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1. Introduction

Detecting and computing intersections is a fundamental problem in computational

geometry [Lee84]. Fast solutions for intersection problems are desirable in a wide range of

application areas, including linear programming [Dant63] , hidden surface elimination

[Newm79] , or spatial databases [Gunt]. In.many of these applications, the dimension of

the intersection problems may be greater than three. This is particularly obvious in linear

programming; another example are database applications where geometric objects are

used to represent predicates [Ston86].

It was first noted by Chazelle and Dobkin [Chaz80] that it is often easier to detect

the intersection of two suitably preprocessed geometric objects rather than to actually

compute it. In the detection problem, one only asks if two objects intersect or not; also, it

is allowed to preprocess each of the given objects separately.

In this paper, we present algorithms to solve the intersection detection problem in

arbitrary dimensions for hyperplanes and convex polyhedra. In particular, we obtain

upper bounds of 0(2rflogn) and 0((2d)d~l\ogd~ln) for the (/-dimensional hyperplane-
polyhedron and polyhedron-polyhedron intersection problems, respectively. In this paper,

n denotes the maximum number of vertices of any given polyhedron. These time bounds

appear to be the first results for d>3 and match the time bounds given by Dobkin and

Kirkpatrick [Dobk83,Dobk] for </=2,3. Furthermore, our results readily extend to

unbounded polyhedra. For simplicity, this presentation is restricted to bounded polyhedra;

see [Gunt] for the general case.

We obtain our results by means of a geometric duality transformation in d~

dimensional Euclidean space E that is an isomorphism between points and hyperplanes

[Brow79,Lee84]. Each convex polyhedron P is represented by a set of two functions in the
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dual space, TOPp, BOTp: Ed"1-»E1, such that a hyperplane h intersects P if and only if
the dual of h lies between TOPp and BOTp. Then, two polyhedra P and Q intersect if

and only if for all xEE6'1, we have TOPp(x)>BOT^(x) and TOPQ(x)>BOTp(x).

For rf=2 and c/=3, the space and preprocessing requirements of the dual representa

tion scheme are O(n) and therefore optimal. For general d, the scheme requires 0(»2 d)
space and 0(2*n logn) preprocessing. To improve these bounds is a subject of further
research. In particular, we suspect that lower bounds may be achieved at the expense of

slightly higher time bounds for the detection algorithms.

Section 2 introduces the dual representation scheme for convex polybedra. Sections

3 and 4 show how the hyperplane-polyhedron and the polyhedron-polyhedron intersection

detection problems can be solved efficiently using the dual scheme. Section 5 contains our

conclusions.

2. The Dual Representation Scheme

Let h denote some non-vertical (d—l)-dimensional hyperplane in Ed. That is, in a
{/-dimensional Cartesian coordinate system, h intersects the e/-th coordinate axis in a

unique and finite point and can be represented by an equation

xd = axxx+ . . +ad^xxd^x+ad.

Fh denotes the function whose graph is h, i.e.

Fk: Ed~* -* E1

Fk(xx . . xd_x) «= axxx+ . . +arf_1zrf_1+a<,.

A point p = (pi . . pj) lies above (on, below) h if pd > (=,<) FfXPi • •Pd-i)-

We define a duality transformation D in Ed that maps hyperplanes into points and

vice versa. The dual D(h) of hyperplane h is the point (al . . ad) in Ed. Conversely, the
dual D(p) of a point p is the hyperplane defined by the equation

Xd = -p1Xi-p2*2- • • —Pd-\xd-l+Pd'

Lemma 2.1: A point p lies above (on, below) a hyperplane h if and only if the dual D(h)

lies below (on, above) D(p).

Proof: Let h be given by the equation Ffl(x1 . . xd^) = axXi+ . . +oj-1af^_1+a(/ and let

p = (Pi • • Pd) be a point above (on, below) h, i.e.

Pd > (=,<) ^(Pi • • Pd-i) (*)•

Inserting D(h)=(a1 . . ad) into FD^ yields



^D(P)(oi • •ad-i) = -Pi«i- •• -P<f-i<»<f-i+P<f > (=.<) ad (due to (*))

Hence, D(p) lies below (on, above) D(h). D

A hyperplane A intersects the polyhedron P if and only if there are two vertices v

and w of P such that h lies between v and w (i.e. v lies on or above h and «/ lies on or

below h, or vice versa). According to lemma 2.1, this is the case if and only if the dual

D(h) lies between the duals D(v) and D(w).

This observation leads to a new representation scheme for finite convex polyhedra.

Consider the functions TOPp, BOTp: Ed~1-*E1 that are defined for a convex polyhedron

P as follows. Here, VP denotes the set of vertices of P.

TOPp(xx . . xd_x) = max FD{v)(xx . . xd_x)

BOTp(xx . . xd_x) = min FD{v)(xx . . xd_x)

Obviously, both functions are piecewise linear, continuous, and TOP is convex,

whereas BOTp is concave [Rock70]. With this notation, a non-vertical hyperplane h
intersects P if and only if D(h) lies between TOPp and BOTp. More formally, the hyper
plane h, given by the equation xd = axxx+ . . +ad^xxd_x+ad, intersects P if and only if

BOTp(ax . . ad_x) < ad < TOPp(ax . . ad_x).

The two functions can be viewed as a mapping that map any slope (ax . . ad_l) of a

non-vertical hyperplane into the maximum (TOPp) or minimum (BOTp) intercept ad such
that the hyperplane given by xd*=*axxx+ . . +ad^xxd^x+ad intersects the polyhedron. We

have

Theorem 2.2: Each convex polyhedron P corresponds to exactly one pair of functions

(TOPp,BOTp), and conversely.

Proof: The functions TOPp and BOTp are uniquely defined for any convex regular

polyhedron P, i.e. there is only one pair of functions (TOPp,BOTp) for any P.

Conversely, suppose there were two convex polyhedra P and Q such that Pj^Q, but

TOPp(xx . . xd_x) = TOPQ(xx . . xd_x) and BOTp(xx . . xd_x) = BOT^(xx . . xd_x) for

all (xx . . xd_x) € E*""1.
Case 1: Pp|Qs0. Then there exists a non-vertical separating hyperplane h such that all
points of P lie above h and all points of Q lie below h, or vice versa. There also exists a

hyperplane h' parallel to h that intersects P. h1 does not intersect Q. I.e., according to

lemma 12, the dual D(k') lies between TOP'* and BOTp, but not between TOP® and
BOT^. This is a contradiction to our assumption.



Case 2: Pf^Q^. Because of P^Q it is P-Q^ or Q-P^. W.l.o.g., let P-Qj^<f>.
Let p be some interior point of P—Q. There exists a non-vertical separating hyperplane h

such that all points of Q lie above h and point p lies below h, or vice versa. There also

exists a hyperplane h' parallel to h that goes through p. Because of p GP, A1 intersects P,

but it does not intersect Q. Contradiction to our assumption as above. D

An example of a polyhedron P and the corresponding functions TOPp and BOTp is given
in figure 2.1.

fO.S-12)

f-3fo)

Figure 2.1

3. Hyperplano-Polyhedron Intersection Detection

For simplicity of presentation, we exclude the case of a vertical hyperplane. This

exclusion can always be achieved by a suitable rotation of the coordinate system. It is also

possible to extend our detection algorithm to detect intersections with a vertical hyper

plane; see [Gunt] for details.

A non-vertical hyperplane h, given by xd=axxx-\- . . +ad^xxd^x+ad intersects a

polyhedron P if and only if BOTp(ax . . ad_x) < ad < TOPp(ax . . ad_x). Therefore, the

intersection detection problem can be solved by obtaining the functional values

TOPp(a x. . ad^x) and BOTp(a x. . ad_x). Without loss of generality, we only show how to
obtain TOPp(ax . . ad_x).

The graph of TOPp,t\s a polyhedral surface in Ed, consisting of O(n) convex (d—1)-
dimensional patches with m=0(n2) (rf—2)-dimensional boundary segments. With the pro

perties of the duality transformation the following lemma can be proven.

Lemma 3.1: Each ^-dimensional face / of the upper hull of the polyhedron P corresponds

to exactly one (</—k—l)-dimensional face D(f) of TOPp's graph, and vice versa. Further
more, if two faces fx and /2 of P's upper hull are adjacent, then so are the faces D(fx)

and D(f2) of TOPp's graph.



Proof: see [Gunt]. Q

The projection of TOPp's graph on the (d—l)»dimensional hyperplane J:ad=Q parti

tions J into no more than n convex (rf—l)-dimensional partitions with no more than m

(d—2)-dimensional boundary segments. Any given partition EG J corresponds to a vertex

v(E) of P's upper hull, such that for any point (px . . pd^x)€E, it is TOPp(px . . pd-x)
= Fd(v(E))(Pi ••Pd-iY Hence, TOPp(ax . . ad_x) can be obtained by a (cf—l)-dimensional
point location in J to find the partition E that contains the point (ax . . ad_x), followed

by a computation of P/>(tf(E))(fli • • ad-i)-

The computation of Fp^£))(ai • • ad-i) takes time 0(d). Dobkin and Lipton
[Dobk76] solve a (rf—1 ^dimensional point location problem with m (rf—2)-dimensional

boundary segments recursively as follows. In a preprocessing step, they compute the

0(m2) (rf—3)-dimensional intersection segments formed by the m original boundary seg

ments, and project them on some (</—2)-dimensional hyperplane K. This way, the point

location problem can be solved by a point location problem in K, followed by a binary

search of the m original segments. According to Dobkin and Lipton [Dobk76] , this com

putation can be carried out in no more than (3-2rf~3+rf—3X|logmJ+l) < 2rf+1logn
= 0(2<'logn) steps.* We obtain a total time complexity of 0(2<'logn).

The space requirements of this algorithm are as follows. The equations of the O(n)

patches require space 0(dn). The space requirements to store a space partitioning of E2

with m boundary segments, 5P(2,m), is 0(m2) [Dobk76]. For a space partitioning of

Ed_1 with m boundary segments, one has to store a space partitioning of the (d—2)~
dimensional projection hyperplane K with m2 boundary segments and a sequence of no

more than m boundary segments for each of the partitions. The number of partitions is

no more than m2^-2) [Edel83]. Therefore,

SP(</-l,m)

< SP(rf-2,m2) + m*d-Qm

< SP(d-Z,m4) + m«d-Qm2 + m^d^m

< SP(2,m2'-) + 0(m2"') == 0(m2"') = 0(n2^) .

We obtain a total space complexity of 0(n^ d) .

* Here, Dobkin and Lipton issume that it is an elementary operation to determine on which side of a given
hyperplane a point is located.Without this assumption, all time bounds are to be multiplied by d.



The preprocessing requirements of this algorithm are as follows. Accordingto lemma

3.1, each (d—2)-dimensional boundary segment of the space partitioning can be obtained

from the original polyhedron P in time 0(d) by dualization. Here, we assume that P is

given by a list of its faces and the corresponding adjacency relations. As there are

m=0(n2) (d—2)-dimensional boundary segments, it takes time 0(dn2) to obtain all of

them.

Given the m boundary segments of the space partitioning of E2, it takes PRP(2,m)
= 0(m2logm) preprocessing to compute all intersections, project them on some line, and

to sort the boundary segments for each of the O(m) intersections [Dobk76]. For a space

partitioning of Ed_1 with m boundary segments, one has to compute m2 intersections,
and to project them on some (d—2)-dimensional hyperplane K. For each of the

0(m%d~2)) partitions, one has to sort the O(m) boundary segments. Einally, one has to do
the necessary preprocessing for the space partitioning of K. Therefore,

PRP(d-l,m)

< PRP(rf-2,m2) + m^-^mlogm

< PRP(rf-3,m4) + m^-'W^ogm2* m^-^mlogm

< ...

< PPP(2,mH + 0(m2^logm2^ = 0(2rfm2^logm) = 0(24«2^Iogn) .

We obtain a total preprocessing time of 0(2dn2 *logn).

Theorem 3.2 summarizes our results for the hyperplane-polyhedron intersection

detection problem. The bounds for d—2 and </=3 are more favorable than for general d,

because for that case the numbers of vertices, edges, and faces are pairwise proportional

[Prep85], and Dobkin and Lipton's point location method has been superseded by more

efficient algorithms [Edel86].

Theorem 3.2: Given a non-vertical (d—l)-dimensional hyperplane h and a (/-dimensional

convex polyhedron P, h and P can be tested for intersection in time T(n,d) with S(n,d)

space and PP(n,d) preprocessing:
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Pf)h=<i>1 T(n,d) S(n,d) PP(n,d)

</=2 O(logn) 0(«) 0(«)

rf=3 O(logn) 0(») 0(«)

rf>3 0(2'logn) 0(«2"") 0(2in2-^log»)

Proof: follows from the preceding discussion. D

4. Polyhedron-Polyhedron Intersection Detection

For simplicity of presentation, we exclude the case of two non-intersecting polyhedra,

whose only separating hyperplane is vertical (Fig. 4.1).

Figure 4.1

This can always be achieved by a suitable rotation of the coordinate system. It is also

possible to extend the detection algorithm to solve this case correctly; see [Gunt] for

details.

Under this assumption, two convex polyhedra P and Q do not intersect if and only if

there is a separating non-vertical hyperplane between them. Any such hyperplane h does

not intersect the interior of either P or Q, but there are hyperplanes h1 and hn parallel to

h, such that h' is above h and hn is below h, and either h' intersects the interior of P

and htt intersects the interior of Q, or vice versa. More formally, a hyperplane h, given

by the equation xd = axxx+ . . +ad_1xd_1+ad, separates the polyhedra P and Q if and

only if

TOPp(ax . . ad_x) <ad < BOT^(ax . . ad_x)t or

TOPQ(ax . . ad_x) <ad< BOTp(ax . . o^J.

Therefore, two polyhedra P and Q do not intersect if and only if

• We write {f±g){s) for f{x)±g{x).
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(i) min (T0Pp-B01*)(xx. .*,_,) < 0, or

(ii) min (T0P*-B0Tp)(xx . . xd_x) < 0.

To test these conditions, we present a multidimensional search technique that finds

the minimum of a convex piecewise linear function in arbitrary dimensions. The technique

is recursive; it solves a (/-dimensional problem by solving 0(d\ogn) ((/—l)-dimensional

problems, and so on.

Condition (i) holds if and only if the graphs of TOPp and BOT® do not intersect. In

the two-dimensional case, this can be tested by a variation of Dobkin and Kirkpatrick's

algorithm [Dobk83] to detect the intersection of two polygons. The graphs of TOPp and
BOT^ are monotone convex polygonal chains with edges tx . . .tk and bx . . 6j (k+l<2n);

see also figure 2.1. The relative position and the slopes of the edges t\kfz\ aQd ^\l/i\ £iye

enough information to eliminate half of the edges of one (or both) chains from further

consideration without missing any intersection. The algorithm proceeds recursively, elim

inating at least one quarter of the remaining edges at each recursion level. Therefore, any

intersection is detected in time O(logn) without any preprocessing or extra storage. A

similar analysis yields the same bound to test condition (ii).

In order to solve the (/-dimensional problem, we solve 0((/logn) ((/—l)-dimensional

problems. Without loss of generality, we only show how to test condition (i). It is well

known [Dant63] that the global minimum of TOPp—BOT^ occurs at some vertex of the

graph of TOPp-BOT^, i.e. at some vertex M=(A/, . . Md) of TOPp's graph TG or

BOTP}s graph BG. Let (vx . . v \qxs\) denote the sequence of vertices in Vj^s, sorted by
increasing x^coordinate. We consider the vertex vi|7u|/2j and 'ts ^-coordinate ax, and
compute the local minimum of TOPp—BOT^ along the hyperplane xx=ax. This is a

((/—l)-dimensional minimization problem and can be solved recursively; let

m<=(mx=ax,m2, • • ,md) denote some point where the local minimum is assumed. Due to

the convexity of TOPp—BOT^, we can determine the position of M relative to m from

the local slope of TOPp-BOTQ. We have

Lemma 4.1: It is Mx>(<)mx if and only if there is an €0>Q, such that for all t with

0<c<€0 it is TOPp-BOTQ(mx-£,m2 . . md)
>(<) TOPp-BOTc*(mx . . md)

>«) TOPp-BOT<t(mx+€,m2 . . md).
Otherwise, m is a global minimum of TOPp—BOT^.

Proof: Due to the convexity of the function TOPp—BOT^, there is always an €0>0, such

that for all t with 0<€<e0 exactly one of the following conditions holds:



(i) TOPp-BOTQ(mx-t,m2 . . md) > TOPp-BOJ^(mx . . md) > T0Pp-B01^(mx-¥itm2 . . md),

(ii) TOPp-BOT<2(mx-€,m2 . . md) < TOPp-BOT<*(mx . . md) < TOPp-BOTQ(mx+t1m2 . . md),

(iii) T0Pp-B0l4(mx-ttm2 . . md) >: T0Pp-B01^(mx . . md)
A T0Pp-B0T4(mx+t,m2 . . md) > TOPp-BOT^(mx . . md)

We now show indirectly that Mx>mx implies condition (i). Suppose that Mx>mx,

but (i) does not hold, i.e. TOPp-BOT^(mx+t,m2 . . md) ^ TOPp-BOT^(mx . . md)
(*). Let r = (ri,r2s=sw»2»r3> • • »rd) denote the minimum of TOPp—BOJ^ along the hyper
plane x2=m2. Due to the convexity of TOPp—BOT^ and condition (*), it is rx<mx and
rd<md. Therefore, the line segment (M,r) intersects the hyperplane xx=mx in some

point 8 = («i=m1,«2> • • t*d)' Because of Md<rd, it is ed<rd, and because of rd<md, it

is 8d<md. This is a contradiction, because a lies on the hyperplane xx=mXt and m is the

minimum along this hyperplane. A two-dimensional example is given in figure 4.2.

Figure 4.2

Hence, Mx>mx implies condition (i). Similarly, it can be shown that Mx<mx

implies condition (ii), and that Mx=mx implies condition (iii). Due to the mutual

exclusiveness of conditions (i), (ii) and (iii), we obtain that (i) implies Mx>mx and so on.

This proves the lemma. ' D

Therefore, looking up the functional values TOPp—BOTQ(mx±tim2 . . md) for some

suitable (>0 gives us enough information to eliminate half of the vertices in Vjq (and

some vertices in V^) from the search without missing the global minimum. If the search

among the vertices in 71? does not yield a global minimum, one continues with a similar

search among the remaining vertices of BG. Hence the global minimum is obtained in no

more than log( ITG I + I BG I) iterations.
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The analysis of this algorithm obviously depends on the cardinalities of TG and BG.

A simple combinatorial analysis shows that at any recursion level it is

ITG | + | BG I <nd, i.e. the algorithm requires no more than d\ogn iterations. Each

iteration involves a ((/—l)-dimensional minimization and the four function lookups neces

sary to obtain TOPp—BOT^(mx±e,m2 . . md). As shown in section 3, each lookup can be

carriedout in no more than 2J+llogn steps. We obtain a total time complexity

T(dtn)

< d\osn(4'2d+l\ogn+T(n,d-l))

< 2'+8rflog2n+rflogn7T(n,(/-l)

<2i+8(/log2n+(/logn2<'+2((/-l)log2n+(/((/-l)log2n7Xn,(/-2)

< ...

< j^-^rfMog'-"!! =0((2(/)<*-1log(f-1n).
i-=i

Of course, in practice one might be able to solve the intersection detection problem much

faster by checking at various stages if (TOPp—BOT^\xx. . xd_x) < 0, or

(TOPQ-BOTp\xx . . xd_x) < 0.

An analysis similar to the one in section 3 shows that the space and preprocessing

requirements are the same as for the hyperplane-polyhedron intersection detection prob

lem. We obtain

Theorem 4.2: Given two (/-dimensional convex polyhedra P and Q, P and Q can be

tested for intersection in time T\n,d) with S(n,d) space and PP(n,d) preprocessing:

Pf\Q=V T(n,d) S(n,d) PP(n,d)

(/=2 O(logn) 0(«) 0(»)

rf=3 0(\og*n) 0(«) O(n)

rf>3 0((2(/)rf-,log<f-|n) O(n^) 0(2</n24"</logn)

Proof: follows from the preceding discussion.

5. Conclusions

We showed that in arbitrary, but fixed dimensions, the hyperplane-polyhedron and

the polyhedron-polyhedron intersection detection problems can be solved in logarithmic

and polylogarithmic time, respectively. For dimensions larger than three, these results
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appear to be new. There are two reasons why, as of now, these results are of primarily

theoretical interest. First, the coefficient which is exponential in d becomes prohibitively

high for higher dimensions. Second, the storage and preprocessing requirements are not

suitable for practical purposes. It is subject to further research to improve these results in

order to achieve practical algorithms for intersection detection in higher dimensions.
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