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Abstract

This paper presents an algebraic theory for linear time-invariant multi-input multi-output systems with

two-input two-output plant and compensator, using the factorization approach. This system

configuration considered by Doyle and Nett is most general in that any interconnection of two systems

can be represented in terms of this scheme. Other system configurations encountered in compensator

design problems are special cases of this system configuration. The analysis and synthesis applies to

continuous-time as well as discrete-time systems, lumped as well as distributed systems since the alge

braic setting is completely general. The compensator parametrization has four degrees of freedom. The

paper is self-contained and is tutorial in the sense that it develops the main results of Nett without intro

ducing the concept of containment

Research sponsored by the National Science Foundation Grant ECS-8119763.



INTRODUCTION

The algebraic theory of multi-input multi-output linear time-invariant (l.t-i.) systems rests on a

few basic papers [You.l], [Des.l], [Per.l], [Vid\2]. From then on, a large number of papers followed

and Vidyasagar's book, [Vid.1], gives a systematic exposition of their results using the factorization

approach, and includes a detailed list of references. We list some of these papers and books at the end

[Astl], [Cal.l], [Chen 1], [Che.l]. [Des.2], [Doy.l], [Hor.l], [Kai.1], [Ros.l], [Sae.l], [Zam.l].

[Vid.l] considers two system configurations: first the unity-gain feedback system S\(P,C) in

which both the plant and the compensator have one vector-input and one vector-output and second, the

system 52(/>, C) in which the compensator has two vector-inputs and thus, one added free parameter.

[Vid.1] parametrizes the set of all stabilizing compensators and the set of all achievable input-output

(I/O) maps for S\(P, C) and for S2(P, C). Since [Vid.1] contains a complete list of the related work

up to 1985, we will not repeat these references here.

After [Vid.1], two-parameter design was used on a one vector-input two vector-output plant in

[Des.4,5], and the I/O map from the exogenous input of the compensator to the output of the plant was

diagonalized by adjusting one of the two free parameters. More recently, necessary and sufficientcondi

tions for stabilizing a feedback system with two vector-input two vector-output plant and compensator

blocks was presented in [Netl]. This feedback configuration is a generalization of S^P ,C) and

Srf? , C) and it will be called E(/\ C) in this paper.

The feedback system Z(F, C) is made up of a two vector-input two vector-output plant and com

pensator (see figure 1) and is the object of our study. Note that in our feedback configuration, we have

a negative feedback on the left summing node. For a given plant /», Z(P, C) has four degrees-of-

freedom and each I/O map that it achieves depends on one of these four "free" parameters. Therefore

for this configuration, more design requirements can be satisfied simultaneously. The plant P has two

outputs y0 and ym ; ym is the measured-output, which is used in feedback to C. The I/O map from u'„

to y0 depends on one of the four parameters whereas the maps from u\ , u0 , u t to y0 each depend

on one other parameter. Here u'a is the exogenous input and u\ , u0 >u\ model the disturbances at



the measured-output plant input and the compensator output respectively. The compensator output v'0

is not utilized by P; we view y '„ as an output used for performance monitoring and fault diagnosis.

The objective of this paper is to present systematic and straightforward algebraic development of

the feedback system Z(P, C). Our approach is different from that of [Netl]. First of all, by systemati

cally using the algebraic techniques used for Si(PtC) and S2(P,C) , we derive the stability condi

tions in [Netl] and the set of all achievable I/O maps straightforwardly. Our approach does not require

the use and the properties of Nett's concept of containment The admissibility requirements [Netl] fol

low direcdy from the analysis. Intuitively, the admissibility of P can be viewed as follows: figure 1

shows that only the partial map P^\ e V*ym is in the feedback loop; hence the instabilities of

^n : «o *-> y«. ^21 : uo l-> Jm and /»12 : e l-> y0 must be "contained" in the instabilities of /»22:

this intuitive concept is made very clear by figure 3 which follows direcdy from our analysis. Second,

we start building our algebraic structure with aprincipal ring A as in [Vid.1], [Des.3,4,5]. Factorizing

in this H guarantees the existence of right and left-coprime-fraction representations (c.fj.), and more

over, of the standard forms (Hermite form in particular) of matrices with elements in lfl ( 712 (/&) )•

Third, the analysis is simplified by using a right-coprime factorization for P and a left-coprime factori

zation for C.

The reader is assumed to be familiar with some basic algebra; Appendix A, B of [Vid.1] is

sufficient background. [Sig.l], [Lang 1], [Bou.l], [Jac.l], [Coh.l], [Macl] may also be useful. For the

reader's convenience, we use [Vid.1] as a reference. Nevertheless, in order to make the paper self-

contained, we have collected the necessary algebraic results in section n and included short proofs

where needed.

The paper is organized as follows: Section I presents the algebraic structure and basic results.

Section II starts with the system description, analysis and problem formulation. H-stability and

E-admissibility are defined and the main H-stability theorem (Theorem 2.4) are presented in this sec

tion. The set of all stabilizing compensators S and the set of all achievable I/O maps A yK are

obtained in section m using the theorems of section II. Conclusions are also given in section III.

The following is a list of symbols and abbreviations.



l.t-i. linear time-invariant

I/O input-output

w.l.o.g. without loss of generality

s.t such that

u.tc. under these conditions

a := b a is defined as b

ej.o.'s elementary row operations

e.c.o.'s elementary column operations

r.c. (I.e.) right(left)-coprime

r.f.r. (Lf j.) right(left)-fraction representation

cfj. coprime-fraction representation

r.c.f.r. (l.c.f j.) right(left)-coprime-fraction representation

detA the determinant of matrix A

flltfl) the set of matrices with elements in h



SECTION I

Algebraic Preliminaries

In order to clearly separate algebraic facts from system analysis, in this section we collect relevant

definitions, known facts and prove a few lemmas which will be useful in the analysis of 1(P, C).

1.1. Notation [Lang 1, p.71-77], [Vid.1, Appendix A, B]:

h isa principal ring (i.e. an entire commutative ring in which every ideal isprincipal).

I c It is a multiplicative subsystem, 0 & I , lei.

J c H is the group of units of H .

g =h II is the ring of fractions of H associated with I.

g M( Jacobson radical ofthe ring g ) := [x eg , : (1 + xy )_1 e g for all y e g }.

12. Facts

i) I =the set of units of g which are in h .

ii) Let Ae m(h)tB e m(g). Then a) A"1 e Vfl(A) iff detA e j and

b)B-leffl(g) iff detB e I. (U.tc. A is called h-unimodular, and B is called

§ -unimodular.)

iii) Let 7e/n(g,), X.Z e m{g). Then XT, YZ e m (g,), and (/+XT)-1,

(/+FZ)-1 e m(g).

13. Example : Let M ^ €+ be a closed subset of €, symmetric about the real axis, and let € \ U

be nonempty. Let U := U yj {oo}. Let h -Ru{s):-Ha& ring of proper scalar rational functions

which are analytic in U . Let I be the setof elements ofRu s.t / e I , implies / (oo) = a nonzero

constant Then g is the ring of proper rational functions in s, J is the set of elements of Ru with

nozeros in U, and g t is the setof strictly proper rational functions (i.e. goes to0 as s -> oo).



1.4. Lemma

i) Let a, b e A. Then ab e J i& a and b e J .

ii) Let c, d e A. Then cd e I iff c and </ e 1 .

Proof: i) (=> ) ab =: ue j => b_1 e A, (u'la)b =1and a(forl) =1 => 6 6 A has

inverse u~la e A, and a e A has inverse bu~l e A, =>b e J and a e J .

( <= ) is immediate since J is a group.

ii) ( => ) erf =: v e I => v"1 e g, (v~lc)d =1, c(Jv_1) =1=> d eh has inverse

v~lc e g , and c e A has inverse dv~l eg => d, c e I.

( <= ) is immediate since I is a multiplicative system.

1.5. Definition

i) The pair (N, D) e 771 (A) is called right-coprime (r.c) iff there exist tf, V e 771 (A) s.t

UN + VD = / (1.1)

ii) The pair (N,D)e 171 (A) is called aright-fraction representation (r.f.r.) ofP e /71(g)

iff

D is square , det£> el and P = M)"1 (1.2)

iii) The pair (N,D) e 771 (A) is called a right-coprime-fraction representation (r.cf.r.) of

P € 771(g)iff(JV,1)^3^.0^ and (AT, Z>) is r.c.

1.6. Definition

i) The pair (D,N) e ffl(h) is called left-coprime (l.c.) iff there exist U, V e JTl(h) s.t

NU + DV = / (1.3)

ii) The pair (D, AT) e 771 (A) is called a left-fraction representation (l.f.r.) of P e 1YI (g)

iff

£> is square , detD e I and /» = Z>_1W (1.4)

iii) The pair (D,N) e ffl(H) is called a left-coprime-fraction representation (l.c.f.r.) iff

(D, AO is a l.fj. ofP and (I>, Anisic.



1.7. Facts [Vid.1, chap. 4]

i) Every P e 771 (g ) has ar.c.fj. (N, D) e 771 (A) and a l.c.fj. (D, AO e 771 (A ) because

A isa principal ring.

u) Let (Af.D) be a r.c.fj. of P e 771(g). Then (X, 7) is a r.fj. (r.cfj.) of F iff

(Y, 7) =(JVR, Drt) for some g -unimodular (A -unimodular) J? e 771 (A ).

iii) Let (D, A?) be a l.cf.r. of P e 771 (g). Then (X, 7) is a l.fJ. OofJ.) of /» iff

(Y, 7) o (LD, Itf) for some g -unimodular (A -unimodular ) L e 771 (A).

iv) Let (Af.D) be a r.c£r. and (DtN) be a lxXr. of P. Then there exist

U,V,U,Ve 771(A)s.t

' u v " AT V ' I 0

. 5 -^ . . 0 -u . . 0 /

(1.5)

Equation (1J) is called the generalized BezoutIdentity for the coprime-fraction representations (cf.r.)

ofP.

1.8. Lemma [Vid.1, Netl]

Let (JV\ D) and (5, AT) be a r.c.fj. and a Lcfjr. of P e 771 (g ), respectively. Then there

exists nti e J sL

detD = nti detD

Proof: By Fact 1.7.iv, using obviousnotation, we writeequation (1.5) as

(1.6)

MXM2 = / ; MltM2e m(h)
Then detAf x and detA#2 € A ; moreover, detAf idetAf2=1e A . By Lemma 1.4.i, detAf, =: otj

e J . Then detAf i = det
/ 0 U V U VD / 0

o 5 det
I -P

= detD
I -N

det
0 D-1

. By ej.o.'s

in A ,detA*! =detD de^WV+VDXdetD)-1 =detD detD-1 =n%i e j , and equation (1.6) follows.

Comment: We say that detD is equivalent to detD, denoted detD = detD, if and only if there exists

nti e J s.t equation (1.6) holds. Clearly, with detD , detD e A , "="is an equivalence relation



on A. Similarly, with a e A , a = 1 is equivalent to a e J .

The following lemma is useful in studying the equations describing the system in section II.

1.9. Lemma : Let
r a 1 r at

= E
L B J LD J

and let [A \ 5 J= [N \ 5 JF, where

E , F e 771 (A ) are ofappropriate dimension. Then

i) for all A-unimodular E , the pair (AT, D) isr.c. iffthe pair (A, B) is r.c.

ii) for all A-unimodular F , the pair (D, AT) is l.c. iffthe pair (£, A) is l.c.

Proof: i) (Af.D) is r.c. <=> there exist U ,V e 171 (h) s.t

[u \ v] ••• =/ =([ry : v ]js-») A

L *
<=> (A, B ) is r.c.

ii) The proof is similar to part (i).

Because of our interest in the system 1(P, C) shown in figure 1, we partition P and exhibit a special

c.fj. of it Note that every P e 771 (g ) has both a r.cfj. and a Lc.f.r. by Fact 1.7a. The following

lemma states that these afj.'s can be put into a special form.

1.10. Lemma : Let P =
^11 ^12

7*21 ** 22
e 771 (g). Let

(#22* D 22) be a r.c.f.r. and (D22, #22) be a l.c.f.r. of 7*22- (1-7)

Then there exist Afu ,Nl2 , N2i ,Dn , D21 ,*22 e 771 (A) ; Dn , D12 , Nn ,#12 , #21 »^22

e 771*(A) s.t

i) (Af,D)=:(
*n "12

A^21 A^22f 22

D„ 0

D21 DzJIq ) is a r.c.fj. of P.

ii) (D,A0=:(

Moreover,

011 J>12

0 L22P22

Nn Nn

N2X L^-xi ) is a l.c.fj. of P.

iii)
detD / . detD /

€ I and =— e I
detD 22 detD22

(1.8)

(1.9)

(1.10)



1.11. Remark (Generalized Bezout Identity for the c.f.r.'s of P22)

By Fact 1.7.iv there exist U22 , K22 , #22 »^22 6 771 (A ) s.t

Un

D22 -Nn

Nn

D72

V11

-Un

= / (1.11)

Proof of Lemma 1.10 : By Fact 1.7.iv every P e 771 (g) has a r.c.fj. (call it (Y, 7) ) and a

l.c.f.r. (call it(7,Y)).

i) By the existence ofthe Hermite Column Form [Vid. 1, Appendix B] there is an A -unimodular R

s.t YR=:
Dn 0

D21 D22
6 771(A) and XR-.

*n Ni2

N2! N22
m(h).

Now det7 e I => detDndetD22 e I -> detD22 e I by Lemma 1.4ji Then (N^D^

is a nfj. of P^. Bv F*ct 1.7ii, (P&Dri - (#22*22.022*22) for some g-unimodular

#22 € 771 (A) and the result follows.

ii) Same as the proof of (i), except the Hermite Row Form and Fact 1.7.iii are used.

iii) From equation (1.8), Dn ,D22 ,*22 e 771 (A ) , detD e I and detD =detD11detD22deti?22 •

• • detD *
By Lemma 1.4.ii, each factor is in I andhence, detD e I <=> detDndet^22 = ~r^— e ' • The

Q&UJ22

second equality in equation (1.10) is proved similarly.

•

1.12. Lemma : LetP22 e 771 (g ,). and let statement (1.7) hold. Consider the equation

D/22D22 +Af'22^22 = ' (U2>
Then (D'22, W'22) e 771(A) is a solution of equation (1.12) if and only if there exists '̂22

e 771 (A ) s.t

[jv'22 ! D'22] =[/ : fi'22]

Proof : (<= ) Suppose equation (1.13) holds. Then N'ziNn +D'zPn =I#'22 '̂22J

=[/ fi'22] 5 _at D22 =f7 2"J [0J=7' where ^ third ^"^^ follows fro™

I/22

^22

722

-#22
(1.13)

#22
D22



equation (1.11).

( => ) Since equation (1.12) holds, we have

[0'22 tf'22]
where Q'22-^s^-#'22^22 e 771(A).

#22 V22

D22 —1^22 =[/ fi'22 ]

Multiplying both sides by
#22 Vn

022 -#22
, and using equation (1.11), we obtain equation (1.13).

10

(1.14)

1.13. Lemma : Let7*22 e 771 (g), and letequation (1.7) hold. Consider the equation

D220/22 + #22#'22=/ (U5)

Then (N '22,0 '22) is a solution of equation (1.15) ifand only ifthere exists (2a e 771 (A )s.t

0'22l [#22 ^22 I[-fiW
-ATijJ =[022 -#22] L * .

Proof: Entirely analogous to the proof of Lemma 1.12.

(1.16)

1.14. Lemma : Let 7*22 e 771 (g,). Consider equation (1.12). Then for all fi's» G'22 € 771 (A),

the following properties hold.

i) det(V22-Q'22^22) e I

ii) det(K22-#22fi/22) e I

Proof: Using the Bezout identity for (AT22* 022) from equation (1.11), we obtain

(Yn-Q'z^-1 = [(^22022- Q'v&vPT^aTl

= 022t / - #22^22 " Q/22#22022]"1

Similarly, using the Bezout identity for (D22. #22).

(1.17)

(1.18)

(1.19)

(V22 ~ #22fi/22)"1 » ( / - #22^22 - 022#22fi'22)"1022 (1.20)
Now /» e 771 (g ,) implies that both #22 =PnP22 and #22 = 0227*22 e 771 (g ,). Consequently,

the product of either N22OT N22 with any matrix in 771 (A) is also in H%(g ,). Since 771 (g ,) is

closed under addition, the inverses in equations (1.19) and (1.20) are of the form (/ + 7*)~l with

Te 771 (g,) ; hence (/ +T) e 771 (g) by Fact 1.2.iii. Therefore, det(/ +T)e i by Fact 1.2.ii

and equations (1.17), (1.18) follow.
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SECTION n

Problem and System Description

Consider the system £(7*, C) in figure 1. In the case that A = Ru as in example 1.3, assume

that P and C have no "unstable hidden dynamics" so that an I/O representation is valid.

We impose the following assumptions on £(P,C) . Note that by Lemma 1.10, any

P e 771 (g) and any C e 771 (g) has the following cfj.'s.

2.1. Assumptions:

i) P =
** 11 ^12

7*21 **22
6 771(g)

(A^22» 0 22) is a r.c.fj. of P 22, (D22. #22) is a Lcfj. of P 22

Then by Lemma 1.10

(AT,D) = (
'*„ Af12 "
A^21 #22*22

•

0n 012

0 • '̂22022
»

011 0

021 022*22

tfn -%
#21 ^22^22

) is a r.c.fj. of 7»

(0,AO = ( Sr_. r„w„ ) is a Lcfj. of P

By Fact 1.7.iv,the generalized Bezout identity equation (1.11) holds for the cfj.'s of 7*22.

ii) C =
Cu Ci2

C21 C22
em(g)

(tf'22,0 '22) is a r.c.f.r. and (D^, #'22) is a LcfJ. of C22

Then by Lemma 1.10 applied to C,

(D',Aro = (

(AT,D0 = (

0'll D\2 '
0 L 22D22

»

N'n N\2

N'n Ar'22* '22. >

Af'22 _*L2
N'2X L 220 22

0'n 0

0'21 D 22* 22

) is a Lcfj. of C

) is a r.cfj. of C

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

By Fact 1.7.iv, the generalized Bezout identity for C22 reads as follows: There exist 17'22, V'22,

tf'22. '̂22 s.L

U'22 7'-22 AT22 V.22

= / (2.9)

D'.22 -N'.22 D'22 -U'22
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2.2. Comment: ByFact 1.7Ji, any other r.c£r. (X, 7) ofP is given by(X, 7) = (NR ,DR) , where

(AT, D) is the r.cfj. in equation (2.3) and R e 771 (A) is A-unimodular. Similarly, by Fact 1.7.iii,

any other Lcfj. (7, X) of P is given by (7, X) =(ID, LAT) where (D, AT) is the l.cf.r. in equation

(2.4) and L e 771 (A ) is A -unimodular. Since the same holds for any other cfj.'s ofC, there is no

loss of generality in taking the cf.r.'salways as in equations (2.3)-(2.4) and (2.7)-(2.8) respectively.

Analysis of £(P,C)

Using the representations of P and C as in Assumptions (2.1)-(2.9) we redraw the system

2(P, C) as in figure 2. Let y?=

by:

y<> *o t

y* ..._ Bi p._ v'
/ « " o /

. Then Z(P, C) is described

AT

D
;

0 0

N2X N22R22
• •

•

0 0

0 -/

D'
y'o

7-

=

r

/

0

• 0

U0

»1

u'o

«'l

N 0

\ ' ya

ym

=

0 / y'o

y'»

y'o

Using obvious notations we write equations (2.10a)-(2.10b) in the form

DHk=NLu

NR\=y

(2.10a)

(2.10b)

(2.11)

(2.12)

By e.r.o.'s in A , E
NR

D 0

0 0

AT 0

0 7

5

A

where, by inspection, (A, B) is r.c.

Hence, by Lemma 1.9, (Wr, Da) is r.c. Similarly, by e.co.*s in A ,

[0* i Nl]f =
0 0

0 D'

/ 0

0 N'

,. [, : ,] where, by inspection, (2J, A) is Lc
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By Lemma 1.9, (DH, NL) is Lc

If detDjr e I , then from equations (2.10)-(2.12) weobtain H:JU

U0 ya

«1
l->

ym

y'o

.«'l. .*'«.

e 771(g)

since HJU =NRDjjlNL
In terms of P andC, 7/>H is given by

7*ii-Pi2(rr1c227»2i /•uCrr1 Pn(TTlC2i 7*12(Tr1C22

(7-P22(rr1C22)7»2i /,22(rr1 Pn(TTlC2i P22(rr1C22
-Ci2(I-PniTTlC^P2i -CifnOrr1 Cn-C^P^T^Cn C12(/-P22(7'r1C22)

-a,r1c227,2i or1-/ (rr'ca on^ca

where T :=I+C22P 22.

77,M =

2J. Definition : 2(P, C) is called A-rtoMe if and only if Hyu e 771 (A ).

(2.13)

(2.14)

The following theorem is essentially contained in [Net 1].

2.4. Theorem (A-stability of£(P, C))

Consider I(PtC) shown in figure 2. Let Assumptions (2.1)-(2.9) hold. Then the following statements

are equivalent:

i) Z(P, C)is A-stable
ii) detD/, = 1

iii) detD = detD22 and (2.15)

detD' = detDa and (2.16)

deKD'22022 + #'22^22) = 1 (2-17)

2.5. Remarks 1) Following Comment 22, equations (2.15)-(2.17) hold for any r.cfj. of P and any

Lcfj. of C as well as those in equations (2.3) and (2.7) respectively.

2) From equation (2.10a), calculate detDj, :

detD/, = det

D 0"
det

.0 0'.

/

0 0

Af2l #22*22

0

22^220 -RdDrl
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By e.co.'s in A ,

detDfl = detD detD' det(J +C^^ (2-18)

Since det(/ + C22P22) = det(/ + P 22C22).

detDj, = detD detD' det(/ + P22^22) (2-19)

Substituting P22 =#22022 and C22 =D'z^N'ninequation (2.18), we get

detD* =detD (detD 22)"ldetD'(detD'22)"1det(D'22D 22+^22^22) (2-20)

and substituting P22 =022^22 and C22 =#'220'22 inequation (2.19), we get

detDjf = detD (detD22)"1detD'(detD ,22T1d&t(D22D'^N^'n) (2-21>

Equations (2.17)-(2.21) are important for compensator design, and have important interpretations: First

the form of equations (2.18) and (2.19) are reminiscent of standard form for detD# when 7* and C

both have one vector-input and one vector-output as in the system Si(P, C); the difference is that,

instead of det(7+CP), in (2.18) we have de\{I+C22P22). This modification is natural since the feed

back affects only the second inputs and outputs of P and C. (Similar comment holds for (2.19)).

Second, equation (2.17) is simply the requirement that the feedback-loop be A -stable . Third, consider

equation (2.20) together with (2.15)-(2.16). Conditions (2.15)-(2.16) express the necessary and sufficient

condition for P to be stabilizable by the scheme 2(7*, C) of figure 1: indeed, if either one fails, it is

easy to see that for all compensators C satisfying (2.5)-(2.6), Z(P, C) will not be A-stable. These

restrictions on the class of plants is a consequence of the fact that the feedback only includes the plant

input e and the plant output ym.

3) Using equations (2.20) and ( 2.21), Theorem 2.4 states that I(P, C) is A -stable if and only if each

of the factors in detD// is in J . Therefore, w.l.o.g. if det£>//= 1 then, by normalization,

D'22D22 + Af'22#22 = / (2-22)

DioP'n + NisN'22 = / (2.23)

Since 7*22 = ^22022 - 022^22. and C22 = D'nN'21 - N'n^'ix » w© have the following important

conclusion :

If Z(P, C) is A -stable, then, with the above normalizations,



4) Note that

#'22 D'22 #22 D'22 / 0

022 -#22 022 -#'22 0 I

detD

detD 22
= (detDndet/?22) - 1

de?/ =(detD'ndetL'22) =1
detD'22
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(2.24)

(2.26)

(2.27)

Equations (2.26) and (2.27) imply that P22 and L'22,0n and D'n are A -unimodular, that is, P is sta

bilizable by C if and only if the only source of instability in P is D 22 (or D22) (see figure 3 ).

5) Note that the equivalence of the conditions in Theorem 2.4 does not require the special assumption

that Z(P, C) be well-posed [Vid.1]. Any of the equivalences guarantees well-posedness as well as

A -stability.

•

For convenience, following (Netl] we define

2.6. Definition : P ( C ) is called Inadmissible if and only if detD = detD22 (detD' = detD'22

. respectively ).

From equations (2.3), (2.7) and (2.26), (2.27), and by Lemma 1.4j, P (C) is inadmissible if

and only if detDn = 1 and detP^ = 1 ( detD'u = 1 and detL'22 = 1 respectively). W.Lo.g. by

suitable normalizations, P is ^-admissible if and only if

Du = / and R22 = * (2-28)

and C is ^-admissible if and only if

D'n = / and L'22 = I- (2.29)

From Remark 2.5 and Definition 2.6 we reformulate Theorem 2.4 as [Netl]

2.7. Corollary : Let assumptions (2.1)-(2.9) hold. Then L(P, C) is A -stable if and only if

P is ^-admissible and (2.30)

C is ^-admissible and (2.31)

D'22D22 + #'22^22 = ' (2.32)
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2.8. Comments : 1) P e 771 (A) if and only if P is L-admissible and P22 e 771 (A).

2) Consider the system Si(P, C) in which both P and C each have only one vector-input and one

vector-output (see for example [Des.3], [Vidl]). Then P and C are automatically L-admissible , and

hence A-stability ofSi(P,C) reduces to the well known equation (2.32).

•

Proof of Theorem 2.4 : (i) => (ii) The map Hy>mUl: u^y'„ is given by 77,^

=(/+C22P22r1-/. Z(T\C) is A-stable =>Hy>mUl: «il-> y'm 6 771 (A) , =>

(I+C22P22T1 e 771 (A) and hence,

det(7 +CjjP22)"1 e A (2.33)
From equation (2.18),

(detDj,)-1 = (detDY\detD'Tx det(7 + C22P22)"1 (2-34)

By assumptions (2.1)-(2.9), detD € I and detD' € I , and by equation (2.10a), DH e 771 (A). Thus

detD/f € A and using equation (2.33) and (2.34), (ds\DH)~l e g. Therefore, detDw e I. Since

(NRtDH) is r.c, and (DH>NL) is Lc, H^ =#«D1T1#L e 771(A) implies that D^1 e

771 (A ) [Vid.1]. By Lemma 1.2.ii, detD^ = 1.

(ii) => (0 By Lemma 1.2.ii, detDj, e j => 77,M =NRDuxNL e 771 (A ).

(ii) => (iii) Consider equation (2.20). By Lemma l.lO.iii, and Lemma 1.4.i, and since

det(D'22D22 +#'22^22) e A,

detD detD' — — •
detDn = -22Hi __ det(D'22D22+#/22'v*22) e /

detD 22 detD'22

detD * detD' * — —* *
if and only if each of the factors -r—-— e J , =— e 7 and dQt(D'22D22+N'22N22) e J and

detD 22 J detD'22

hence, (ii) <=> (iii).

•

With Definition 2.6 in mind, we now parametrize the class of all L-admissible plants P and the

class of all L-admissible compensators C.
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23. Theorem (The Class of L-admissible Plants and Compensators)

i) Let assumptions (2.1)-(2.4) hold ; then P is L-admissible if and only if P has a r.c.fj. as in equa-

*ii : NX2 / : 0
(#,D) = (

722^21 : #22

»

—U22N21 : 022

/ ! "#12^22
A

Nn : #12^22

(0,AT) = (
0 022

>

N21 : N22

(2.35)

(2.36)

ii) Let C satisfy assumptions (2.5)-(2.9). Then C is L-admissible if and only if it has a l.c.f.r. as in

equation (2.38) an equivalently, a r.cix as in equation (2.39) below.

CD',#0= (

(#',z>0 = (

-Q'liU'n

D'22

Cii: fi'12^'22

»

q*:: N'22

fill : fi'12

^22*2 H : #'22

>

.-ry'22fi'2i

2.10. Comments : 1) Suppose we are given 1)P as in equation (2.1), 2) P22 factorized as in equation

(2.2), and 3) the Bezout identity for (#22,022) fr°m equation (1.11); then the general expression for

Ir-admissible plants, (2.36) shows that P is L-admissible if and only if a)

Pn - 7>12022^22P2i € 771 (A ), b) P12D22 e 771 (A), c) D22P21 6 771 (A) (cf. [Netl, Lemma

(31)]).

2) Here we have chosen to call the three compensator parameters Q'n, 2'i2» £'21 e #* (A) instead

of #'llt #'12, #'21 ; in Theorem 3.5 below, we will see that Q'n. fi'12. fl'21 «» three of the four

"rree" parameters used in compensator design. Using fi'jy instead of #'y should remind us that these

parameters, unlike the given plant parameters #ii,#i2»#2i» can be chosen arbitrarily to meet other

design specifications. As far as L-admissibility is concerned, (#'22.0 '22). o* (D'22* N'22), are also

free; with the stabilization requirement (222) ((2.23), respectively), there is an additional constraint on

this pairof parameters resulting in four free parameters.

0

D'22

(2.38)

) (2.39)
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3) From equation (2.28), P is L-admissible if and only ifDn=7 and P22 =' • Consequently, the

r.cfx of P in equation (2.3) and the Lcfj. of P in equation (2.4) are each left with four "parameters":

Niu Nn, #21,021 and #n, #12.^21 ,0i2 respectively. Theorem 2.9 claims that there are in fact

only three independent "parameters", namely #n, #12, N2i.

4) From equation (2.35),

D-1 =

0

DnlU22N2i Dj£

Let A =Ru as in Example 1.3. Tlien L-admissibility ofP implies that every U -pole of Pu , Pi2

and P 21 is a pole of P22 with at most the same McMillan degree. This conclusion is obvious from

figure 3, where the block diagrams for L-admissible P andL-admissible C are obtained from equa

tions (235) and (2.38), respectively. Note the duality between these two block diagrams.

5) Consider figure 3 which shows I(Pt C) with P and C ^-admissible . Then clearly, L(P, C) is

A -stable if and only if the "loop" Si(P22» C22) is A -stabilized ;equivalently, equation (2.32) holds.

With u'0 =0, figure 3 reduces to the system considered in [Des.5], which considers a L-admissible

plant with one vector-input and two vector-outputs..

Proof of Theorem 2.9 : By Lemma 1.8, detD =detD and detD 22 =detC^. Consequently, from

equations (2.3) and (2.4), detDudetJ?22 = detDndetZ^ . Therefore from equation (2.28) and by nor

malization, P is L-admissible iff

0n = / »*22 = I , 0n = I »£22 = /

Using equations (2.41) in #D = DN we obtain

(2.40)

(2.41)

#12022 + (-012W22 = Ni2 (2.42)

D22#2l+#22(-02l)= N2i (2.43)

Using Lemma 1.12, it is easy to show that (D12, #12) is a solution of equation (2.42) if and only if

there exists <2z2 e 771 (A ) s.L

[-012 : #12] = [#12 I 622]
U 22

022

22

-#22

(2.44)

and using Lemma 1.13, (#21,02i) is a solution of equation (2.43) if and only if there exists



Qne m(h) s.L

#21

021

=

#22

022

^22

: -#22

-fi22

#21

Using equations (2.41) and (2.45) in equation (2.3) we obtain

# n # 12

P =

-1

V22#21—N22Q22 #22 m—r/22^21—0 22622 0 22.

and by Fact 1.7.ii, performing e.c.o.'s on each of the matrices in equation (2.46) we get

p = #D_1 =

P = D"lN =

N11+N12Q22 Ni2

VnNn Nn

Similarly, using equations (2.41), (2.44) in equation (2.4) and by Fact 1.7.iiand exo.'s

-1

0
-1

—U22N21 Dn,

I -Nx2Un Nn+QnN2i NnVn

Dn N2i Nn

Using once again ND = DN, and equations (1.11), (2.47), (2.48), we obtain

Nn +# 12&2 =#11 + fi22#21 -• #11
and hence, equations (2.35)-(2.36) follow.

19

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)
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SECTION m

Compensator Synthesis

In this section we describe the set of all compensators C such that, for a given L-admissible P,

the system L(P, C) is A -stable.

By Corollary 2.7, if the given P is not L-admissible , then I(P,C) cannot be made A-stable

by any C. Therefore we make the following assumption.

3.1. Assumption: Let assumptions (2.1)-(2.9) hold and let P be L-admissible . Hence, by Theorem

2.9, P is described by equations (2.35) and (2.36).

Assumption 3.1 holds throughout this section.

3.2. Definition : C is called an A -stabilizing compensator for P (equivalently, C

A -stabilizes P) iffC is L-admissible and Ij(P , C) is A -stable.

33. Definition

S := [C :C A-stabilizes P } (3.1)
iscalled the set ofall A -stabilizing compensators (for given P in the configuration 1(P, C)).

3.4. Definition

A yn i= { /7y„ i C e U J

is called the set of all achievable I/O maps of KP,C).

(3.2)

3.5. Theorem

Let P € 771 (g ) be given and let Assumption 3.1 hold. AssumethatP22 e ffl(g g). Then the

set of all stabilizing compensators S is given by equation (3.3) or, equivalently, equation (3.4) below.

-1

5= {
/ -Q 'i2Nn

0 Vn-Q'nFn

Q'll fi'l2022

Q'21 Un+Q'nPn

:Q\uQ'i2>Q'2i,Q'nern(h) ) (3.3)
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5= {
fin &12 -l

Dn&2\ 022+D22Qfn .-NnQf21 Vrr-NvfC^'n,

:fin,fi/i2.C/2i.fi'22e771(A) } (3.4)

A

where the matrices Q'y and Q'ij are of suitable dimensions.

3.6. Comments : 1) Theorem 3.5 shows that, given a Inadmissible P with P22 e 771 (g ,), the

class of all A -stabilizing compensators C is parametrized by four parameters : Q'n, Q'12. Q'21.

fi'22 e 771 (A): indeed, the theorem shows that the map (Q'n , Q'n .G'21 . Q'22) *-> C is surjec-

tive, and Lemma 3.7 below shows that this map is injective.

2) If P22 e 771 (g) instead of 771 (g ,), then in equations (3.3) and (3.4) we take those Q'n and

2'22€ 771(A)s.t det(V22-G '22^22) e 1 and det(V?22-^22fi'22) € 1. Lemma 1.14 guarantees that

ifP22 e Ttl(g ,) these determinants are e 1 for all Q'n* &n e 771 (A ).

3.7. Lemma : The map (Q'n , Q'12 *Q'21 >Q'22) *-» C defined in equation (3.3) or (3.4) is injective.

Proof: Consider

and

C = D^Af' =

A A A .

C = ATD*"1 =

/ -Q \2Nn

0 Vn-Q'nNn

-1

G'n <T:12

fi'll fi '12022

fi'21 Un+Q'nPn

-1

022^21 Un+DnQ'22
A *•«* A

. -Nn&2\ y22-NnQ'n.

(3.5)

(3.6)

Then C = C iff

D'JV* = #'D' (3.7)

Using the generalized Bezout Identity equation (1.11) in equation (3.7), and substituting for

D' ,#',#', & from equations (3.5)-(3.6) it is easy toverify that

C = C if and only if Q '„ = fin, fi '12 = fi'12, Q '21 = fi'21 and Q'n = fi'22 (3.8)
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Let C = frD"1 = D^#' and consider C =#'D^ with Q'n, fi'12, fi'21, G'22 replacing the fiVs

in equation (3.6). Then by equations (3.7), (3.8), (1.11), C=C <=> ND*-1 = #'D'"1 <=>

DH#' = #'DM <=> Q'n - fi'n, fi'12 = G'12. fi'21 = G'21. fi'22 = fi'22.

This shows that there is a one-to-one correspondence between the "free" parameters G'n» Q\2>

Q'21. fi'22 e 771 (A ) and the compensator C. Equivalently, suppose P is a given L-admissible plant

and we have chosen a particular r.cfj. (#,D), Lcfj. (D,#) as well as particular matrices

#22. #22, ^22, ^22 s.L equation (1.11) holds. Then corresponding to each C e 5, there is unique

Q 'n» Q '12, Q '21, fi '22 s.t C is given by equation (3.5).

•

Proof of Theorem 3.5 : We prove only equation (3.3) since the proof of equation (3.4) is similar.

Since by assumption, P is L-admissible , C A -stabilizes P if and only if C is L-admissible and

equation (2.32) holds. Then, by equation (2.38) and Lemma 1.12, C A-stabilizes P iff for some

fi '11 , fi'12 »fi'21 , fi22e 771 (A) and 7/'22 , V'n satisfying the generalized Bezout equation (2.9),

C =

/ -fi'l2#'22

0 Vn-Q'nNn

-1

fi'n fi'12^'22

Q '21 #22+G '22022

(3.9)

In equation (3.9) we used the fact that, by Lemma 1.14, detfYn-Q 'nNn) el for all fi '22 e 771 (A )

and hence by Lemma 1.12, (V22-fi'nNnT1 Wiz+Q'nDn) is a legitimate left-coprime factorization of

C22 = D'nN'n- Fr°m equation (2.24),

V'22 = 022 . #'22 = ^22 (3.10)
satisfies equation (2.9). Therefore using equation (3.10) in equation (3.9) , we use the l.c.f.r. of C

which is given in equation (3.3).
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3.8. Corollary : Let the assumptions of Theorem 3.5 hold. Then the set of all achievable I/O maps

A >M is given by equation (3.11) below.

Nn+Ni2Q'22N2i N^Vn-Q'nNn) Nl2Q'7X

(V22-N22Q'n)N2i Nn(Vn-Q'22Nn) NnQ'21

A-„ :— {

-G \2N21 -G'12*22 Q'n

-(U22+D22Q '22)^21 (Un+DnQ'n)Nn DnQ '21

: G'12, G'21. fi'22 e 771(A) }

Proof: Substitute equations (3.3)-(3.4) into equation (2.14).

N^Un+Q'nDn)

Nn^n+Q'nDn)

Q'uPn

Dn(Un+Q'22Dn)

(3.11)

3.9. Comments : 1) Note that the set ofachievable I/O maps A yu in equation (3.11) uses the r.cfj.

in equation (2.35) for P. Similarly, we could use a Lcf.r. of P in equation (2.36) to obtain the set of

all achievable I/O maps.

2) The parametrization ofall A -stabilizing compensators has four degrees of freedom as seen from

equations (3.3)-(3.4). Each of the closed-loop maps depends on only one of the four parameters

G'11, G'12, Q'21, G'22. Consider for example 77y#«', -NX2Q '21 which has #12 as a left factor. In the

case that A =Ru as in Example 1.3, this implies that the W-zeros of#12 are also W-zeros ofHy0u'0-

In the case where #12 is square, if we wish to diagonalize the map Hj0*'0 ' u'0 \-* y'a , the "free"

compensator parameter Q\\ should be chosen appropriately (see [Des.4]).

•

Conclusions

In this paper the analysis of linear time-invariant control systems was extended to the system

configuration in figure 1. Although the results are essentially contained in [Netl], the techniques used

are simpler and do not require the introduction of new concepts. The present derivation follows in

spirit the one used in design with the previous system configurations Si(P,C) and S2(P, C). These

systems are in fact special cases of the system I(P, C) considered here.



24

The concept of L-admissibility is of key importance here because the system 1(P, C) can be

A -stabilized only if all the "instabilities" of the plant P are "included in " P22. Note that P22 is the

only partial map of the plant P in the feedback loop. Similarly, the stabilizing compensator has to be

also L-admissible . The parametrization of these compensators has four degrees-of-freedom. Each of

the I/O maps achieved by the system 1(P, C) depends on one and only one of the four free parameters

G'11 , C12 , fi'21 . and G'22. Therefore, the map Hy0u'o ' *'o *-> y*» which depends on G'21 can

be chosen independendy of the map from u9 to y9, which depends on Q'n • In [Des.4], the map

Hy H' was diagonalized in the case that P12 is square. The asymptotic tracking at y0 of a class of

input signals going into u'a was discussed in [Des.5]. This parametrization may further be used in

optimal design problems andin fault diagnosis via the compensator output y'„.
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Figure Captions:

Fig. 1 The system Z(P,C)

Figl 2 The system U(P, C ) after factorization

Fig. 3 The system KP,C) with L-admissible P and L-admissible C . Note that

all the instabilities of Pn , Pi2 , P21 are a subset of those of P22, i-e., of those generated

by Dn • Note the duality between theblockdiagrams of P and C.
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