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The Dual Double Scroll Equation

Thomas S. Parker and Leon 0. Chua

Department of Electrical Engineering and Computer Sciences,

University of California, Berkeley

ABSTRACT

This paper extends the Poincare half-map technique, developed for the double
scroll equation, in order to analyze the quite different dynamics of the dual double
scroll equation. Two new usesof the Poincare half-maps are presented: they are used
to locate the boundaries between the return/transfer/escape regions and to detect a
period-one limit cycle. The Poincare half-map technique is also used to detect homoc-
linic and heteroclinic orbits and to locate the region in parameter space for which
stable attracting sets exist

1. Introduction

Recently, a powerful technique utilizing Poincare half-maps was developed for the analysis of

third-order piecewise-linear ordinary differential equations [1]. The technique is applicable to two large

families of PWL ODEs: the double scroll family and the dual double scroll family. The double scroll

equation [2]—one member of the double scroll family—initially motivated the research and has been

analyzed in depth in [1]. The purpose of this paper is to extend the Poincare half-map technique to

perform an analysis on a typical member of the dual double scroll family, namely, the dual double

scroll equation, and to introduce two new uses for the Poincare half-maps: they are used to locate the

boundaries of the return/transfer/escape regions and to detect the existence and position of a period-one

limit cycle. Though our analysis is performed on a specific equation, the techniques presented here

have broad applicability in the study of PWL ODEs. For example, the techniques can be applied

directly to the feedback system presented by Sparrow in [3] since it is a member of the dual double

scroll family.

Research supported in part by the Hertz Foundation, by the Office of Naval Research under Contract N00014-86-K-
0351 and by National Science FoundationGrant ECS8313278.



The dual double scroll equation—and, therefore, the dual double scroll family-—derives its name

from the fact that it describes the same circuit as the double scroll equation except for the single non

linear element which is the dual of the double scroll nonlineaiity. Although the dual double scroll

equation is closely related to the double scroll equation, its dynamic behavior is quite different

In Section 2, computer simulations are used to familiarize the reader with the qualitative behavior

of the dual double scroll equation. In Section 3, notation is defined and a brief review of the pertinent

portions of [1] is presented. In Section 4, the Poincare half-maps are defined in amore general fashion

than is done in [1]: no assumptions are made on the system dynamics and they are defined with the

largest possible domain. These more general definitions are used in Section 5 to locate the

return/transfer/escape boundaries. In Section 6, the existence of homoclinic and heteroclinic orbits is

demonstrated while the setof parameters for which there exists a stable attracting set is derived in Sec

tion 7. Finally, in Section 8, the Poincare half-maps are used to show the existence of a period-one

limit cycle.

2. The Dual Double Scroll Equation

The PWL ODE examined in this paper is

x = ct(y -/»(*))

y -x —y + z (1)

where the piecewise-linearity is

h(x) := mlX +2*Y^i\x +11 - \x - 11). (2)
The piecewise-linearity h{x) divides the state space 1R3 into three regions: x <-l, -1 <x < 1 and

x >1. In each region, (1) reduces to alinear system. Throughout out this paper, the slopes m0 and mx

are fixed at m0 =2/7 and mj =-1/7. This PWL ODE is the dimensionless form of the double scroll

equation ((1.1) and (1.2) of [1]) with the values of m0 and m, switched. It will be seen to have many

similarities to and several differences from the double scroll equation.

To give the reader a feeling for the types of behavior encountered in the dual double scroll equa

tion, the results of a series ofcomputer simulations of (1) with a =9 are presented in Fig. 1. As 3 is
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varied, the steady-state solution demonstrates a variety of behavior including Hopf bifurcation, period

doubling, chaos and periodic windows.

For p > 23, the origin is a stable equilibrium point As P decreases below 23, the complex eigen

values at the origin pass through the Jcd axis and a Hopf bifurcation occurs. The stable equilibrium

point becomes unstable and a stable symmetric limit cycle—passing through all three regions of tiie

state space—appears (Fig. 1(a)). This behavior differs from the Hopf bifurcation of the double scroll

where the limit cycle is not odd symmetric and is confined to two of the three regions.

As p decreases, this symmetric limit cycle becomes larger in diameter. At approximately P = IS,

it becomes asymmetric (Fig. 1(b)). The odd symmetry of (1) implies the existence of a second limit

cycle—identical to the first, but reflected through the origin.

By p = 13.8, the limit cycle has doubled in period (Fig. 1(c)) and by p = 13.7, it has period-

doubled again. For p = 13.6, the steady state is still asymmetric but is now chaotic (Fig. 1(d)). As p

decreases further, the chaotic steady state grows in diameter until at p = 13.S, the asymmetric steady

state appears to have joined with its twin and the steady-state chaos becomes symmetric (Fig. 1(e)).

This sequence is similar to the birth of the double scroll attracting set described in [1] except that for

the double scroll, the asymmetric chaos is confined to two regions while for the dual double scroll

equation, the chaotic trajectory passes through all three regions.

At P= 13.28, there is a period five limit cycle (Fig. 1(f)) and for p = 13.1, chaos has returned.

For p < 12.8, there is no observable steady-state behavior as all simulations become unbounded.

3. Definitions, Notation and Review

Powerful machinery for the analysis of a large family of third-order PWL ODEs has been

developed in [1]. In this section, the pertinent parts of that paper are quickly reviewed. The interested

reader is strongly urged to refer to [1] for a more complete discussion.

Nearly identical notation is used as in [1], so the reader familiar with [1] may skip this section.
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3.1. Mathematical notation

XY is the line segment with endpoints X and Y.

Xj is the ray from X through 7.

*X? is the line through X and Y.

XY is the curve joining X and Y.

OXj..J:b is the region whose boundary contains the points Xh ..., XH. The actual boundary will

be clear from looking at the particular figure referenced.

5" is the closure of the set S.

No special convention is used to distinguish between vectors and scalars; the meaning will be

clear by context

3.2. The vector field

The techniques developed in [1] apply to a vector field £:R3 -» R3 that satisfies the following

six properties (see Fig. 2):

(P.l) £ is symmetric with respect to the origin.

(P2) There are two parallel planes U\ and U-h that partition R3 into three regions D_i, D0 and Dx.

(P.l) implies Ux = -£/_,.

(P.3) In each region Dh (i = -1,0,1), % is affine; that is, Dl;(x) = M, for x e D4 where

Mi e R3x3. (P.l) implies that M^ =Af.j.

(P.4) ^ has three equilibrium points, one at the origin labeled P& one in Dx labeled Pi and one in

D_! labeled ?_,. (P.l) implies that ?! = -P_j. Note that in [1], F, is labeled P* and P_! is

P".

(P3) Associated with each equilibrium point Ph (i = -1, 0, 1), is a real eigenvalue yt * 0 and a

pair of complex conjugate eigenvalues o^-lyo),- where d), >0. (P.l) implies ai=a_j,

©i = a>_! and Yi = Y-i- Within each region, the eigenvector associated with the real eigen

value is called the real eigenvector and the plane spanned by the real and imaginary parts of
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the eigenvector associated with the complex conjugate eigenvalues is called die eigenplane.

(P.6) For P,, (i = -1, 0,1), neither the real eigenvector nor the eigenplane is parallel to U\ or ILj.

3.3. Double scroll versus dual double scroll

The double scroll family is the set of all PWL ODEs that satisfy properties (P.l) through (P.6)

and that have Yo > 0 and Yi < 0. The dual double scroll family is the set of all PWL ODEs that satisfy

the six properties and that have Yo < 0 and Yi > 0.

There are six parameters (do, 60, Yo. Oi» ®i and Yi) needed to distinguish between members of

the dual double scroll family. The dual double scroll equation has only two parameters (a and p). It

follows that the dual double scroll equation is a very small subset (measure zero) of the dual double

scroll family. The techniques presented in this paper apply to the entire dual double scroll family and,

therefore, have much broader applicability than to just (1).

The interesting behavior in both the double scroll equation and the dual double scroll equation

occurs when each equilibrium point possesses contracting and expanding directions (a, y, < 0) and this

is the case considered in this paper. It follows that the equilibrium points of the dual double scroll

equation have the opposite stability behavior as those of the double scroll.

Since the (real parts of the) eigenvalues of the dual double scroll family have signs opposite those

of the double scroll family, the dual double scroll family can be thought of as the double scroll family

in reverse time. This interpretation will be instrumental in extending die techniques of [1]—specifically

formulated for the double scroll family—to the dual double scroll family.

3.4. Strategic points

There are six points of interest located on t/j called strategic points.

A e U\ is the point of intersection of the eigenplane in D\ and the eigenplane in Dq.

C e U\ is the point where the D0 real eigenvector intersects U\.

D e U\ is the point where the Dx real eigenvector intersects U\.

EB c C/j is the line such that £(x) is tangent to U\ for all x e EB . B is chosen on the Dj



eigenplane and £ on the D0 eigenplane.

F €*EB* is the point such that fc(F) is parallel ttTEB

3.5. The Dx and D© units

There exists an affine map, ¥1 : R3 -+ R3 that maps Di into the Dx unit (Fig. 2). In the Dx unit

the origin is the equilibrium point the eigenplane is the x-y plane; the real eigenvector is the z axis;

Ui becomes the plane Vx ={(x, y, z,) |x +z = 1};* the strategic points map toAit Bu Clt Dit Ex and

F\ (formulae for these points in terms of the eigenvalues are given in [1]); and the vector field assumes

the real Jordan form

X
Cj -1 0

X

y s 1 Oi 0 y
z 0 0 Yi

.z.

(3)

where o~i := di/©i and Yi := yV&i- The solution to (3) passing through x at time t =0 is denoted

<h'(x). In the Di unit, the eigenplane is stable and the real eigenvector isunstable. A typical trajectory

spirals in around the z axis and grows exponentially out in the z direction.

Likewise, there is a linear transformation *P0 that maps D0 into the D0 unit (Fig. 2). The

geometry of the D0 unit is analogous to that of the Dx unit except that there are two boundary planes:

V0 corresponds to Ux and V© ={ (x, y, z,) Ix +z =-1} corresponds to tt-i. The flow in the D0 unit

is

X
Co -1 0

X

y = 1 Go 0 y
z

0 0 Yo
.z.

(4)

where a0 := do/©o and Yo := Yo^o- The solution to (4) that passes through x at time t =0 is denoted

tf0{x). "Die eigenplane is unstable and the real eigenvector is stable—just the opposite to the D\ unit

A typical trajectory collapses toward the eigenplane while spiraling outward away from the origin.

Since the Dx and D0 units use different coordinate systems, there exists an affine connection map

$ : v0 -• Vi that maps coordinates on the upper boundary of the D0 unit to the boundary in the Dt

1We use (x, y, z) for bolh the original vedor space and ihe D, unit. The meaning will be clear bycontext
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unit

All the analysis in this paper will be carried out in the D\ andD0 units.

4. Poincare Half-maps

In this section, the Poincare map (first return map) n is defined for the dual double scroll family

and a method for calculating it analytically is also presented, it will be defined in terms of two half-

maps: no and nh no is the first return map for the D0 unit and nx is the first return map for the D\

unit We define the half-maps in a more general fashion than is done in [1] by making no assumptions

on the system dynamics and by increasing the domain of each half-map to the largest possible set

First some definitions are in order, x e Vj, (i = 0, 1), is a Z>, entry point if there exists a t > 0

such that <j>/(x) lies in the D, unit for all 0 < t < t. If x e V, is not a Dt entry point it is called a D,

exit point.

Let V/", (i =0, 1), be the setof all D, entry points. Let Vf" = V, \ V/", (i =0, 1), be the setof

all Di exit points. If x is a D0 (Dx) entry point then <D(x) (^(x)) is a Dx (D0) exit point that is,

Vf = G(Vj*) and Vf = 0(Vo").

*EB* divides V\ into two half-planes. On one half-plane, %points into D0; on the other, %points

into Dx. On*E£* itself, %is tangent to U\ and, therefore, all trajectories incident to EB are tangent to

l)\. The ray FI? consists of points where trajectories are tangent from D0 while FB consists of points

where the trajectory is tangent from £>,. Hence, Vq consists of the union of the ray F0Eo with all

points of V0 above ^o^o (i-e-» on the side opposite Aq) and V\n consists of the union of the ray F\B\

with all points of V\ below E\B\ (i.e., on the same side as Ax).

4.1. Definition of Ki

Givenxe Vf*, the trajectory §{(x) emanating from x will do one of three things:

a) Hit the boundary V\ at some time / 10;

b) Never touch Vx and, remaining in the D\ unit for all r > 0, approach the equilibrium point

(i.e„ the origin) as t -* «>.
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c) Never touch V^ and, remaining in the D\ unit for all / > 0, become unbounded as / -» «».

This behavior cannot occur for the double scroll family and is a major difference between

the dual double scroll equation and the double scroll.

Points of type a) and b) are called return points while type c) points are called escape points.

Define Pi c Vf as the set of return points for the D\ unit Pi will be precisely determined in Section

5.1.

jtj :/{]"-♦ vf" is defined for the dual double scroll family much as it is for the double scroll fam

ily, but in forward time. Given x e Pj", iti(x) is the point where the trajectory emanating from x first

returns to V^. It is convenient to define %x :Po~-» V? Dv ^i := V1 oni °® where P0 := ^(Pi). £i is

simply %i transferred to the D0 unit coordinate system.

Any point on Vi is uniquely determined by its x and y coordinates so the z coordinate (= 1 - x)

will be suppressed. It will be useful to define nonlinear u-v coordinates on Vf:

x,(«, v) = u[vAi + (1 - v)E,] + (1 - u)[vBi + (1 - v)F,]. (5)

Note that the set of D\ entry points V? ={(u, v) |u >0, v £ 0} and that Pi" is some subset of

Vf={(u,v)\u SO, v SO}

Calculation of n$

Let x € PThave x-y coordinates (x, y) and u-v coordinates (a, v).

i) Calculate the inverse return-time function

<*i(Eiu),h>-l
v(u, t) := , / >0

<$l(Elu - Alu), h>

0 *=0 <6)

where Elu :=xi(u, 0), Aiu :=x,(«, 1) and h := [1 0 if is the normal vector to V,.

v(u, /) =0 as / -• 0 as can be shown by L'Hopital's rule; hence, v(«, 0) is defined to be

0.

ii) Use v to calculate the first return time

f :=min{/S0| v(u,r) = v}. (7)



iii) Then the Poincare half-map 7ti is given by

iti(x) :=

cost -sin/

sin? cos? if ? exists,

(8)
otherwise.

42. Discussion of iij

Given a coordinate u and a time t, the inverse return-time function v(u, t) gives the v coordi

nate such that the trajectory emanating from (u, v(u, r)) intersects the boundary Vj in t seconds assum

ing the Dj dynamics have been extended to allof R3. A proof is presented in [1].

For a given («, v) there are two cases:

1) v(«, t) * v for all / £ 0. Hence, the trajectory from («, v) never leaves the Dx unit If

such a trajectory becomes unbounded, (u, v) is an escape point and Jti(xi(u, v)) is not

well-defined. If the trajectory does not become unbounded, (m, v) must lie on the eigen

plane (i.e., v = 1) and the trajectory must approach the origin of the Dx unit In this case,

iti(xi(u, v)) is defined to be equal to the fundamental pointDx and (u, v) is a return point

2) v(«, 0 = v for some value of / = f. In this case, Jti(xi(w, v)) is well-defined and (u, v)

is a return point If v(u, r) = v for more than one time tf the minimum value of t is the

first return time. All other / values are virtual return times causedby the extension of die

Z>i dynamics to all of R3; they are notphysically meaningful.

In practice, nx is calculated for a line u = constant since v(u, t) yields all the first return times

for agiven value ofu. Fig. 3(a) shows n^Ffix ) (i.e„ u=0) and Ttx{E^) (i.e., « =1) for a =9 and

P= IS. Notice that both images are spirals winding around the point Dx. The functions v(0, f) and

v(l, /) are both monotone increasing from v = 0 to v = 1. v(0, /) is shown in Fig. 3(b); v(l, /) looks

qualitatively the same. The fact thatv(0, /) < 1 for all t > 0 implies thatEXAX consists of return points

while AxAXm is composed of escape points. Likewise, FXBX consists of return points while escape

points comprise BxBlm . The points AX and Bx are mapped into the point Dx by itj; in fact for this

example, all points in BXAX map to Dx. Also note that Pi and Ex are fixed points of 7ii; indeed,
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v(«, 0) =0 implies that every point in F& is a fixed point of «, and that these are the only fixed

points.

The behavior ofiti is similar for other values ofubetween 0 and 1. Hence, the triangle DA^Pi

maps into the spiraling snake DP1P1D1. If u is increased beyond 1, the spiral behavior of m continues

until some u is reached such that jME3£) is no longer aspiral Though this behavior will not be of

interest for nit it will be examined when no is discussed.

43. Definition of no

j^: yg" _» vf is defined for the dual double scroll family much as it is for the double scroll

family, but in reverse time which explains why the domain is the set of D0 exit points and the range is

the set of D0 entry points. It is convenient to define *0: V? -* VT by £0 - * °*o <><Srl n0 is sim

ply jco transferred to the Di unit coordinate system.

no has two parts: n$ characterizes trajectories mat return to V0 and *o" characterizes those that

cross to Vo.

Any point on V0 is uniquely determined by its x and y coordinates so the z coordinate will be

suppressed. Define nonlinear u-v coordinates on Vo*:

x0(«, v) =u[vA0+ (1 - v)£o] +(1 - u)[vB0 + 0 - v)Fq].

Note that vr ={(". v) |« >0, v ^ 0} while VJf » {(«. v) I«* °» v * °>-

Calculation of no*

Let x € Vg* have x-y coordinates (x, y) and k-v coordinates (u, v).

i) Calculate the V0 inverse return-time function

<$b~t(B0v),h>-\
«>,/) := ,

and the Vq inverse return-time function

t >0
<^(Boy - Aov), h>

0 / =0

(9)

(10)

^jtf(M^±L ,>0 (ID
WV ' ' ' «|)o'(Pov-Aov),'«>

where B* :=io(0,v), Ao, :=xo(l,v) and h := [1 0 if is the normal vector to V0-
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u+(v, /)-»Oas/->Oascanbe shown by L'Hopital's rule; hence, «+(v, 0) is defined to

beO.

ii) Define the V0 first return time as

?+ := min{/ £ 0 | «*(/, v) = u }

and the Vo first return time as

r .•= min{ / £ 0 | u"(t, v) = u }.

iii) If ?+ exists, define the V0 first return map

*?(*) ^ .-^

7Co(x) ^ «

iv) Then the Poincare half-map ito is given by

*o(*) := '

Co

-no(x)

costf*) sintf*)
-sintf4) cos(?+)>

and, if t" exists, define the V© first return map

cos(?l sin(/~)
-sin(r~) cos(0

neither t~ nor i"* exists,

r+ < /" or /" does not exist

?" < t* or t* does not exist

(12)

(13)

(14)

(15)

(16)

4.4. Discussion of no

We start by reiterating that ito is calculated for the flow in reverse time. Since the eigenvalues at

the origin (P0) have signs opposite those at Pi, the reverse dynamics in the D0 unit are qualitatively

similar to the forward dynamics in the £>i unit Thus, one would not expect ito to be too different from

ji,.

The one major difference is that there are two boundaries, V0 and V© , associated with the D0

unit Given a coordinate v and a time /, k+(v, 0 gives the u coordinate such that the trajectory

emanating from («+(v, t), v) intersects the boundary V0 in -r seconds assuming the 1^ dynamics have

been extended to all of R3.

Likewise, the trajectory emanating from («"(v, t),v) intersects Vo in -/ seconds assuming the

Do dynamics have been extended to all of R3.
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A trajectory 4>o*(x) emanating (in reverse time) from a D0exit pointx can do one of three things:

1) The trajectory can stay in the D0 unit forever. This will happen only if the trajectory tends

toward the origin. In this case, neither ?+ nor ?" exists and fto(x) is defined to be Co.

2) The trajectory can return to the boundary V0. In this case, either t* < /" or t" does not

exist; in either event «o(*) = no(x). «o(*) is called a return point because the trajectory

4>o(Ko(x)) emanating (in forward time) from 7io(x) returns to Vo.

3) The trajectory can cross theD0 unit and hit Vo. Li this case, either ?"< ?+ or ?+ does not

exist; in either event fto(x) = -n6~(x). The minus sign reflects n6" through the origin and is

necessary since the range of no lies in Vo and the range of no lies in Vo. The reflection

produces no loss of information since (1) is odd symmetric. ito(*) is called a transfer point

because the trajectory $o(fto(*)) emanating from tiq(x) does not return to V0 but crosses over

toVo.

There.is a certain duality between tcq and ti\. If u and v are switchedandB and E are switched

and the y axis is inverted in either the D0 or DX unit, then the two maps are qualitatively identical

except for the fact that % has to deal with two boundaries. For example, nx is calculated along lines of

constant u, while Kq is calculated for lines v =constant For nh FXE\ consists of fixed points while

for 7to» "+(v» 0) =0 implies that all points in P0P0J are fixed points and that these are the only fixed

points. This duality is the main reason no is defined in reverse time.

There is a simple criterion to determine whether a point is a transfer or return point Ko(x) is a

return (transfer) point if x and ito(x) lie on the same side (on different sides) of the line x = 1; if both

points lie on x = 1, then 7to(x) is a transfer point The key fact in the proof is that a trajectory cannot

pass through the eigenplane. It follows that if the x coordinate of x is greater (less) than 1, then the x

coordinate of 7to(x) is greater (less) than 1 and the x coordinate of nS(x) is greater (less) than -1. If

7to(x) is a return point then 7io(*) =*o(*) and the x coordinate of 7to(x) is greater (less) than 1; if 7tb(*)

transfers, then no(x) = -Jt6"(x) and the x coordinate of ito(x) is less (greater) than 1.

There are three typical types of fy behavior encountered in this paper which will be discussed one

by one. All examples in this section are for a = 9 and (5 = 13.
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The simplest behavior is in Fig. 4(a) which shows no(Fo^o) fl-e., v=0). ito(^) consists of
two spirals, each wrapping around C0. itoto)« ^o and «o(£o) =Co so the spiral F0C0 coimecting P0

and Co is notiW). Fo~Eo~ and PoC0 both lie on the same side of the line x =1so P0Cb consists of

return points. The other spiral £'o-C0 is *o(S5? )• *'o-C0 and EqE*! lie on opposite sides of x=1
and, therefore, Fo-Co is composed oftransfer points. This example corresponds to monotone increas

ing u* and monotone decreasing u" with no overlapping of u+ and u", that is, «+(v, t) <1 and

iT(v, t) > 1 for all v, / > 0 (Fig. 4(b)).

Fig. 5(a) shows Jto(PoT3o? >fcr v - 0.5. Jto(PoT4hT) maps to the spiral PovCo connecting Bov and

C0; however, itoC^OvAhJ) touches F^ and is broken into two pieces A'ov-G' and Q"Cq- BovC0 con

sists of return points while A'*J2 and fi"C0 are composed of transfer points. This case corresponds

to monotone increasing «+, non-monotone u~ and no overlapping of «+ and «" (Fig. 5(b)). The non-

monotonicity of u" implies that there are virtual return times caused by the extension of the D0 dynam

ics to all of R3. There are also virtual return points corresponding to these virtual return times. The

points that would be needed to connect iEbCAo»Ao»J) into asingle spiral are precisely these virtual

return points.

To understand this split spiral behavior more fully, consider the magnified (and somewhat dis

torted) version of «~(0.5, /) shown in Fig. 6(a). Let th f* h> «i and u2 be defined as in the Figure.

Figs. 6(b) through 6(f) show atypical trajectory ofatwo-dimensional system with two boundaries, K-i

and Uu for each of five cases:2

a) u > ii2: There is only one return time; the crossing is transverse.

b) u=«2- There are two return times; the first crossing is transverse and the second, at

r = f2, is tangent

c) «i <u < u2: There are three return times; all the crossings are transverse.

d) u = Kt: There are two return times; the first at / =tx is tangent while the second, at

t = *3, is transverse.

2The trajectories pictured obviously cannot occur in aPWL autonomous ODE, but are abstractions used to illustrate
the essential features.
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e) u < ux: There is only one return time and die crossing is transverse.

Note that a local minimum or maximum of u~ implies that die trajectory is tangent to the

boundary at the return point Such a return point must lie on E0Bq . Also note that in going

from case d) to case e), the first return time jumps from tx to 13 implying a discontinuity in no.

In Fig. 5(a), this discontinuity occurs at some point Q e A^A^^ with u-v coordinates (uh 05);

that is,

lim*o(io(«,0.5)) = G' (17)

and

lim *o&>(".0.5)) = e" . (18)

U <U|

The trajectory ^(2) from Q first hits a boundary (Vo ) at point Q at time tx and, there

fore, JCo(C) = G'. 2'e PoPo so the trajectory is tangent to the boundary and does not leave the

Do unit at this time. Instead, it continues until it next hits a boundary (Vo) at point g" at time

t3. It follows that Jto(G') = Q" with a return time <3 - tx.

Note that the trajectory $?(£) from Q does not leave the D0 unit until it hits the pointQ"

at / = /3; however, Jto(2) = fi'» not Q". It appears that no is ill-defined. This paradox will be

resolved in Section 4.5.

The third case is shown in Fig. 7(a) which is a plot of no{BoAo ). There are two partial

spirals, neither of which wraps around Q>. The key difference between this example and the pre

vious two is that the upper spiral crosses the line x = 1 that corresponds to the intersection of V0

with the eigenplane. ito(A>) = A' since trajectories starting on the eigenplane must remain on it

for all time. Thus ndA^Aol) maps to A'A'o-. There exists a point Q e Pj^o such that noiQAo)

maps to A'Q and no(Pofi) niaps to B0Q". Return points comprise B0C" while A'oJ2 consists of

transfer points. This case corresponds to a monotone increasing u+, a non-monotone u~ and an

overlapping of u+ and «". Fig. 7(b) is a magnified plot of «+ and u" for this example. The point

(n\ 1) corresponds to Q. In /' seconds, the trajectory $b~*(Q) starting atQ intersects Vo at-fi';



-15-

in f seconds, it intersects V0 at Q". 7to(Po^o ) does not wrap around C0 since for t > r", all

return times are virtual.

Finally, in Fig. 8 iCo(Bo7A5?) is plotted for several values of v between 0 and v* =1.2.

This plot illustrates the fact that no maps the wedge DEo-Po/^W- onto the region

UA'q/J&Bq/QF&qm that is, there are no "holes" in itoP^b-^o/^o/-)'

4.5. The Poincare map n

In the D0 unit coordinate system, rc:Po~-» Vg* is defined by n := n^1 onx while in the Dx

unit coordinate system, jr:Pj"-» vf is defined by n := Ho1 onx. The inverses Tto1 and Tto1 are

required since n© is calculated in reverse time. Though we have just defined two functions with

two different domains, they are just different representations of the same Poincare map and there

will be no need to give them separate names.

In the previous section, a paradox was presented that will now be explained. The paradox

is that the trajectory 4>oG2") from Q" does not leave the D0 unit until / = f3 when it crosses the

boundary at Q; however, Jto1^") =G'» not Q. It appears that n^1 does not yield the correct

result The paradox is explained by noting that Q' lies on P0Po and is a fixed point of nx with a

return time of zero seconds. Therefore, tco"1 °Ai oHo1^") = no1 °«i(j2') =itokC) = Q with

an elapsed time of (f" - f) + (0) + (r*) = f as expected.

This discussion illustrates why the domains of the half-maps are taken to be closures.

Without the closure, nx would not be defined on P0P0 . Of course, n$(Q) could be defined to be

Q" instead of Q\ but then the interpretation of no as the first return map is lost

5. Return/Transfer/Escape Boundaries

The purpose of this section is to classify the behavior of all the entry points of the dual

double scroll equation. In the double scroll family, entry points either transfer or return. The

opposite stability type of the equilibrium point in region D\ leads to a third possibility in the dual

double scroll family: escape.
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Kahlert and Chua performed a return/transfer analysis for the double scroll equation where

the boundary separating return and transfer points was found using a limiting process on a family

of straight lines [4]. The method developed in this section is new and finds the boundary directly

using an implicit equation similar to the equations used to define the Poincare half-maps no and

«i.

Trajectories that are tangent to the boundaries C/_i or Ux play a crucial role in the

return/transfer/escape analysis and it is worthwhile to spend some time discussing them. Consider

a two-dimensional PWL system with two parallel boundaries U\ and CLi that divide the plane

into three regions D_i, D0 and Dx. In Fig. 9(a), the trajectory from the D0 entry point x is

tangent to t/_i and then goes on to cross U\. Clearly x separates entry points that return from

those that transfer. A different case is presented in Fig. 9(b) where the trajectory from x is again

tangent to I/_i, but since die trajectory intersects I/-i a second time, entry points on either side of

x transfer and x does not separate different types of entry points. We call such a tangency a

degenerate tangency.

Though the fact will not be used in this paper, it is interesting to note that as Fig. 9 illus

trates, if 4>/(x), (i =0, 1), is tangent to a boundary and n,(x) *x, then rc,- is discontinuous at x.

Thus no is discontinuous on no\F0Eo )and nx is discontinuous on Jtfl(PiPi ).

5.1. Return/escape boundary for the Dx unit

Trajectories entering the Di unit will either return to the D0 unit by crossing Vi or remain

in the Di unit as t -> ». In this section, all Di entry points will be specified by their x-y coor

dinates. We study three cases.

Case 1: x < 1. All entry points return. This result is clear since as t -> o©, all trajectories

tend along the unstable eigenvector (the positive z-axis) and pass through Vj. A trajectory may

be tangent to Vi at some point of P^i, but such atrajectory possesses adegenerate tangency.

Case 2: x = 1. Consider the eigenplane in the Dx unit (Fig. 10). Since cx <0, the trajec

tory emanating from Pi always spirals toward the origin.3 In reverse time, the trajectory through

3 Remembermat the vector field at B, is tangent to the line x = 1.
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Pi spirals outward and hits the line x =1at some point B\. All entry points on x =1with y-

coordinate greater than B\ return. Entry points with Pi <Sy <.B\ spiral toward the origin and

forever remain in the Di unit In the latter case, iii is defined to be Di and (x, y) is considered

to be a return point, not an escape point

Case 3: x > 1. Case 3 is similar to case 2 except that there are now z dynamics that push

trajectories away from Vx. Thus, it is expected that most entry points will escape.

In analogy with case 2, if x is fixed at some value xo, then there exists ay0 such that the

trajectory emanating from (xo, y0) is tangent to the boundary plane V^ The entry points along

the line x =x0 with y-coordinate less than y0 escape while points with y >y0 return. As x0 is

increased from 1, the points (xo, y0) trace out a curve Ti which is the boundary between escape

and return points for case 3.

To calculate rx, one needs to find all points (x, y) such that the trajectory from (x, y) is

tangent to Vi at its first return. Since the points of tangency must lie on the same side of the

eigenplane as (x, y), the only possible points of tangency lie on PiPi. . Thus, one can find Tx

by calculating the set of first return points of Pjpjlf in reverse time. This is equivalent to calcu

lating nr^PiPi- ).

Calculation of IV

In the nonlinear u-v coordinate system, BxBXm = { (u, v) | u =0, v > 1 }. Let

x 6 P1P1J havex-y coordinates (x, y) and «-v coordinates (0, v).

i) Calculate the inverse return-time function (6) for reverse time, (i.e., v(«, -0) with

«=0.

ii) Find the first return time

?:=min{f £0 | v(0,-/) = v }

for the trajectory emanating from (0, v).

iii) The first-return point is

«i <*) = e
cos t sin /

-sin? cost H-

(19)

(20)
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I\ is the set of points icr!(*i(P» v)) ror all v > 1.

A typical Ti is shown in Fig. 11(a) and the corresponding v(0, -t) in Fig. 11(b). Here

a = 9 and p = 15. The behavior of v(0, -t) is much different from that of v(0, /). Each value

of v has an infinite number of return times. The set of first return times are between tx and t2.

The infinity of return times is not surprising since in reverse time, all trajectories are attracted to

the z =0 plane and form expanding spirals that intersect Vi with every rotation.4

. Values of v between 0 and 1 correspond to the segment pjpj". nx~\FxBx) lies in the half-

plane x < 1 and, as mentioned before, contains points of degenerate tangency.

Negative values of v correspond to points on the half-line FXEX . The first-return times for

negative v can be ignored since trajectories tangent to PiPi are incident to Vx from the Do side.

These negative values of v(0, -0 correspond to virtual trajectories caused by the extension of the

Dx dynamics to all of R3.

52. Return/transfer boundaries for the D0 unit

Trajectories emanating from Do entry points will either return to V0 or transfer across the

D0 unit to Vq.5

There are two cases:

Case 1: xt\. Due to the expanding spiral nature of the flow (a0> 0), all entry points

transfer. Call the initial x-coordinate x011. n seconds later, the x-coordinate will be

-xoe°^ < -1 implying that the trajectory has hit Vq .

Case 2: x < 1. This case is more complicated since there exist both return and transfer

points. To illustrate this point, consider an entry point x := (e, e) that is close to Co. Let $be the

trajectory emanating from x. For e small, the z dynamics (governed by (1 - e)e °) will die out

before the x-y dynamics (governed by ze°**) have grown to asignificant size. Thus, for e small,

the z dynamics can be ignored. Fig. 12 shows a typical $ projected onto the z =0 eigenplane.

4 Remember that the Z>, dynamics have been extended toall ofR3 when calculating v(0, -/).
5 The trajectory from Q will tend toward the origin as / ->«>. It isneither a return nor atransfer point.
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Now consider the trajectory -$ that emanates from -x, also shown in Fig. 12. Ignoring the z

dynamics, this trajectory is 180° out of phase with respect to $; hence, if $ returns (transfers),

then -$ transfers (returns).

The boundary T0 between return and transfer points consists of points x such that 4>&x) is

tangent to a boundary at its first return. The only possible points of tangency lie on F0Eq so

r0cito(P^). notfoP?)isshowninFig. 13(a) for a =9 and P=15. By shading in the return

region (Fig. 13(b)), it is evident that the portion of Jto(PoPo ) connecting P0 and Q" does not

separate return and transfer points and is not therefore, part of To; die rest of Jto(/*o£o ) is To.

Trajectories emanating (in forward time) from Q"P0 have degenerate tangencies.

It is informative to spend more time considering the point fi". Q' e JCo(£b^o- ) sothere is

some Q e Eo~E£ such that n^Q) =Q. Furthermore, Q' e Fo~Eo which implies that the trajec

tory 4>o(2) from point Q is tangent to the boundary at point Q\ but does not leave the D0 unit

until it hits points Q". This situation is precisely the one explained in Section 4.5. Hence,

*oG2') =Q" and T0 =JtoCfi^ )•

6. Homoclinic and Heteroclinic Orbits

The Poincare half-maps are extremely useful tools for locating homoclinic and heteroclinic

orbits. The conditions for existence of such orbits—to be presented below—are easy to verify

visually. Each orbit presented in this section was located in less than five minutes using a pro

gram that draws the Jto and iti maps (the same program that generated the figures in this paper).

The a-|S parameters were adjusted by hand until the existence conditions were satisfied. No

optimization routines wererequired.

The importance of homoclinic orbits is due to

Shilnikov's Theorem: [5]

Let fc:!R3 -> R3 be a continuous piecewise-linear vector field with an equilibrium point x

with complex conjugate eigenvalues a ±ja> with co * 0 and a real eigenvalue y. If | a I< IYl

and there exists a homoclinic orbit at x, then \ can be infinitesimally perturbed to avector field %'
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such that %' possesses a countable number of horseshoes.

Owing to the odd symmetry of (1), P] can be identified with P-h Thus, a heteroclinic orbit

from Pi to P.i can be considered as a homoclinic orbit of Pi and, if it satisfies the Shilnikov

eigenvalue constraints, also implies the existence of a countable number of horseshoes.

Horseshoes [5] yield very complicated trajectories and are an indication that chaotic

behavior exists. Shilnikov's theorem is one of the few methods available to show rigorously the

existence of horseshoes.

In this section, we demonstrate the existence of two homoclinic orbits—one at P0 and one

at Pi—and one heteroclinic orbit All three orbits satisfy the Shilnikov eigenvalue constraints

and, therefore, indicate that horseshoes exist in the dual double scroll equation. Furthermore, we

explain how it occurs mat when the homo/heteroclinic orbits exist, there is no observable steady-

state behavior (i.e., for almost all initial conditions, the steady state is unbounded). This is an

interesting point because it implies that when there is chaos, there is no homo/heteroclinic orbit

6.1. Homoclinic orbits at the origin

A homoclinic orbit at the origin spirals out from the origin on the D0 eigenplane, enters

region Di, returns to region D0 at point C, and then approaches the origin along the stable eigen

vector. By symmetry, if a homoclinic orbit exists at the origin, then another one—the reflection,

of the first through the origin—exists as well.

Conditions for the existence of a homoclinic orbit at the origin:

There exists a homoclinic orbit at the origin iff there exists a point Q e E0A0 such that (in

the D0 unit)

i) 7ti(fi) = 0and

ii) *o(fi) = 0.

In practice, one plots itx(E0Ao). If it passes through Co, then condition i) is satisfied. Let

(«', v') be the u-v coordinates of Q. Since Q € E0Ao, «' = 1 and 0 < v' < 1. Next, plot
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no(Bo7Ao7) where Po7^o7:= {(". v)| 0£« £ 1, v =v'}. Ifitwraps around Co, then condition

ii) is satisfied.

Fig. 14 shows nx(Eo~Ao) for a=160 with P=240 (Fig. 14(a)), and P=280 (Fig. 14(b)).

Clearly for some 240 <P<280, TCiOMoJ must pass through Co. Fig. 14(c) is nx(EoAo) for

p=260 showing that condition i) is satisfied for some Pnear 260. Fig. 14(d) shows no(BoAo) for

a=160 and P=260. /Mo corresponds to v =1 and since itodMo) wraps around the origin,

ito(PoWW) must also wrap around the origin for 0<v' <1. Hence, condition ii) is satisfied and

a homoclinic orbit exists at the origin.

The eigenvalues for these parameters are c0 =1.00, 60 =15.6 and y0 =-48.7. Shilnikov's

theorem is satisfied and a countable number of horseshoes exist

Of course, one can never observe the homoclinic orbit direcdy using computer simulations;

however, it is sometimes possible to observe a trajectory that repeatedly passes near the homoc

linic orbit Such trajectories can be observed for aheteroclinic orbit of the double scroll [6]; the

hole-filling trajectories of the double scroll presented in [1] are another example. If such atrajec

tory exists, we call the homoclinic orbit observable.

Unfortunately, this homoclinic orbit is not observable; all computer simulations with this set

of parameters become unbounded. The reason is evident from Fig. 14(d) which shows tc^o^o)

and 7Co(Po/Aov) for v' =1.2. Both spirals wrap around C0 implying that the quadrilateral

DAoP0Po/>W maps into asnake that spirals around Co- Thus every neighborhood of the origin

contains points of ito(PA)^o^Ov'̂ ov). Equivalently, every neighborhood of the origin contains

points that n^1 maps below Bq~Ao~. A calculation of the return/escape boundary for nx indicates

that points below PjAo are escape points for nx. Hence, every neighborhood of the homoclinic

orbit at the origin contains trajectories that are unbounded.

Different values of a and p can also yield homoclinic orbits at the origin. In fact there is

acurve in the a-p plane consisting of parameter values for which there are homoclinic orbits at

the origin. All of these homoclinic orbits have been found to be unobservable as well.
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To illustrate a case where one of the conditions is not met, Fig. 15 shows nx(E0Ao) and

Ko(Po/Ao/) for a = 20 and P = 40. Condition i) is satisfied, but ii) is not For this case,

v' = 0.99 and, as Fig. 15 shows, fto(£o/>W) does not wind around Co. In fact ito(Po/<<W) does

not wrap around Co for any v' > 0.55.

62. Homoclinic orbits at Pi

A homoclinic orbit at Px leaves Pi along the real eigenvector, enters region D0 at D,

returns to region Dx somewhere on AB and then spirals in to Pi on the Di eigenplane. By sym

metry, if a homoclinic orbit exists at Pi, men anotherone—the reflection of the first through the

origin—exists at P_i as well.

Conditions for the existence of a homoclinic orbit at Pi:

There exists a homoclinic orbit at Pi iff there exists a point Q e BXAX such that (in the Di

unit)

i) Jto(fi) = 0iand

ii) nx(Q) = Dx.

In practice, one plots tc0(PiAT). If it passes through Dh then condition i) is satisfied. Let

(«', v') be the u-v coordinates of Q. Since Q e BXAX, 0 < u' < 1 and V = 1. Next plot

nx(EwAXs) where P^Aiu' := {(«, v)| u = «', 0 < v < 1}. If it wraps around Di, then condi

tion ii) is satisfied.

Fig. 16(a) shows JtotfMi) and nx(ExAx) for a = 50 and p = 65. Condition i) is satisfied

since Dx e iio(BxAx). Condition ii) is satisfied as well: the fact that nx(E^) spirals around Dx

implies that nx(ExsAXu?) wraps around Di for any 0 < «' ^ 1.

The eigenvalues for these parameters are a0=-1.93, d>0 = 6.56 and y0= 10.0. Shilnikov's

theorem is satisfied and a countable number of horseshoes exist

However, once again the homoclinic orbit is not observable in computer simulations. Fig.

16(b) shows 7C0(PiA,) and K0(^iv^iv) for v = 12. Every neighborhood of Di contains points in
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no<PAxBxBXvAXv). In other words, every neighborhood ofDi contains points that Jto1 maps to the

right of PjA7 which is located in the escape region for *i. Hence, every neighborhood of the

homoclinic orbit at Px contains trajectories that are unbounded.

Just as for homoclinic orbits at die origin, there exists an entire family of homoclinic orbits

at Pi. All of these orbits have been found to be unobservable.

63. Heteroclinic orbits

A heteroclinic orbit leaves P_i along the real eigenvector, enters region D0 at -D, crosses

region Do, enters region Dx somewhere on AB and then spirals in to Pi on the Di eigenplane.

By symmetry, if a heteroclinic orbit exists, men another one—the reflection of the first through

the origin—exists as well.

Conditions for the existence of a heteroclinic orbit:

There exists a heteroclinic orbit iff there exists a point Q e AxAXm, such that (in the Dj

unit)

i) no(Q) = Dxm&

ii) nx(Q) = Dx.

In practice, one plots JtoOMiJ). If it passes through Di, then condition i) is satisfied. Let

(«', v') be the «-v coordinates of Q. Since Qe AXAX2+ u' >\ and v' =1. Next plot

nx(EXl/AXu'). If it wraps around Dx% then condition ii) is satisfied.

Fig. 17 shows JtoGMi- ) and nx{EwAw) where u' = 1.12 and the parameters are a = 25

and p = 26.7.

The eigenvalues for these parameters are c0 =-1.60, a>0 = 3.74 and y0 - 5.77. Shilnikov's

theorem is satisfied and a countable number of horseshoes exist

However, this heteroclinic orbit is unobservable for the same reason as the two homoclinic

orbits. Namely, every neighborhood of Dx contains points that Ho1 maps into the escape region

of nx. Hence, every neighborhood of the heteroclinic orbit contains trajectories that are
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unbounded. Furthermore, the entire family of heteroclinic orbits has been found to be unobserv

able.

7. Bifurcation Analysis

In this section, the region in the a-p plane where a stable attracting set exists is located as

well as the locus of points where the Hopf bifurcation occurs. First the parameter values for

which (1) belongs to the dual double scroll family is identified.

7.1. The dual double scroll boundary

The dual double scroll equation (1) belongs to the dual double scroll family whenever each

equilibrium point possesses acomplex conjugate pair of eigenvalues and when Yo <0 and Yi >0.

In region D,, (i =0, 1), the characteristic polynomial of (1) is

s*+ (ami + l)*2 + a(m, - a + p)* + apm,. (21)

The closed-form equations for the zeros of a third-order polynomial are well known. Let

a, := (am, - a +P)/3 - (am,- + l)2/9 (22)

and

bt := (am, + l)3/27 - (am, + l)(am, - a + p)/6 +apm,/2. (23)

There exists complex zeros of (21) iff a,3 +b? >0. The locus S defined by ax* +bx2 =0 is

shown in Fig. 18. The locus fl03 +*>o2 =0 lies below 5 so is of no consequence. Thus, for all

(a, P) above S in Fig. 18, (1) possesses complex eigenvalues in each region. For (a, P) below S,

there are three real eigenvalues in region Dx.

It remains to determine the signs ofYo and Yi- In terms of the eigenvalues, the characteris

tic polynomial can be written as

(*-Yi)((*-6i)2 +©i2) W)
which expands to

s3 - (Y, +2c,)s2 +(a,-2 +©,-2 - 2d,Yi )s - Y/fo2 +©*2). C25)

Comparing the last term of(21) with that of(25), it is evident that for a, p>0, the sign of

m, is opposite that of yt. Therefore, m0 =2/7 implies Yo <0 and mj =-1/7 implies Yi >0.
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Thus, for all (a, P) above S in Fig. 18, (1) belongs to the dual double scroll family. It is this

region where the analysis presented in this paper applies.

12. The Hopf bifurcation

A Hopf bifurcation6 occurs when the pair of complex conjugate eigenvalues at die origin

(do±y©o) lie on the imaginary axis, that is when 60 =0. The characteristic polynomial (24)

becomes

s3 +Yo*2 + ©o2* +Yo&o2 (26)

for CT0 =0. Comparing coefficients of (21) and (26), 60 =0 implies

(ctm0 + l)(ctm0 - a + p)= apm0 (27)

which can be rewritten as

P=(m0 - m02)a2 +(1 - m0)a =: H(a). (28)

For p>//(a), the origin is astable equilibrium point For Pjust less than //(a), computer simu

lations show that there exists a stable limit cycle just as the Hopf theorem would predict //(a)

is plotted in Fig. 18.

It is interesting to note that as the magnification in Fig. 18(b) shows, the curves S and H

intersect near (a, p) =(1.2, 1.2). Remember that (1) belongs to the dual double scroll family

only for parameter values above S.

7J. Trapping Regions

A trapping region T is some bounded, open set such that n(T) c T. Since n =no onXt

an equivalent statement is that iti(r) c ntfT). Any orbit of the Poincare map with initial condi

tion in T will forever remain in T. Thus T must contain a stable (and observable) attracting set

For the homoclinic and heteroclinic orbits discussed in Section 5, n^1 mapped some points

in any neighborhood of the orbit into the escape region ofnx. Thus, no trapping region exists for

any of these orbits.

6The Hopf bifiircaiion theorem has not been proved for PWL ODEs; the teim is used here because the bifurcation
possesses theessential features of a Hopf bifurcation.
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Fig. 19 shows a case where a trapping region does exist There are two regions shown in

Fig. 19: Jto(TV) and nx(T^) where the trapping region is

7> :={(«, v) | 0 <«<«', 0 < v < 1}. (29)

The constraint v < 1 guarantees that no point in T* is an escape point of tci. This example is for

a = 9, p = 15 and u' = 1.5,

In Fig. 20, p is decreased to 12.7. For u' = 12 (Fig. 20(a)), nx(T^) just touches Q'A'ou

but crosses outside of n(T^) near EV^V- In Fig. 20, A'm := JtoGW) and E'w r= no(Ew).

For u' =1.28 (Fig. 20(b)), it is precisely the opposite situation: nx(T^) just touches £VAV»

but lies outside of not?*) near Q'A'm. It follows that no trapping region 7> exists. The fact

that one cannot find a trapping region of the form Tu> does not by itself imply that no trapping

region exists; however, computer simulations of (1) show that when no trapping region 7V can be

found, all simulations are unbounded.

For a given a, there exists a p(a) such that p > P(a) implies that a trapping region 7V

exists and for p < P(a), there is no trapping region 7>. At P= P(a), there exists a u' such that

both Q'A'w and E,^A'qu> are tangent to the boundary of Jti(7». In Fig. 18, the locus of points

P(a) is plotted on the a-p plane as curve T. For (a, P) above T and below //, a trapping 7*

exists implying the existence of a stable attracting set For (a, p) below T, no trapping 7> exists

and computer simulations lead us to believe that there are no stable attracting sets.

8. Existence of a Period One Limit Cycle

As a final demonstration of die analytical power of the Poincare half-maps, we use diem to

show die existence of a period one limit cycle.

The idea is illustrated in Fig. 21 for a = 9 and p = 20: Pick_u' > 1, such that fto(£ou4>u)

intersects JCi(£o«^ou) for u = u' but not for any u > u'. Call the point of intersection Q. As u

is decreased from u', the point of intersection Q traces out a curve Q(u). Let i^l(Q(u)) have

k-v coordinates (u, v0(«)) and let nx\Q(u)) have coordinates («, vx(u)). For Fig. 21, if = 1.8,

v0(«') = 0.0 and vi(w') = 0.81. Fig. 21 also shows no(£on"A>«r) a1"1 "iC^oi/'A)^) for «" = 1«01-
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Here, v0(m") = 0.29 and vi(k") = 0.24. Since v0(u') < vi(u'), vq(u") > vi(u") and both v0 and

vj are continuous, there is some u\u" <u<u', such tiiat v0(«) = vx(u) =: v. The point (u,v) is a

fixed point of n and corresponds to a period one limit cycle of (1).

Note that for these values of a and p, a trapping region Tu- exists for u = 2.0. u < 2.0 so

the limit cycle lies within the trapping region though this fact does not imply that the limit cycle

is stable. We know of no simple way of determining stability by looking at plots of no and nx.

Computer simulations show that the fixed point found above corresponds to the stable period one

solution mentioned in Section 2.

As P is decreased, this period one limit cycle bifurcates to a stable period two limit cycle at

p = 13.9; however, a fixed point analysis of n for p = 13. shows a period one limit cycle still

exists. This dilemma can be resolved by realizing that period-doubling theory predicts that after

bifurcation, the period one limit cycle still exists but is unstable. Computer simulations show that

the period one limit cycle p = 13 does exist and is, indeed, unstable.
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Figure Captions

Fig. 1 Steady state behavior of the dual double scroll equation for a = 9 with (a) p = 20:

symmetric period one; (b) P= 14.5: asymmetric period one; (c) p = 13.8: asym

metric period two; (d) p = 13.6: asymmetric chaos; (e) p = 13.5: symmetric chaos;

(f) p = 13.28: period five.

Fig. 2 The geometry of the original vector field and of the D0 and Dx units.

Fig. 3 ici for a = 9 and p= 15 corresponding to monotone v(u,/). (a) nx(FxBx ) and

7ti(£iAi ); (b) the first return map v(0, t).

Fig. 4 no for a = 9 and p = 13 corresponding to monotone «+ and u~. (a) no(F0Eo ); (b)

«+(0, /) and iT(0, /).

Fig. 5 ito for a = 9 and P = 13 corresponding to monotone u+ and non-monotone u" with no

overlapping, (a) noiB^A^) for v =0.5; (b) u+(0.5, /) and iT(0.5, t).

Fig. 6 Abstracted trajectories of a two-dimensional system demonstrating the different

behaviors for non-monotone iT. (a) k~(v, /); (b) u > u2; (c) u = «2; (d)

ux<u < u2; (e) u = «,; (f) u <ux.

Fig. 7 no for a = 9 and p = 13 corresponding to monotone u+ and non-monotone u" with

overlapping, (a) n(B0Ao ); (b) «+(1.0, t) and «~(1.0, r).

Fig. 8 The wedge D£b-Bo/Ao/« is mapped ontoDAV-Q'̂ ov'C'̂ o- by n^ t^B^aJ ) is

plotted for several values of v, 0 £ v s 1.2.

Fig. 9 Abstracted trajectories of a two-dimensional system showing how an entry point x

with a trajectory tangent to a boundary will either (a) separate return points from

transfer points or (b) just cause a discontinuity in the return map.

Fig. 10 The eigenplane of the Dj unit with the trajectory that is tangent to Vj at Bx.

Fig. 11 (a) Return and escape regions of the Dx unit for a = 9 and p = 15; (b) v(0, -t) for

the return/escape boundary Tx.
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Fig. 12 Projection onto the D0 eigenplane of two trajectories each with entry point close to

Co. The trajectory 4>o(x) hits a different boundary than the one from 4>o(-x). If (J>o(i)

returns (transfers), then 4>o(-i) transfers (returns).

Fig.13 Return/transfer regions of the D0 unit for a =9 and P=15. (a) no(F0E£); (b) r0 and

die return and transfer regions.

Fig. 14 Images of no and nx showing the existence of a homoclinic orbit at the origin for

a= 160 and P=260. (a) for P=240, Cb lies below JCi(^Ao"); (b) for P=280, Cb

lies above 7ti(£bAo); (c) for p = 260, iti(£bAo) contains C0; (d) no(B0Ao) wraps

around C0 as does 7to(£ov4>v) for v = 12.

Fig. 15 Images of tcq and nx showing that a homoclinic orbit does not exist at the origin for

a = 20 and p = 40. C0 lies on nx(EoAo) andJto^o/Ao/) does not wrap around Co.

Fig. 16 Images of n0 and nx showing the existence of a homoclinic orbit at Px for a = 50 and

P= 65. (a) Dx lies on no(BxAx) and nx(ExAx) wraps around Dx\ (b) iio{BxAx) and

no(BXvAXv) for v = 1.2.

Fig. 17 Images of n0 and nx showing the existence of a heteroclinic orbit for a = 25 and

p = 26.7. Dx lies on n0(AxAXm ) andnx(EXl^Ax^) wraps around Dx.

Fig. 18 Bifurcation diagram, (a) The dual double scroll equation belongs to the dual double

scroll (DDS) family for parameters lying above S. Along the curve //, a Hopf bifur

cation occurs. For parameters above //, the origin is a stable equilibrium point T is

the trapping region boundary. For parameters lying between H and T, a stable

attracting set exists. Below T, no trapping region exists and, therefore, there are no

stable attracting sets, (b) a magnification more clearly showing the intersection of S

and//.

Fig. 19 For a = 9 and p = 15, nx(T^) is contained in no(T*)l therefore, 7> is a trapping

region.

Fig. 20 No trapping region exists for a = 9 and P = 12.7. (a) For u' = 1.2, nx(T^) just lies
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within no(Ts) along Q'A'ou, but lies outside near EWA'w (a) For u' = 1.27,

Ki(7>) just lies within Jto^) along£'o^AV» but lies outside near fi'A'ow.

Fig. 21 Plots of Jto(£0«Aou) and nx(EouAou) demonstrating the existence of a period one limit

cycle for a =9 and P=20. itf(C) =(«', v0(«')), *?<&) = ("', vi(u')),

to1(e//) =("".v0(u")) and 7tf1(G") =(«", v,(«"))• Since vrfiO <v,(k') and

vo(«") > vi(«"), there exists a fixed point of n for some (w, v0(«)) with u" <u<u'.
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