Let

h = — = \——
l<*il [bi 04}

Note that \\ha\\ = \\h\\a, and similarly \\hb\\ = \\h\\b. Consequently,

IMP =£(£)*£)* *(r&nllrll2jTj <>i 04 <*i °i

where (—)min = min \M > 1- 0.1 , since ll - —I < 0.1
CL{ «=1 n Oi Oi

It follows that

IIA.II > 0.9||A||*.

The other inequality is proved similarly, using

INI <(JfWIM* •

In the lemma above we used for the first time the criterion \\z —x)\x < 6 to
assert that the points x and z are "near" each other. This means that
scaling the problem about x , the point corresponding to z will be near
e . The next lemma shows that if measured by the cost function, "near" is
really near.

Lemma 2.2 Let x,zeS be such that ||x-2r||s < 6 < 1 in problem (1), and
let v* be the cost of an optimal solution for the problem. Then c*z —v*<
(l + S^x-v*)

Proof: Consider the problem scaled about x , as in (6). Define zx = X"1z.
Then c*e = e'x and 7?zs = c'z. Let

a = max{s'fc|||A||<l}
heD

Since {e+ h\\\h\\ <l,fte5}c5,

v* < c!e —a = e'x - a , or

a < e'x —v* .

On the other hand,

c'z = c'zx < c'e+ 6ot = e'x + 8a.

Merging the last two inequalities,

c'z < c'x(l+ 6)- 6v*

Subtracting v* from both sides,

c'z-v* <(l + 6)(c'x-v*)t

completing the proof.

2.2 Barrier functions

We shall study penalized functions for problem (1) We do not assume that
the simplex constraint is present, but assume instead that the set 5 is
bounded. This includes problem (6), and thus covers all cases to appear.
The logarithmic barrier function is defined as

n

x € 1F% —> p(x) = - X>gx,- (7)

Given a positive constant e, a penalized objective function is defined by

n

x€2R? r—> fe(x) = c'x + 6p(x) = c'x-c^logx,- (8)
»=1

For any € > 0, /c(>) is well defined, it is analytic and strictly convex and has
a global minimum over S .

Penalized problem: Given € > 0 , the penalized problem associated to
the linear programming problem (1) is :

mm/£(x) (9)

The Newton-Raphson step: Consider the penalized problem (9) and a
given point x° € S. A N-R step for this problem is a direction hjq S D that
solves the problem

min/iV(x0 + /i) , (10)

where /jv(') is the quadratic approximation to /€(«) , given by

heD~ fN(x° +h) = f€(x°) +Vfe{x°)'h +ih'V2f€(x°)h (11)

Both (9) and (10) are well defined, since /£(-) grows indefinitely near the
boundary of S and /n(') is quadratic with positive definite Hessian, as we
shall see in the follow.

We now have listed all problems to be studied in the paper. The LP prob
lem (1) will be solved by a sequence ofpenalized problems (9). Approximate
solutions for these will be found by solving (10). The last link in this chain
of simplifications will be introduced later by allowing well-bounded errors
in the computation of the Hessian matrices.

Lemma 2.3 The penalized function (8) has the values and derivatives be
low, and V2/€(x) is positive definite for any x € iRJ.

fJe) = c'e
V/I(e) = c-ee V/6(x) = c-efc1} (12)

V2/c(e) = el V*f€(x) = cX~*
Proof: Straightforward.

We must now examine how well the quadratic approximation to the
penalized functions approximates its actual values. The result comes as a
consequence of properties of the logarithm function.

Lemma 2.4 Given a direction h € M1 such that \\h\\ < 1, the barrier
function (7) can be written as

p{e+h) = -e'h+^+o(h), where (13)
K*)l * -W

|5(A)| =

3(1 - \\h\\)

Proof: Westart by writing a quadratic approximation for the logarithm
on the real line:

log(l +A) =A-£ +£-... (14)
The error of the quadratic approximation for A< 1 is given by

^ A»(-l)'+1
•ssS

<f>lAJi=_!AJ!_

If we now consider a direction h with \\h\\ < 1, and consequently |/i,-| <
1 for t = 1,2,..., n,

n

p(e + A) = -£log(l + fc)
•=i

n n 12 n

t=l i=l t=l

where |oW|<£M * < * £
.=1 . . N"i-W,tl 3

But][>|S = ||fc||§ <||/,||s
t=l

by the ordering of norms in 2Rn, and this completes the proof.

This lemma gives us good bounds on the third order errors for the barrier
function about the point e . The corresponding errors for the penalized
functions (8) will then be given by —€o(h). Our next step is to estimate how
well a minimizer of the quadratic approximation approximates the minimizer
of the penalized function.

To simplify the notation, we shall work with the function

x <S JRnt x > 0 r—> g(x) = Vx + p(x) = f€{x)/e (15)

The function g(-) is equivalent to /c(<) up to a multiplicative constant.
Using (12), define its quadratic approximation about e as

he mn, e+h>0h-> gN(e +h) =V(c +h) - e'h +i||/i||2, (16)
By lemma 2.4, for e + h E S,

g(e+ h) = gN(e+ h) + o(h)

Let the penalized problem and the N-R step be defined as usual by

x=e + h — argmin{g(x)\x € S} (17)

Xtf = e + hN = argmin{giq{x)\x G Q}

The following lemma asserts that when x approaches e , the precision with
which xjv estimates x increases.

10

Lemma 2.5 Consider h and h^ defined as above, and let a > 0 be
given. Then there exists7 > 0 such that if either \\h\\ < 7 or ||/iw|| < 7 then
\\h- Ml < «7

Proof: Weshall study the limitation in \\h —Ajv|| for small values of h and
hff.

A

First part: assume that h < 0.1. Since we cannot assume that /ijv is also
small (although this is true), let us examine points in the segmentjoining x
and Xff. Since <?jv(*) is minimized at xjy and V2£fy(xjv) = /, 9n[') restricted
to this segment is a parabola with minimum at xjq , and for any point z
on this segment,

9N{x)>gN(z)+hi\x-z\\2 (18)
Choose such a point z satisfying ||x- z|| < ||A|| and define d= z- x. Then

9n{x) < g(x) + \o(h)\
< g(z) + \o(h)\ by definition of x
< 9N(z) + \o(h)\ + \o{h + d)\ (19)

Subtracting (18) from (19),

\\\d\\2 < KA)| +|o(A+d)l
4- "&^"' (20)

- Hi-\\h\\) 3(1-11^+4)

Now define /a by \\d\\ = /i||A||, /i < 1. Since the denominators in (20) are
greater than 0.8 ,

^2<^[i+(i+m)s]||A||<^||A||,
since /1 < 1. We conclude that fi decreases with y ||A||, completing the first
part of the proof.

Second part: we must now consider the case in which \\Hn\\ is known to be
small. The proof is identical, unless for the choice of z near xjy instead
of near x . All relations above are then satisfied for z substituting x and
Xff substituting z .

It is interestingto check some numerical values for expression (20). For

11

very small, the relationship tends to fi2 < (4/3)||A||, or \\d\\ < 1.16\\h\\15,
obtained by taking limits. The following values will prove useful, and can
be directly verified:

Lemma 2.6 Let x and xN be defined as in (17). Then:
If \\xN-e\\< 0.02 then \\x-xN\\ < 1.4\\xN - eft1* < 0.004.
// II* - e|| < 0.025 then ||x - xat|| < 0.005 .

2.3 Computation of a Newton-Raphson step

Wenowshow how to solvefor the N-R step in (10). Let P be the projection
matrix onto D , and set cp —Pciep = Pe.

Lemma 2.7 Consider the N-R step problem (10) for given e > 0 , x° € S.
The N-R step hn satisfies

PX^2hN =-^ +PX^e . (21)
In particular, for x° = e,

hN =-ipV/€(e) =-^ +ep . (22)
Proof: As we saw before, h^ is well defined. At x° + h^ we must have

PVfN(x° + hN) = 0

or, since fir is quadratic,

P(V/e(x°) + V2f€(x°)hN) = 0 (23)

Using (12),
P{c- eX^e + eXo2hN) = 0

This expression is equivalent to the desired result. For xo = e, Xq = I, (21)
becomes

PhN = -^- + ep .
The proof is completed by noting that since h^ € D> Phjf = hpf.

Expression (22) resumes what is wellknownin nonlinear programming: scal
ing about x° corresponds to a change ofmetricin which the steepestdescent
coincides with the N-R direction. In other words: the change of coordinates

12

corresponding to the scaling operation transforms the ellipsoidal level sets
f°r /n(') into spheres.

Approximate Hessians: Our last result in this section will be an ac
count of the effect of errors in the Hessian. We shall consider errors of the

following kind: given x° G S and x near x° (x not necessarily in S
), the N-R iteration from x° will be computed using the wrong values
V2/e(x°) <- eX"2 instead ofV2/e(x°) = cXq2. In terms of the algorithm to
be studied in this paper, this amounts to not updating the Hessian matrices
in every iteration: only entries with a large error will be changed. This will
give rise to rank-1 updates in the solution of the N-R steps instead of full
matrix inversions.

Note that saving time by approximating the Hessians is current prac
tice in predictor-corrector algorithms, and again we are using traditional
procedures.

It is easy to see that by scaling the problem, it is enough to consider the
case x = e, and the error in the Hessian reduces to V2/e(x°) <— el. This has
a slightly different interpretation: instead of rescaling the problem at every
iteration about xk , the scaling is done about a point near xk . This will
be discussed in depth in section 4.

The next lemma relates errors in the Hessian to errors in the resulting
N-R step.

Lemma 2.8 Consider the N-R step problem (10) for given e > 0 , x € S.
Let htf be the N-R step computed by (21) and define

hN =-ipV/e(x) =-^+PX~xe . (24)
//1|* - e||oo < 0.1 then \\hN - hN\\ < 0.235||^||.

Proof: Using (23),

PV/e(x)+ ePX~2hN = 0 , or

PX~2hN = ~VU(x) = hN

But by hypothesis for i = 1,..., n

Xi tx +u,,)2 where N^o.i

13

and consequently, as can easily be verified,

x,r2 = 1+ ^ where \m\ < 0.235 .

Setting M = diag(ixi), it follows that

hN = PX~2hN = PIhN + PMhN = hN + PMhN ,

Consequently,

\\hN-hN\\ = \\PMhN\\ < \\MhN\\ < 0.2Z5\\hN\\ ,

completing the proof.

To finish this section, we shall state a new version of the result above, in a
format that will show useful ahead.

Lemma 2.9 Consider the N-R step problem (10) for given e > 0 , zk € S,
and let hit be the N-R step computed by (21). Let z € 2R+ be a pointsuch
that \\zk —S||f° < 0.1, and define hir as the result ofthe N-R step problem
with Hessian Z^1 approximated by Z~x . Then

\\hN - hN\\gk < 0.26||M,* •

Proof: Scaling about z , the situation in lemma 2.8 is reproduced. The
resulting directions satisfy

\\hN - hifWi < 0.235||^||s

To translate the result to || • \\sk, all we need is to use lemma 2.1, obtaining

\\hN - SivL* < 0.235 x 1.1 < 0.26 ,
completing the proof.

We are now well equipped to study the barrier function method and its
approximations.

3 The conceptual algorithm

Consider the linear programming problem (1). The conceptual barrier func
tion method will use penalty multipliers eK = (1- cr)k€o, where €o > 0 and
a € (0,1) are given. Each iteration solves exactly a minimization problem
with criterion /*(x) = e'x + €jbp(x) . The algorithm iterates until e* falls
under a given precision S > 0. Notice that this is equivalent to fixing the
number of iterations to a number K such that €q(1 —v)K < 8.

14

Algorithm 3.1 Conceptual barrier function: given €o > 0, 8 > 0, a €
(0,1).

fc:=0

Repeat
Compute a solution xk to the problem

n

mm(c'x - ek £ log *.) (P*)
x€S .=1

£*+! := (1 - <7)€jb
*:=fc+l

Until ek < 8

This section is dedicated to define "small steps" for the conceptual algo
rithm 3.1, and to find a value of the penalty adaptation parameter a that
guarantees such small steps.

3.1 Convergence of the conceptual algorithm

Let us begin by describing properties of the conceptual algorithm. Consider
problem (1), and let x* be an optimal solution, and call its value v* = e'x*.

Lemma 3.2 The sequence {xk)keir generated by algorithm S.l satisfies:
i) For any given x € S, fk(x) -*• e'x.
H) fk(xk) - t/*

Proof: (i) is immediate, since for any x € 5, /*(x) = e'x + c*p(x), and
€k -* 0. To prove (ii), assume by contradiction that for all Jb 6 M C iV,
/*(**) > v* + 28, 8 > 0, where M is an infinite set.

Since any optimal solution is in the closure of S , there exists x € S
such that e'x < v*+ 8. It follows that for all k € JV,

fk(x) > fk{xk) >v* + 28>c'x + 8 .

This contradicts (i), and completes the proof.

Lemma 3.3 Let xk be a point generated by algorithm S.l. Then

c'xk —v* < nek

15

Proof: From (12), V/Jb(xfc) = c - ekX^le. Since x* solves problem
{Pk), y/fc(x*) is orthogonal to any feasible direction. In particular, for the
direction h = xk —x*,

V/*(x*)'(x* - x*) = c'xk - e'x* + eke'X^x* - e^'J^x* = 0

But X^xxk = e, and then

c'xk -v* = ek{n-e'Xklx*)

Since x* > 0 and x* > 0, it follows that e'X^x* > 0, completing the proof.

Lemma 3.3 links the improvement in cost to the evolution of the sequence
(cjb). This means that costs dxk converge to v* at the same speed with
which ek approaches zero. Our task is then to reduce these multipliers as
fast as possible while keeping our "short step" strategy.

3.2 Differential properties: the homotopy approach

In the algorithm above we made an option for the barrier function approach,
that will be kept in the remainder of the paper. We take a little pause now
to make informal comments on the alternative homotopy framework.

Jf we define the homotopy mapping

x € S,e> 0 >-* H{xte) = PV«/6(x) ,

the path of solutions to the penalized problem is defined by the homotopy

IT(x,e) = 0, xeS , c> 0 .

It is easy to derive differential properties for the solution path, following
reference [5] . Considering the path parameterized by e , the homotopy
equation H(x(e),€) = 0 can be differentiated, resulting in

dHdx , BE n dH „. dH „v,
ox de de ax de

Calculating these terms for x = e, we obtain

ndx

But for x(e) € S ,
ndx dx

16

dx 1
— = -ep .
de e ¥

This can be written as
Ac /A .

Ax = —ep + o(Ac)

where o(Ae) is an error. Taking norms, it follows that

||A*||<!M^+|KA£)||. (25)

This is a very important result. It means that if we choose a small a and
set at each iteration

Ac a

then ||Ax|| < a+ ||o(Ac)|| .
In other words, a small variation in x is associated to a variation

in the penalty parameter (and thus in the objective) that depends on y/n.
Small variations in x mean good precision for the N-R steps; improvements
dependent on y/n will lead us to the solution of the LP problem in 0(nosL)
iterations.

Unfortunately, complexity studies need precise bounds on o(Ac), not
provided by the analysis above. The rest of this section will be used to
derive this result again, without taking any limits. The barrier function
approach seems more adapted to this purpose.

3.3 The choice of ek

We saw in last section that the precision with which a Newton-Raphson
iteration can approximate the minimizer of a penalized function starting
from the point e depends only on how far the minimizer is from e . This
gives us the clue to the smallstep: two consecutive minimizers xk, xk+1 will
be considered as near each other if ||x* —x*+1||x* is small. In other words,
we want the solution of each penalized problemto be near e , when solving
the problem scaled about xk .

Assume that in iteration k of the conceptual algorithm 3.1 we know
xk exactly, then set ek+i = (1 - <r)ek and use a N-R iteration to find an
approximation to xk+1 .

Instead of performing this in the original space,we shall scale the prob
lem about x* , obtaining problem (6). In this problem the vector e is
feasible and corresponds to xk in the original coordinates.

17

Objective function: the penalized function for the scaled problem will be

n

yGS •—• y(y) = c'y - ek+1 £ log y< (26)
•=i

Lemma 3.4 The penalized function is scale-invariant in the sense that for
any y € S, y(y) = fk+i(Xky) + K, where K is constant with y .

Proof: Developing /*+i(')>

n

fk+i{Xky) = c'Xky - cjb+i £logxky{
t=i

n n

= (Xkc)'y - cjfe+i Y^, lo6 Vi ~ €k+i J2 log xk
»=i t=i

But (Xjbc)'y = c1!/, and then setting K = -cjk+iSJLjlogx* completes the
proof.

This shows that minimizing (26) in 5 is equivalent to minimizing /*+i(*)
in S . We now proceed with the scaled problem.

Let r(-) be defined as the penalized function in S with penalty mul
tiplier ek :

n

yeSi-^r{y) = c'y-ckY,logyi (27)
i-l

Applying lemma 3.4, this function assumes a minimum over S at e , the
point corresponding to xk .

Setting cjb+i = (1 —a)ek and computing derivatives by (12),

17(e) = r(e) = c*e
Vr(c) = c-cjbe (28)
Vg(e) = c - (1 - a)eke = Vr(e) + aeke

We are ready for the most important result which, like (25), relates a
to the distance from e to the minimizer of g(-) . This will be obtained
in two steps: we first deal with the minimizer of 9n{') and then extend the
result to the minimizer of g(-) .

Lemma 3.5 Let8 G (0,0.1)6e a given constant. Ifcr< 8/y/n, then theN-R
step hir for g(*) from e satisfies \\hir\\ < 8.

18

Proof: Setting c = ek+i in the expression for the N-R step (22),

hN = PVp(e)
c*+i

Taking the scalar product with hit and noting that since /ijv is feasible,
h'NPy = h'Ny for any vector y ,

IIMI1 = ~*fK^l(l>) (29)
€ft+l

Now, using (28),
h'NVg{e) = o-cjke'/iAr + h'NVr(e)

But e minimizes r(-) over S , and then for the feasible direction hx e D,
AjyVr(e) = 0. It follows that, merging the last equation into (29),

\\hN\\2 = -a-^e'hN = --?—e'hN
ffc+i \-a

Now, using the well-known relationship between norms 1 and 2,

-e'hN < ||Mi < v^HM

It follows that

"Ml <j-^VS
If we choose a < 8/y/n < 0.08 for n > 1,

HM < l.l<rv^ < 8 ,

completing the proof.

Lemma 3.5 is almost what we need. To relate a to the minimizer y of
y(') over S all we have to do is merge lemmas 3.5 and 2.6. We shall do
that for numerical values that will prove convenient later: it does not make
sense to try to push the stepsize to its maximum, since it does not affect the
speed of convergence and the maximum stepsize is small anyway.

Theorem 3.6 Let the penalty multipliers in S.l be adapted by ek+i = (1 -
<r)ek, with a = 8/y/n. If8 < 0.005, then for all k € N, \\xk - xk+1\\xk <
0.006.

19

Proof: Consider the problem scaled about xk as above. Assuming a <
0.005/v/n, then by lemma 3.5, \\hN\\ < 0.005.

Now, lemma 2.6 deals with the same scaled problem (with an objective
function equivalent up to a product by a constant), and then

||y - e|| < \\hN\\ + ||s> - yN\\ < \\hN\\ + 1.4HM1-6 < 0.006 ,

and the proof is complete.

Complexity of the conceptual algorithm: At this point we can advance
that it will be possible to choose an initial penalty multiplier Co bounded
by 2L. It is then immediate to compute the number of iterations necessary
to obtain a reduction ek < €q2~l.

Lemma 3.7 If the conceptual barrier function algorithm S.l uses an adap
tation parameter a = 8/y/n, then for k > y/nL/8, ek < co2~L.

Proof: Let k > y/nL/8. Taking logarithms,

logejb = logco + &log(l - 8/y/n)
< \og€0-kS/y/n by (14)
< log co - L

it follows that ek < coexp(—L) < co2~1', completing the proof.

In the next section we shall prove how to obtain the same speed of conver
gence with approximate computations: the total number of operations will
then be given by the effort per iteration multiplied by 0{y/h~L).

4 The implementable algorithm

The implementable algorithm uses approximate Newton-Raphson searches
instead of exact minimizations for the penalized functions. The points xk
will never be computed: a sequence (zk) will be computed instead, and we
shall make sure that each zk is near the corresponding xk . A convenient
definition of"near" will be \\zk - x*||xfc < 0.015.

We shall begin by showing how to compute an initial penalty parameter
Co suchthat e (the initialpointforthe implementable algorithm) is near x°
(the initial point for the conceptual algorithm). Then wedevelopa simplified
algorithm model without specifying how to approximate the Hessian matrix
and prove its efficiency in solving the linear programming problem. The

20

final step will be to specify the details on Hessian approximations. We shall
use the notation described in sections 1 and 2.

As we pointed out before, scaling operations simplify the mathemati
cal treatment, but are not necessary at all. The algorithm model will use
scalings for this reason. It is easy to modify the algorithm so that it does
not rely on scalings, and we shall indicate how to do it immediately after
presenting the algorithm.

The initial penalty multiplier: Consider problem (1) and the penal
ized problems introduced in (3) and studied in section 2. Assume that the
simplex constraint is enforced and that e is feasible. Note that this is the
only point in the paper in which this constraint is used. It can also be of
interest to note that we only need to know the point of minimum penalty
in S, trivially equal to e if the simplex constraint is enforced.

Lemma 4.1 Consider problem (Pq), in the first iteration of the conceptual
algorithm S.l. IfeQ > ||c||/0.01 then ||e- x°||zo < 0.015.

Proof: In the first iteration, the N-R direction from e is computed by
(22)

hN = —- + ep

But in the original linear programming problem the simplex constraint is
in use and then ep = Pe = 0. Eliminating this term and taking the scalar
product with Ajy ,

UM> =_*kfp <M|M|
Co Co

Since ||cp|| < ||c||, it follows that

c

IMI < *p

Using now c0 > ||c||/0.01,
\\hN\\ < 0.01

Using lemma 2.6, with x = x° and xN = e + hir,

\\x°-e\\ < \\hN\\ + ||x°-Xtf|| < 0.01 + 0.002 < 0.012

Since ||e - x°|| < 0.09, we can use lemma 2.1, obtaining

||ar° - e||l0 < l.l||x° - e\\e < 0.015

21

since ||x°—e||c = ||x°- e||, and this completes the proof.

The algorithm model: Consider the linear programming problem (1).
Each iteration will perform a scaling operation, define a penalized function
and perform a Newton-Raphson search. Instead of computing the exact N-
R step, a point z near the present iterate zk will be chosen (this is the
reason to call this a model: the determination of z will be done later), and
the Hessian at zk will be approximated by the Hessian at z . As we saw
in lemma 2.9, this is equivalent to a steepest descent step for the problem
scaled about z instead of about zk .

Algorithm 4.2 Model: given a = 0.005/y/n, 8 > 0.

k := 0 , z° := c
€o := Ml/0.01

Repeat

ek+i = (1 - a)ek

Choose z such that ||z- zk\\f < 0.1
Scale the problem about z obtaining problem (6), and define
the penalized problem

n

minfc'y - ek+i ^ log y.)

Compute the projection matrix P onto the feasible set and set

y := Z~xzk , Y := diagfa)

Compute an approximated N-R step from y , obtaining by (24)

dN = -— + PF"1e
e*+i

VN := y + hN

Return to the original space with zk+1 = ZJjn
k:=k+l

Until cjb < 8

22

The algorithm can be modified not to mention scaling operations simply
by saying 'Compute an approximated N-R step from zk with Hessian
approximated by Z~~2 '. In this case the rank-1 updates in the N-R step
equations must be worked out. We shall not do it.

Now consider the sequence (x*) that would be generated by the concep
tual algorithm with the same penalty multipliers. The theorem to follow is
the main result in this section.

Theorem 4.3 At any iteration k of algorithm 4.2, the following relations
are satisfied:

ll**-**IL» < 0.015
\zk-zk+1\Lk < 0.04

Proof: The proof is done by induction. By lemma 4.1 ,

||*° - *°||x° < 0.015.

Assume that at iteration k

II** - xk\\xk < 0.015 .

By theorem 3.6, since cr = 0.005/^/n,

||x*+1 - x*!!,.* < 0.006

Adding the two last inequalities,

II** - **+1IL* ^ 0-021
By lemma 2.1,

II.** " **+1H** < 0.024 (30)
Now consider the (unknown) exact solution of a N-R step z = zk + hit

and the approximate solution zk+1 = zk + hir found by the algorithm.
By lemma 2.6,

p-z*+1L*< 0.005 (31)
Adding the two last inequalities,

l*Jr|L» < II* - *t+1H,' + ll**+x - **IU < 0.03
We can now use lemma 2.9 to obtain

ll**+1-*ll** = \\hN-hN\\gk < 0.25x0.03 < 0.008

23

Adding this inequality to (31),

\\zk+1 - xk+1\\gk < 0.013 (32)

And finally, using again lemma 2.1,

P*+i _ xk+1\\sk+i < 0.015 ,

This proves the first relationship. The second one immediately obtained by
adding (30) and (32), completing the proof.

The implementable algorithm generates a sequence (zk) , each zk near the
corresponding conceptual xk . By lemma 2.2, the costs of these pairs of
vectors differ by a negligible amount. We are finally ready to extend the
property found for the conceptual algorithm in section 3 to any algorithm
in this model.

Theorem 4.4 Consider algorithm 4-2 applied to the linear programming
problem defined in section 1, with 8 < 2~L/1.015n, where L is the total
length of the input data. Then the algorithm terminates in 0(y/h~L) itera
tions with a feasible solution zk such that c'zk —v*< 2~L

Proof: The initial penalty multiplier satisfies c0 = ||c||/0.01 < 100 x 2L.
The algorithm stops at iteration k such that ek < 5, or

£*< 2"2L
c0 "~ 1.015n

This reduction is of the order 0(2L), and can be achieved in 0(y/nL) iter
ations, by lemma 3.7.

Applying lemmas 2.2 and 3.3 to the final solution generated by the al
gorithm,

c'zk -v* < 1.015(c'x* - v*) < 1.015ncib < 1.015n£ < 2_L .

completing the proof.

The choice of z : An obvious choice for z is z = zk. This choice causes
oneprojection computation per iteration, with a boundof0(n3) operations.
The algorithm then terminates with a bound of 0(n35L) operations, the
same as in the methods by Karmarkar and Renegar.

We shall lower this bound by saving in the projection computations. The
intuitive argument is as follows: each iteration causes a move (in the scaled

24

problem) of \\8\\ ; each approximation for the Hessian is good in a "cubic"
ball 11ti; —y||oo < 0.1. Since the volume of a ball in the sup norm is related
to the volume of a ball in euclidean norm by a factor of y/n, it is reasonable
to expect that this will be the relationship between the number of iterations
and the number of complete recalculations of the projection matrix. This
feature will be explored in the procedure below, in which a component of z
is changed only when it is too far from zk .

In the first iteration, set z := e and compute the projection matrix P
by any method. For k > 0, use the algorithm below.

Algorithm 4.5 updates of z and P

Set
\zk -z-\

^0'=i »iM>o.i}
z

For all j € J set

*j := **
Compute the projection matrix P from the former one by \J\ rank-1
updates.

The projection matrix for each scaled problem is calculated by P = I -
ZA'(AZ2A')~1AZ. The main effort is in computing (AZ2A!)-X. Ifonly one
entry of z changes, this computation canbe performed in 0(n2) operations
by a rank-1 update, as was established in [10]. This fact will be used in the
next section to study the complexity of the algorithm.

5 Complexity of the Algorithm

Consider algorithm 4.2 with z chosen as in 4.5. We shall now establish
an upper bound on the total number of rank-1 updates computed by the
algorithm. The updates are similar to the ones in Karmarkar's algorithm,
but our proofs follow a different path.

Consider the sequence (2*)*=o,...,jr+i generated by the algorithm, where
K is the index of the last iteration, and the associated real sequences (zk)
for each component j = 1,..., n . Webegin by analysing a single component
J •

To simplify the notation, let us denote w = zj, and deal with the se
quence (wk) = (zk). Define the subsequence («;*•*),er- corresponding to the
iterations in which Zj is updated. T}- is the set of indices of such iterations,

25

and its cardinality |Ty| , the total number of updates, is the object of our
study.

Consider now two consecutive indices &t,fe+i, with t,t + 1 € Ty. The
following facts are true by construction:

w *v+i

w *.•
-1 >0.1

since at iteration fc,+i the procedure 4.5 updates Zj . Between twoupdates,

Jb

for ki < k < ki+i ,
or

tir

-1 <0.1

Takinglogarithms and defining p = min{log 1.1,- log0.9} > 0.09,weobtain
for any two consecutive indices in Ty,

| log wki - log wki+l | > fi (33)

The next lemma is preparatory for the main result to follow.

Lemma 5.1 For the sequences constructed above, for a component j =

,r,l<Hf;!^l (34)
Proof: Consider initially any two indices 0 < k\ < &2 < K. Then ,
manipulating the integral of the logarithmic function,

logti;*1 -logu;*8! = rwk* dw\
Jwkl VJ

ika-1

< 53 max
k=kj.

(\Awk\ \Awl
I wk ' wk+ •}

where Aty* = w*+1 —wk.
The first equality is trivial, and the second is an immediate consequence
of the definition of Riemann integral. Applying now lemma 2.1, since by
theorem 4.3 |Au/*| < ||**+1 - **|| < 0.1,

jAu^l < |A«»|
+i -it; w

26

It follows that

log to*1 -logti/*3| <1.1 £ J^-i
k=ki

ur

In particular, for k\ = fc,- and &2 = fcf+i »with t,t + 1 € Ty , (33) gives

*<+1_1 lAti/*l
A* < | log «;*•' - log wki+l I< 1.1 y" J—r1

r—f wK

Finally, the summation of the complete sequence (which is composedof |Ty|
partial summations as above) gives

m*u±*g .
fc=0

completing the proof.

Theorem 5.2 Consider the sequence (zk) generated by the algorithm and
let T = £y=i|2y| oe the total number of rank-1 updates computed by the
algorithm until iteration K . Then

T<y/KK

Proof: Applying lemma 5.1,

n 1 1 n K

t = EPJI * "££
Inverting the order of the summations,

^ y=iJb=o

t<-t£
K *iAz:

zk

Azk
i

But for any y € 1R", norms 1 and 2 are related by
consequently

T <±^f>**|L*
M 4=0

Using now theorem 4.3, for any k= 0,..., K, ||A*fc||z* < 0.04 and it follows
that

0.044 ^

/*

It is nowenough to remember that /i > 0.09 to complete the proof.

We can now prove the main complexity result.

27

l < \/n||y||, and

Theorem 5.3 Algorithm 4>2 with the updating procedure 4.5 solves the lin
ear programming problem (1) in no more than 0(nsL) arithmetic operations.

Proof: Weshowed in theorem 4.4 that the algorithm terminates with an
optimal solution in K = 0(y/nL) iterations. Each iteration updates one
projection matrix and computes a fixed number of matrix products.

The total number of operations needed per iteration excepting the pro
jection matrix computation is then of the order 0(n2), with a total figure
of0(n2*L) in K iterations.

The total number of operations needed for the projection updates is
given by T x 0(n2), where T is the total number of rank-1 updates. By
theorem 5.2, T < n0SKy and consequently T is bounded by 0(nL). This
gives a total figure of 0(nsL)t completing the proof.

The linear algebra computations are identical to the ones in Karmarkar's
method [10], and can be carried with L bits of precision, as is proved in
[16]. This leads to a bound 0(nsL2) for the bit operations in our algorithm.

6 Conclusion

Towards a practical algorithm: To develop a practical algorithm, the
short steps must be made adaptive. This can be easily done by examining
the N-R step computations:

h=—?£- + d where d = PY~1e
e*+i

To make this step adaptive, two things should be done:

(i) Use a line search along direction h instead of a fixed step, that is, solve

25g{/et+i(y+«fc)|y +ah € 5>
(ii) Instead of a fixed penalty multipler, let ek+i = ek —a and make a vary
in a "trust region" T .

Putting together these two procedures, we end with a bi-directional search

OLC

min {Uk-a(y — + <*d)\y -\-aheStaeT}
a/x>0 ek — C

The region T must be such as to guarantee that the quadratic approxima
tions are good. Several criteria may be used, and the best seems to be the

28

following: a value of a is acceptable if the search in a for this a results
in a value near 1 .

Euler's method: Since our method is a predictor-corrector algorithm, Eu-
ler's method immediately rings a bell. Instead of the simple elevator step
(update of e), we may follow a tangent to the path of optimizers. It is easy
to see from section 3.2 that a tangent direction for x —e is given by

dx _ 1

At the point y,

Ui
de ek

and associating to each value of Ae = —a

y«r = y d ,

the bi-directional search becomes

imnQ{f€k-a(ya +aha)\ya + cthaeS1<re T}

where h0 can be computed as before, hff = ht or by a new projection (with
the same projection matrix):

h„ = *2— +da where da =PY^e
€k-U

Notice that Euler's method does not introduce any new direction if h is
kept unchanged, and no improvement in the result of a bi-directional search
canbe expected. The onlymodification to the basic bidirectional algorithm
suggested by this procedure would be to recalculate d whenever the search
procedure generates points far from the initial one.

This last observation falls into the idea developed in [7]: if the projec
tion matrix is available at low computational cost, it is always advisable
to perform steepest descent searches while they lead to good improvements
in the function to be minimized. Summing up these observations, the best
path towards a practical algorithm is in our opinion (and this must still be
verified) the bidirectional search proposed above with recalculations of the
vector d .

This bi-directional search is a variant of the general pattern followed by
all conical projection algorithms, and will be the object of a forthcoming

29

paper [8],

All these new algorithms boil down to a clever rearrangement of old tech
niques. Karmarkar showed that Linear Programming is indeed a particular
case of Nonlinear Programming, and that nice results can be obtained by
specializing its methods to linear functions. Nothing is new, and all is new.
Likethe fresh meats and garden vegetables rethought by the French nouvelle
cuisinne.

Acknowlegement: I would like to thank Prof. E. Polak, my host in Berke
ley, for his advice and encouragement.

References

[1] K. Anstreicher. A Monotonic Projective Algorithm for Fractional Lin
ear Programming. Manuscript, Yale School of Organization and Man
agement, New Haven, CT, November 1985.

[2] K. Bayerand J. C. Lagarias. The Non-linear Geometry of Linear Pro
gramming, I. Affine and Projective Scaling Trajectories, II. Legendre
Transform Coordinates, III. Central Trajectories, preprints, AT&T Bell
Laboratories, Murray Hill, NJ, 1986.

[3] A. Fiacco and G. McCormick. Nonlinear Programming: Sequential Un
constrained Minimization Techniques. John Wiley and Sons, New York,
1955.

[4] K. R. Frisch. The Logarithmic Potential Method of Convex Program
ming. Memorandum, University Institute of Economics, Oslo, Norway,
May 1955.

[5] C. B. Garcia and W. I. Zangwill. Pathways to Solutions, Fixed Points,
and Equilibria. Prentice-Hall, Inc., New Jersey, 1981.

[6] P. Gill, W. Murray, M. Saunders, J. Tomlin, and M. Wright. On Pro
jected Newton Barrier Methods for Linear Programming and an Equiv
alence to Karmarkar fs Projective Method. Report SOL 85-11, Systems
Optimization Laboratory, Dept. of Operations Research, Stanford Uni
versity, Stanford, 1985.

30

[7] C. Gonzaga. A Conical Projection Algorithm for Linear Programming.
Memorandum UCB/ERL M85/61, Electronics Research Laboratory,
University of California, Berkeley, CA, July 1985.

[8] C. Gonzaga. Generality of the Conical Projection Algorithm for Linear
Programming. In preparation, University of California, Berkeley, CA,
1987.

[9] M. Iri and H. Imai. A multiplicative penalty function method for linear
programming - another "new and fast" algorithm. In Proc. of the 6th.
Mathematical ProgrammingSymposium, Tokio, Japan, November 1985.

10] N. Karmarkar. A new polynomial time algorithm for linear program
ming. Combinatorica, 4:373-395, 1984.

11] F. A. Lootsma. Numerical Methods for Nonlinear Optimization. Aca
demic Press, New York, 1972.

12] N. Megiddo. Pathways to the Optimal Set in Linear Programming.
Research Report , IBM Almaden Research Center, S. Jose, California,
1986.

13] E. Polak. Computational Method in Optimization. Academic Press,
New York, 1971.

14] James Renegar. A Polynomial-time Algorithm Based on Newton's
Method for Linear Programming. Report MSRI 07 118 - 86, Mathe
matical Sciences Research Institute, Berkeley, California, June 1986.

15] M. Todd and B. Burrell. An extension of Karmarkar's Algorithm
for Linear Programming Using Dual Variables. Technical Report 648,
School of OperationsResearch and Industrial Engineering, CornellUni
versity, Ithaca, NY, January 1985.

16] Pravin M. Vaidya. An Algorithm for Linear Programming which Re
quires 0(({m+n)n2+(m+n)lsn)L) Arithmetic Operations, preprint,
AT&T Bell Laboratories, Murray Hill, NJ, 1987.

17] R. J. Vanderbei, M. J. Meketon, and B. A. Freedman. A modification
of Karmarkar's linear programming algorithm. Algorithmica, 1, 1987.
to appear.

31

	Copyright notice1987
	ERL-87-10

