

Copyright © 1986, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ON THE VERIFICATION OF SEQUENTIAL MACHINES

AT DIFFERING LEVELS OF ABSTRACTION

by

Srinivas Devadas, Hi Keung Ma, and
A. Richard Newton

Memorandum No. UCB/ERL M86/93

9 December 1986

ON THE VERIFICATION OF SEQUENTIAL MACHINES

AT DIFFERING LEVELS OF ABSTRACTION

by

Srinivas Devadas, Hi Keung Ma, and A. Richard Newton

Memorandum No. UCB/ERL M86/93

9 December 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

ON THE VERIFICATION OF SEQUENTIAL MACHINES

AT DIFFERING LEVELS OF ABSTRACTION

by

Srinivas Devadas, Hi Keung Ma, and A. Richard Newton

Memorandum No. UCB/ERL M86/93

9 December 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

On The Verification of Sequential Machines
At Differing Levels of Abstraction

Srinivas Devadas, Hi Keung Ma and A. Richard Newton.
Department of Electrical Engineering and Computer Sciences

550 Cory Hall
University of California, Berkeley, CA. 94720

Abstract

We present an algorithm for the verification of the equivalence of two sequential
circuit descriptions at differing levels of abstraction, namely at the register-transfer
(RT) level and the logic leveL The descriptions represent general finite automata at the
differing levels - a finite automaton can be described in a ISP-like language and its
equivalence to a logic level implementation can be verified using our algorithm. Previous
approaches to sequential circuit verification have been restricted to verifying relatively
simple descriptions with small amounts of memory. Unlike these approaches, our tech
nique is shown to be computationally efficient for much more complex circuits. The
efficiency of our algorithm lies in the exploitation of don't care information derivable
from the RTL description (e.g invalid input and output sequences) during the verification
process. Using efficient cube enumeration procedures at the logic level we have been able to
verify the equivalence of finite automata with a large number of states/latches in small
amounts of cpu-time.

Acknowledgements

This work is supported in part by the Digital Equipment Corporation, the Semicon
ductor Research Corporation, and the Defense Advanced Research Projects Agency under
contract N00039-86-R-0365. Their support is gratefully acknowledged.

1. INTRODUCTION

Verifying the equivalence of logic circuit descriptions at differing levels of

abstraction is an extremely important problem and has many possible applications. For

example, after the synthesis of a logic level finite automaton from a higher level

register-transfer description, it is essential to be able to verify that the two descrip

tions actually represent the same machine.

One approach to the general verification problem is exhaustive simulation.

Unfortunately, the number of simulations required grows exponentially with the

number of inputs for even a purely combinational logic circuit, and grows even faster

for sequential circuits since all possible input vector sequences have to simulated to

prove equivalence. A different approach is to use formal verification techniques which

are input pattern independent and can guarantee functional equivalence.

Many formal verification approaches have been taken to prove/disprove the

equivalence of two combinational logic circuits, at the gate level and at differing
levels[don76.rot77] [rot80.oda86]. In particular a package of programs called

PROTEUS[wei86] incorporates several efficient algorithms for verifying combinational

logic circuits and has successfully been used on circuits with alarge number of gates.

Sequential circuit verification is aconsiderably more difficult problem, in the gen

eral case when there is no correspondence between the latches (states) of the two cir

cuits. (In the special case of aone-to-one correspondence between the two circuits, the

problem reduces to acombinational circuit verification problem). The few approaches

taken to solve the sequential verification problem include the use of temporal

logic[bro85] and PROLOG[mar85]. The use of temporal logic helps for asynchronous

circuits[dil85] but is not necessary in the synchronous circuit case: algorithms have

been proposed for formally verifying the equivalence of two gate level sequential cir

cuit descriptions with differing numbers of latches using symbolic boolean

manipulation[sup86]. However because of the intractability of the problem, all the

approaches Uken so far have been restricted to small to medium sized circuits with a

small amount of memory.

In this paper we present an algorithm for formally verifying the equivalence of

two sequential machines - one described at the register-transfer level and the other at

the logic level. By exploiting the don't care information available at the register-

transfer level (e.g. invalid input and output sequences) we have drastically reduced

the complexity of the verification problem and successfully verified the

equivalence of finite automata with a large number of states/latches and gates.

Our approach involves extracting the state transition graphs (STG) of the two

finite automata - the first from the register-transfer level description and the second

from the gate level circuit. These two STG's are then checked for equivalence. While

extracting the second STG from the logic level circuit, the use of don't care information

from the first STG enables us to reduce the number of states and the number of edges

in the second STG. The number of states of a finite automaton grows exponentially

with the number of latches in the circuit. However, for large machines the number of

states actually visited given the input sequences is typically a small fraction of the

total number of possible states. This is especially true if a state assignment

program[dem85] has been used in the synthesis process which minimizescombinational

logic and may or may not produce a minimum bit encoding of the states. The use of

invalid output sequence information and cube enumeration on the combinational logic

part of the gate level finite automaton enables us to detect these invalid states (actu

ally decode the internal state encoding) thereby reducing the complexity in checking

equivalence. Given a large number of states, the number of edges in the STG may be

prohibitively large. Allowing only valid input sequences enables us to reduce the

number of edges in the STG. again reducing the'time required to check for

equivalence. As opposed to the symbolic boolean manipulation techniques used in

[sup86,oda86] for sequential circuit verification we use modifications of backward

justification algorithms on the combinational logic parts to implicitly enumerate the

input combinations.

The algorithms used in the extraction of STG's of deterministic finite automata

(DFA/Moore machine) described at the gate level exploiting don't care information are

described in Section 2. The extraction of the STG from the register-transfer level finite

automaton and the algorithm used for formally checking the equivalence of two DFA's

represented by STG's are described in Section 3. The algorithms described for DFA's

(Moore machine) in Section 2 are extended to NFA's (Mealy machine) in Section 4 and

results for several examples are given.

2. EXTRACTION OF MOORE MACHINE STATE TRANSITION GRAPHS

2.1. Definitions and Notation

A finite automaton whose output is associated with the state is called a Moore

machine. A Moore machine is a six-tuple (Q X.A.SA^0). where fi is a finite set of

states, Z is a finite input alphabet. A is the output alphabet. Xis a mapping from Q to

Agiving the output associated with each state and q0inQ is the initial state.

A general model for the Moore machine at the logic level is shown in Figure 1.

The output combinational logic block performs the Q to A mapping. The next state

logic block generates the next state given the present state and input vector. D latches

constitute the memory elements. The two combinational logic blocks will henceforth

be referred to as the OL and NSL blocks respectively. The Moore machine is con

structed in such a fashion that the output is only a function of the present state and

not a function of the present input vector. For a Moore machine we have

Of = ftipsi.ps2—psi/t) 1 ^ i ^ N9

8

NSL

<

OL

A A -A/T"

I
Fig. 1 General Moore Machine Model

**i = gi(pS\.pS2...,pSN%Xi^2«-^) 1 ^ * ^ #r

where j«; and n*? denote the present state and next state values respectively and ik

denotes the input.

Acube c for a single output function is specified by a row vector c= [c1^2»c»»]

where c, can take values of 1. 0 and * (don't care), n is the length of the cube. It has

the usual boolean meaning associated with it[bra84].

A set of cubes X~ [clfi2,. . . ,ck } is said to be a ON-set cover for a logic func

tion if the logic function evaluates to 0. for any cube not in X- (Tn« OFF-set of a logic

function can be similarly defined).

Boolean intersection f\ and union |J are two operations that can be performed

between two or more sets of cubes[bra84]. For example one can find all the cubes for

which two outputs of a multi-output function are 1. by intersecting the ON-sets of the

two outputs. The complement of a set of cubes X ls denoted X-

2.2. Extraction Task

Given a logic level description of consisting of gates and latches of a machine the

goal is to extract the state transition graph of the corresponding DFA. This can bedone

in a number of ways.

One method which has been used in this context[sup86.oda86] is symbolic boolean

simulation[bTy&5] of the combinational logic blocks in the circuit which expresses each

output as a algebraic function (with boolean operations) of the inputs. Given these

algebraic functions, the edge transitions between two arbitrary states can be expressed

as aconjunction of these functions and possibly their complements. Thus the equations

corresponding to /,• and gi can be extracted from the OL and NSL blocks of the

machine and the edge transitions can be expressed as a function of the gi and gi and

the output for each state can be found using f x. Unfortunately, for combinational

logic blocks with a large number of gates the size/length of the equations becomes

prohibitively large and the extraction process becomes inefficient. Also, before including

an edge in the state transition graph, it has to be checked for satisfiability which is an

NP-complete operation[gar79].

Flattening the logic circuit is another alternative. Flattening involves reducing

the combinational logic blocks into two level (PLA) form. Given a truth table for these

combinational logic blocks the edges in the transition table can easily be found by

inspection. Flattening however may require exponential cpu time and memory require

ments and is not viable in many cases.

A third approach involves using backward justification algorithms to enumerate

the ON and OFF sets of a logic function. Enumeration has been successfully used in

the combinational "logic verification problem[wei86]. An implicit cube enumeration

algorithm is described in detail in the following section and a method for STG extrac

tion using this algorithm while exploiting don't care information is described inSection

2.4.

23. Implicit Enumeration

Justification algorithms like the D-algorithm and PODEM try to find a value for

the inputs of a logic network given an output value (0 or 1) if such a input cube exists

or prove its non-existence. The goal of enumeration is to find all possible values of

inputs which produce the given output value. It is easy to see that justification algo

rithms with proper modification on the termination condition can become enumeration

algorithms. The ON-set (OFF-set) of a logic function can be implicitly enumerated

with a small number of cubes using enumeration algorithms based on efficient

justification algorithms.

We have used an enumeration algorithm based on thePODEM[goe8l] justification

algorithm. In PODEM. given an output signal and a desired value on the output,a path

is traced from the signal to the primary inputs (PI) to obtain a PI assignment. This PI

assignment is simulated to see if the desired value of the signal has been set up. If so.

the procedure terminates. If the opposite value has been set. an opposite value is

assigned to the PI and this value propagated. If the signal remains unspecified, path

tracing is repeated. The above procedure continues until either a successful PI assign

ment has been found or all the PI assignments have been exhausted.

To use PODEM for enumeration[wei86], the justification procedure is not ter

minated once a successful PI assignment is found, but only when all PI assignments

have implicitly but exhaustively been enumerated. It is easy to see that PODEM pro

vides the OFF-set (ON-set) of the output signal simultaneously while enumerating the

ON-set (OFF-set).

2.4. Extraction Using Enumeration

The inputs to the logic level extraction program are the combinational logic blocks

OL and NSL and the state transition table. STT1, generated from the RTL description.

The output is a state transition Uble STT2. The extraction of a state transition table

from a ISP-like RTL description is described in Section 3. The input and output

sequence don't care information can be derived from 57T1 and used in generating

STT2. The following steps are performed during the extraction process.

(1) The ON-set and OFF-set is found for each output of the OL and NSL blocks, using

implicit cube enumeration. We denote CA0FF (CA0N) as the OFF-set (ON-set) for a

line A.

(2) If there exist Nt latches in the logic description. i.e. Ns outputs to the NSL block,

the number of states which can exist in the corresponding finite automaton is 2 .

However, given a set of valid input sequences, some of these states may never be reach

able from the starting state q0. For example, given a 4 bit encoding of states in a 9

state finite automaton. 7 (24 - 9) such states exist. These states which can never be

reached from q0 can be discarded, since we wish to verify the outputs of the two

machines under the valid input set alone. Finding these invalid states is non-trivial

since the internal encoding of the states in the logic level finite automaton is not

known. However, the output sequence information can be used to find some if not all

of these invalid states.

The set of valid output vector cubes VO = {vo1.vo2,...vor} is constructed by

inspecting 57T1. If the two machines are equivalent, all output vectors in STT2 €VO.

Using a logic minimizer like ESPRESSO-II[bra84] VO is found. A logic minimizer is

invoked so as to reduce following computations which are proportional to the number

10

of literals (0 and l) in VO.

Lemma 1: If astate q produces ainvalid output vector vo eVO.q is an invalid state.

Lemma 1 is the basis of finding invalid state encodings while generating STT2.

The following section of code illustrates how invalid states are found given VO and

the ON and OFF-sets of the OL block outputs.

INVAL_S = <f>
foreach(cube iv € VO) {

/* find all input cubes producing this invalid output cube */

INVALJ =INVALJ \J i ft C,w fi t\C°FF }

where tv is a cube of length Ns (inputs to the OL block). /+=U:iV|=l} and

/"= {i :ivf =0}. The - literals in the cube tv are ignored in this computation. As one can

see the number of cube set intersections performed in this step is proportional to the

number of 0 and 1 literals in VO which is why a fast logic minimization while com

puting VO is employed. This technique cannot find an invalid state which produces a

valid output cube. However, in large examples, typically a significant number of

invalid states can be found using a small fraction of the total cpu time spent in the

verification process as indicated in Section 4.

(3) INVALJS is complemented to find the set of valid states VAL_§. The set of all

valid input cubes VALJ is constructed by inspecting S7T1. The edges in STT2 are

generated using the NSL block enumerations. The section of code shown below illus-

trates this process.

foreach(state QF € VALJ) {

/* find all inputs to NSL producing this state as output */

infutjs =iNir\ciw n 'hV"" j

foreach(cube i/> € INPUTJS) {

inpul = ip < O'JJi —1>
(2^ = ip<NrJfs+Ni-l>

if (Q/ €VALJ AND foptf €VALJ)
include edge QI -* QF on input in 57T2

}
}

11

where INPUT_PS is a cube of length Ni+Ns (inputs to the NSL block).

I+={i'jQFi=l} and I~± {i:QFi =0}. Checking to see if input €VALJ can

significantly reduce the number of edges in STT2. The output corresponding to each

state is found by simulating the state vector on the OL block.

(4) A state s2 in STT2 which produces the same output as sx the starting state in

STTl is picked as the starting state of S7T2. All the states which cannot be reached

from s2 in STT2 (if any) are deleted.

Cube set intersections require time complexity 0(n2+m2) given two sets of cubes

with n and m cardinality. Two things are done to speed up cube intersections during

the invalid state detection and edge generation process. Firstly, intersections within

each cube (iv or ip) are performed in an order of increasing cube set cardinality so the

number of intersected cubes at any point is minimum. Secondly, invalid output/state

cubes are grouped in such a fashion that repetition of intersections between ON/OFF-

sets of the same pair of outputs is minimized, without storing more than two inter

mediate results. This technique cannot find an invalid state which produces a valid

12

output cube. However, in large examples, typically a significant number of invalid

states can be found using asmall fraction of the total cpu time spent in the verification

process as indicated in Section 4.

3.DFA EQUIVALENCE AND EXTRACTION FROM RTL DESCRIPTIONS

3.1. Input RTL Description

The input description is at the register-transfer level, and has the following main

constructs.

(1) Procedures and functions

(2) If and Select for control/branching

(3) Loops - While and For.

The description is ISP-like[bar79] except that clock boundaries are explicitly delineated

using a wait statement on the rising/falling edge of the clock (or clock phase) &. A

sample input description is shown in Figure 2.

3.2. Extraction from RTL Description

The extraction process is only concerned with the control flow in the RTL

description, we wish to generate a DFA controller for the input specification. The DFA

will have the control variables as the inputs (e.g. instruction bits. ALU status bits)

and assert outputs (e.g. register load. ALU add) depending on the present state.

The following steps are carried out during the DFA extraction:

(1) In the first pass, a one-to-one correspondence between the controlling input vari

ables and output signals of the RTL description and the logic level description is

made. For example, in the description shown in Figure 2, the variables run and pb

are two inputs. The output signals associated which each micro-instruction are

MAINO
BEGIN

run = 1:

WHILE run DO
BEGIN

fetch_instruction():
effective_address():
executeO;
IF interrupt-enable EQL 1 THEN

IF interrupt.request EQL 1 THEN
BEGIN

MBR = PC :
MP[0] - MBR :
PC-1;
waitGfo);

END

END

END

! subroutine for effective address calculations

ROUTINE effective_address()
BEGIN

SELECT pb FROM
[0]: BEGIN MA = 0 @pa: END
[lj: BEGIN MA =last.pc<0:4> @pa: END

ENDSELECT :

wait(0i):

IF ib EQL 1 THEN
BEGIN

MA - MP[MA]:
wait(^i):

END

END ! end of routine effective_address()

Fig. 2 Sample Input RTL Description

13

specified along with the RTL description. e.g. the micro-instruction MA - 0 @pa

may require (a) the load signal of the MA register be high and (b) the lo&d signal

14

of the ALU be high with the ALU operation code 111.

(2) Given the inputs and outputs, the description is parsed starting from the routine

MAIN and entering and exiting all procedures in the order they are called in. If a

micro-instruction is encountered then the corresponding outputs of the micro

instruction are asserted in the output of the present state. If a waitGfr) statement

is encountered a new state is generated.

(3) If a branch statement i.e. IF/SELECT is encountered, two or more states are gen

erated depending on the number of branching conditions, an transition edge

between the previous state and each possible present state created with the

corresponding input pattern. The extraction process continues with each possible

present state recursively enumerating all the possible combinations. The recursion

may terminate at the end of the MAIN routine or terminate if any input condi

tion is violated.

The state transition graph for the routine effective_address() isshown in Figure 3.

Only the local inputs and outputs are shown.

33. Verifying the equivalence of two DFA's

Verifying that two incompletely specified finite automata are equivalent is done

using a modified form of the method used to test completely specified finite

automata[hop79]. Given the completely specified finite automata Mx and M2 accepting

languages Lx and L2 respectively. Ui f] H) U CET 0 L2> * accepted by some

finite automaton A/3. A/3 accepts a non-empty language if and only if Li & L2.

One way of handling incompletely specified DFA's[sup86] is to enter a third

sequential machine which accepts the inputs Mxand M2 don't accept and perform an

extra intersection. However, a more efficient way is to add a single dummy sta;te in

each of STTl and STTl to which all the don't care transitions fanout to.

foreach(state q eSTTl) {
fanout = <f>

foreach(fanout edge E from q)
fanout = fanout (J Einput

dcfanout = fanout
add dc fanout edges from ? to dummyj

}

15

The same is done for STT2. STTl' and STT2' are now completely specified DFA's and

if they are equal it follows that STTl and STT2 are equal.

A composite finite automaton STT3 given STTl' and STT2* is constructed which

is the "multiplication" of STT 1' and STT2'.

foreach(edge ex in STTl*) {
foreach(edge e2 in STT 2*)

include edge [eiSrom .eiTo) -* [e2From >e2To) in STT3

}

where From and To denote the fanout and fanin nodes of an edge. STT3 may have as

many as N?N2 states given N1andN2 states in STTl* and S7T2' respectively. If a

path exists from {slts2) to any final node in STT3 the machines are not equivalent (if

apath does not exist STTl = STT2). The final nodes in STT3 are found as illustrated

MA = last.pc @ pa
I I

Fig. 3 State Transition Graph for effective_address()

u

below.

for(i = 1 To N0) {
foreach(state {q\ . q2\ €STT3) {

if ((q-Ljoutputi = 1 AND q2.outputi = 0)
OR

(qijoutputi = 0 AND q2.outputi = 1))
mark {qi ,q2) as a final node

}

17

4. EXTENSION OF ALGORITHMS TO MEALY MACHINES, EXAMPLES AND RESULTS

4.1. Extension to NFA/Mealy Machines

A finite automaton whose output is associated both with the input and the state

is called a Mealy machine. A Mealy machine is also a six-tuple (Q ,L,A,8A^o)> where

all is as in the Moore machine, except that Xmaps QXI to A. For a Mealy machine we

have

Of - f ;{psi.ps2....psNiiii2...iN.) 1 < i < N0

nsi = giipsi.ps2,...psNiil.i2...iK) * ^ * ^ N*

where psj and ns} denote the present state and next state values respectively and ik

denotes the input.

Finding the complement of a NFA requires conversion to a DFA[hop79]. Hence to

verify the equivalence of two Mealy machine STG's by constructing

(£i D ^D U («^7 fl ^2) we need to convert them into Moore machine STG's. This

transformation is always possible, however the resulting Moore machine will have a

larger number of states and edges than the original Mealy machine. The number of
N

extra states required is £ (Dt —1) where Dt is the number of different output vec-

IS

tors for state i. and N is the number of states in the Moore machine.

The invalid state detection process is different for aMealy machine because // is

now a function of both ps and i.

Lemma 2a: If i @q always produces a invalid output vector for all i €VALJ. then

q is an invalid state.

Lemma 2b: If i @q always produces an invalid next state for all i €VALJ, then q

is an invalid state.

where @ denotes concatenation and VALJ is the set of valid inputs. For Lemma 2b to

apply, at least one invalid state-has to be detected using Lemma 2a. The two lemmas

are alternately used until neither apply.

4.2. Examples

We give results for four small-large examples, whose statistics are described in

Table 1. in Table 2. The first example is small and the total cpu time for extraction

and verification is under 12 cpu seconds on a VAX 8650. Example 2 is large and is

verified in about 1.5 minutes. The third example is a very large machine with 128

states and is also successfully verified within 10cpu minutes. The first three examples

are Moore machines, example 4 is a Mealy machine comparable in size to example 2.

but takes almost twice as long due to conversion to a larger Moore machine for

equivalence checking.

Note that for all the examples, the invalid state detection time is a small fraction

of the total cpu time but a very significant number of invalid states are found. A

minimum bit encoding of states minimizes the number of invalid states in a logic level

finite automaton, but typically stateassignment programs like KISS useencodings with

a few more bits than the minimum necessary to implement the machine since great

19

savings in combinational logic can be made with extra state field bits[dem85].

Verifying equivalence between the two state transition diagrams has a time com

plexity of 0(Ei*E2) where Ex and-is2 are the number of edges in' the two machines.

The number of edges in a machine grows approximately as the square of the number of

states in the machine. Thus finding invalid states and invalid edges is a big gain -

example 3 when run without using don't care information and required 68 minutes to

EXAMPLE

RTL Description Logic Level Description

#states

in STT

edges
in STT

inputs #outputs # latches OLB
gates

NSLB

#gates

1 5 10 2 2 4 9 15

2 33 300 10 10 7 220 388

3 128 529 27 56 8 368 667

4 29* 240* 8 16 6 0** 511

* After conversion to Moore, #states - 61, #edges - 417
** Only oneblock of logic for a Mealy machine.

Table 1. Description of examples

EXAMPLE

Logic Description Cpu Times (seconds on VAX 8650)
#states

initial

invalid

states

detected

edges enum

eration

invalid

state

detection

edge
gener
ation

equiv
alence

check

total

1 16 11 2 1.0 1.9 2.4 6.0 11

2 • 128 94 1165 4.3 12.1 32.1 48.2 97

3 256 126 1372 21.1 71.2 126.2 368.1 587

4 64* 24* 912* 7.6 30.3 46.2 84.1 168

• After conversion to Moore, Estates - 74, #edges - 1356.
. Table 2. Run-Time Statistics Of Examples

verify.

5. CONCLUSIONS

We have presented an effective method for the verification of two sequential

machines at differing levels of abstraction. Previous work in this area involved verifying

relatively small sequential circuits at the logic level. By exploiting the don't care informa

tion present at the register-transfer level description of asequential machine we have suc

cessfully compared descriptions of large machines at the RTL and logic levels.

Future work in this area includes development of a more efficient algorithm for veri

fying the equivalence of two state transition graphs of Moore/Mealy machines and more

efficient cube enumeration techniques to speed up the verification process.

6. REFERENCES

[bar79]
M. Barbacci. G. Barnes. R. Cattell and D. P. Siewiorek. "The Symbolic Manipulation
of Computer Descriptions: ISPS Computer Description Language". Carnegie-Mellon
University 1979.

[bra84]
R. K. Brayton. G. D. Hachtel. C. T. McMullen and A. L. Sangiovanni-Vincentelli.
"Logic Minimization Algorithms for VLSI Synthesis". Kluwer Academic Publishers.
1984.

[bro85]
M. Browne. E. Clarke. D. Dill and B. Mishra. Automatic Verification of Sequential
Circuits Using Temporal Logic". Technical Report CMU-CS-85-100. Dept. of Com
puter Science. Carnegie-Mellon University. 1985.

[bry85]
R. E. Bryant. "Symbolic Manipulation of Boolean Functions . Chapel Hill Conference
on VLSI. May 1985.

[dem85]
G. De Micheli. R. K. Brayton and A. Sangiovanni-Vincentelli. Optimal State Assign
ment for Finite State Machines". IEEE Transactions on CAD. July 1985.

[don77]
W. E. Donath and H. Ofek. "Automatic Identification of Equivalence Points for
Boolean Logic Verification". IBM Technical Disclosure Bulletin, vol. 18. No 8. Jan.
1976.

[dil85]
D. Dill and E. M. Clarke, "Automatic Verification of Asynchronous Circuits Using
Temporal Logic". 1985 Chapel Hill Conference on VLSI. 1985.

[hop79]
J. E. Hopcroft and J. D. Ullman. "Introduction to Automata Theory. Languages and
Computation". Addison Wesley. Reading Mass.,1979.

[gar79]
M. R. Garey and D. S. Johnson."Computers and Intractability: A Guide to the theory
of NP-Completeness". W. H. Freeman and Company, 1979.

[goe8l]
P. Goel, "An Implicit Enumeration Algorithm To Generate Tests for Combinational
Logic Circuits" . IEEE Transactions on Computers, Vol C-30, Mar. 1981.

[mar85]
F. Maruyama and M. Fujita, "Hardware Verification". IEEE Computer. Feb. 1985.

[oda86]
G. Odawara et. al. "A Logic Verifier based on Boolean Comparison . Proc. 23rd Design
Automation Conf. June 1986.

[rot77]
P. Roth. "Hardware Verification", IEEE Transactions on Computers. Vol C-26. 1977.

P. Roth, "Computer Hardware Testing and Verification . Computer Science Press,
Potomac. Maryland. 1980.

[sup86] „
K. Supowit and S. J. Friedman. "A New Method for Verifying Sequential Circuits ,
Proc. of 23rd Design Automation Conference, June 1986.

[wei86]
R.S. Wei and A. Sangiovanni-Vincentelli, "PROTEUS: A Logic Verification System for
Combinational Logic Circuits". Proc. of International Testing Conference. Sept. 1986.

	Copyright notice1986
	ERL-86-93

