
 

 

 

 

 

 

 

 

 

Copyright © 1986, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



THE CELL TREE: AN INDEX FOR GEOMETRIC DATA

by

Oliver Gunther

Memorandum No. UCB/ERL M86/89

9 December 1986



THE CELL TREE: AN INDEX FOR GEOMETRIC DATA

by

Oliver Gunther

Memorandum No. UCB/ERL M86/89

9 December 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



THE CELL TREE: AN INDEX FOR GEOMETRIC DATA

by

Oliver Gunther

Memorandum No. UCB/ERL M86/89

9 December 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



The Cell Tree: An Index for Geometric Data

Oliver Gunther

Computer Science Division

University of California

Berkeley, CA 94720

Abstract

This paper presents the preliminary design of a database index for geometric
data, termed cell tree. All data objects in the database are represented as algebraic
sums ofconvex point sets (cells). The cell tree indexes the set of cells by means of a

binary space partitioning. It is a fully dynamic data structure, i.e. insertions and

deletions may be interleaved with searches and no periodic reorganization is
required.

1. Introduction

It is well known that current database management systems are not perform
ing very well in domains that involve the processing of complex, multi-dimensional
data. Examples of such domains are computer-aided design, computer graphics,
image processing, computer vision, robotics, computational geometry, or geographic
data processing. Hierarchical data structures provide a convenient representation
scheme for this kind of data, based on the divide and conquer paradigm. They
facilitate the solution of many typical queries such as the following. Range
searches ask for all objects that intersect a given search area. In the point location
problem, which can be viewed as a degenerate range search, one searches for all

objects that contain a given point. Finally, there are set queries such as for the

intersection of all objects that meet a given qualification. Most hierarchical data

structures are dynamic, i.e. insertions and deletions can be interleaved with

queries and no periodic reorganization is required.

In a database environment, hierarchical data structures are frequently used
as indices. The canonical example for such an index is the B-tree [Baye72] , a
structure that is based on the ordering of one-dimensional key values. More

recently, several proposals for multi-dimensional database indices were made, some

This research was sponsored under research contract DAAG29-85-0223 and a scholarship
from the German National Scholarship Foundation



of which will be discussed in the sequel.

Section 2 gives a brief survey of the most well-known hierarchical data struc

tures, emphasizing the structures that are most suitable to serve as a database

index. Section 3 describes a scheme for a geometric database where all data
objects are represented as algebraic sums of convex point sets (cells). Section 4
introduces an index for this database, viz., a new hierarchical data structure
termed cell tree, and describes how to perform search operations. Section 5 gives
algorithms to perform insertions and deletions, and section 6 contains our conclu
sions and plans for further research.

2. Related Data Structures

Hierarchical data structures are based on the principle ofrecursive decomposi
tion. They can be classified on the basis of the principle guiding the decomposition
process on each recursion level. In tree structures, the decomposition is guided by
the input data. In trie structures, the decomposition is independent of the input
data. For example, the decomposition may be into subspaces ofthe same shape as
the original space (termed a regular decomposition). Both for tree and trie struc
tures, however, the input data determines the recursion depth, i.e. at what point
the decomposition is to terminate.

Tries have the general disadvantage that they are not able to represent arbi
trary objects precisely without loss of information. Region quadtrees [Same84] are
actually tries that organize two-dimensional data. The decomposition process starts
from a square that contains all objects to be represented, and proceeds with a
recursive subdivision into four equal-sized quadrants. Objects whose boundaries do
not fit into the rectilinear partition ofthe quadtree can only be represented approx
imately, or in form ofan object description attached to the leafs ofthe quadtree.

A further disadvantage of the region quadtree is that it does not take paging
ofsecondary memory into account. In particular, this becomes problematic for the
generalization of region quajltrees to multiple dimensions. The branching factor of
the tree is 2 for d dimensions. At some point nodes will stretch over several pages
which may decrease the tree performance significantly.

Finally, the region quadtree representation is very sensitive to the positioning
of the objects within the grid. A slight translation or rotation of an object might
change its representation in a major way.



3-

In order to overcome some of those difficulties for the case of polygonal data,
Samet and Webber proposed the PM quadtree [Same85]. PM quadtrees store
polygonal maps (i.e. collections of polygons, possibly containing holes) without any
loss of information. They are not overly sensitive to the positioning of the map.
However, they are not generalizable to more than two dimensions. Also, they are
not very useful for range searches and for set operations on the polygons.

Binary space partitioning (BSP) trees [Fuch80,Fuch83] are binary trees that
represent a recursive subdivision of a given space into subspaces by hyperplanes.
Each subspace is subdivided independent of its history and of the other subspaces.
Each hyperplane corresponds to an interior node of the tree, and each partition
corresponds to a leaf. Figure 2.1 gives an example of a BSP and the corresponding
BSP tree.

Fig. 2.1

BSP trees provide another way to represent polygonal data, but they are typically
very deep which has a negative impact on tree performance. Also, insertion and
deletion of objects is very hard, i.e. they are not very dynamic. Finally, they do not
account for paging of secondary memory.

The point quadtree [Fink74] is a multidimensional generalization of a binary
search tree. As the region quadtree, the point quadtree is sensitive to the position
ing of the objects and has a branching factor of 2d for d dimensions. In order to

avoid the large branching factor, k-d trees [Bent75] and k-d-b trees [Robi81] have

been developed. Both structures are binary trees. The k-d-b trees are designed for
paged memory, whereas k-d trees do not take paging of secondary memory into
account. All these data structures are useful only for point data. Although point
deletion is fairly complicated, the data structures are fully dynamic.



-4

R-trees, proposed by Guttman [Gutt84] , are a generalization of B-trees
[Baye72,Come79] to higher dimensions. They are used to retrieve data for non-
point geometric objects according to their locations in a multi-dimensional space.
R-trees are designed for data residing on paged secondary memory, and for use as a
database index. They are based on the nesting of multi-dimensional rectilinear
boxes that, at the lowest level, are wrapped around the actual data objects. There
fore, R-trees do not provide an exact representation of non-rectilinear data objects
and, consequently, do not give exact answers for this case. For example, a range
search on an R-tree only yields a set of boxes whose enclosed objects may intersect
the search space. One is left with the problem oftesting the object for intersection
with the search space and, optionally, computing the intersection. The search
efficiency of R-trees is limited, because the rectilinear boxes may be too rough an
estimate for the data objects enclosed. Especially for point location problems, R-
trees are inappropriate because the boxes on one level may be overlapping. This
means that one may have to follow several search paths for the same search point.
The latter problem led to the development ofoptimization techniques to minimize
the overlap [Rous85] and of the R+-tree [Ston86] where the boxes on the same tree
level are non-overlapping.

For a more detailed survey of hierarchical data structures see, for example,
[Bent79] or [Same84].

3. A Geometric Database Scheme Based on Convex Chains

Consider a database consisting of a collection of (possibly self-intersecting)
regular d-dimensional point sets in Euclidean space Ed. In order to support
search and set operations efficiently, we represent the data objects as convex
chains, i.e. as sums of convex point sets [Whit57,Gunt86]. Formally, each data
object P is represented as a convex chain in Ed,

xp = ZiPi
*

The pt are d-dimensional convex regular point sets that are not necessarily
bounded (cells). Note that we do not require the cells to be mutually disjoint. Dis-
jointness is hard to maintain and provides no particular advantages for the opera
tors we intend to support.

* A point set is regular if it is the closure of its interior fTilo801.



We consider a point t €Ed inside P if and only if it is inside any of the cells,
i.e.

t€P <$=> ttpi for some i = l . . m

Two chains are equivalent if they represent the same point set, i.e. if
t£P <=> tZQ

Convex chains are a simple and powerful tool to describe various kinds of
geometric objects. They may be used to describe any simple (i.e. non self-
intersecting) point set in Ed (fig. 3.1), or self-intersecting polyhedra of any shape
(fig. 3.2, 3.3). Unlike simple point sets, convex chains are closed under all regular
ized* set operators (fig. 3.1).

Fig. 3.1:x/,nQ=p1+p Fig. 3.2:p!+p2+p3 Fig. 3.3:p!+p2+p3

Cells are stored in the form

(cid,SJ))

Here, cid is a unique identifier which can be used to retrieve the cell. S is a
description of the cell's shape, and D is the set of data objects P whose convex
chains xP contain the cell.

Data objects are stored in the form
4

{did,C,A)

* The regularized set operators, asdenned by Tilove rTiloSOl , include regularized intersec
tion, union, and difference. They differ from the corresponding simple set operators by an ad
ditional step making the result regular. This way. the dimension of the result is equal to the
lowest dimension of any of the operands. In this paper all set operators that are denned on
point sets are assumed to be regularized.



Here, did is a unique identifier, and Adenotes further attributes of the data object
which are of no importance in this context. Cis the set of cells in the correspond
ing convex chain. Any cell p and any data object P are to meet the integrity con
straintpZP.C <S=> PtpJ) for pointer consistency.

Although the decomposition of the original data objects into cells will take
some preprocessing time, we believe that it will eventually pay off by making
searches and updates simpler and faster. Note that this decomposition is com
pletely transparent to the user. Cells and the C-part of the data object representa
tions cannot be seen or manipulated by the user. The cost of maintaining the above
integrity constraint should therefore be negligible.

4. The Cell Tree

4.1. Description

A cell tree is an index structure for the set ofcells in a database. As the R-
tree, to which it is related, a cell tree is a height-balanced tree. Asearch or, in
particular, a point location should therefore require visiting only a small number
of nodes. Tree nodes correspond to disk pages if the index is disk-resident. The
index if fully dynamic; insertions and deletions can be interleaved with searches
and no periodic reorganization is required.

Each leafnode entry is a pointer to the representation ofa cell. In the follow
ing, E.C denotes the cell associated with a leaf node entry E. E.D denotes the set
of data objects whose corresponding convex chains contain the cell E.C. Mi denotes
the maximum number of entries that fit in one leaf node, and m^U^l is a
parameter specifying the minimum number of entries in a leaf node.

Non-leaf nodes contain entries of the form

(cp, P, C)

Here, cp is a child pointer, i.e. the address ofa lower level node in the cell tree. P
is a convex, not necessarily bounded d-dimensional polyhedron. All cells in the
database that overlap P are'in the subtree that is rooted at this lower level node.
C is a convex subset of P, such that for each cell p in the subtree, C contains
(pf)P). Cprovides a more accurate localization of these cells, which may speed up
search queries. In the following, E.cp, E.P, and E.C denote the corresponding
attributes of a non-leaf node entry E. Mnl denotes the maximum number of
entries fitting in one non-leaf node, and mnl<Mnl/2 is a parameter specifying the
minimum number of entries in a non-leaf node. Finally, given a node N, its entry



in its parent node is denoted by EN, and the entries in N are denoted by Et(N).
A cell tree satisfies the following properties.

(1) Every leaf node contains between mt and Af, entries, and every non-leaf node
contains between mnl and Mnl entries unless it is the root.

(2) For each entry (cp, P, C) in a non-leaf node, the subtree that cp points to con
tains a cell p if and only if p overlaps the convex polyhedron P.

(3) For each entry (cp, P, C) in a non-leaf node, CCP is a convex polyhedron
that can be specified as the intersection ofP with at most k halfspaces in Ed.
For each cell p in the subtree pointed to by cp, it is (p f)P)C C.

(4) For each non-leaf node N, the polyhedra Et(N).P form a binary space parti
tioning (BSP) of EN.P.

(5) The root node has at least two children unless it is a leaf.

(6) All leaves are on the same level.

Figures 4.1 and 4.2 show the structure of a cell tree and a corresponding
arrangement of data objects, decomposed into cells.

ZJAHS
Cl c* c3 |Ci <\ <* c» 4 c» c*

Figure 4.1

p,

C*

•

x\\\\\\\M

Pr

^<^VA^^
r^-^^^T

c«.f^3^
f\~^ 1

p%
<3

Figure 4.2

In order to analyze the space requirements ofa cell tree, we denote the page
size by ps, and the number ofbytes required to store a number or a pointer by q.
Each leaf node entry requires exactly q bytes, hence it is M, =\ps/q\. Each non-
leaf node entry Et(N) requires q bytes for the pointer ^.-(ATi.c-p, and kdq bytes for
the k (d-l)-dimensional hyperplanes that specify Et(N).C if Et(N).P is known.

P,



8

The polyhedra Et(N).P form a BSP of EN.P with no more than Mnl partitions.
Therefore, the corresponding BSP-tree requires the storage of no more than Mnl-l
hyperplanes and 2Mtt/-2 pointers. The total number ofbytes to store a full non-
leaf node is therefore

Mniiq+k'd'q) + (Mnl-l)-d-q + (2-Mnl-2)-q
= q • (Mn/-((*+l)-d + 3) - d - 2)

As one node corresponds to one disk page ofps bytes, we obtain

Mnl = ps/q + d + 2
(k + l)-d + 3

Hence, in particular it is Mni<Mi.

Therefore assuming mnl<mh the height of a cell tree containing N index
records is bound by [log^iv] -1, because the branching factor of each node is at
least mnl. The maximum number of nodes is + ... +1.

N

mi
+

N
+

N

mlmnl mlmnl2
Except for the root, the worst-case space utilization is mt/Mt for leaf nodes, and
mni/Mnt for non-leaf nodes.

If a new cell is inserted into a cell tree, it may be inserted into no more than
jiV/m^ subtrees. Thus, the subsequent insertion of Qcells into acell tree that is
initially empty will yield a cell tree with no more than

1^+2/71^+ ...+|Q/mj]-m/ « Q2/2mt index records. As confirmed by empirical
results [Fuch831, the actual number of index records is much smaller. It is usually
no more than twice the number ofcells, and the largest found by Fuchs et al. was
2.33 times.

A new data object is inserted into the tree by inserting each of the cells in the
corresponding convex chain separately. The number of cells per object is highly
data-dependent. If all data objects are convex (as it is actually the case for layout
data, for example), there may be only one cell per data object.

The parameters mh mnh and k are to be varied as part of the performance
toning. Large mt and mnl (i.e. close to Mt/2 or Mn//2, respectively) will increase
the space efficiency and decrease the height of the tree, which might in turn
improve the search performance. On the other hand, large mt and mnl may cause
updates to become very expensive, as tree condensations will occur more frequently
and be more complex (see section 5.4). A large value for k allows a more accurate



localization of the cells in a subtree, which might improve the search performance.
On the other hand, k and Mnl are inversely proportional. Alarge k will therefore
yield a small Mnl. This might in turn increase the tree height and decrease the
search performance.

4.2. Searching

The cell tree allows efficient searches such as to find all data objects that over
lap a search space, where the search space may be of arbitrary shape. We give the
algorithm for this search problem; other searches can be implemented by varia
tions of this algorithm.

The search algorithm first decomposes the search space into not necessarily
disjoint convex components. For each component the search algorithm descends
the tree from the root in a manner similar to a B-tree or an R-tree. At each non-
leaf node the search space is decomposed further into several disjoint convex sub-
spaces, and a not necessarily convex remainder space. The remainder space is
insignificant to the search and therefore eliminated. The convex subspaces are
each passed to one of the subtreees to be decomposed recursively in the same
manner. Note that this algorithm differs from the equivalent R-tree algorithm
where the subspaces are allowed to overlap, thereby decreasing the search
efficiency.

Algorithm Search(T,S). Given a cell tree with root node T, find all data objects
that overlap a search space S.

51. [Decompose S.] If S is not convex, find a set of cells Sz such that 2$, = S.
i

For each S,, SearchCT,^) and stop.

52. (Search subtree.] If T is not a leaf, check each entry E^T) to determine
whether Ei(T).C overlaps S. Ifyes, Search(T',S OE^ThC) where T denotes
the node EL(T).cp points to.

53. (Search leaf node.] If Tis a leaf, check all entries E{(T) to determine whether
Ki(T).C overlaps 5. Ifyes, return all data objects in E{{T).D.



- 10-

5. Updating the Cell Tree

5.1. Insertion

To insert a new data object, one inserts each cell in the corresponding convex
chain separately. Inserting index records for new cells is similar to insertion into
a B- or R-tree. Index records are added to the leaves. Nodes that overflow are split,
and splits propagate up and down the tree. Note, however, that the cell may be
inserted into several subtrees. Therefore the insertion of a cell may cause the
creation of more than one new index record.

Algorithm Celllnsert(7\p). Insert a new cell p into a cell tree with root node T.

CI1. [Insert into subtrees.] If T is not a leaf, check each entry E{(T) to determine
whether £,(r).P overlaps p. If yes, expand Ek{T).C to include pf)E^T)JPt
and CelIInsert(T',p) where T is the node Et(T).cp points to.

CI2. [Insert into leaf node.] If T is a leaf node, install a pointer to p as a new entry
in T. If T has now more than Mt entries, SplitNode(T) to obtain a valid cell
tree.

5.2. Deletion

In order to delete a data object J from a cell tree that indexes the object, one
processes each cell in the corresponding convex chain separately. For each cell Jh
J is removed from the set JtJ). IfJtJ) is empty then, the cell is no more needed. It
is removed from storage and from the cell tree.

Algorithm Delete(J,T). Delete the data object J from the cell tree with root node
T.

Dl. [Decompose J.] For each cell J^J.C, CellDeleteU^,,/,?7).

D2. [Condense tree.] For each leaf node N from which cells were deleted,
CondenseTree(N).

Algorithm CellDelete(Jl,e/,D. Delete the cell J, of the data object J from the cell
tree with root node T.

CDUSearch subtree.] If T is not a leaf, check each entry Et{T) to determine
whether Ei(T)J> overlaps J,. If yes, CellDeleteU/,,^!"), where T denotes the
node Et(T).cp points to.



11

CD2.[Update leaf node.] IfT is a leaf node, for each E((T), remove J from E^TID.
If Ei(T)J) is now empty, delete the cell Ei(T).C from storage, delete E&T)
from T, and contractET.C, if possible.

5.3. Node Splitting

As mentioned, the polyhedra that correspond to sibling nodes are mutually
non-overlapping. This increases the search efficiency, especially for point location
problems, but it also makes tree updates more difficult. For that reason, the split
ting ofa full node is more complicated in a cell tree than in related data structures
such as the R-tree.

The splitting is done in two steps. First, we search for a "good" hyperplane
along which the split is to be performed, and divide the set ofnode entries into two
subsets. Second, the split is executed and propagated across the tree.

Algorithm SplitNode(ZJV). Given an overloaded leaf node LN in a cell tree, split
LN along a hyperplane, and propagate the split upward and downward if neces
sary.

SNl.[Initialize.] Set N=LN.

SN2.[Find hyperplane.] FindHyperplane(JV). Hlt H2 denote the two disjoint
halfspaces defined by the splitting hyperplane. Nu N2 are subnodes of N
such thatNk contains all entries E((N) where E^NIC overlaps Ht. (k =1,2)

SN3.[Grow tree taller.] If N is the root, create a new root whose only entry is
(qNtE ,CP). Here, CP is a convex polyhedron with at most k faces that
encloses all cells in the cell tree, and qN is a pointer toN.

SN4.[Create new entries.] Let qx and q2 be pointers to the roots of iVi and N2,
respectively. Create two new entries ENg =(qhENJP fl^^.C fl^/) (i =1,2)
and replace EN by EN] and ENt>.

SN5.[Propagate split downwards.] Search the subtrees rooted at Nt (i =l,2) for cells
that do not overlap H, and delete the corresponding leaf node entries.

SN6.[Propagate split upwards.] If ATs parent node has now more than Mnl entries,
set N to JV's parent node, and repeat from SN2.

SN7.[Condense tree.] For each leaf node LN from which entries have been deleted,
CondenseTree(LN).



12

FindHyperplane(tf) is some heuristic algorithm that finds a hyperplane
along which the node N is to be split. Any such hyperplane H has to meet condi
tion (*):

m^\{Ei(N):Ei(N).C overlaps Hk}\<M (k =1,2)

Here, Hk denote the two disjoint halfspaces defined by H, mdenotes mi or mnl, and
M denotes Aft or Mnh depending on N being a leaf or a non-leaf node. H should
intersect a minimal number of polyhedra E^m.C, because each such intersection
causes the split to propagate down the cell tree. A large number ofsuch intersec
tions may cause the split to become very costly.

Unfortunately, there is not always a hyperplane that fulfills condition (*). In
particular, for a leaf node N whose partition EN.P has a convex subset that is
covered by more than Mt cells there is obviously no such hyperplane. In this case it
is necessary to subdivide cells in order to find a BSP of EN.P such that no partition
overlaps more than Mt cells. To perform the subdividing may become very costly.
In this case, it may well be more efficient to tolerate more than Mt entries and
allow overflow pages. Amore detailed analysis of this problem is subject to further
research and will appear in [Gunt].

In the case of N being a leaf node, FindHyperplane can be approached
efficiently by / plane sweeps [Prep85] across Ed, along / different directions. The
parameter / is to be varied as part of the performance tuning. A large / will cause
the splitting operation to be more costly, but it may yield a better hyperplane.

In the case of N being a non-leaf node, the hyperplanes in iV's BSP-tree make
good candidates for the split. An appropriate heuristic would be to sort the hyper
planes by the number of leafs in the subtree rooted at the corresponding BSP-tree
node. These leafs correspond to BSP partitions that will certainly not be inter
sected by the hyperplane. Then the hyperplanes are inspected in the order of
decreasing number of leafs. In particular, the hyperplane H* that corresponds to
the root node of the BSP-tree will be inspected first. This hyperplane does not
intersect any polyhedron ^(iV).C. It will also fulfill condition (*) with high proba
bility, which can be shown by the following analysis.

The probability that H* does not fulfill condition (*) is equal to the probability
that the number of partitions on any side of H* is less than mnl. The total number
of partitions in an overloaded node is at least Mnl + \. Hence, after H' was first
established (viz., when EN.P was split for the first time), at least Mnl-1 more



13

partitions were formed by further splittings of EN.P. Assuming that the cells in

the subtree rooted at N are distributed equally across the subspace EN.P, the pro

bability that the number of partitions on any side of H* is less than mni is

0.5""-1 •[l +(Mn/-l)+(Mn/-l)(Mn/-2)+ . . . +(!#,,-1XM.I-2) . . . (Mnl-mni +2)]
It is therefore important to keep mni reasonably low.

Of course, it may be useful to also look at hyperplanes that are not part of the

BSP. Also, one may use a plane sweep approach for non-leaf nodes as well.

5.4. Tree Condensation

The tree condensation eliminates underloaded nodes and reinserts their

entries oh the correct tree level.

Algorithm CondenseTree(ZJV). Given a leaf node LN from which entries have

been deleted, eliminate the node if it has too few entries and relocate its entries.

Propagate the eliminations across the tree.

CT1.[Initialize.] Set N=LN. Set Q, the set of eliminated leaf node entries, to be

empty.

CT2.[Shorten tree.] If N is the root and it has only one entry, make the child the

new root and let N be the new root.

CT3.[Find parent entry.] If N is the root, go to CT6.

CT4.[Eliminate underloaded node.] If N has less than mi (mnt) entries, delete EN

from its parent node, add EN to Q, and extend the polyhedra P of JV's siblings

to cover EN.P.

CT5.[Move up one level in the tree.] Set N to its parent node and repeat from CT2.

CT6.[Reinsert orphaned leaf node entries.] Reinsert each entry in Q.

The polyhedron extension in step CT4 can be carried out very efficiently as

follows. Let Nt denote the siblings of node N. The polyhedra EN.P and ES.P are

the partitions of a BSP and stored as a BSP-tree. Let Xs- be the BSP-tree leaf

corresponding to the partition £y.P. If X^s parent node is replaced by Xy's

sibling, the resulting tree represents a different BSP. This BSP is derived from the

original BSP by deleting the partition ES.P and extending the partitions EN .P to

cover Eft.P. This follows from the following lemma.



- 14-

Lemma 5.1: Let B denote some BSP, and let -^denote some leaf node in the BSP-
tree corresponding to B. IfX's parent is replaced by X's sibling, the BSP B' .that
corresponds to the resulting BSP-tree has the following properties:
(i) B' has one partition less than B.

(ii) Each partition in B' is a superset of some partition in B.
(iii) Each partition in B other than the one corresponding to X is a subset of some

partition in B'.

Proof:

(i) The tree transformation decreases the number of leafs by one. Hence, the
number of partitions in the corresponding BSP decreases by one as well.

(ii) The tree transformation decreases the number of interior nodes by one. This
corresponds to the removal of one of one of the hyperplanes defining the BSP.
Hence, the partitions in B' are either identical to some partition in B, or they
are derived from some partition in B by removing one of the defining hyper
planes. In any case, they are a superset of some partition in B.

(iii) The tree transformation deletes the leaf corresponding to partition ENJ>. This,
together with (i) and (ii), implies (iii). n
The reinsertion algorithm attempts to reinsert nodes at the correct tree level

without modifying the subtree rooted at that node. This procedure saves existing
structures and avoids multiple rebuilding ofthe same subtree. If the reinsertion on
the same level is no more possible, the algorithm attempts to reinsert the descen
dants of this node on the next lower level.

6. Conclusions

We presented the preliminary design of a database index for multidimensional
geometric data, termed cell tree. Compared to related data structures such as the
R-tree, we believe that the cell tree is particularly efficient for non-rectilinear data
objects and for the point location problem. For the near future, we are planning to
work on a theoretical and practical analysis of the cell tree. In addition to a
theoretical performance analysis, there is further theoretical work required to
obtain better heuristics for node splitting. In order to optimize tree performance,
different sets of parameters have to be tested in an experimental implementation.



15

References

[Baye72] Bayer, R. and E. M. McCreight, Organization and maintenance of large
ordered indices, Acta Informatica 1, 3 (1972), pages 1-21.

[Bent75] Bentley, J. L., Multidimensional binary search trees used for associative
searching, Comm. ofthe ACM 18, 9 (Sept. 1975), pages 509-517.

[Bent79] Bentley, J. L. and J. H. Friedman, Data structures for range searching,
Computing Surveys 11, 4 (Dec. 1979), pages 397-409.

[Come79] Comer, D., The ubiquitous B-tree, Computing Surveys 11, 2 (1979),
pages 121-138.

[Fink74] Finkel, R. A. and J. L. Bentley, Quad trees - A data structure for
retrieval on composite keys, Acta Informatica 4 (1974), pages 1-9.

[Fuch80] Fuchs, H., Z. Kedem, and B. Naylor, On visible surface generation by a
priori tree structures, Computer Graphics 14, 3 (June 1980).

[Fuch83] Fuchs, H., G. D. Abram, and E. D. Grant, Near real-time shaded display
of rigid objects, Computer Graphics 17, 3 (Summer 1983), pages 65-72.

[Gunt] Gunther, O., Data bases and data structures for geometric data, Ph.D.
dissertation, University of California, Berkeley, Ca., in preparation.

[Gunt86] Gunther, O. and E. Wong, A dual space representation for geometric
data, submitted for publication, 1986.

[Gutt84] Guttman, A., R-trees: A dynamic index structure for spatial searching,
in Proc. of ACM SIGMOD Conference on Management ofData, Boston,
June 1984.

[Prep85] Preparata, F. P. and M. I. Shamos, Computational geometry, Springer-
Verlag, New York, NY, 1985.

[Robi81] Robinson, J. T., The k-d-b tree: Asearch structure for large multidimen
sional dynamic indexes, in Proc. of ACM SIGMOD Conference on
Management ofData, April 1981.

[Rous85] Roussopoulos, N. and D. Leifker, Direct spatial search on pictorial data
bases using packed R-trees, in Proc. of ACM SIGMOD Conference on



16

Management ofData, Austin, TX, June 1985.

[Same84] Samet, H., The quadtree and related hierarchical data structures, Com
puting Surveys 16, 2 (June 1984), pages 187-260.

[Same85] Samet, H. and R. E. Webber, Storing a collection of polygons using
quadtrees, ACM Trans, on Graphics 4, 3 (July 1985), pages 182-222.

[Ston86] Stonebraker, M., T. Sellis, and E. Hanson, An analysis of rule indexing
implementations in data base systems, in Proc. of the 1st International
Conference on Expert Data Base Systems, April 1986.

[Tilo80] Tilove, R. B., Set membership classification: A unified approach to
geometric intersection problems, IEEE Trans, on Computers C-29, 10
(Oct. 1980), pages 874-883.

[Whit57] Whitney, H., Geometric integration theory, Princeton, NJ, 1957.


	Copyright notice1986
	ERL-86-89

