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Abstract

The conventional way to process commands for relational views is to use
query modification to translate the commands into ones on the base rela
tions. An alternative approach has been proposed recently, whereby ma
terialized copies of views are kept, and incrementally updated immediately
after each modification of the database. This paper presents a related
scheme in which update of materialized views is deferred until just before
data is retrieved from the view. A performance analysis is presented com
paring the cost of query modification, immediate view maintenance, and
deferred view maintenance. Three different models of the structure of
views are given: a simple selection and projection of one relation, the na
tural join of two relations, and an aggregate (e.g. the sum of values in a
column) over a selection-projection view. The results show that the choice
of the most efficient view maintenance method depends heavily on the
structure of the database, the view definition, and the type of query and
update activity present.

1. Introduction

A materialized view is a stored copy of the result of retrieving the view from the
database. In this paper, the types of materialized views considered are those that could
be defined using SELECT, PROJECT and JOIN, and also simple aggregates such as sum
or count over the result of such expressions.

Conventional systems do not materialize views in advance, but rather use query
modification to turn a query referring to a view into one on the base relations [Ston75].
An alternate method for materializing views which updates the copy of the view after
each transaction [Blak86] will be called immediate view maintenance or simply immediate
in this paper. A third proposal generates and periodically refreshes database snapshots,
which are copies of views consisting of selections and projections of a single base table
[Adib80,Lind86]. In the context of evaluating complex trigger and alerter conditions,
Buneman and demons presented a method for analyzing each update command prior to
execution to see whether it could cause a view to change [Bune79]. If the system could
not rule out the possibility that the command might alter the state of the view, the view
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would be completely recomputed. Hence, this represents a fourth view refresh algorithm.
Lastly, this paper proposes a final alternative, called deferred view maintenance, or
deferred, that incrementally updates a materialized view just before data is retrieved from
it. In this paper, we will analyze and compare the performance of query modification,
deferred, and immediate for materializing views.

An important way to improve the performance of view materialization algorithms is
to use a screening algorithm to test each tuple inserted into or deleted from the base rela
tions. If a tuple passes the screening test, then its insertion or deletion may cause the
state of the view to change, so the tuple must be used to try to update the view. If the
tuple fails the screening test then it cannot cause the view to change, so it does not need
to be used to refresh the view. In the scheme described in [Blak86] screening is done by
substituting a tuple into a view predicate, which is then tested to see if it is still
satisfiable. If so, the tuple passes the screening test, otherwise it fails. This test is per
formed for every tuple inserted into a relation, incurring a significant CPU cost.

The screening test proposed in [Bune79] has a compile-time phase and a run-time
phase. In the first phase, when the command for a transaction is compiled, the system
checks to see whether any fields the command proposes to update are read by the view
definition. If no such fields are updated, then the command is called a readily ignorable
update (RIU) with respect to the view. If a command is an RIU, it cannot cause the view
to change. In the second phase, if the command is not an RIU, the individual tuples
updated are screened further at run time. If a command is an RIU, there is only a per-
transaction cost associated with this screening test. If it is not an RIU, then there is a
per-tuple cost, similar the screening test of [Blak86].

An alternative test that will usually be more efficient than the two just described is
to apply the rule wake-up scheme in [Ston86] to the screening problem. Using this
mechanism, called rule indexing, the index intervals covered by one or more clauses of the
view predicate are locked using special markers called trigger-locks or t-locks. When a
tuple is inserted into the relation, if an index record containing a t-lock is disturbed, then
the tuple passes the screening test. Otherwise, the tuple fails the test implicitly. Since
this screening test can produce "false drops" (i.e. tuples which pass the screening test but
do not satisfy the view predicate), a second stage screening test, substituting the tuple
into the view predicate, is appropriate. This strategy is assumed for both immediate and
deferred view maintenance in the performance analysis of this paper.

To provide the background necessary for the performance analysis, Section 2 reviews
the immediate view maintenance algorithm and describes the proposed deferred view
maintenance scheme in detail. In Section 3, cost formulas for each of the algorithms are
derived for three different view models:

1. selection-projection views
2. two-way natural join views
3. aggregates over selection-projection views

The performance of the algorithms is compared for each model. Finally, Section 4
presents conclusions, and suggests directions for future research.



2. View Materialization Strategies

In this section, the algorithm for incrementally updating materialized views after
each update transaction is described briefly (see [Blak86] for a complete discussion). Our
proposed variant of this algorithm to allow deferred view maintenance is then presented.

2.1. The Differential View Update Algorithm
The differential view update algorithm operates on the following sets of tuples:

Ri, i?2> — Rn the N base relations
Au A2, ... AN the N sets of tuples inserted into the

base relations by the current transaction
Dlt D2, ... DN the N sets of tuples deleted from the

base relations by the current transaction

The sets Ax- • • AN and Dy- • •DN must contain the net changes to the database made by
one transaction. Hence:

A, f|I>t = 9
Aj H Ri= q> for l<t<AT
DiQRi

The definition of a view V can be represented by a select-project-cross-product expres
sion as follows, where ax represents selection based on a predicate X, irY represents pro
jection of the set of attributes Y, and X represents cross-product.

V = irY{vx(RiXR2x • • • XRN))

Consider an example with two relations, R\(a,b) and R2(b,c), and a view V defined as
follows, where Y = {a,c\ and X = (R{.a=5 and R{.b=R2.b):

V = irY(ax(RiXR2))

The following expression shows the subsequent value of V, Vu after an append-only tran
saction updating both R{ and R2.

Vi = wy<ffx((«i U Ai)X(fi, U A2)))

Selection and projection both distribute over union, so the above expression simplifies as
follows:

Vi = irY{(TX{RxXR2 U A{XR2 U R{XA2 [J A{XA2))

= irY(<rx(RiXR2)) U 7rr(<rA-(A,Xi?2)) U 7rr(<7x(#iXA2)) U •nY(ax(AxXA2))

- V„ U wy<<T(v'A,Xff2)) U irY(<rx<R\XA2)) U 7rr(ffY'A,XA2))

This algebraic simplification shows that V can be refreshed by computing the value of the
last three expressions shown above, and then unioning the results to the stored copy of V
(V0). In practice, the query optimizer can be used to find the most efficient method avail
able for computing these subexpressions. Since all these subexpressions are computed at
the same time, performance advantages can be gained by optimizing all three together,
and the technique described in [Sell86] can be applied to this problem.
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If deletions as well as insertions occur in transactions, the differential update algo
rithm becomes slightly more complicated. One problem is that tuples in V may have been
contributed by more than one source, since the projection operation can map multiple
input tuples to the same value. If it appears that a tuple should be deleted from V, but V
is stored with duplicates removed, it impossible to decide what action to take without
totally recomputing V from the base relations. To overcome this difficulty without wast
ing disk space by physically storing duplicates, each tuple in V must contain a duplicate
count, indicating how many potential sources could have contributed the tuple. With the
duplicate count, when a tuple is inserted into V, if an identical value is already stored,
then its duplicate count is incremented. Otherwise, the tuple is inserted with a duplicate
count of 1. Similarly, the duplicate count of the stored value is decremented on tuple
deletion. If the count becomes 0, the tuple is physically removed from V.

Extending the previous example, consider a transaction that inserts and deletes
tuples from both Rx and R2. The new version of the view, V^ is thus represented as fol
lows:

Vi = WYtvxlUBi-DO U AX)X((R2-D2) U A2)))

Using

Rx' = (Rx-Dx)
R2 = (R2-D2)

we can rewrite the above as simply

V, = nY(<rx{(Rx' U AX)X(R2' U A,)))

Multiplying out this expression yields

Vx = irY(<rx(Rx'XR2' (J RX'XA2 U A,X#2' U AXXA2))

Expanding the RX'XR2 term of the above gives the following (the remaining terms are
indicated by elipses):

Vi = irY{<rx{(Rx-Dx)X(R2-D2) U ' • *))

= wy(<tx{RxX(R2-D2) - DVX(R2-D2) U ' **))

= nY(<jx(RxXR2 - RXXD2 - DXX(R2-D2) \J • • •))

Re-writing the second occurrence of Rx as {Rx' U Dx). gives

Vx = irY(<rx{RxXR2 - (£,' (J DX)XD2 - DXX(R2-D2) \J • • ))

Multiplying the second term through, and substituting R2 for (R2-D2) leaves

Vx = i7K(<jA-(i?lX/22 - R{'XD2 - DtXD2 - DyXR2 \J • • • ))

If the operator - is implemented as deletion and IJ as insertion using duplicate counts
as described previously, then the projection operation it will have the distributive pro
perty for both - and U [Blak86]. Applying these distributive properties to the expres
sion above, we are left with

V| = TY(<rx(RiXR2 ))- irYlax{R\'XD2)) • • •

= V„- tty^x{R\'XD2))- 7rr(o-A-(D|Xi22'>)- irY(<TX(DxXD2))
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U •nY{<rxi,Rx'XA2)) U irYi<rx{AxXR2')) \J ity(<tx{AxXA2))

As expected, the first term of this expression is V0, the previous stored value of V. To
update the stored copy of V so that its value becomes Vx, the remaining expressions must
be evaluated, and either inserted into or deleted from V as required, maintaining the
correct duplicate counts. (The differential view update algorithm presented here is
slightly different than that given in [Blak86]. A discussion of the differences appears in
Appendix A.)

2.2. The Deferred Refresh Algorithm

The algorithm described above is performed after every database update. However, in
certain situations, it will be advantageous to save the sets of tuples inserted and deleted
for a period of time, and then apply the differential update algorithm to the whole group.
Given a method to compute the net changes (A,-net and Drnet) for each relation, Rit for
l<i<iV, over a period encompassing more than one transaction, incremental view mainte
nance can be done whenever desired. To refresh the materialized view, Arnet and Drnet
must be calculated and then input to the standard differential view update algorithm.

A previously developed technique called hypothetical relations [Wood83] can be
adapted to the purpose of computing Arnet and Drnet. The basic algorithm for imple
menting hypothetical relations is briefly described below. Efficient implementation of
hypothetical relations to support deferred view maintenance will be discussed after the
basic algorithm is presented.

2.2.1. Hypothetical Relations

Fortunately, we can find the net changes to Rt to use in deferred refresh using a
modified hypothetical relation (HR) algorithm proposed in [Agra83]. The HR scheme uses
three tables for each relation rather than one. Each relation has associated with it tables
R, D and A, for base tuples, deletions and insertions, respectively. The data value of a
tuple will simply be called "value." Each tuple will also have a unique identifier field "id."
This yields the following schema for each relation:

R(id, value)
£>(id, value)
A (id, value)

The true value of the relation (RT) is (R \J A) - D. The set difference operation "-"
above has the normal meaning, based on all fields of the tuple, including id.

To append a tuple to Rt, a transaction inserts that tuple in A, placing the value of
the system clock or other monotonicly increasing source in the id field. If duplicate-free
semantics are desired, the system must ensure that the tuple is not already in
(R \J A)-D before appending it to A. To delete the tuple from the relation, a copy of its
value, including the id it had in R or A, is placed in D. To modify an existing tuple, its
old value will be put in D, and its new value in A. When retrieving data from Rr,
queries are processed against both R and A, and any tuples found are checked to make
sure they are not already in D, (if they are, they are ignored).

Given this structure of the HR, the expressions for computing A-net and D-net from
R, A and D as described above are the following:
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A-net := A -D

D-net := D -A

After a view refresh that uses A-net and D-net, the files used to store the hypothetical
relation will be reset as follows:

R

A

D

= (R U A)-D

= «P

= <P

2.2.2. Efficient Implementation of Hypothetical Relations

The problem with the most straightforward implementation of hypothetical relations
is that retrieving a tuple from R requires three disk accesses rather than just one, as in a
standard relational database. To retrieve a tuple t from R using the HR scheme this way,
an attempt must be made to read t from both R and A, and then D must be read to make
sure that t has not been deleted.

Fortunately, a method developed in [Seve76] can be used to screen out most accesses
to the differential file(s). In this method, a Bloom filter [Bloo70] is used for each
differential file, consisting of an array of bits B[l..m], with each entry initially zero. We
assume that some subset of the fields of each record called the key uniquely identifies the
record. For each record in the differential file, a hash function h mapping the key of a
record to an integer in the range 1 to m is computed, and the corresponding entry in B is
set to 1. Then, to test whether a record t is in the differential file, if B[h(t.key)] = 0, t is not
present; otherwise, if B[h(t.key)] = l, it might be present, so the differential file must be
searched to see if it is there. Using the method proposed in [Seve76] one can design a
Bloom filter with any desired ability to screen out accesses to records not present in the
differential file by increasing the value of m.

As another measure to help speed up accesses to the differential file, A and D for
each relation R will be combined into a single file, AD. An extra attribute "role" will be
added to tuples in AD to indicate whether they are appended or deleted tuples. This
storage structure will speed up the majority of updates, which modify existing records
without changing the key. For example, if AD is maintained using a clustered hashing
access method on the key, then when a tuple t is updated to t' without having its key
changed, t' will hash to the same page as t. Thus, a maximum of only three disk I/Os will
be required to update a single tuple t in R given the key for t. This update procedure is
as follows:



I/O #1: Read the tuple.
(Check the Bloom filter to see if t could be in AD. If not,
read t from R. Otherwise, read AD to see if it is there.
lit is not in AD, read R. This might require 2 I/O's, but
the probability can be made arbitrarily small by increasing m.
Hence, we count only one I/O here for simplicity.)

I/O #2: Read the page where the new value of t (t') will lie in AD.
(Place both t and t prime on the page. The role values of t and
*' are "deleted" and "appended" respectively.)

I/O #3: Write this page back to disk.

This is only one more I/O than necessary to perform this type ofupdate using a standard
relational data structure. If separate files for A and D were used, at least five I/O's would
be required rather than three since R must be read, and A and D must both be read and
written.

In the remainder of the paper, the sets of inserted and deleted tuples will still be
referred to as A and D, even though they are stored in the AD table. It is assumed that
AD will be partitioned to form A and D when necessary.

3. Performance Comparison

Each of the view materialization methods presented will have different performance
characteristics. This section discusses the factors affecting performance and derives cost
functions for each method for three different view models.

3.1. Models to be Analyzed

Given that view materialization can be done using query modification, or immediate
or deferred view maintenance, we will determine the situations in which each scheme per
forms best. Three different models of the structure of view are considered:

model view structure

Model 1 selection and projection of a single relation R
Model 2 natural join of two relations, Rx and R2, on a key field
Model 3 aggregates (e.g. sum, average) over a Model 1-type view

Only two types of operations will be considered in the models: updates to the base rela
tions, and queries to the view. It is assumed that exactly k update operations, and q
queries to the view will be run. For each model, a formula for the average cost per query,
over all k updates and q queries, will be derived.

The relations involved have the following access methods:
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base relations

R, Rx clustered B +-tree on field used

in view predicate
R2 clustered hashing on join field

materialized view (V) clustered B+-tree on field used

in view predicate
differential file (AD) clustered hashing on a key field

Generous assumptions will be made for all view materialization schemes regarding how
queries and other operations are performed using these clustered indexes. Since these
performance benefits will be given to all algorithms, the results should not be biased
toward any one scheme.

The following parameters are important to the analysis:

parameter definition
N number of tuples in relation
S bytes per tuple
B bytes per block
b total blocks (b - NS/B)
T number of tuples per page (T=B/S)
n number of bytes in a B+-tree index record
k number of update transactions on base relation
I number of tuples modified by each update transaction

<7 number of times view queried
u number of tuples updated between view queries {u=kl/q)
P probability that a given operation is an update (P= k/(k+q))
f view predicate selectivity for Model 1
fv fraction of view retrieved per query

ffl2 size of i?2 as a fraction of Rx

c, CPU cost to screen a record against a predicate in milliseconds (ms)
c2 Cost in ms of a disk read or write

c3 Cost in ms per tuple per transaction to manipulate A and D
data structures in immediate

The default values of these parameters, which will be used unless stated otherwise,
are as follows:

N 100,000 f .1

S 100 fv .1

B 4,000 fn., .1

k 100 c, 1

I 25 c2 30

<? 100 Ca 1

n 20
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3.2. Model 1 Cost Analysis

In Model 1, the view is formed by projecting exactly one half of the attributes of
tuples from R, and applying a predicate with selectivity f. Thus, the result will contain f
times N tuples. The value we will measure for each view maintenance scheme is the
average cost of a query that retrieves a fraction fv of the tuples in the view.

3.2.1. Cost of Deferred View Maintenance Assuming Model 1
In deferred view maintenance, it is assumed that the view is refreshed every time it

is queried. After the refresh is finished, the result of the query is computed. The average
cost of a query to the view, which will be called TOTALdeferredl, has several components.
The first is the cost to read the result of the query from the copy of the view stored on
disk. The second is the cost to refresh the view. The third is the cost to screen incoming
and deleted tuples to see if they might affect the state of the view. Finally, the fourth is
the cost to maintain the hypothetical relation(s). The average value of each of these costs
are added together to get the average cost per query, TOTALdeferredl. In summary,

TOTAL^efernrii =
(cost to retrieve result of query from stored copy of view)

+ (cost to refresh the view)
+ (average cost per query to screen tuples to see if they affect view)
+ (average cost per query to maintain hypothetical relation(s))

We assume that no duplicates are formed by projecting half the attributes, so the
view has fN tuples and fb/2 pages. A fraction fv of the view is read during each access,
requiring ffvb/2 page reads, at a cost of C2 each. One search of the B+-tree will also be
necessary to locate the position in the view to begin scanning. Since there are n bytes per
index record, the height of the. B +-tree, not including the data pages, is determined as
follows. The number of index records per page, and thus the index fanout, is B/n. There
is one index record for each of the fN tuples in the view. Assuming as a simplification
that all pages are packed full, the height of the view index (Hvi) is thus

#vi =\logrB/n]fN]
Additionally, each tuple read from the view must be screened against the query predicate,
at a cost of C^ for a total cost per view access of CxfvfN. Thus, the total cost Cqueryl to
query a materialized view is

ff h

The next cost to consider is that for the hypothetical relation overhead. It is only
necessary to measure the cost in excess of that required to perform normal base relation
updates. As a simplification, the assumption is made that only tuples in R are updated,
and never tuples in AD. The cost to maintain the HR for a single insertion into R in this
situation is the following:

1. read the original tuple from R
2. read the page in AD where the modified tuple will be placed
3. write this page in AD

Step (2) is the only extra I/O required over using just a single table (R). The normal cost
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to update R would be one read and one write, or 2C2, per tuple updated. If the cost of step
(2) is averaged over all queries and updates, the cost per query to maintain the HR is at
most the cost of one I/O (C2) times the number of tuples update per view query (u). The
total cost is likely to be somewhat less than this, however, since AD often has a small
number of pages, and there are I tuples modified per transaction. The cost can be
modeled more accurately using a function for estimating the number of pages touched
when accessing k out of n records in a file occupying m disk pages. This function, which
will be called y(n,m,k), has been previously derived [Yao77] (See Appendix B for a descrip
tion of y). The number of tuples in AD will be twice the number of tuples updated per
view query (2u). The number of pages in AD will thus be 2u divided by the number of
tuples per page (T). The number of pages in AD touched per transaction is thus
y(2u,2u/T,l). Averaged over q queries and k updates, the total cost of the extra accesses
to AD is thus the following:

Cad =Q%- y{2u,^,l)
q T

Consider now the cost to refresh the view V once. This first involves the cost to read
all of AD. Since u tuples are updated per view query, AD has approximately 2u elements.
There are T records per page, so AD has 2u/T pages. Thus, the cost CADread of reading AD
is

r - r 2u

Another cost is incurred to screen updates to see whether they have a chance of
affecting the view. Recall that to screen incoming tuples to see whether they can affect a
view, rule indexing is used in combination with a more stringent satisfiability test. For
the view maintenance methods analyzed, it is assumed that the screening is performed as
follows:

if

(1) a tuple breaks a t-lock for the predicate of view V, and
(2) the predicate for V with t substituted into it is still satisfiable,

then

a marker indicating this is placed on t.

In both the deferred and immediate view update algorithms, a tuple will be used to
update a stored view V only if the tuple has a marker for V. A fraction f of the u tuples
inserted into R per query will conflict with a t-lock set for V in step (1) above, and thus
must be passed on to step (2). Step (1) has essentially no overhead, and step (2) costs C^
Thus, the average overhead per query to screen tuples to see if they affect V is:

^screen = Cxfu

Also, approximately fu tuples per query will be inserted into and deleted from the
view, respectively, for a total of 2m tuple updates. Each insertion or deletion from the
view requires reading the S+-tree view index, and reading and writing a data block.
However, somewhat less than 2fu pages of the view may actually have to be updated dur
ing a refresh, since there may be more than one record per block in the view. Using the
Yao function, since there are fN tuples and fb/2 blocks in the view, the number of view
blocks accessed (X,) is approximately
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*i =y(fN&,2fu)

Each access requires reading the index, reading and writing a data block, and writing a
leaf-level index block (splits of internal index pages are infrequent, so their cost will be
ignored as a simplification). This requires 3 I/Os, plus a number of I/Os equal to the
height of the index on V (tfvi). Thus, the cost to refresh the view, Cdef.refre8hl, is as follows

Cdef-refreshl = C2 (3+#vj) Xx

The following is the final expression for the cost per query to the view V using
deferred refresh:

TOTALdeferredl = CAD +CADread +Cqueryl +Cdef.refresh1+Cscreen

3.2.2. Cost of Immediate Assuming Model 1
The cost per view access of performing immediate view maintenance, TOTALimmediatel,

is as follows:

TOTALimtnediatel = (cost to query view)
+ (total cost to modify stored view)/(# of view accesses)
+ (total cost to screen tuples inserted into R

to see if they should enter view)/(# of view accesses)
+ (overhead per query to maintain A and D sets in

a data structure during transaction processing)

The cost Cqueryl to query the view is the same as for deferred view maintenance. The cost
to update the stored view when a transaction modifies R, which will be called Cjmm_refreahl,
is computed much like Cdef.refreshl. The difference is that approximately 2/7 tuples in the
view must be modified once per transaction, rather than modifying 2fu view tuples once
per query. Since some of these 2/7 tuples may lie on the same page, the number of view
pages touched (X2) can be estimated using the Yao function as follows:

X2 = y(fN,&-,2fl)
Similar to the case for deferred view maintenance, updating a tuple in V requires a B+-
tree search, the read and write of a data block, and the write of an index block. This
requires (S+Hvi) I/Os for each view page touched, as before. Since there are k updates for
every q queries, the average cost per query to update the view is:

k
Cimm-refreshl = C2 (3 + Hvj) X2

The cost Cscreen to screen the kl tuples inserted into R is unchanged.

Finally, since immediate view maintenance must update the view after every tran
saction, the data structures used to maintain the A and D sets must be reset once per
transaction. The overhead per query to do this, which will be called COVprh(>adi will be
estimated as Ca for each of the fl tuples in A and D, multiplied by the number of updates
per query (k/q), i.e.

k
Coverhead = lC^2fl) —
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This gives the following expression for the total cost of immediate view maintenance:

•'•"•'•A.Ljinmedjatei = Cqueryl "r^imm-refreshl "'"^screen"' ^overhead

3.2.3. Cost Using Query Modification Assuming Model 1

Here we consider using query modification rather than materializing the view in
advance (this option will perform best in some circumstances, e.g. if the ratio of updates
to queries is high). Three different methods for retrieving the view from R will be con
sidered:

(1) a clustered (primary) index scan for which no extra tuples must be read (clustered)
(2) an unclustered (secondary) index scan (unclustered)
(3) a sequential scan of the entire relation (sequential)

Using a clustered index scan, the number of pages that must be read from R is equal to
the size of the view, which is fb, times the fraction of the view retrieved, fu. The number
of tuples retrieved is ffvN, and each of these tuples must be tested against the view predi
cate at a cost of Cx. Thus, for the clustered scan (1), the total cost to retrieve the view per
access is

TOTALcIu8tered = C2bffv+CxNff0

• Using an unclustered scan (2), a larger number of pages must be read from R.
Searching for ffvN tuples out of a total of b pages will require approximately y(N,btNffv)
reads. The system must still test Nffu tuples against the view predicate. Thus, the total
cost for case (2) is

T0TALuaclu8tered = C2.y(N,bWfv) + CxNff0

Using a sequential scan of the entire relation (3), all b pages must be read, and all N
tuples must be screened against the view predicate, resulting in the following total cost:

TOTALsequenUa, = C2b+CxN

3.3. Performance Results for Model 1

To indicate the differences in cost with respect to the probability P that an operation
is an update, Figure 1 plots the total cost of deferred, immediate, clustered and
unclustered vs. P for the standard parameter settings (sequential is not shown since it is
off the scale). This setting of the parameters models a situation where the view contains
10,000 tuples, and each query retrieves 1,000 tuples. In this situation, query modification
using a clustered access path has performance equal or superior to deferred and immedi
ate. One would expect that clustered would perform well here since the number of pages
that must be read is small when using a clustered index. The only advantage that
deferred and immediate have over clustered is that there are twice as many tuples per
page in the view compared with the base relation. However, the extra overhead paid by
deferred and immediate to maintain the materialized copies of the view offsets this.

It is surprising that deferred and immediate view maintenance have almost identical
cost under these circumstances. Once reason for this is that for low values of P, material
ization methods have nearly equal cost for virtually any parameter setting. This occurs
since for low update probability, a large fraction of the cost of both algorithms is for
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processing queries against the materialized view, and both algorithms do this the same
way. Another cause of the close match is that the hypothetical relation overhead in
deferred view maintenance counteracts the other advantages it holds over immediate view
maintenance. If more than one disk is available, and I/O operations can be issued con
currently by a program, then it would be possible to significantly decrease the cost of
maintaining hypothetical relations (e.g. by putting R, A and D on separate disks and
reading from them simultaneously). This would give deferred maintenance an advantage
over the immediate scheme for a wider range of parameter settings. However, these
assumptions are not made in this paper since they would require extra hardware, and
operating system functionality not readily available in all computer systems.

Assuming the view is maintained with a clustered index on a commonly used access
path, the view materialization methods are significantly superior to query modification
when only an unclustered access path is available on the base relation. This has implica
tions for database design, since a materialized view could be clustered on one attribute,
and the base relation on another. In this situation, a query optimizer could chose to pro
cess a view query in one of two ways, depending on the query predicate. If the predicate
could be processed most efficiently using the clustered index on the base relation, query
modification would be chosen to execute the query. Otherwise, the query could be pro
cessed against the materialized view, using the clustered view index as an alternate
access path.

An interesting tradeoff among the algorithms centers around the parameters /", P,
and fv. To illustrate the relationship between these parameters, Figure 2 plots the region
where each algorithm has lowest cost for different values of P and /*, with f. fixed at .1.
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Although deferred is never the most efficient algorithm under these parameter settings,
larger values for f improve the performance of deferred relative to immediate view
maintenance. This occurs due to the nature of the Yao function, combined with the fact
that increasing f increases the size ofA and D proportionately. Larger values ofP tend
to favor the algorithm with the least overhead per update transaction (i.e. query
modification). Reducing the total fraction fv ofthe view retrieved also tends to favor using
query modification, since the overhead of the view maintenance schemes is independent of
fv, but the cost per query decreases with fv. When the value of fv is lowered to .01, as
shown in Figure 3, clustered performs best over an even larger area. In Figure 4, C3, the
overhead per tuple for maintaining the A andD sets was increased from 1 to 2 ms, while
setting f0=.l. The affect of this change can be seen by comparing Figure 4 and Figure 2.
The fact that deferred view maintenance now performs best in part ofFigure 2 shows that
the cost of the view materialization methods is very sensitive to the overhead for main
taining the A and D sets.

3.4. Model 2: 2-Way Join View

In this section, the performance of the different view maintenance algorithms is com
pared, assuming a more complex view model. The view V in Model 2 is a join oftwo rela
tions, P, and P2, where P, contains N tuples, and P2 has fRyN tuples. The definition of V
is:

define view V (P,.fields, P2.fields)
where Rx.x = P2.y
and Ct
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The clause C. in the view predicate restricts relation Pt with selectivity f. We assume
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that every tuple ofRx that matches Cf joins to exactly one tuple in R2, so V has fN tuples
total. Also, both Rx and R2 contain tuples of size S bytes, and only half the attributes of
each relation are projected in the target list of the view definition. Thus, the tuples in V
also contain S bytes each. The query and update activity assumed is the same as for
Model 1, except that all updates are to Rx rather than R (P2 is never updated).

3.4.1. Cost of Deferred Assuming Model 2

For Model 2, the cost per query of doing deferred view maintenance is determined as
follows:

TOTALdeferred2 = (cost to read AD)
+ (cost to refresh view)
+ (cost to query view)
+ (cost per query to screen new tuples against view predicate)

The costs CAd and CADread of updating and reading the HR, respectively, from Model 1
are unchanged for Model 2. The cost to refresh the view before it is queried (using
deferred view maintenance), which will be called Cdef.refresh2, will be determined as follows.
To refresh V, the value of the following expression must be computed (the notation V(X,Y)
means the expression for V evaluated with X and Y" in place of Pi and R2, respectively:

V(RX#2) U V(Ai,P2) - V(DltP2)

The V{RxJt2) term is already computed and stored as the previous version of the view
(V0). No terms containing A2 and D2 are shown since R2 is never updated. Thus, only
V(AXjR2) and V(DxJl2) must be computed. Recall that there is a clustered hashing index
on fl2 that can be used as an access path to join tuples in Ax and Dx to R2. The cost to join
the Ax and Dx sets to P2 is determined as follows: R2 has fn2N tuples and fR2b pages, and
there are u tuples in each of Ax and Dx at refresh time. Thus, the total number of pages
that must be read from R2 to perform these two joins is

*s = y(fR2N,fRJb,2fu)

It is assumed that pages read for the first join stay in the buffer pool for the second.
There is also a CPU cost of Cx for matching each of the 2u tuples in Ax and Dx with

the joining tuple in R2. Furthermore, for each joining tuple, a page must be read and
written from the stored view. Using the Yao function, since the view has fN tuples of size
S bytes, and a fraction f of the tuples in Ax and Dx join to exactly one tuple in R2, the
actual number of view pages that will be updated is approximately

X4 = y(fN,fb,2fu)

Each page update requires reading the B+-tree index on the view, as well as reading and
writing the data page, and writing the index leaf page (i.e. 3+tfvi I/Os). Thus, the total
cost Cduf.n.rreHh2 to update the view every time it is queried is:

Cd«.f-r<'rri'sh2 = C2X:] + Ci2u + C2(3 +Hvil./V4

When the view is queried, both deferred and immediate view maintenance pay the
same cost, C,,uery2. This consists of searching the view index to find the starting point, and
then performing a clustered index scan to retrieve a fraction /;, of the view. This costs C2
per page, and C, per tuple scanned. Summing the cost of the index search and scan yields
the following expression for Cquery2:
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Cquery2 = C2Hvj + C2/"t/&+Ci/,,/"iV

Both deferred and immediate view maintenance pay an average screening cost of
Cscreen per query to the view. Given Cdef.refre8h2, Cquery2, and Cscraen, we have the following
expression for the total cost using deferred view maintenance assuming Model 2:

TOTALdeferred2 = CADread +Cdef.refre8h2 +Cquery2 +Cgcreen

3.4.2. Cost of Immediate View Maintenance Assuming Model 2
The cost TOTALimtnediate2 of doing immediate view maintenance combined with rule

indexing in Model 2 is

TOTALimmedjate2 = (cost per query to update view)
+ (cost to query view once)
+ (total overhead per query to maintain A and D sets)
.+ (cost to screen new tuples against view predicate)

To find the cost per query Ciin(n.refrc8h2 of maintaining the materialized view, we .must first
find the cost to refresh the view after each transaction. The components of this refresh
cost are the I/O cost of reading the pages of R2 to which tuples in Ax and Dx join and read
ing and writing modified pages of V, plus the CPU cost of handling each tuple in A x and
Dx. Since Ax and Dx both contain / tuples at the end of each transaction, and a fraction f
of these match the view predicate and must be joined to R2, the number of pages that
must be read from R2 is

x5 = y(fR2N,fR2b,2fl)

Each tuple in Ax and Dx joins to some tuple in R2, so each causes one tuple to enter or
leave V. The number of modified pages of V is

X6 = y(fN,fb,2fl)

Again, for each of these pages, the index on V must be read, the page must be read and
written, and an index leaf page is written, requiring 3 +Hvl page I/Os. There is also a CPU
cost of CI for handling each of the 2/ tuples in Ax and Dx. Averaging the per-transaction
cost of updating V over k transactions and q queries, the estimated cost per query is as
follows:

k
Cimm-refresh2 = —(C2Xs+C2(S+Hvl)Xs)

Given Cimm.refre8h2 and Cquery2, the following expression shows the total cost of immediate
view maintenance using rule indexing, assuming Model 2:

*•*-' •'•"'L,immediate2 — ^-/imm-refresh2'"^/query2' ^overhead '^scronn

3.4.3. Cost Using Query Modification Assuming Model 2

Another important cost to measure is that to materialize a view directly from the
base relations. A frequently used join strategy called nested-loops (or loopjoin) involves
scanning one (outer) relation, and for each of its elements, searching the other (inner)
relation to find all joining tuples. If an index is present on the join field of the inner rela
tion, it can be used for the search.
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It is assumed that the nested-loops join algorithm is used to join Rx and R2 in Model
2. Rx will be the outer relation, and R2 will be the inner one. Since there is a hash index
on the join field of P2, it will be used for the inner search. The assumption is made that
pages of R2 stay in the buffer pool throughout the computation of the join after they are
read the first time. With the advent of very large main memories, this is reasonable since
R2 contains only fR2NS bytes, which is approximately 1 Mbyte using the standard param
eter settings. Under these assumptions, nested loop join has the following cost com
ponents, with the actual costs shown below:

cost component actual cost

read B+-tree on Rx C2f^B/nXN]
read part of Rx using clustered scan C2ffvb
CPU cost to screen Rl tuples scanned Cxff0N
read pages from R2 using hash index 02y{fR2N,fR2byffvN)
CPU cost to match Rx tuples to R2 tuples CxNffv

Summing the above cost components gives the following formula TOT,oopjoin for the total
cost to compute the join using nested loops:

TOTloopjoin = Cjlog^^l +Ci/]^

3.5. Performance Results for Model 2

The actual cost per query for deferred, immediate, and loopjoin using the standard
parameter settings are plotted in Figure 5. The results for Model 2 are significantly
different than to those for Model 1. When the view joins data from more than one rela
tion, incremental view maintenance algorithms (deferred and immediate) perform better
relative to query modification. By maintaining a materialized copy of the view, the query
cost is greatly reduced, since each result tuple is stored on exactly one page. In effect,
maintaining the view serves as an effective way of clustering related data on the same
page. However, as P increases, the overhead for maintaining the materialized view
overwhelms the advantage gained by clustering, so query modification becomes more
attractive. Also, similar to Model 1, as the fraction ofthe view retrieved ifv) is decreased,
the advantage of query modification grows. This follows since lowering fv reduces the
query cost, while the amount of overhead paid by deferred and immediate algorithms for
updating the view stays the same. An important special case to consider is when the view
is large, and the queries read a small amount of data. This occurs, for example, using the
standard EMPLOYEE and DEPARTMENT relations, and a view EMP-DEPT joining the
two on the department-number field. The majority of queries in this situation might
retrieve only a single tuple from EMP-DEPT. Also, updates usually change only one
EMPLOYEE tuple. We modeled this example by setting f=i, fr = l/N and /=1, and the
results showed that query modification is superior to deferred and immediate under these
circumstances for all values ofP>.08. Thus, query modification is almost always the pre
ferred method for answering small queries against large views. Other effects of varying
fv are shown using two figures. Figure 6 plots the areas where deferred view mainte
nance, immediate view maintenance and query modification using nested loops each have
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best performance for different values of P and f, with fv set to .1. Figure 7 shows the
same information with f0 set to .01.

3.6. Model 3: Aggregates Over Model 1 Views
Aggregates such as sum, count and average are an often-used feature of database

systems. Many aggregates (including all the ones listed above) can be incrementally
updated as changes occur to the data from which they are computed. This is done by
defining a state for the aggregate, functions for updating it in case of deletion or insertion
of values in the set being aggregated, and a function for computing the current value of
the aggregate from the state. The notion of incrementally maintaining aggregates is
extremely attractive since the aggregate state can be read quickly because it normally
requires less than one disk block ofstorage, while it often takes a large amount of I/O to
recompute the aggregate from scratch. Thus, it would appear that an aggregate need not
be used often to justify the expense of maintaining a materialized version of it.

To compare the value of maintaining aggregates vs. computing them from scratch, a
modified view model (Model 3) is used, in which the views are simply aggregates over
views of the same type as Model 1. In Model 3, the tuples for which the aggregate is com
puted do not need to be kept in a separate materialized view. Only the aggregate state
must be stored.

For this model, a query to the view consists of simply reading the state of the aggre
gate. Using the deferred view maintenance scheme in Model 3, the cost TOTALdefi>rred.i per
query to the view is
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TOTALn„f(%rred;, = (cost to read hypothetical database)
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+ (cost to read the aggregate state)
+ (cost per query to update the aggregate state if necessary)
+ (cost per query of screening tuples to see if aggregate is affected)

The cost to read the hypothetical database is CADread, unchanged from Model 1. The cost
to query the aggregate is the cost to read a single page, i.e.

^query3 = ^2

The cost to update the aggregate is the cost of one write times the probability that at
least one tuple modified since the last query to the view lies in the set being aggregated
(no read is necessary since the aggregate must be read to answer the query). There are
2u modified tuples in the hypothetical database per query to the view, and each has pro
bability f of lying in the aggregated set. The probability that at least one of these tuples
will lie in the aggregated set is equal to 1 minus the probability that none of the tuples
lie in the set. Thus, the probability that at least one of the tuples lies in the set is
(l-(l-f)2u). This yields the following expression for the cost per query to update the
view:

Cdef-refresh3 = C2(l-(l-f) u)

The final value of TOTALdeferred3 is the following:

TOTALdeferred3 = CADread + Cquery3 +Cdef-refre8h3 + ^screen

Using the immediate view update algorithm, the cost per query to maintain the
aggregate is

TOTALimmedjate3 = (cost to read the aggregate state)
+ (cost per query to update the aggregate state if necessary)
+ (cost per query of screening tuples to see if aggregate is affected)

The cost to read the aggregate state is Cquery3. The cost per transaction to update the
aggregate state is C2 times the probability that at least one tuple modified by the transac
tion lies in the aggregate, which is (l-d-/1)2'). The cost per query to update the aggre
gate state is thus as follows:

Cimm.refresh3 = (1—(1—/") )
<?

The cost of screening tuples is again Cscreeni yielding the following expression for
TOTALjminedjate3:

TOTALjmmedjate3 — CqueryS + Cjmnj.refreabs + Cscreen

TOTALdererred3 and TOTALimmediate3 will be compared to the actual cost of recomputing
the aggregate for each query using a clustered index scan, which is the same as
TOTALc|ustorpd •

3.7. Performance Results for Model 3

To compare the total cost of using deferred view maintenance, immediate view
maintenance, and a clustered index scan to compute an aggregate, the total cost of all
three is plotted vs. I in Figure 8. Note that the most significant part of the curve is for
small values of I, e.g. /<100. In this region, maintaining the aggregate costs only a small
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percentage as much as computing it from scratch.

To show the trade-off between a materialization algorithm and standard aggregate
processing, Figure 9 plots curves for P vs. I showing where a clustered scan and immedi
ate view maintenance have equal cost for different values of f (the fraction of the relation
that is being aggregated). Query modification using the clustered scan performs best
above each curve, and immediate maintenance performs best below. It is interesting to
note that maintaining materialized aggregates is most attractive when the fraction of the
relation being aggregate if) is largest. Also, since realisticly J will probably be small, it
is likely to be worthwhile to maintain materialized aggregates even for small values of f.
Cost savings can be obtained by materializing aggregates in significantly more cases than
for other views.

4. Conclusion

The performance analysis presented has shown that the choice of the most efficient
view materialization algorithm is highly application-dependent. The results are most sen
sitive to the following parameters:
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1. the total fraction of operations that are updates (P).

2. the selectivity factor of the view predicate (f).

3. the fraction of the view retrieved by each query (fv).

4. the number of tuples written by each update (/).

5. the cost of maintaining the sets of inserted and deleted tuples (either in
main memory, or in disk-based hypothetical relations).

Situations where P is high, f is high, or fv is small, tend to favor not materializing
the view at all. Rather, it is best to perform query modification, and retrieve the result
from the base relations using a good access plan selected by the query optimizer. An
important example of this is for large views (e.g. the EMP-DEPT view) and queries that
always retrieve a single record. When this example was modeled using f = lt 1= 1, and
fv =l/(number of tuples in the view), we found that query modification nearly always out
performs materializing the view in advance.

If /*,. is large, and P is not extremely high, then it becomes desirable to maintain
views in materialized form. Higher values of P, /",,, and / favor deferred view maintenance
over the immediate scheme. Conversely, if P is low, immediate view maintenance has a
slight advantage over deferred maintenance. An interesting phenomenon observed was
that immediate and deferred view maintenance have very nearly equal cost for Models 1
and 2, especially for low values of P. For higher P, reducing the cost of maintaining the
net change sets (A and D) in either view materialization algorithm significantly improves
performance.
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An important question concerns selection of the best time to refresh the view (e.g.
should the view be refreshed more often than done in deferred view maintenance, which
refreshes only when absolutely necessary?). If the A and D sets in the hypothetical rela
tional data structure use up all available disk space, then of course the refresh algorithm
must be used to update the materialized view. However, if disk space is not a limiting
factor, then waiting as long as possible between refreshes uses the least system resources.
The reason for this is that triangle inequality holds for the Yao function, which is a main
determinant of the cost of view maintenance. More precisely,

y(n,m,a + b) S y(n,m,a)+y(n,m,b).

for all a, 6>0. The net result of this is that fewer I/O's are necessary to refresh a view
only on demand than to refresh it multiple times for each query.

In cases where more than one materialized view draws data from the same hypothet
ical relation, it may be worthwhile to refresh all the views whenever it is necessary to
read the contents of the A and D sets for the relation from disk, since this would elim
inate the need to read the hypothetical database again. Also, if there is idle CPU and
disk time available, it is likely to be useful to put it to work refreshing views asynchro
nously. This would improve the response time of view queries in some situations since
the views would not have to be refreshed first. It would also allow update transactions to
be completed more quickly than using immediate view maintenance, since the view would
not have to be updated within the transaction. The evaluation of the usefulness of these
possible optimizations is an interesting topic for future study.

As a final observation, we speculate that the best applications of incremental view
update may not be related to processing queries against views, since this study has shown
that query modification is still very effective. Rather, view materialization could be
better employed where a complete copy of the answer to a query is always needed. For
example, materialization could support conditions for complex triggers and alerters, as
described in [Bune79]. Moreover, it could be used as a basis for a "window on a data
base" facility, where the result of a query would be displayed and updated in real time.
Other applications of incremental view update may be forthcoming.

References

[Adib80] Adiba, M. E. and B. G. Lindsay, "Database Snapshots", Proceedings of the
International Conference on Very Large Data Bases, October 1980, 86-91.

[Agra83] Agrawal, R. and D. J. DeWitt, "Updating Hypothetical Data Bases",
Information Processing Letters 16 (April 1983), 145-146, North Holland .

[Blak86] Blakeley, J. A., P. Larson and F. W. Tompa, "Efficiently Updating Materialized
Views", Proceedings of the 1986 ACM-SIGMOD Conference on Management of
Data, Washington DC, May 1986, 61-71.

[Bloo70] Bloom, B. H., "Space/Time Trade-offs in Hash Coding with Allowable Errors",
Comm. of the ACM 13, 7 (July 1970).

[Bune79] Buneman, 0. P. and E. K. demons, "Efficiently Monitoring Relational
Databases", ACM Transactions on Database Systems 4, 3 (September 1979),
368-382.



•25-

[Card75] Cardenas, A. F., "Analysis and Performance of Inverted Data Base Structures",
Comm. of the ACM 18, 5 (May 1975), 253-263.

[Lind86] Lindsay, B. G., L. Haas, C. Mohan, H. Pirahesh and P. Wilms, "A Snapshot
Differential Refresh Algorithm", Proceedings of the 1986 ACM-SIGMOD
International Conference on Management of Data, June 1986, 53-60.

[Sell861 Sellis, T., "Global Query Optimization", Proceedings of the 1986 ACM-SIGMOD
International Conference on Management of Data 15,2 (June 1986), 191-205.

[Seve76] Severance, D. and G. Lohman, "Differential Files: Their Application to the
Maintenance of Large Databases", ACM Transactions on Database Systems 1, 3
(September 1976), 256-267.

[Ston751 Stonebraker, M., "Implementation of Integrity Constraints and Views by Query
Modification", Proceedings of the 1975 ACM-SIGMOD International Conference
on Management ofData, San Jose, CA, June 1975.

[Ston86] Stonebraker, M., T. Sellis and E. Hanson, "An Analysis of Rule Indexing
Implementations in Data Base Systems", Proceedings of the First Annual
Conference on Expert Database Systems, Charleston SC, April 1986.

[Wood83] Woodfill, J. and M. Stonebraker, "An Implementation of Hypothetical
Relations", Proceedings of the Ninth Very Large Data Base Conference,
Florence, Italy, December 1983.

[Yao77] Yao, S. B., "Approximating Block Accesses in Database Organizations", Comm.
of the ACM 20, 4 (April 1977).

Appendix A

The method presented in [Blak86] for determining how to refresh the view when
both deletions and insertions occur is slightly different than the one shown here, and is in
fact not always correct. Using the scheme of [Blak86], the expression below would be
used to refresh the view:

Vx = irY{ax{RxXR2 (J AXXA2 U AXXR2 (J RXXA2-DXXD2-DXXR2-RXXD2))

Using this expression can cause improper update of the duplicate counts. For example,
suppose tuples tx in Rx and t2 in R2 joined together to produce a result tuple in V0. If a
transaction deleted both tx and t2, then the result of joining tx to t2 would be deleted from
V0 three times, not just one as it should. This happens since tx is in both Rx and Dx, and
t2 is in both R2 and D2. The formulation given in this paper (using RX'=RX-DX and
R2'=R2-D2) does not have this problem.

Appendix B

Given that there are n total records on m blocks, a formula giving the expected
number of blocks that will be accessed to modify k records is as follows [Yao77]. Let C£
be the number of ways that 6 items can be selected from a items (a >b). If the number of
records per block is p=n/m, then the formula giving the expected number of block
accesses is Cg~p/Ck. An approximation to the above that is very close if the blocking fac
tor is large (e.g. n/m> 10) is m<l-U-l/mi*> [Card75]. The notation y(n,m,k) is used to
represent the Yao function.
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