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Abstract

This paper presents an algebraic theory for linear time-invariant multi-input multi-output systems with
two-input two-output plant and compensator, using the factorization approach. This system
configuration considered by Doyle and Nett is most general in that any interconnection of two systems
can be represented in terms of this scheme. Other system configurations encountered in compensator
design problems are special cases of this system configuration. The analysis and synthesis applies to
continuous-time as well as discrete-time systems, lumped as well as distributed systems since the alge-
braic setting is completely general. The compensator parametrization has four degrees of freedom. The
paper is self-contained and is tutorial in the sense that it develops the main results of Nett without intro-

ducing the concept of containment.

Research sponsored by the National Science Foundation Grant ECS-8119763.



INTRODUCTION

The algebraic theory of multi-input multi-output linear time-invariant (Lt-i.) systems rests on a
few basic papers [You.1], [Des.1], [Per.1], [Vid.2). From then on, a large number of papers followed
and Vidyasagar’s book, [Vid.1], gives a systematic exposition of their results using the factorization
approach, and includes a detailed list of references. We list some of these papers and books at the end

[Kst.l], [Cal.1], [Chen 1], [Che.1]. [Des.2], [Doy.1], [Hor.1}, [Kai.1], [Ros.1], [Sae.1], [Zam.1].

[Vid.1] considers two system configurations: first the unity-gain feedback system §y(P, C) in
which both the plant and the compensator have one vector-input and one vector-output and second, the
system S5(P, C) in which the compensator has two vector-inputs and thus, one added free parameter.
[Vid.1] parametrizes the set of all stabilizing compensators and the set of all achievable input-output
(1/0) maps for $,(P, C) and for S,(P, C). Since [Vid.1] contains a complete list of the related work

up to 1985, we will not repeat these references here.

After [Vid.1), two-parameter design was used on a one vector-input two vector-output plant in
(Des.4,5], and the I/O map from the exogenous input of the compensator to the output of the plant was
diagonalized by adjusting one of the two free parameters. More recently, necessary and sufficient condi-
tions for stabilizing a feedback system with two vector-input two vector-output plant and compensator
blocks was presented in [Net.1]). This feedback configuration is a generalization of S,(P, C) and

§2(P, C) and it will be called Z(P, C) in this paper.

The feedback system Z(P, C) is made up of a two vector-input two vector-output plant and com-
pensator (see figure 1) and is the object of our study. Note that in our feedback configuration, we have
a negative feedback on the left summing node. For a given plant P, £(P, C) has four degrees-of-
freedom and each I/O map that it achieves depends on one of these four "free" parameters. Therefore
for this configuration, more design requirements can be satisfied simultaneously. The plant P has two
outputs y, and y, ; y» is the measured-output, which is used in feedback to C. The I/O map from u’,
to y, depends on one of the four parameters whereas the maps from u’; , u, , u; t0 y, each depend

on one other parameter. Here u’, is the exogenous input and #’; , u, , #; model the disturbances at



the measured-output, plant input and the compensator output, respectively. The compensator output y’,

is not utilized by P ; we view y’, as an output used for performance monitoring and fault diagnosis.

The objective of this paper is to present systematic and straightforward algebraic development of
the feedback system (P, C). Our approach is different from that of [Net.1]. First of all, by systemati-
cally using the algebraic techniques used for §,(P, C) and S5(P, C) , we derive the stability condi-
tions in (Net.1] and the set of all achievable I/O maps straightforwardly. Our approach does not require
the use and the properties of Nett's concept of containment. The admissibility requirements [Net.1] fol-
low directly from the analysis. Intuitively, the admissibility of P can be viewed as follows: figure 1
shows that only the partial map P, : e b y, is in the feedback loop; hence the instabilities of
Py:u, ©y,,Py:u, by, and Pi3:e by, must be "contained” in the instabilities of P
this intuitive concept is made very clear by figure 3 which follows directly from our analysis. Second,
we start building our algebraic structure with a principal ring h asin [Vid.1], [Des.3,4,5). Factorizing
in this A2 guarantees the existence of right and left-coprime-fraction representations (c.f.r.), and more-
over, of the standard forms (Hermite form in particular)-of matrices with elements in B (M (1) ).
Third, the analysis is simplified by using a right-coprime factorization for P and a left-coprime factori-

zation for C.

The reader is assumed to be familiar with some basic algebra; Appendix A, B of [Vid.1] is
sufficient baékground. (Sig.1], [Lang 1], (Bou.1], [Jac.1], [Coh.1], [Mac.1] may also be useful. For the
reader’s convenience, we use [Vid.1] as a reference. Nevertheless, in or&er to make the paper self-
contained, we have collected the necessary algebraic results in section II and included short proofs

where needed.

The paper is organized as follows: Section I presents the algebraic structure and basic results.
Section II starts with the system description, analysis and problem formulation. h—-stability and
T-admissibility are defined and the main h —stability theorem (Theorem 2.4) are presented in this sec-
tion. The set of all stabilizing compensators S and the set of all achievable I/O maps A yu are
obtained in section III using the theorems of section II. Conclusions are also given in section III.

The following is a list of symbols and abbreviations.



Lt-i.

w.Lo.g.
st

u.t.c.
a:=b
er.0.’s
e.c.0.’s
rc. (lc)
rfr. (Lfr)
cfr.
rcfr (lcfr.)
detA
mh)

linear time-invariant
input-output

without loss of generality

such that

under these conditions

ais defined as b

elementary row 6perations
elementary column operations
right(left)-coprime
right(left)-fraction representation
coprime-fraction representation
right(left)-coprime-fraction representation
the determinant of matrix A

the set of matrices with elements in h



SECTION 1
Algebraic Preliminaries

In order to clearly separate algebraic facts from system analysis, in this section we collect relevant

definitions, known facts and prove a few lemmas which will be useful in the analysis of Z(P, C).

1.1. Notation [Lang 1, p.71-77], [Vid.1, Appendix A, B]:

hisa principal ring (i.e. an entire commutative ring in which every ideal is principal).
I ch is a multiplicative subsystem, 0 ¢ l , 1€ l

j ch isthegmupofunitsot‘h .

4 =hii is the ring of fractions of /2 associated with £ .

g . (Jacobson radical of thering § ):=(x €8, :(1+xy)" € § forally € § }.

1.2. Facts

i) I =the set of units of § whicharein /1.

i) Let AemM).Bem(@) Then a)A'em®) iff dede J and
b)B'eMm(g) iff detB el. (Utc. A is called M -unimodular, and B is called
g -unimodular.)

iii) Let YeM@,), X,Zem(g). Then XY, YZe M(g,), and J+xy)y?,

I+YZ)' e m(g).

1.3. Example : Let ¥ > C, be a closed subset of €, symmetric about the real axis, and let C\ U
be nonempty. Let = U U (o0]). Let h = Ry (s) := the ring of proper scalar rational functions
which are analytic in U . Let i be the set of elements of Ry s.t. f € l , implies f (o00) = a nonzero
constant. Then g is the ring of proper rational functions in s, j is the set of elements of Ry with

no zeros in i, and & . is the set of strictly proper rational functions (i.e. goes to 0 as s — o).



1.4. Lemma

-

) Letabel. Thn abe j iff a andbe J.

ii) Letc,deh. Then cdei iff candd e l

Proof: i) (=>) ab =u € j = uleN,wa)b =landa(u) =1 => b e N has

inverse ua € B,and a € B hasinversebu' e B, =>be Jad ae J.

(<=) isimmedialesincej is a group.

if)

(=>) cd==vel = vie g, =1 cdMN=1=>de R has inverse

v"ceg,andcehhasinversedv'leg = d,ce€ l.

( <=) is immediate since i is a multiplicative system.

1.5. Definition

i) The pair V, D) e M (R ) is called right-coprime (r.c.) iff there exist U, V € M (1) st

' UN+VD =1 (1.1)
ii) The pair (N, D)e M (h) is called a right-fraction representation (r.fx.) of P € M (g )
iff

D issquare, detD e [ and P =ND- (12)
i) Thepar (N,D)e M (h) is called a right-coprime-fraction representation (r.c.f.r.) of

Pem(g)iffWN,D)isarfr.of P and (N,D)isr.c.

1.6. Definition

i) The pair (D, N) € M (R ) s called left-coprime (Lc.) iff there exist U,V € M (B) st
NU+DV =1 (1.3)
ii) The pair DO.MHem (h) is called a left-fraction representation (Lfor.) of P e m (g)
iff
D issquare, detD e I and P = DN (1.4)
iii) The pair ®, ﬁ) em (h) is called a left-coprime-fraction representation (l.c.f.r.) iff

D,N)isalfr.of P and (D, N)is lc.



1.7. Facts [Vid.1, chap. 4]

i) Every P € M (g ) has a rcfir. (N, D) e M (M) and a Lefir. (D, N) € M (A1) because
hisa principal ring.

i) Let (N,D) bearcfr. of Pe M(g) Then (X,Y) is a rfr. (rcfr) of P iff
(X, Y) = (NR, DR) for some g —unimodular (/1 —unimodular) R € M (h).

i) Let O, N) be a Lefr. of P € M(Z). Then (X,7) is a Ler. (Lefr) of P iff
&, ¥) = (LD, LN) for some g —unimodular ( /# —unimodular ) L € m (h).

iv) Let (N,D) be a rcfr. and (D,N) be a lcfr. of P. Then there exist

Uu,v,u,vVe m(h)s.t.

v v N IV I 0
h S e = (1.5)
D : -N D : -U o : I

Equation (1.5) is called the generalized Bezout Identity for the coprime-fraction representations (c.f.r.)
of P.
1.8. Lemma [Vid.1, Net.1]

Let (N,D) and (5, ﬁ) be a rcfr. and a lcfr. of P € M (g ), respectively. Then there
exists m, € ] st

detD = m, detD (1.6)
Proof: By Fact 1.7.iv, using obvious notation, we write equation (1.5) as

MM, =1 ; M,,Mye m)
Then detM,; and detM, € h;moreover, detM detM, =1 € h. By Lemma 144, detM, = m,

o I 0 uy ~|U VD I 0
€ J. Then detM=det|, pldet|, _p [=deD|, _ [deti, pa | By er.0.’s
in AL, detM, = detD det(UN+VD )detD)™ = detD detD™! = m, € J , and equation (1.6) follows.
|
Comment : We say that detD is equivalent to detD, denoted detD = detD , if and only if there exists

m; € ] s.t. equation (1.6) holds. Clearly, with detD , detD € h , " =" is an equivalence relation



on A . Similarly, with a € h , a=1 isequivalentto a € J.

The following lemma is useful in studying the equations describing the system in section II.
N

A L d . e o . o
19. Lemma : Let [B] = E[D] and let [A ;D]= [N ;_D]F, where

E,Fem (h) are of appropriate dimension. Then
i) for all R —unimodular E , the pair (N, D) is r.c. iff the pair (A, B) isr.c.

ii) for all A —unimodular F , the pair (5, N) is Lc. iff the pair (B, A) islc.

Proof: ) N,D) is rc.<=> thee  exist U,V em@) st
. N . A
[U : V][---]:I:([U : V]E“)[-~-] <=> (A,B)isrc.
D B

ii) The proof is similar to part (i).

Because of our interest in the system Z(P, C) shown in figure 1, we partition P and exhibit a special
cfr. of it. Note that every P € M (g ) has both a r.c.fr. and a Lefir. by Fact 1.7.i. The following ‘
lemma states that these c.fx.’s can be put into a special form.

Py P,
1.10. Lemma: Let P = Py Py em@). Let

(N, D) be ar.cfr. and (Do, Ny) be a Lofr. of P an

Then there exist Ny ,Npp,Ny Dy ,Dp,Ry € M(R) ; Dy Dy, Ny, Ny, Ny Ly

€ m~(h) s.t.

. Nll le Du 0 .
i) (N,D)=:( Ny NypRp|® | Dy DxRn ) isarcfr of P. (1.8)

. ~ Dy, Dy Ny Ny
H  O.N=(]| Lpbo | | Ny Ll ) isalcfr of P. (1.9)

Moreover,

detD ei d detD ei

an = 1.10
detD », detD,, (1.10)



1.11. Remark (Generalized Bezout Identity for the c.f.r.’s of P )
By Fact 1.7.iv there exist Uy, , Vg , Up , Voo € M (M) sit.
Uz Va Np : ‘722
RN Y | 1.11)
Dy : -Nyp || Dn : -Uxn
Proof of Lemma 1.10 : By Fact 1.7.iv every P € M () has a rc.fr. (call it (X,Y) ) and a
Lefir. (call it (7, X)).

i) By the existence of the Hermite Column Form [Vid. 1, Appendix B] there is an A —unimodular R

Ny Ny h
N, W, | MmB.

Now detY € I => detD,detDy, € I => detDp € I by Lemma 1.4.i. Then (N, D)

D 11 0 h
st. YR= Dy Dp em@) and XRéz
is a rfr. of Py By Fact 1.7ii, (Nyp, D) = (NpRp, D0Ry) for some g —unimodular
Ry € M () and the result follows.

ii) Same as the proof of (i), except the Hermite Row Form and Fact 1.7.iii are used.

iii) From equation (1.8), Dy; ,Dn,Rn € m(h) , detD € [ and detD = detD ;detD pdetR 5, .

By Lemma 1.4.ii, each factor is in l and hence, detD € l <=> detDjdetR y = dg:’lt)p € i . The
2
second equality in equation (1.10) is proved similarly.
u
1.12. Lemma : Let Py € M (g ,). and let statement (1.7) hold. Consider the equation
D'yDp + N'gNyp = I (1.12)
Then (5'22, Ny em (h) is a solution of equation (1.12) if and only if there exists Q‘x
emn (h) s.t.
Un : Va
[ﬁ'n : 1’5'22] = [1 : Q'n] cee b een 1.13)
Dy : —Np

Proof : (<= ) Suppose equation (1.13) holds. Then N’;N g + D'D 2

I
—
2

[\
B\
—_
—
U=
BR
—_—

= wl] 22 72 N”—I'[I]-'Ihmmird ality follows fro
_Isz] Dy —Np||Dn|= sz] o | =1, where the equality follows from
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equation (1.11).

(=>) Since equation (1.12) holds, we have

_ = 1[Nz V2
5n w232 2] [+ o]
. where Q ’22 = E'nVn - ﬁ’nﬁn emn (h ).

Un V2
Multiplying both sides by [ D "ﬁzz]' and using equation (1.11), we obtain equation (1.13).

113, Lemma: Let P»; € M (g ), and let equation (1.7) hold. Consider the equation

DyD'sp + NN’y = I (1.15)
Then (N ’», D ‘%) is a solution of equation (1.15) if and only if there exists é’zz em (h ) s.t.
D'zz Np ‘722 -é'22
_N'z2 = D22 _ﬁn I (1.16)

Proof: Entirely analogous to the proof of Lemma 1.12.

[]
1.14. Lemma : Let P € M (g ,). Consider equation (1.12). Then for all Q*5 , Q’n em (h ),

the following properties hold.
) det(Vyp—Q'nNyg) € I (1.17)
i) det(Vp -NpQh) € I (1.18)

Proof : Using the Bezout identity for (N, D 2,) from equation (1.11), we obtain

(Vo — Q'2Nn) " = (VD2 — Q'2NuD D2 T (1.19)
=Dyl I = UpNyp - Q'nNagD 2™
Similarly, using the Bezout identity for (Dg, N2),

V2 = NuQ'n) ™ = (I = Nuplpp = DN 0')"Ds (1:20)
Now P € M (g ,) implies that both Ny = P D3 and Np=DpPprem (g ;). Consequently,
the product of either N,, or ﬁzz with any matrix in M (h) is also in M (g ,). Since M (Z ;) is
closed under addition, the inverses in equations (1.19) and (1.20) are of the form (I + T)! with
Tem(g,);hence (I +T)e M (g) by Fact 1.2iii. Therefore, del/ + T) e l by Fact 1.2.ii

and equations (1.17), (1.18) follow.
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SECTION I

Problem and System Description

Consider the system Z(P, C) in figure 1. In the case that h = Ry as in example 1.3, assume

that P and C have no "unstable hidden dynamics” so that an I/O representation is valid.

We impose the following assumptions on X(P,C) . Note that by Lemma 1.10, any

P e m(g)and any C € M (g ) has the following c.fr.’s.

2.1. Assumptions :

. Py Py
)y P= Py Py emeg) (2.1)
Ny, D) is arcfr. of Py, (Dag, Ny)isalcfr. of Py 2)
Then by Lemma 1.10
N,D M Nz | Du 0 i fr. of P 2.3
w, )-(._N21 NzRz|* |Du DaRz Yisarcfr. o @3
5 i Dy Dy ] -ﬁu N1z i< a Lefr. of P »
(.N)=(-0 LzzDzz_'_Nzx Loy )is a lcfr. o 24
By Fact 1.7.iv, the generalized Bezout identity equation (1.11) holds for the c.fr.’s of P 5.
Cn Cn
i) C = Cu Cn em@g@) 2.5)
(N’y, D’p) isar.c.r. and (D'z, N'») is aLefr. of Cxp (2.6)
Then by Lemma 1.10 applied to C,
A (D D | [N2 No | Lefr. of C )
(D,N’)=(. 0 L'22D,22-’ l-lel L'nD’n )lsa .C.LI. O (07)
, N’y N Dy 0 . fr of C 25
(N’D')=(_N’21 N'ZR’ZZ_ ’ _D'Zl D'ZZR’22 )lsar.c. JI. O (.

By Fact 1.7.iv, the generalized Bezout identity for C,; reads as follows: There exist Uy, V'z,

Up, Vi st -

, -
Un :

P =N'p||D'p P -Un

Va [|N2 ! Vo
: =1 @9)
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2.2. Comment : By Fact 1.7.ii, any other r.cfr. (X, Y) of P is given by (X,Y) = (NR,DR) , where
(N, D) is the rcfr. in equation (2.3) and R € M (h) is 7 —unimodular. Similarly, by Fact 1.7.ii,
any other lLcfur. . X) of P is given by (?, J?) = (L5. LN) where (5, 17) is the lL.cfr. in equation
24)andL e M (h) is 1 —unimodular. Since the same holds for any other c.fx.’s of C, there is no

loss of generality in taking the c.fr.’s always as in equations (2.3)-(2.4) and (2.7)-(2.8) respectively.

Analysis of Z(P, C)

Using the representations of P and C as in Assumptions (2.1)-(2.9) we redraw the system

Yo
(P, C) as in figure 2. Let y:= 3;‘“ ] £ = y, . Then Z(P, C) is described
o
Y'm
by:
o o ||[e, u,
b [ 0 -I] i - 0 Uy
RN N EEREEEEE (2.10a)
_[o o ]. ~ Y L 0 N |
Nyy NyRoyp| - b Y'm Bt
r r 1
& Yo
N o m
Do ceel=1]..- (2.10b)
0 : I ¥ ¥
Y'm [ Y'm ]

Using obvious notations we write equations (2.10a)-(2.10b) in the form

Dy =Npu (2.11)
NpE =y 2.12)
D
0 B
By er.o.’s in h E|- . =t | +-- | where, by inspection, (A, B) is r.c.
A

Hence, by Lemma 1.9, (N, Dy) is r.c. Similarly, by e.c.0.’s in h .

0 0:1710
[Dn NL] F = = [B A] where, by inspection, (B, A) is l.c.
0D : 0N
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By Lemma 1.9, (Dy, N ) is L.c.

U, Yo
Y ul ylll
If detDy € I, then from equations (2.10)-(2.12) we obtain H,, : u’ b y’ emg)
u 'l Yy ,m
since H,, = NgDg'N 2.13)
In terms of P and C, H,, is given by
Py—P1AT)'CxPn P(T)? P(T)'Cy PuT)'Cxn
LH I-Px(TY'Cx)Py Pu(T)?! Pu(TY'Cy Pu(TY'Cxpy o 14
m = el P oMY ICIPy ~CPu@Yt Cy-CuPuTYICy Crll-P@Y'C) |*1
—~T)'CxPx @yi-r T)y'Ccy Ty

where T :=I4+CxnP o .

23. Definition : (P, C) is called /1 —stable if and only if H,, € m (R ).

The following theorem is essentially contained in [Net. 1].
2.4. Theorem (/2 —stability of (P, C))
Consider Z(P, C) shown in figure 2. Let Assumptions (2.1)-(2.9) hold. Then the following stateménts

are equivalent:

) X(P,C)ish-stable

ii) detDy =1

iii) detD =detDyn  and (2.15)
detD’ = detD’p,  and (2.16)
det(D’pD g2 + N'gNp ) = 1 (.17

2.5. Remarks 1) Following Comment 2.2, equations (2.15)-(2.17) hold for any r.c.fr. of P and any
lc.fr. of C as well as those in equations (2.3) and (2.7) respectively.

2) From equation (2.10a), calculate detDy :

[ o o ]
detDy = det - det
0 D 0 0
i [NZI szR:n] d ]
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Byeco.’sin h ,

detDy = detD detD’ det(I + C 2P 2) (2.18)
Since det( + C P 2) = detll + P»C3),

detDy = detD detD’ det(l + P »C ) (2.19)
Substituting Py, = NpD5'  and Cop = D'z !N’ in equation (2.18), we get
detDy = detD (detD 25~ detD’(detD’ )~ det(D’ 12D 27+ N3N 25) (2.20)

and substituting P, = Dz'Ny and C» = N’,D % in equation (2.19), we get

detDy = detD (detDqp)'detD’ (detD “20) ' det(DygD ‘224NN ') (221
Equations (2.17)-(2.21) are important for compensator design, and have important interpretations: First,
the form of equations (2.18) and (2.19) are reminiscent of standard form for detDy when P and C
both have one vector-input and one vector-output as in the system S(P, C); the difference is that,
instead of det(f+CP), in (2.18) we have det(I+C »P ). This modification is natural since the feed-
back affects only the second inputs and outputs of P and C. (Similar comment holds for (2.19)).
Second, equation (2.17) is simply the requirement that the feedback-loop be h —stable . Third, consider
equation (2.20) together with (2.15)-(2.16). Conditions (2.15)-(2.16) express the necessary and sufficient
condition for P to be stabilizable by the scheme EZ(P, C) of figure 1: indeed, if either one fails, it is
easy to see that for all compensators C satisfying (2.5)-(2.6), Z(P, C) will not be R —stable. These
restrictions on the class of plants is a consequence of the fact that the feedback only includes the plant
input e and the plant output y,,.

3) Using equations (2.20) and ( 2.21), Theorem 2.4 states that Z(P, C) is h —stable if and only if each

of the factors in detDy is in j . Therefore, w.Lo.g. if detDy = 1 then, by normalization,

D'ypDyp + N'pNyp = I 2.22)
DyD’yp+ NpN'py = I (2.23)

Since Py = NpD 3 = D7Ny,y, and Cop = D'gN’p = N'pD 3! , we have the following important

conclusion :

IfZP,C)is h —stable, then, with the above normalizations,
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Nz : D'n|[Nz : D'n I 0
SN 1 = e 224
Dy N | | D2 ~N'n 0 1
4) Note that
detD -
GeD,, - (detD ,detR 5) = 1 (2.26)
detD’ = =
— = (detD’ detl’y) = (2:27)
detD ' (detD’yydetL )

Equations (2.26) and (2.27) imply that R 5, and L', Dy, and D'}, are /2 —unimodular; that is, P is sta-
bilizable by C if and only if the only source of instability in P is Dy, (or Do) (see figure 3 ).

5) Note that the equivalence of the conditions in Theorem 2.4 does not require the special assumption
that Z(P, C) be well-posed [Vid.1]. Any of the equivalences guarantees well-posedness as well as
h —stability.

n
For convenience, following [Net.1] we define

2.6. Definition : P ( C ) is called Z-admissible if and only if detD =detD,, (detD’ = detD’y,
.. respectively ).

From equations (2.3), (2.7) and (2.26), (2.27), and by Lemma 14.i, P (C) is Z—admissible if
and only if detD;; =1 and detRp =1 ( detD’;; =1 and detl’p = 1 respectively). W.lLo.g. by

suitable normalizations, P is Z-admissible if and only if

Dy =1 and Ryp = I (2.28)
and C is X—admissible if and only if
D'y =1 and I'p =1 (2.29)
From Remark 2.5 and Definition 2.6 we reformulate Theorem 2.4 as [Net.1]
2.7. Corollary : Let assumptions (2.1)-(2.9) hold. Then Z(P, C) is B —stable if and only if
P is Z-admissible and (2.30)
C is X-admissible and 2.31)

D'pDy + N'gNy =1 (2.32)
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28. Comments: 1) P € M (M) if and only if P is E-admissible and P» € M (R).
2) Consider the system S;(P, C) in which both P and C each have only one vector-input and one
vector-output (see for example [Des.3], [Vid.1] ). Then P and C are automatically Z-admissible , and
hence A —stability of § (P, C) reduces to the well known equation (2.32).
|
Proof of Theorem 24 : () => (i) The map H, , :ub ¥'m is given by H,. .,
= @+CuPp)' —1. XP,C) 8 R-sable =>Hy, .: mby.emh) , =
T+CxPn) e M (M) and hence,

detd + CPp) ' € R (2.33)
From equation (2.18),

(detDy ) = (detD ) (detD’)™ det(I + C 2P 2)™ (2.34)

By assumptions (2.1)-2.9), detD € [ and detD’ e I , and by equation (2.10a), Dy € M (). Thus
detDy € h and using equation (2.33) and (2.34), (detDy)! € & . Therefore, detDy € i . Since
(Ng.Dy) is rc., and (Dy,Ny) is lc., H, =NgDg'N, e M (R) implies that D' e

m (h) [Vid.1]. By Lemma 1.2.ii, detDy = 1.

(i) => () By Lemma 12.i,detDy € J => H,, =NzDg'N, e m(h).

(i) => (iii) Consider equation (2.20). By Lemma 1.10.iii, and Lemma 14., and since
det(D’yD 5 + N'yNy) € h,

detD’ - -~ .
deDy = 22 7 Gei(5'pD NN ) € |

if and only if each of the factors —=2~ ¢ ] , -ddeTaz € ] and det(D’pD y+N'sN2) € ] and
' »
hence, (ii) <=> (iii).

|
With Definition 2.6 in mind, we now parametrize the class of all Z—admissible plants P and the

class of all Z-admissible compensators C.
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29. Theorem (The Class of Z-admissible Plants and Compensators)

i) Let assumptions (2.1)-(2.4) hold ; then P is Z-admissible if and only if P has a r.c.fr. as in equa-

Ny Ny I 0
WN,Dy= (| -2t -oc|o] o RREN D) (2.35)
_szNm : Np |-UxNy : Dz
I @ -NpUp Ny : NpVa
@.N=(|--- S 3 R e ) (2.36)
0 : Dy Ny : N

ii) Let C satisfy assumptions (2.5)-(2.9). Then C is E-admissible if and only if it has a L.c.fr. as in

equation (2.38) an equivalently, a r.c.f.r. as in equation (2.39) below.

I : -0'U'n| |0 : QuV'2
& my=C|--- e Leee s e D (2.38)
0 : Dp _Q'm P Ny
: Qu :Q%nu| [ 1 : 0
(N',D’)=( ~... E v . .:.. E oo ) (2.39)
LV'zzQ'zl P Nyp| |-U»Qn: Dn

2.10. Comments : 1) Suppose we are given 1) P as in equation (2.1), 2) P », factorized as in equation
(2.2), and 3) the Bezout identity for (N, D) from equation (1.11); then the general expression for
E-admissible plants, (2.36) shows that P is ZX-admissible if and only if. a)
Py —-PuDpUxPy € m(h ), B)PuDpe M@), ¢ DpPye M) (cf. Nerl, Lemma
@n.

2) Here we have chosen to call the three compensator parameters Q 'y, Q’12, Q'2 € M (h ) instead
of N’y, N’y N’y ; in Theorem 3.5 below, we will see that Q’y;, @12, @ are three of the four
“free” parameters used in compensator design. Using Q’;; instead of N*;; should remind us that these
parameters, unlike the given plant parameters Niw Ny, ﬁz,, can be chosen arbitrarily to meet other
design specifications. As far as T-admissibility is conéemed, (N’yp, D2, or (D’y, N3, are also
free; with the stabilization requirement (2.22) ((2.23), respectively), there is an additional constraint on

this pair of parameters resulting in four free parameters.
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3) From equation (2.28), P is Z-admissible if and only if Dy; =1 and Ry =1. Consequently, the
rcfr. of P in equation (2.3) and the Lc.fx. of P in equation (2.4) are each left with four "parameters”:
Ny, Nyg Ny, Doy and Ny, Nyg, Ny , Dy, respectively. Theorem 2.9 claims that there are in fact
only three independent "parameters”, namely Ny3, Nyz, Noy.

4) From equation (2.35),

I 0
D! = . (2.40)

D3 UnNy D3
Let B = Ry as in Example 1.3. Then E-admissibility of P implies that every U -pole of Pyy , P12
and P, is a pole of Py, with at most the same McMillan degree. This conclusion is obvious from
figure 3, where the block diagrams for Z-admissible P and Z-admissible C are obtained from equa-
tions (2.35) and (2.38), respectively. Note the duality between these two block diagrams.
5) Consider figure 3 which shows (P, C) with P and C Z-admissible . Then clearly, Z(P, C) is

R —stable if and only if the "loop” §1(P », Cz) is /t —stabilized ; equivalently, equation (2.32) holds.

With u’, = 0, figure 3 reduces to the system considered in [Des.S), which considers a E—admissible

plant with one vector-input and two vector-outputs..

Proof of Theorem 29 : By Lemma 1.8, detD= detD and detD » = deﬁn. Consequently, from
equations (2.3) and (2.4), detD j;detR» = detﬁndetzn . Therefore from equation (2.28) and by nor-
malization, P is E-admissible iff |

D|1=I,R22=I,511=I,zn=f (2.41)
Using equations (2.41) in ND = DN we obtain

NypDy + (-Di)Nn = Ni 242)
DNy + Nuo(-Dy) = Na (2.43)
Using Lemma 1.12, it is easy to show that D12 Ny, is a solution of equation (2.42) if and only if

there exists @ » € M(h)s.t.
Un : Vo
[-5125 ﬁlz] = [lef sz] e e (2.44)
Dy : —Nz

and using Lemma 1.13, (N3, D3) is a solution of equation (2.43) if and only if there exists



éne n'l(h)s.t.

N21 sz E ‘722 —én
Dy Dy : ~Uxp|| Na

Using equations (2.41) and (2.45) in equation (2.3) we obtain
Ny Ny I o

P =

VaaNoi~N2Q» Nz || -UxNau-D20» D2

and by Fact 1.7.ii, performing e.c.0.’s on each of the matrices in equation (2.46) we get

NytNpOn Ny I o]
P =ND7! =
VaoNyy  Nz||-UxN2y D2
Similarly, using equations (2.41), (2.44) in equation (2.4) and by Fact 1.7.ii and e.r.0.’s

AT ~ -
I —-NyUxn Ny+QxNyy NiVap
P = DN = ~
0 Dn Ny Ny
Using once again ND = DN, and equations (1.11), (2.47), (2.48), we obtain

Ny + N1pQp = Ny + QN = Ny
and hence, equations (2.35)-(2.36) follow.
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(2.45)

(2.46)

(2.47)

(2.48)

(2.49)
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SECTION III

Compensator Synthesis

In this section we describe the set of all compensators C such that, for a given Z—admissible P,
the system Z(P, C) is h —stable.

By Corollary 2.7, if the given P is not E-admissible , then (P, C) cannot be made h —stable
by any C. Therefore we make the following assumption.
3.1. Assumption : Let assumptions (2.1)-(2.9) hold and let P be Z-admissible . Hence, by Theorem
29, P is described by equations (2.35) and (2.36).

Assumption 3.1 holds throughout this section.
32. Definition : C is called an M —stabilizing compensator for P (equivalently, C
h —stbilizes P) iff C is E-admissible and X(P, C) is /1 —stable.
3.3. Definition

S = {C :C h- stabilizes P ) (.1)
is called the set of all A —stabilizing compensators (for given P in the configuration (P, C) ).

3.4. Definition
A,=1(H, :CeS) (32)

is called the set of all achievable I/O maps of Z(P, C).

3.5. Theorem

Let P € M (g ) be given and let Assumption 3.1 hold. Assume that P € 72 (g ,). Then the

set of all stabilizing compensators S is given by equation (3.3) or, equivalently, equation (3.4) below.
-~ -1 ~
I -Q' 1Ny Q'n QuDz

0 VurQ'nNy| | Q%% UxptQ'nDn

101,01 Q. Q' nem@) ) 3.3)
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Q’u Q"m I 0 -1

Dp0'n UptDpO'n || -Nuoln Vr-Nul'n
: Oy Oz Ot One M(B) ) (34)

where the matrices Q";; and Q‘;,- are of suitable dimensions.

3.6. Comments : 1) Theorem 3.5 shows that, given a Z-admissible P with P e M (g ,), the
class of all h-stabilizing compensators C is parametrized by four parameters : Q’yy, Q'12, Q214
Q'nem (h ): indeed, the theorem shows that the map (Q’;; , Q12,821 » Q') b C is surjec-
tive, and Lemma 3.7 below shows that this map is injective.

2) If Ppe M(g) instead of M (g ,), then in equations (3.3) and (3.4) we take those Q‘» and
e M) st det(Vo-0'niVz) € L and det(Vor-N0'2) € L. Lemma 1.14 guarantees that

if Py e M () these determinants are € & forall Q'n, 0ne M ().

3.7. Lemma : The map (Q"1; , Q"12, Q'21 , Q') > C defined in equation (3.3) or (3.4) is injective.
Proof : Consider
-~ -1 —~
I —-Q’:Nn 2'n Q'12D2

C =D"N' = _ _ (3.5)
0 VyuQ'nNy Q'n UyptQ'nDpn

and
O'n 0 I 0 -1
C=ND"= . ) (3.6)
D0y UxptDnQ'n||-N2Qxn Vir-NzuQ'»n
ThenC = C iff
D'N' = N'D’ 3D

Using the generalized Bezout Identity equation (1.11) in equation (3.7), and substituting for

D’ ,N’, N’ , I’ from equations (3.5)-(3.6) it is easy to verify that

C=Cifandonlyif @y =01 Q=01 Qn=0nad Q=0 (33
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Let G = N'D™' = D™V’ and consider C = N'D"* with 8”11, @"12» Qa1 O 'z replacing the 0';’s
in equation (3.6). Then by equations (3.7), (38), (L.11), € =C <=> ND"'= ND"' <=>
PN = ND™ <=> @y =0'n O2=0"2 On=0% 02=0

This shows that there is a one-to-one correspondence between the "free” parameters Q 15, Q@ 12,
Q9,0'nen (h ) and the compensator C. Equivalently, suppose P is a given Z—admissible plant
and we have chosen a particular rcfr. (N,D), lLcfr. (D, N) as well as particular matrices
Uaxn, ﬁn, Va f"n s.t. equation (1.11) holds. Then corresponding to each C € S, there is unique
0’11, @'12 @'z, Q' s.t. C is given by equation (3.5).

n

Proof of Theorem 3.5 : We prove only equation (3.3) since the proof of equation (3.4) is similar.
Since by assumption, P is Z-admissible , C h —stabilizes P if and only if C is Z—admissible and
equation (2.32) holds. Then, by equation (2.38) and Lemma 1.12, C R —stabilizes P iff for some

0'11,0%2.0% »0ne M) and U’y , V'y satisfying the generalized Bezout equation (2.9),

(3.9

0 Vu-Q'nNx 0s Upt+Q’'nDrn

I -0U'n ] [Q n QnuVa
In equation (3.9) we used the fact that, by Lemma 1.14, det(V -0 'zzﬁm) € l forallQ',e M (h )
and hence by Lemma 1.12, (V 2-Q “nN2)™ (U+Q ‘D2 is a legitimate left-coprime factorization of
C o = D'7N'y». From equation (2.24), '

Vip = Dy , U'p = Ny (3.10)
satisfies equation (2.9). Therefore using equation (3.10) in equation (3.9) , we use the lc.fir. of C

which is given in equation (3.3).
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3.8. Corollary : Let the assumptions of Theorem 3.5 hold. Then the set of all achievable I/O maps

A yu i8 given by equation (3.11) below.

[ BitN 100 s NiVar-0'nlz) | NpQ'n  NigUztQ'mbo |

TarN2QVn - NulVarQ'ulVz)
A,. = e e :
-0 12Ny : -Q'1:N»n

NzQ'n i Np(Uxt+Q'nDy)

Q2 0’120

e o o

D20 2 | TztDuQ'2Nn | Dul'n | DuUartQ'nbn)|

: Q' Q' Qnem) ) (3.11)
Proof : Substitute equations (3.3)-(3.4) into equation (2.14).

]
3.9, Comments : 1) Note that the set of achievable I/O maps A yu in equation (3.11) uses the rcfr.

in equation (2.35) for P. Similarly, we could use.a Le.fx. of P in equation (2.36) to obtain the set of
all achievable I/O maps.

2) The parametrization of all h —stabilizing compensators has four degrees of freedom as seen from
equations (3.3)-(3.4). Each of the closed-loop maps depends on only one of the four parameters

Q1. 0"12. Q’xn, Q’n. Consider for example H, .-, = N1,Q s which has N 15 as a left factor. In the
case that I = Ry as in Example 1.3, this implies that the U-zeros of Ny, are also l-zeros of Hy .
In the case where Ny, is square, if we wish to diagonalize the map H, ,- : u’, »y’, ,the "free"

compensator parameter Q ‘; should be chosen appropriately (see [Des.4]).

Conclusions

In this paper the analysis of linear time-invariant control systems was extended to the system
configuration in figure 1. Although the results are essentially contained in [Net.1], the techniques used
are simpler and do not require the introduction of new concepts. The present derivation follows in
spirit the one used in design with the previous system configurations S ;(P, C) and S,(P, C). 'I"hese

systems are in fact special cases of the system X(P, C) considered here.



24

The concept of E-admissibility is of key importance here because the system ZP,C) can be
h —stavilized only if all the "instabilities” of the plant P are "included in " Pz. Note that Py is the
only partial map of the plant P in the feedback loop. Similarly, the stabilizing compensator has to be
also T-admissible . The parametrization of these compensators has four degrees-of-freedom. Each of
the I/O maps achieved by the system =(P, C) depends on one and only one of the four free parameters
01,012,002, énd Q’x». Therefore, the map H, .- :u’, F>Y,, which depends on Q'3 can
be chosen independently of the map from u, to y,, which depends on Q y» . In [Des.4], the map
H, .- was diagonalized in the case that P, is square. The asymptotic tracking at y, of a class of
input signals going into u’, was discussed in [Des.5]. This parametrization may further be used in

optimal design problems and in fault diagnosis via the compensator output y ',' .



References:

[Ast1]

(Bou.1]

[Cal.1]

[Che.1]

[Chenl]

[Coh.1]

[Des.1]

[Des.2]

[Des.3]

[Des.4]

[Des.5]

K. J. Astrom, "Robustness of a design method based on assignment of poles and zeros,"

IEEE Trans. on Automatic Control, Vol. AC-25, pp. 588-591, June 1980.

N. Bourbaki, Commutative Algebra, Reading, Mass. Addison-Wesley, 1970.

F. M. Callier, C. A. Desoer, Multivariable Feedback Systems, Springer-Verlag, New
York-Heidelberg-Berlin, 1982.

L. Cheng and J. B. Pearson, "Frequency domain synthesis of multivariable linear regula-
tors”, IEEE Trans. on Automatic Control, vol. AC-26, pp. 194-202, Feb. 1981.

C. T. Chen, Linear System Theory and Design, CBS College Publishing, 1984,

P. M. Cohn, Algebra, Vol. 2, John Wiley, New York, 1977.

C. A. Desoer, R. W. Liu, J. Murray, R. Saeks, "Feedback system design: the fractional
representation approach to analysis and synthesis,” IEEE Trans. on Automatic Control,

vol. AC-25, pp. 399-412, 1980.

C. A. Desoer, M. J. Chen, "Design of multivariable feedback systems with stable plant,”

IEEE Trans. on Automatic Control, vol. AC-26, pp. 408-415, April 1981.

C. A. Desoer, C. L. Gustafson, "Algebraic theory of linear multivariable feedback systems,”
IEEE Trans. on Automatic Control, vol. AC-29, pp. 909-917, Nov. 1984

C. A. Desoer, A. N. Giinde§. "Decoupling linear multivariable plants by dynamic output
feedback: an algebraic theory”, IEEE Trans. on Automatic Control, vol. AC-31, pp. 744-
750, Aug. 1986

C. A. Desoer, A. N. Giinde;, "Algebraic design of linear multivariable feedback systems,”
UCB/ERL M85/43, 1985; also Proceedings of the IMSE8S Conference at the Univer-

sity of Texas at Arlington, published as Integral Methods in Science and Engineering ,

Hemisphere Publishing Company, pp. 85-98, 1986.



(Doy.1]

[Hor.1]

[Jac.1}
(Kai.1]
[Lang 1]
[Mac.1]

[Net.1]

[Per.1]

[Ros.1]

[Sae.1]

(Sig.1]
[Vid.1]

[Vid.2]

[You.1]

[Zam.1]

26

J. Doyle, ONR/Honeywell Workshop lecture notes, October 1984.

1. M. Horowitz, Synthesis of Feedback Systems, Academic Press, New York, London,

1963.

N. Jacobson, Algebra, vol. 1, W. H. Freeman & Co., 1980.

T. Kailath, Linear Systems, Prentice Hall, 1980.

S. Lang, Algebra, Addison-Wesley, 1971.

S. MacLane, G. Birkhoff, Algebra, 2nd ed., Addison-Wesley, Reading, Mass., 1979.

C. N. Nett, "Algebraic Aspects of Linear Control System Stability,” IEEE Trans. on

Autom. Control, vol. AC-31 pp. 941, 949, Oct. 1985.

L. Pernebo, "An algebraic theory for the design of controllers for linear multivariable feed-
back systems,” IEEE Trans. on Automatic Control, vol. AC-26, pp. 171-194, February
1981.

H. H. Rosenbrock, State Space and Multivariable Theory, J. Wiley, 1970.

R. Saeks, J. Murray, "Fractional representation, algebraic geometry and the simultaneous
stabilization problem,” IEEE Trans. on Automatic Control, vol. AC-27, pp. 895-904,

August 1982,
L. E. Sigler, Algebra, Springer-Verlag, 1976.
M. Vidyasagar, Control System Synthesis: A Factorization Approach, MIT Press, 1985.

M. Vidyasagar, H. Schneider, B. Francis, "Algebraic and topological aspects of stabiliza-

tion," IEEE Trans. on Automatic Control, Vol. AC-27, pp. 880-894, August 1982.

D. C. Youla, H. A. Jabr, J. J. Bongiomo, Jr., "Modern Wiener-Hopf design of optimal con-
trollers, Part II: The multivariable case," IEEE Trans. on Automatic Control, vol. AC-21,

pp- 319-338, June 1976.

G. Zames, "Feedback and optimal sensitivity: Model reference transformations, multiplica-

tive seminorms and approximate inverses,” IEEE Trans. on Automatic Control, vol. AC-



26, pp. 301-320, April 1981.

.

27



28
Figure Captions:

Fig.1  The system Z(P, C)
Fig. 2  The system Z(P, C) after factorization

Fig. 3  The system (P, C) with Z-admissible P and Z-admissible C . Note that
all the instabilities of Py; , Pys , P are a subset of those of P, i.c., of those generated

by D %' . Note the duality between the block diagrams of P and C.
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