

Copyright © 1986, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A DUAL SPACE REPRESENTATION FOR GEOMETRIC DATA

by

Oliver Gunther and Eugene Wong

Memorandum No. UCB/ERL M86/87

5 December 1986

\

A DUAL SPACE REPRESENTATION FOR GEOMETRIC DATA

by

Oliver Gunther and Eugene Wong

Memorandum No. UCB/ERL M86/87

5 December 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A DUAL SPACE REPRESENTATION FOR GEOMETRIC DATA

by

Oliver Gunther and Eugene Wong

Memorandum No. UCB/ERL M86/87

5 December 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A Dual Space Representation for Geometric Data

Oliver Gunther and Eugene Wong

EECS Department, 231 Cory Hall

University of California

Berkeley CA 94720

Abstract

This paper presents a representation scheme for polyhedral objects, where each object

is represented as the algebraic sum of convex polyhedra {cells). Each cell in turn is

represented as the intersection of halfspaces and encoded in a vector. The notion of vertices

is abandoned completely as it is not needed for the set and search operators we intend to

support. We show how this approach allows us to decompose set operations (such as inter

section) on polyhedral objects into two steps. The first step consists of a collection of vector

operations; the second step is a garbage collection where vectors that represent empty cells

are eliminated.

1. Introduction

Modern database systems are no longer limited to business applications. Non

standard applications such as computer-aided design, computer vision, or geographic data

processing are becoming increasingly important, and geometric data play a crucial role in

many of these new applications. For efficiency reasons it is essential that the special pro

perties of geometric data be fully utilized in the data base management system. It is impor

tant to view geometric objects (such as points, lines, or polygons) as integral entities and

not as tuples of numbers that may be used to represent them.

Furthermore, the special operators that are defined on these objects need to be sup

ported. Common examples include set operators such as union or intersection or search

operators such as range search or point location. These operators are substantially

different from the operators denned on numerical data. They are often harder to compute,

and it is not trivial to determine the smallest domain on which they are closed. Even the

This research was sponsored under research contract DAAG29-85-022J3 and, in the case of the first au
thor, a scholarship from the German National Scholarship Foundation.

regularized* set operators, for example, are not closed on the set of simple polyhedra; see

figure 1.1.

Fig. 1.1: The intersection of two simple polyhedra is not necessarily a simple polyhedron.

In short, to deal with geometric data effectively requires some recognition of

geometry, and nowhere is this more important than in the representation of geometric

objects, which can be interpreted as the mapping of the original data objects into a set of

objects that facilitates the computation of a particular class of operators. The significance of

representation schemes for efficient data management has been discussed by Requicha

[Requ80]. A survey of various representation schemes for two- and three-dimensional

geometric data can be found in [Besl85]. In this paper we develop this theme in connection

with a particular representation scheme for an important class of geometric objects, viz.,

polyhedra.

In section 2, we describe the concept of polyhedral chains where a polyhedral object is

represented as an algebraic sum of simple polyhedra (cells). Section 3 introduces a

representation scheme for convex cells; each cell is represented as an intersection of

halfspaces and encoded in a vector. Section 4 shows how set operations are carried out

using this representation scheme, and section 5 contains our conclusions.

The regularized set operators, as defined by Tilove |Tilo80| , include intersection if"V>, union
<U*), and difference (-*). They differ from the corresponding simple set operators by an additional
step making the result regular, i.e. the closure of its interior. This way. the dimension of the result is
equal to the lowest dimension of any of the operands. In this paper, all set operators that are defined on
point sets are assumed to be regularized, without writing the * explicitly.

2. Polyhedral Chains

We extend the notion of polyhedron in the following way. A polyhedral chain in Ed

[Whit57] is an expression of the form

Here, the pi are <i-dimensional regular polyhedra in Ed that are not necessarily bounded.

We consider a point / €Ed inside the polyhedral chain P if and only if it is inside any of the

polyhedra ph i.e.

t€P <=> r€p,- for some i —\..m

This way, each polyhedral chain represents a polyhedral point set. Two polyhedral chains

P and Q are equivalent if they represent the same point set, i.e. if

tZP <==> *€Q

Polyhedral chains are a simple and powerful tool to describe various kinds of

polyhedral objects. They may be used to describe any simple (i.e. non self-intersecting)

polyhedral point set in Ed (fig. 2.1), as well as self-intersecting polyhedra of any shape (fig.

2.2, 2.3). As pointed out in [Newe80] , applications for non-simple polyhedra are becoming

increasingly important.

Fig. 2.1:p,+p2+p: Fig. 2.2:/;|+/;2+/;:t Fig. 2.3: pi+Pi+p-A

Unlike simple polyhedra, polyhedral chains are closed under all regularized set opera

tors. Furthermore, the boundary of a convex polyhedron of dimension d is a polyhedral

chain of dimension (d —1). Hence, the complete set of polyhedral chains of dimensions 0

through d in Ed is closed under the boundary operator d. For these reasons, polyhedral

chains form an appropriate set for embedding polyhedra.

Now consider a database consisting of a collection of (possibly self-intersecting)

polyhedra in Euclidean space Ed. The restriction to polyhedra, rather than general subsets

of Ed, is justified by the fact that those are commonly used to approximate general shapes

in practice [Faux79].

To support search and set operators, we represent the polyhedra in the database as

convex polyhedral chains, i.e. as sums of convex polyhedra Pi (cells). Each cell in turn will

be represented as the intersection of halfspaces and encoded in a vector. Our scheme is con

ceptually simple, provides support for set and search operators, and seems well suited for

parallel processing.

Formally, each data object P is represented as a convex polyhedral chain in Ed,

xp = ZtPi
t = l

with all pi being convex. Obviously, for any polyhedral chain in Ed there is an equivalent

convex polyhedral chain in Ed. For simplicity (see section 3) we require that for each face

f of any convex cell p, there be a face g of P, such that f and g are both subsets of the

same (d —l)-dimensional hyperplane. Note that we do not require the pL to be mutually

disjoint. Disjointness is hard to maintain and provides no particular advantages for the

operators we intend to support.

3. The h-Vector

The next question is how to represent the convex cells pt. It is well known that any

convex polyhedron in Ed can be represented as the intersection of halfspaces in Ed. Each

halfspace in turn can be represented as a product h-H where H is an oriented (d —D-

dimensional hyperplane and h is an integer number. In particular, we define l-H as the

closed halfspace to the right of H, -l-H as the closed halfspace to the left of H, and for

completeness OH as Ed.

Let H = HyH'i . . H|h| denote a list of id—l)-dimensional oriented hyperplanes such

that for each face /' of any data object in the database there is a hyperplane in H that

embeds /'. Now each cell p can be represented as a ternary vector hp = fl),l,—1/'H', such

thatp = r\(hp)rHi.
j = i

We note that for a given cell p, hp is by no means unique. For example, suppose that

hyperplane HL and cell p are disjoint and p is a subsetof the halfspace l-H*. Then whether

(hp), is 0 or 1 makes no difference. For a given p, the set of all possible hp-vectors is an

equivalence class which contains a unique vector with the minimum number of nonzero

components. For this unique minimum hp every nonzero component corresponds to a sup

porting hyperplane of p. Note that there is no unique minimum vector to represent the

empty set. On the other hand, there is a unique minimum vector to represent the whole

space Ed, viz., the vector 0,H|.

The insertion of new data objects is performed by adding new hyperplanes to H, if

necessary. For simplicity we assume that the components of the ternary vectors hp default

to zero if they are not explicitly specified. Under this assumption an insertion does not

change the representation of existing cells.

The deletion of data objects may cause some hyperplanes in H to become redundant.

The deletion ofsuch a hyperplane from H corresponds to a compression ofeach vector hp by

one component. Although it may not be efficient to perform this update after each single

deletion, it might be worthwhile to do such a clean-up after a certain number of deletions.

Otherwise a large number of redundant hyperplanes will inflate the representations

unnecessarily.

It |H| is large, as it may well be, the explicit storage representation ofhp is not feasi

ble. However, the simple structure of hp allows many alternative data structures to be

used. As one example, hp can be represented by a set of (signed) pointers, pointing to those

hyperplanes that correspond to the nonzero elements. In this paper we do not explore the

relative computational efficiencies of such alternatives.

Note that this approach to represent polyhedral data objects abandons the notion of

vertex completely. Representation of cells by h-vectors has both conceptual and computa

tional advantages. To represent cells in terms of supporting hyperplanes rather than in

terms of vertices is usually the most space-efficient way because no adjacency relations

need to be stored. This becomes especially important in higher dimensions as the number of

adjacencies may grow exponentially in the dimension [Prep85]. Furthermore, it seems that

vertices are not necessary for the search and set operators we intend to support. Search

operators such as point location or range search can be supported efficiently by search

structures that are based on supporting hyperplanes rather than vertices; an example for

-6

such a structure is the binary space partitioning tree [Fuch80]. All set operations on cells

can be computed efficiently without using vertices by decomposing them into two parts: (a)

an operation on the h-vectors without references to the geometric coordinates of the hyper

planes, and (b) a generic operation that tests whether a vector hp is null, i.e. whether the

intersection of the halfspaces specified by hp is empty. This decomposition will be described

in detail in the following section.

4. Set Operations

Let P and Q be two general polyhedral objects. We now show that any set operation

on P and Q can be decomposed into: (a) operations on the h-vectors, and (b) deleting the

null vectors from the set of resulting h-vectors. The following propositions are easily

verified with the definitions of set operations and of polyhedral chains.

Proposition 4.1: Let P and Q be represented by convex polyhedral chains xP = z^Pi and
i = i

xq = Jjqj. Then XP\JQ - XP + Xq

XPf)Q = ZSPid^j)

xp = xpin-r\Pi;

Xp-Q = *pp|Q •

Proposition 4.2: Let hp denote a h-vector ofa cell p. Then x-= -hpH. •

For an example see figure 4.1. Note that the length of this chain equals the number of

nonzero components of the vector hp. It is therefore desirable to keep this number low, pos

sibly at its minimum.

-7

Fig. 4.1: hp= (0,l,-l,0,-l), jc-=-1-H2 + 1-H3 + 1-H5

Proposition 4.3: Let hp and h, denote the h-vectors for two cells p and q respectively. Then

h « can be computed using the following table for each component (h p.),.

Ch

<V«

(npfV'
0 1 -1

(hPh

0 0 1 -1

1 1 1 *

-1 -1 * -1

Table 4.1: In those cases denoted by *, the hyperplane Hi separates p andq, i.e. p (~)q = <p. D

Note that both the intersection and the complementation operator are defined on the

components of the h-vector. The components are independent of each other and can there

fore be processed in parallel. In particular, a systolic array [Kung79] or a connection

machine [HU185] with one processor per hyperplane seem to be promising for an efficient

implementation.

It follows from propositions 4.1-4.3 that for any set operation &, the h-vector represen

tation of P&Q can be computed from the h-vector representations of P and Q. However, the

h-vectors in the resulting representation may not be minimal. Also, some vectors may

define empty sets, due to the fact that condition * is a sufficient, but not a necessary

condition for non-intersection. Two cells p and q may not intersect, but there is no com

ponent (h f|)i where condition * occurs. In that case, the resulting vector hp~ defines

an empty set. Although that case is consistent with our data model, it is not desirable. A

large number of empty cells pi in the convex polyhedral chains xp —z*Pi representing the
i=i

data objects may slow down the system performance considerably. We therefore need an

efficient means for detecting empty cells.

One approach would be to abandon the concept of minimality and to increase the

number of nonzero components in the h-vector, possibly to its maximum, i.e.

Ohh =

1 if pC i>Hi

-lifpC -1-Hi

0 otherwise

Each nonzero component increases the chance that a separating hyperplane is found, i.e.

that condition * is met if two polyhedra do not intersect. If each h-vector had a maximum

number of nonzero components then a separating hyperplane would be detected immedi

ately; i.e. condition * would be a necessary and sufficient condition for non-intersection. On

the other hand, this approach makes the identification of supporting hyperplanes and there

fore the cell complementation and boundary retrieval operations much more difficult. Also,

computing the above function for each cell p in the database requires an immense amount

of computation and produces a lot of data that is probably never needed.

A garbage collector seems to be a better solution. Each time a new cell is computed as

the intersection of two cells, the new cell is tagged. A background process (the garbage col

lector) keeps checking the tagged cells in the database for emptiness. If a cell is found

non-empty, it is untagged. Otherwise, it is deleted from storage and from the chains that

contain that cell. Unfortunately, the representation of cells by means of their h-vectors

does not lead to an efficient algorithm to check cells for emptiness. A better approach to

this problem, based on geometric duality, is presented in a separate paper [Gunt]. In that

paper, we show that the time complexity to check two cells for intersection is polyloga-

rithmic and therefore sublinear in the number of vertices of any of the cells.

In order to avoid duplicating computational effort and loosing information, we propose

to cache the results obtained by the garbage collector. Whenever a cell intersection p (~}q is

computed a second time, it should be immediately clear from the vectors hp and h,, if the

intersection p(~)q is empty or not. Whenever the garbage collector checks a new cell

r=P ("I?* i* either discovers a separating hyperplane (ifp and q are disjoint) or it discovers

that there are no separating hyperplanes (if p and q intersect). This result can be cached

by extending the notion of the h-vectorto capture more information in the following way.

Each cellp is represented as a vector hp+ with the following semantics.

(Kh

(l,Y)

(-l,Y)

(W

(-l,iSO

/

0

Meaning

p Q lHj, Hi may be a supporting hyperplane of p

p Q —1"H,-, Ht may be a supporting hyperplane of p

p C 1-Hj, Hi is not a supporting hyperplane of p

p C —VHt, Hi is not a supporting hyperplane of p

H\ intersects the interior of p (hence, it is not a supporting hyperplane)

Hi is not a supporting hyperplane of p

Table 4.2

Components that are not explicitly specified default to 0. Now (h+p|)t- is given by the fol

lowing table.

(h + \

<v><

(npfV'
(IT) (-1,7) a,m (-l,iV) I 0

(V)i

a,Y) (1,7) * U,iV) * a,Y) (l,7)t

(-l,Y) * (-1,7) * (-l,iV) (-1,7) (-l,7)t

(l,N) (l^V) * (1,JV) * (l,N) (1,N)

(-l,N) * (-W * (-l,N) (-1JV) (-1.AD

I (1,7) (-1,7) (l,iV) (-l,N) 0 0

0 (l,Y)t (-i.y)t (1JV) (-l,N) 0 0

Table 4.3

-10-

If p and q do not intersect there will be at least one separating hyperplane Ht that

supports p or q. In this case (bpp| Ji corresponds to one ofthe cases denoted by * or by f.

Therefore, a new cell r=p (~}q is certainly empty ifany component (bpp|q)i corresponds to

one of the cases denoted by *. Otherwise, it needs to be tagged if and only if there is at

least one component (b ^)* that corresponds to one ofthe cases with the t.

If a tagged cell r=p(~}q is found empty, this result can be cached by the following

updates. Let Hj be a separating hyperplane and, w.l.o.g. let pC l-H/ and q C —1-Ht.

IF (hp+h = 0

THEN 01+);:= (itf)

IF (h+)i = 0

THENOi^ := (-l,N)

If, on the other hand, a tagged cell r—p p|q is found non-empty, we know that there

are no separating hyperplanes between p and q. For any hyperplane Ht that supports p,

either (a) q lies on the same side of Hj as p, or (b) Ht intersects the interior of q. A similar

condition holds for any hyperplane H, that supports q. This result can be cached by per

forming the following updates.

IF((hp+)i = (±1,7) ANDtfi^ = 0 AND H(n <? = <¥>

THENtfi^ := (±l,j\0

IF((hp+)< = (±1,7) AND(h7+); = 0 AND Hif)q*<p

THEN (h+)i := /

IF((hq+)i = (±1,7) AND(hp+)i = 0ANDH,r|P = <P

THEN(hp+), := (±l,iV)

IF ((h^ = (±1,7) AND(hp+), = 0 AND H.flP*9

THEN(hp+)t := /

Whenever p (") q is computed again, it follows from the vectors h* and h,,+ ifp and q inter

sect or not. If they do intersect, the resulting cell will not have to be tagged again.

When a new cell is inserted into the database, most of the components of its h-vector

are zero. As set operations are performed on the data objects, the database evolves. More

and more zero components of the h-vectors are replaced, and the vectors carry more and

more information. Therefore, it will happen less and less frequently that a new cell has to

11

be tagged and checked for emptiness. Also, at some point it may be more efficient to test a

new cell r=p (~) q for emptiness by checking the hyperplanes that may be separating ones

(i.e. the ones that correspond to components with a t) one by one if they are actually

separating. If they are few enough components with a t, this may be simpler and faster

than using the dual approach proposed in [Gunt].

Problems such as complementation, point location or boundary retrieval may be

solved by looking at only those hyperplanes that may be supporting, i.e. the hyperplanes Ht

where (hp+)t is (1,7) or (-1,7).

There are variations to this approach. First, one may prefer to have only minimal h-

vectors, i.e. to identify the supporting hyperplanes of each cell explicitly. This can be

achieved, for example, by extending the garbage collector as follows. Each time an intersec

tion cell is found non-empty, its supporting hyperplanes are computed and the h-vector is

updated accordingly. Second, one may decide to simplify the update procedure above by

introducing symbols (Ifll) and (-1,M) which represent (Iff) OR I and (-l,JV)OR7,

respectively. Then the set of updates for the case that p and q intersect can be simplified to

IF ((hp+)i = (±1,7) AND (h+)i = 0

THEN(h+), := (±1,M)

IF ((h+)i = (±1,7) AND (hp+)i = 0

THEN(hp+)i := (±l,iV7)

In particular, it is not necessary anymore to check any hyperplane H, that supports p (q) if

it intersects the interior of q (p), i.e. if Htf}q (Hif)p) = <p. As proven in [Gunt] , the time

complexity to check this condition for a particular hyperplane H, is logarithmic in the

number of vertices of q (p).

5. Conclusions

We presented a representation scheme for polyhedral data objects, based on convex

polyhedral chains. Each cell is represented as an intersection of halfspaces, encoded in a

vector. The notion of vertices is abandoned completely as it is not needed for the set and

search operators we intend to support.

Based on this representation, we described a scheme to decompose the execution of set

operators into two steps. The first step consists of a set of vector operations; the second step

12

is a garbage collection where those vectors are eliminated that represent empty cells. All

results of the garbage collection are cached in the vectors in such a way that no computa

tions have to be duplicated. As the database is learning more and more information

through the garbage collector, it will be able to detect empty cells immediately such that no

additional test for emptiness is required. Future work will focus on an experimental imple

mentation of our scheme.

Also, we believe that this approach is more amenable to parallel processing than.a

vertex-based approach. In particular, the components of the h-vectors are processed

independently from each other. Therefore, it seems possible to assign one processor to each

hyperplane in H and to carry out a significant fraction of the necessary computations

locally without interprocessor communication. We are currently working on the details of

this approach and are planning an experimental implementation on a connection machine.

References

[Besl85] Besl, P. J. and R. C. Jain, Three-dimensional object recognition, Computing Sur
veys 17, 1 (March 1985).

[Faux79] Faux, I. D. and M. J. Pratt, Computational geometry for design and manufacture,

Ellis Horwood, Chichester, Great Britain, 1979.

[Fuch80] Fuchs, H., Z. Kedem, and B. Naylor, On visible surface generation by a priori

tree structures, Computer Graphics 14, 3 (June 1980).

[Gunt] Gunther, 0. and E. Wong, Detection ofpolyhedral intersection in arbitrary dimen

sion, submitted for publication.

[Hill85] Hillis, W. D., The connection machine, MIT Press, Cambridge, Ma., 1985.

[Kung79] Kung, H. T., Systolic arrays, Computer 11, 4 (Dec. 1979), pages 397-409.

[Newe80] Newell, M. E. and C. H. Sequin, The inside story on self-intersecting polygons,
LAMBDA, Second Quarter, 1980.

[Prep85] Preparata, F. P. and M. I. Shamos, Computational geometry, Springer-Verlag,

13

New York, NY, 1985.

[Requ80] Requicha, A., Representations for rigid solids: theory, methods, and systems,

Computing Surveys 12, 4 (Dec. 1980).

[Tilo80] Tilove, R. B., Set membership classification: A unified approach to geometric

intersection problems, IEEE Trans, on Computers C-29, 10 (Oct. 1980), pages

874-883.

[Whit57] Whitney, H., Geometric integration theory, Princeton, NJ, 1957.

	Copyright notice1986
	ERL-86-87

