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ABSTRACT

This report discusses the application of tactile sensing to tactile object
recognition. Previous work in the literature is reviewed, and an implemen-
tation of an object recognition scheme for polyhedra is presented. The
scheme is model based and utilizes sparse modeling data to generate con-
straints for possible matchings. The recognition algorithm uses template
matching to match measured data readings from a tactile pad to possible
contact patterns generated from the object models. Test results are
reported to demonstrate the performance of the recognition scheme.
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1. Introduction

Robots are used for a variety of tasks in industry today. Typical examples
are spot welding, spray painting, assembly, and hazardous element handling. Usu-
ally, the robots are preprogrammed to perform defined tasks in a structured
environment. Because of their controlled surroundings, the robots are able to per-

form well with very primitive sensing capabilities.

" Although a controlled environment allows the robot to perform satisfactorily
with few sensors, it is costly and limiting. As applications for robots increase, and
robots become more adept at their tasks, so will the need for robots to be capable
of adapting to their environment. Future inzelligent robots will need a dynamic
understanding of their environment. They will need to employ intelligen? sensors

to improve their senses.

Modern robots sense their environment primarily in two ways, through vision
and touch. These complementary senses are used in many robotic tasks. Vision
systems have found applications in object recognition, obstacle avoidance, and
proximity sensing. Touch is necessary when contact with an object must be made.
Typical applications of tactile seﬁsors include locating and identifying objects and
grasping.

This paper reports on the development of an infelligenz sensor — a two-
dimensional tactile recognition scheme f01" polyhedra. The scheme is model based;
it seeks to match a measured footprint of an object, obtained by a tactile pad meas-
urement, with all possible footprints generated using models of a set of known
objects.

The outline of this paper is as follows. Chapter 2 surveys the literature on

tactile object recognition and template matching. Chapter 3 describes the



2

developed model based recognition scheme. Chapter 4 makes recommendations for

future work.



2. Tactile Object Recognition

Tactile information has many applications. A two-dimensional pad can be
used in assembly tasks where the contact pattern of a part can be used to recognize
it and detefmine its orientation. Three or more tactile sensors can be used for

recognition and grasping applications.

Tactile object recognition involves identifying an object from a set of known
objects using tactile information. Two-dimensional tactile information is obtained
by using a matrix sensor, such as a tactile pad. It is useful for obtaining a contact
distribution, or footprint, of the object. Three-dimensional information is obtained

by using multiple tactile sensors. It is useful for obtaining relative positional data.

Although the recognition scheme discussed in Chapter 3 is two-dimensional,
much work has been done using three-dimensional tactile information. This
chapter will describe some of these methods as well as a two-dimensional method

and two-dimensional template matching schemes.

2.1. Approaches to Tactile Ob ject Recognition

There are basically two types of tactile recognition schemes — statistical
schemes and model based schemes. Statistical pattern recognition seeks to compare
measured statistics of an object with its reference statistics and classify an object
from one of many specified classes into a specific class. A common measurement

device used is an articulated hand grasping the object.

Statistical recognition schemes utilize discriminant functions. A discriminant
function is a real valued function d (x), x € R*, where n is the number of meas-
ured properties, which assigns a value to a measurement x. Given m specified

object classes, the objective of the recognition scheme is to derive m discriminant
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functions; cuch that for any measurement, x, from class i d(x)>d;(x) j#=i,
1<j €m.

The discriminant functions are usually learned by using some training pattern
of measurements. Typically, the functions are represented as polynomials, and
their coefficients are determined by using measurements corresponding 1o known
classes. The process is called supervised learning if the classes of the measurement
vectors of the training pattern are known and unsupervised learning if they are not

known.

One method, developed by Okada and Tsuchiya (1], involves recognizing the
size and the three-dimensional pattern of an object using sensors placed on multi-
jointed fingers grasping the object. The recognition scheme involves two stages.
The first stage classifies the ob jects.based on the distribution pattern of the sensors.
The second stage uses the finger's joint angles to distinguish the different
classifications. The recognition is obtained by evaluating several discriminating
functions provided for each contact pattern. Both linear and quadratic functions

were computed.

A second method, developed by Briot et. al. [2], classifies an object, picked
randomly from one of three classes, into the most probable class. The probability
density used to make this classification is initially unknown, but is estimated using
measurements of joint angles of the hand grasping the object. The initial distribu-
tion of the observations is modified by a supervised learning procedure if the

classification is incorrect.
Since these statistical methods try to classify an object into a specific class,
they allow general object types. However, this generality tends to restrict the

classifications, so that these methods only differentiate between a small number of




simple ob Ject classes. Further references are contained in [3] and [4].

Model based pattern recognition, on the other hand, restricts the object types
so that a more specific classification can be made. These recognition schemes seek to
compare measured data values 10 those of a complete model. Successive measure-
ments create a partial model of the object which is compared to the complete
model. Most methods use the relative positional information obtained from many
small tactile sensors as their data. Other methods use contact patterns distribu-

tioris obtained from fewer, but larger sensors.

One group of model based recognition schemes, called feature extraction
schemes, utilizes contact patterns to detect global features of the objects for recog-
nition. The measurements of a matrix sensor aré used to observe identifying
features of an object, such as holes, edges, COrners, and distinguishing marks. The
features are then compared 1o a complete’ model for recognition. Problems can
occur, however, in relating successive measurements and when the feature size is

greater than the size of the sensor.

Another group of model based schemes uses relative positional information.
Gaston and Lozano-Perez (3] proposed a two-dimensional method for recognizing
polyhedra in the plane which utilizes local information obtained from three or
more sensors. Each sensor is assumed to provide the position of contact and a
range of surface normals at the contact point. The recognition scheme consists of

successively pruning the levels of an interpretation tree.

The interpretation tree for a single object represents the possible pairings of
contact points of the data to edges of the model. The tools used to prune incon-
sistent interpretations are a distant constraint, an angle constraint, and a model

constraint. The distant constraint ensures that the distance between each pair of
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contact ﬂoints is a possible distance between corresponding paired edges of the
model. The 'angle constraint ensures that the range of angles between measured
surface normals for each pair of contact points includes the angle between surface
normals of the corresponding paired edges of the model. It also checks if the
approach angle of the sensor is possible. The model constraint ensures that the
position of the measured contact points correspond to some point on their
corresponding edges for some configuration of the model. Thus, a complete model
for this scheme includes a table of distance ranges between pairs of edges and a

table of angles between surface normals for each pair of edges.

2.2. Approaches to Template Matching

The template matching, or point set matching, problem has been studied in
applications of machine vision recognition and location of rigid planar shapes. It
involves being given two sets with an equal number of points (one model and the
other a noisy data measurement) and finding a registration which gives a matching
minimizing the sum of the squares of the pointwise location errors. The registra-
tion is a planar transformation which consists of translation, rotation, and scaling.
Thus, template matching is a feature extraction method, where each point can be

considered a feature of the object.

There are several approaches to solving this problem. Simon et. al. [5] expioit
the relative distance between points in each set of points. They compute the dis-
tance for each pairing of points in each set and then compare ordered lists of these
distances to constrain the matchings. Since this matching uses only relative posi-

tions, it is independent of translation, rotation and scale.
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Baird and Steiglitz [6] use linear programming techniques to solve this prob-
lem. The total number of matchings is constrained by-testing the feasibility of a
set of linear inequalities. Thus, a small set of possible matchings is determined
from which to choose a best matching. The number of partial testings can be

reduced by exploiting registration constraints on translation, rotation, and scale.

Both of these approaches assume that the number of points in each set is
equal. For recognition applications, however, it is desirable to take missing or
spurious points into account. This is especially true when the set of objects con-

tains unsimilar features or when the feature detector is noisy.

To avoid the computations of an exhaustive search, some methods seek only
to compare specific subsets of the two point sets. Goshtasby and Stockman [7]
proposed a method which can match the greatest number of points in two sets
which do not necessarily contain an equal number of points. To reduce the amount
of computation, a subset of each set is matched. The subset chosen is the set of
points on the boundary of the convex hull of each set. This choice of subset has
three advantages. First, it is invariant to translation, rotation, and scale. Second,
it is likely to be a sparse set. Finally, it is likely to have longer edges, which will

give a better estimate of the registration.
The method is described as follows:

(1) Determine both subsets by finding the points on the boundary of the convex

hull of each set.

(2) Determine a transformation consisting of translation, rotation, and scale

which maps an edge in the first subset to an edge in the second subset.

(3) For each transformation, determine the total pumber of points that are

matched from all points in the first set to points in the second set.
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(4) Using the transformation which matches the most number of points, deter-
mine the corresponding points in the two sets which match within some

threshold distance.

(5) Determine the optimal transformation by minimizing the sum of the squared

errors of those matched points.

There are two types of edges that can be matched in step (2). The edges can
be those of the boundary of each subset or those corresponding to complete graphs
of each subset. A complete graph consists of all possible pairings of poﬁts in a
subset. Thus, to reduce calculations, the boundary edges of each set can be
matched first. If this does not produce an adequate matching then the edges of

complete graphs of each subset can be matched.




3. Model Based Object Recognition Scheme For Polyhedra

This chapter describes the intelligent model based tactile recognition scheme
that was developed. This scheme is intended 10 be used for recognilioﬁ of an object
from a known group of objects using the foolprint of the object, obtained by a tac-
tile pad. The pad is assumed to be bigger than the object and to .give a binary out-
put. The objects are assumed 10 be polyhedra or are able to be suitably modeled as

polyhedra.

This. scheme, like those presented earlier. utilizes an object model to compare
10 data measurementis. The intelligence of this scheme is due to its ability to gen-
erate the model constraints it uses to constrain matchings. Methods like that of
Gaston and Lozano-Perez [3] require predefined tables for their model constraints.
This scheme uses sparse modeling information to generate the model constraints

automatically.

The basic flow of the algorithm is illustrated in Figure 3.1. A set of objects is
assumed to be known. The objective is 1o jdentify an object on a tactile pad as one

of the known objects.

There are two branches. labeled model and dara. leading from the set of
objects. In the model branch. all objects are modeled mathematically and analyzed
to obtain models of all possible stable footprints that they can leave on a tactile
pad. A stable footprint is the contact pattern an object makes when it is supported
solely by the pad. Furthermore, the footprint should be invariant under small
perturbations to the object. Thus, stable footprints of an object can not be com-
posed of a sole point, edge, or colinear combination of each. The corresponding area
of every stable footprint is also calculated. The stable footprints and areas are

saved for the input of the recognilion algorithm.
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Figure 3.1 Recognition Scheme Flow
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In the data branch, a footprint measurement from one object is obtained and
processed. The measured footprint is in the form of a two-dimensional binary
array. The processing consists of representing the footprint in a similar manner as
the generated modeled footprints and determining the corresponding area. The
representation of the modeled footprint will require edge and corner detection of

the measured footprint.

The recognition algorithm takes the processed footprint generated by the pad
measurement and compares it with all possible f ootprints determined in the model
branch. The recognition is complete if the measured footprint is matched to one
object. Otherwise, the object will have to be reconfigured on the pad and another
measurement taken for another comparison. The recognition scheme is a template
matching method which seeks to match the greatest number of corners of the
measured footprint to corners of the generated model footprints, as well as insur-
ing that the areas are comparable. The following sections will describe each of the

steps in more detail.

3.1. Object Model

The object’s geometry is modeled as the union of polytopes. A polytope is the
convex hull, co(S), of a given set of points S = {p 1, P2, s Pm }in R", i.e.

m m
cO(S)-{x: Zwkpk. Zw,,=l. Wy ?0 l€k€m}.
k=1 k=1

A polytopal representation of a cube, for example, is the set of its corners. To
obtain an arbitrary polyhedron, it is necessary to model it as the union of
polytopes since the union can be nonconvex. Figure 3.2 shows an example of a

modeled table.
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Figure 3.2 Modeled Table

The polytopal representation has two big advantages. First, convexity is a
strong property which simplifies many computations. Second, representing an
object by a set of points is computationally easy . There is one disadvantage to
this model, however. Unioning polytopes to model nonconvex polyhedra can
introduce additional points which are not corners of the object. Although decom-
posing a polyhedron into polytopes is not difficult, recomposing must be done care-
fully. Figure 3.3 shows the decomposition of a two-dimensional block L. Note

that point 1 should not be treated as a corner of the union.

In addition to the geometrical modeling, there must be some physical model-
ing as well. Specifically, it will be necessary 1o estimate the center of mass of the
resulting object for determination of stable footprints. Thus, the center of mass
and total mass of each polytope must be given. A.lthough this may not be trivial
in some cases, the estimates for each separate polytope should be easier than that

of the composite object.
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point 1 point 1

Figure 3.3 Modeled Block L

In total, the model of an object consists of distinct sets of points, an associ-
ated center of mass and total mass for each set, and a flag in each set indicating all

noncorner points created in modeling nonconvex objects.

3.2. Generation of Stable Footprints

Due to the choice of model, the generation of stable footprints is relatively
simple. This task is broken into two steps: (1) determination of all possible foot-
prints that an object can leave (stable or not) and, (2) application of a constraint
which determines the stability of the footprint. These two steps will be con-

sidered separately.

3.2.1. Determination of All Footprints

Determining all footprints that an object can leave on a tactile pad is a
geometrical problem. Thus, the geometry of the object model should be exploited.
The problem is to find the intersection of specific support planes with the object.
In R3, a support plane of an object is a plane in which all points of ‘the object lie on
one side of the plane and at least one point of the object lies in the plane. To

obtain a non trivial footprint of the object, the support plane must intersect the
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object in three or more noncolinear points. Thus, single point and single edge con-
tacts are excluded. By taking the convex hull of the object and finding a face of
the resulting polytope, a planar intersection of a support plane and the convex hull
of a footprint is found. The problem, therefore, reduces 1o finding all faces of a

polytope and extracting the corresponding footprints from them.

The method used to find all faces of a polytope was developéd by Chand and
Kapur [8]. It has been called the "gift-wrapping method" [9]. The algorithm is
based on the observation that every edge of the polytope is the intersection of
exactly two faces. Thus, given one edge and o;le corresponding face, the second face
can be found by rotating the known face around the known edge by a specific
angle. Once a face has been found, its edges are determined similarly and the pro-
cess proceeds until all edges have two corresponding faces which are found. A

method is also given to compute the initial face and edge.

Let S = {po. P1» - PN} be the set of points in R" describing the polytope
co(S). Let po. P1o - Pn—2 be (n - 1) linearly independent points of S that define an
n-edge E of co(S). (A point p is linearly independent on a subset X € R if there

are no scalars A; 1 <i <r, not all zero, and points X; € X, such that

r .
p = X A;x;. Likewise, a set of points is linearly independent if no point in the

i=1

set can be expressed as a linear combination of the remaining points.) Let n be the
inward unit normal of a support plane H, containing E and one face of co(S). Let-
ting v; be the unit vector along p; —Po.

(n-v;)20 i=12.,N.
The objective is to find the appropriate support plane containing the adjacent face.

Adjoining a point py. px € S, P« ¢ H, to E gives n linearly independent points
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which describe 2 hyperplane with unit normal 7 ((ne-n) 20) which is possibly
the support plane containing the adjacent face. In general, an (n - 1) X n linear
homogeneous system of equations must be solved to determine ng - The adjacent
face is contained in the hyperplane which makes the largest convex angle (< 7)
with n, since this is the only hyperplane created which is @ support plane. Thus,
to find the appropriate normal a (n - 1) X n linear sysiem of homogeneous equa-

tjons would need to be solved (N -n - 1) times.

By comparing the qotangent of the angles between n and all ng, this problem
can be solved by solving one (n - 1) X n system of linear homogeneous equations.
Let e be a unit vector orthogonal to both n and E. To determine €, the following
(n - 1) X n linear homogeneous systems of equations must be solved.

(e-n)=0

(e-v;)=0 i< 1,2, ., D=2
The orientation of e is given bY (e+v) >0 Px €H, p € B, 18- € points in the
direction of the other points of the face contained in H-

The n vectors Vi, V2, == Vo2 Ttr € form a basis for R". Sincen is normal to
E, n, must lie in the plane spanned by n and e. Letting =N\ A€ the
cotangent of the angle between 1t and n; is given by
(e*vx) _ _)f_’.‘_. .

n-vg Fx

The normal of the ad jacent face is found by computing

1'g=

A
Mmax —— for px € S» Pk ¢ H.
L

Figure 3.4 jllustrates this for the case where o(8) is in R% In this example, the

plane given by Po» P1 and pPa contains the adjacent face. Since (e-v2) and
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Figure 3.4 Gift-Wrapping Method in R3

(e-v3)> 0, 7, and 73 < 0, but 74 > O since (e-vy)<O.

Once an n-face of co(S) is found, its edges can be found similarly since they
are an (n - 1) face of co(S’), where S’ equals the set of points in the n-face of co(S)
contained in S.

Finally, the initial face can be obtained through the application of the follow-
ing theorem (for a proof see [8]).

Let H be a support plane of S, containing r linearly independent points of S,

whose normal n = (@, @2, o @rs O) oo 0). Then there exists at least one

point of S which when joined to the r points of S on H forms a linearly
independent subset S* of S which lies in a support plane H* of S whose nor-

mal is of the form n* = (51, b2, ooy br 41, 05 oonr 0).

Thus, finding points in § with least first component determines a hyperplane H
with normal, n, = (1, 0, ..., 0) and the theorem above can be applied n - 1 times to

obtain the normal of the support plane containing an n-face of co(S).
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Therefore, the faces of the polytope can be found as follows:

Step 1: Find an initial face and a corresponding edge. Determine ind
store all edges of the face with its normal.

Step 2: Search the storage for an edge for which only one correspond-
ing face has been found.

Step 3: If no edge exists then exit.
Otherwise, determine the adjacent face and its corresponding
edges and store all edges with the normal of the adjacent face.
Go to step 2. :

The gift-wrapping method generates all faces of the polytope. Since the
polytope is the convex hull of the modeled object, each face represents the convex
hull of a possible footprint of the object. The actual footprint can be extracted by
determining all model points in the support plane containing the face and unioning

the corresponding faces of the individual polytopes unioned to model the object.

3.2.2. Constraint for Stable Footprints

After a face of the convex hull of an object has been found, two things must
be done. The footprint must be extracted from the face, and it must be tested to
see if it is stable. Extracting the footprint from the convex hull is easy due to the
way the object has been modeled; however, the latte;' problem is more difficult and

is the subject of this section.

A footprint is stable if the object creating it is sitting on the tactile pad, sup-
ported solely by the pad, and if the footprint is invariant under small perturba-
tions of the object. The invariance constraint rules out any single point or single
edge footprints. Satisfying the support constraint means that the object must sit

on the pad without "falling over”.

One way to determine if the object will fall over is to see if its center of mass

projected perpendicularly down to the plane of the pad is contained in the convex
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bull of the footprint. If this is the case, forces will balance and there will be no
resultant torque which could cause the object to topple over. If the projection
point of the center of mass is not contained in the convex hull of the footprint
then a resultant torque is produced which will cause the object to fall. Thus,
checking the stability of the footprint reduces to checking if the center of mass of
the object projected perpendicularly down to the plane of the tactile pad lies in

each face found by the gift-wrapping method described in the last section.

To determine if a point is in the convex hull of a set of points, a method
developed by Wolfe [10] is used. This method determines the nearest point to the
origin of a polytope. After subtracting the projected center of mass point from
each point on the boundary of the convex hull of the footprint, the projected point
is in the convex hull of the footprint if the distance from the nearest point to the

origin is zero. The corresponding footprint is stable if the containment holds.

Given a set of points P = {po, P1, o Pm} in R*, the problem of finding the
nearest point of co(P) to the origin is
min x’'x subject tox = Elpiw“ if‘,lwi=1, w, 20 1<i <m. NRI
i= =
Letting Q be a n X! (1 <m) matrix of a subset of points in P, Q is affinely
independent when no point of Q belongs to the affine hull of the remaining points,
where the affine hull is given by

aff(Q) = { x:x = Qw, Tw =1L

t=1
When Q is affinely independent, the solution to the problem

m
min x‘x = min w'QQw  where 2 w; =1 NR2
i=1

can be obtained by using Lagrange multipliers. Note that NR2 is a subset problem

of NR1 since P may not necessarily be éﬁ‘mely independent. If it turns out that
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w50, 1 <i <, then x”, the solution of NR2, will belong to co(Q), the convex
hull of Q. If Q is a suitable subset of P then x° may minimize over co(P), solving
NR1 and determining the nearest point of the polytope co(P) to the origin.
Specifically, if the hyperplane H(x) ={ y: x'y=I1x 12} is a support plane for the
convex hull of P then x is the unique solution (since |x |2 is strictly convex) and

the original problem, NR1, is solved.

The Wolfe algorithm determines points x" for certain sets Q called corrals. A
corral is defined to be an affinely independent subset Q of points in P such that the
nearest point in Q to the origin is in its relative interior. The algorithm finds the
corral which contains the solution to the original problem, NR1, by solving NR2 a

finite number of times.

The algorithm is as follows:

Data: points in P

Parameters: points x, ¥, 2 and corral Q

Step 0: Find a point in P with smallest norm. Set x = that point. Q
={x}

Stepl: Ifx=0or H(x ) separates P from the origin then stop.
Otherwise, choose p; € P on the near side of H(x)and setQ =

Q U {n:l

Step 2: Sety = point of smallest norm in aff (Q).
If y is in the relative interior of co(Q) then set x =y and go
tostep 1,
else

Step 3: Set z = nearest point to y on the line segment co(Q) [} ¥
(the line segment from x to y). Delete from Q one of the
points not on the face of co{Q) which contains z. Setx =2Z
and go to step 2.

The algorithm is composed of a finite number of major cycles (started in step
1), each of which may consist of a finite number of minor cycles (repetition of
steps 3 and 2). Each major cycle begins with a corral Q and a nearest point in Q.

The cycle chooses a new point 1o add to Q and determines if the result is a corral.
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If it is not, a minor cycle begins. The minor cycle begins with an affinely indepen-
dent set Q and a point x € co(Q). The cycle removes a point from Q and alters x
until Q is a corral and x is the nearest point in Q. Figure 3.5 illustrates the opera-

tion of the algorithm for a simple example presented by Wolfe.

pt1 =(0,2)

pt3 =(-2,1)
N T pt2=(3,0)
Step x Q y
0 U pu
1 PL Pty PL2
2 a Pt1, Pt2 a
1 a Pt1, Pt2, Pt3 a
2 a ptuptzspts O
3 b Pl2, Pta 0
f c pl2, Pta c

Figure 3.5 Example Of Wolfe's Algorithm

3.3. Data Analysis

The data provided by the tactile pad is assumed to be a two-dimensional

array of binary values corresponding to one footprint of the object. It is assumed
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that the background is given value zero and the footprint value one. In order to
compare this data with generated footprints, the data must be prooassed to put it
in the same form, i.e. the corners of the measured footprint must be obtamed To
obtain these corners there are two levels of processing — edge detection and corner

detection.

3.3.1. Edge Detection

The first step of processing the tactile data is to separaté the object footprint
boundary from the background. Edge detection techniques are designed to do this.
They are based on the assumption that there is a contrast in data levels at an
object’s edge. Thus, most edge detection techniques use a spatial convolution mask
which is applied to each pixel, checking a small neighborhood around that pixel to

determine any discontinuity in the data.

One edge detection method, the gradient method, uses a 3 X 3 pixel area and

approximates the gradient in the x direction of position (i, j) by
G, = (dli+11[-11 + 2dli+ 111 + dli+ 1[+1D
- (dli-11j-1] + 2dli-113 + ali-11+1D
and the gradient in the ¥ direction by
G, = (dli-1]+1] + 2dlillj+1] + dli+11[j+1D
_ (dli-111] + 2dlillj-1] + dli+11-1D,

where d[illj] is the data value of position (i, j). The magnitude of the gradient is

given by

1
G=IG,2+G,%?

or approximated as
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G =G, 1+ Gyl

The corresponding convolution masks are shown in Figures 3.6 (a) and 3.6 (b) and

are typically called the Sobel operator masks.
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(a) G, (b) Gy

Figure 3.6 Sobel Operator Masks

The data analysis scheme uses 2 method similar to the gradient method for
edge detecting the binary tactile data. One disadvantage of the gradient method,
however, is that it smears edges. This is due to the 3 X 3 size of the mask. This is
undesirable since it could create errors in determining the corners of the unpro-
cessed data. To avoid smearing, the computed values could be thresholded, so
small values would be set to zero. Likewise, the computed value could be unioned
with the original data, setting a value that was initially zero to zero automatically.
For edge detecting the data, the latter was used. Due to the simplifications of the
binary output, a rule based edge detection scheme can be created by checking the
npumber of ones appearing in the eight adjacent neighboring pixels. The rule based
scheme is shown in Figure 3.7. With this scheme, background points are kept the
same, the outer two "levels” of the object boundary are kept the same, and the

remaining interior points are set to zero.
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Figure 3.7 Rule Based Edge Detector

3.3.2. Corner Detection

It is necessary to extract the corners from the measured footprint in order to
compare it with possible calculated footprints. The method used to corner detect is

similar to that used in binary image chain coding schemes.

A chain coding scheme is a method which describes the outline of an object in
an image. One such scheme described by Wilf [11] traverses the boundary of an
object, storing the direction traversed at each pixel as well as updating additional
information, such as the area and moments of inertia in the X and y direction. Pos-
sible direction codes to use are shown in Figure 3.8. A pixel and its eight neighbors
are shown in Figure 3.8 (a). The eight possible directions to travel from the center
pixel are represented in Figure 3.8 (b) by an eight-directional code. It is also possi-
ble to describe an objects boundary using a four-dimensional code as shown in Fig-
ure 3.8 (c). The resulting array of values and associated starting location is called
a chain code and can be used 1n a recognition scheme by analyzing its values along

with the values of the additional information.

The method used to determine the corners of the measured footprint is similar
1o chain coding. Each isolated region of the footprint is traversed using an eight-
directional direction code, as shown in Figure 3.8 (b). A global list of directions

traversed is not saved, however. Rather, a local list of directions is used. A corner
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is detected whenever the direction changes by more than one unit or if the direction
changes by one unit but fails to return to the original direction and maintain it for
a specified number of pixels. In addition, each new corner found is checked to see
if it is greater than a threshold distance from the last, thus preventing two corners

close together from impersonating one actual corner.

0 0
7 1
71011 | I
6 B2 2 6 2 3¢
1
5 3
4 2

(a) Neighboring Pixels (b) Eight-Directional Code (c) Four-Directional Code

Figure 3.8 Direction Codes

3.33. Data Analysis Scheme

The data analysis scheme uses both the modified edge detection and the corner
detection methods mentioned previously. After the edge detection, the data is
composed of all zeros except for ones along the boundary of the footprint. This
boundary is no more than two pixels wide. The corner detection scheme finds the
first one it comes to and traverses the boundary o.f that part of the footprint, leav-
ing a different flag for edge pixels and corner pixels. The *leftover” ones immedi-
ately interior to the edge are then changed to zeros and the process is repeated for

the remainder of the footprint, in the event it is composed of multiple isolated
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parts.

Because the corners are detected using boundary traversal, edge detection is
not strictly necessary. The same procedure can be used without the edge detection,
except that after traversal of the boundary, all interior pixels would have to be
jgnored when looking for the next part of the f ootprint. However, edge detecting
first could filter some noise and smooth noisy edges if a more sophisticated scheme
is used. For these reasons, it was kept in the processing scheme to accommodate

easy modification in the future.

3.4. Recognition Scheme

Ther input to the recognition scheme consists of one set of data points, D,
corresponding to all corners of the measured footprint and a database of many sets
of points, FP;*, corresponding to the corners of all possible stable footprints, i,of
each object, k. The corresponding area of each footprint is available as well. The
objective is to find a k for which D is matched to the greatest aumber of points in
FP* as well as matching the corresponding area. The problem fits nicely into the

format of a template matching problem since sets of points are being matched.

3.4.1. Robustness Issues

The recognition algorithm developed must be able to function in the presence
of errors. There are two main types of errors possible — errors in the tactile pad
measurement and modeling errors.

Errors in the tactile pad measurement can be due to a variety of uncertainties.
One problem that can result is due to the compliance of the pad. As illustrated in

Figure 3.9 (a), the measured footprint will be larger than the actual footprint if
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object object on pad footprint

— output obtained
— true footprint

(a) Compliance Error

object model

(b) Modeling Error
Figure 3.9 Possible Errors

the the objects sinks in the pad. The resulting error causes the corners to be off by

some error range. The same problem can occur if the pad has hysteresis problems

or if its parameters drift.
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Errors in modeling are due mainly to the restriction of polyhedral objects.
Figure 3.9 (b) illustrates modeling a rounded triangular prism as a triangular
prism. Once again, it is necessary that the matching scheme be able to match

points within some error range.

3.42. Algorithm

The algorithm for comparing the corners of the measured data and the corners
of a possible footprint is similar to that of Goshtasby and Stockman [7). First, the
points on the boundary of the convex hull are computed and ordered for each set.
These points are already obtained for each FP, k in the process of the gift-wrapping
method. These points can be obtained for D by a similar procedure. Let these sets
be FP,* and D.

Next, every edge of D is matched to all possible edges in FP* for every face
i, of every object, k. For every edge there are two possible orientations 1o match as
well as two different endpoint configurations. Figure 3.10 shows these matchings.
Figure 3.11 shows the corresponding matchings for matching only bne edge of the
convex hulls of two footprints. The best match results in the greatest number of

corners matching.

For each possible matching, all points of the measured footprint, D, are
transformed by a planar rigid motion to the space containing the calculated foot-
print, FP;*. The transformation which results in the greatest number of points
being matched within some threshold distance determines the group of possible best
matches. An area constraint is applied to this group to determine the final group
of best matches. The footprint area constraint is necessary since two footprints

can match the same number of points if they are identical except that one has an
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Figure 3.10 Possible Edge Matchings
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Figure 3.11 Matching One Edge of Two Footprints
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additionai isolated region in the interior of the convex hull, and the measured foot-

print is from the object without the additional part.

The algorithm is as ollows:

Data: Sets D, D, FP,X,FP,*. Areasof D and each FP,*.

For each possible object k :
For each face of each possible object i:
For each edgein D:
For each edge in FP;*:
For both orientations and endpoint match-
ings:
Determine the planar rigid motion to
match the edges.
Determine and store the number of
points in D matched to points in FPk
within some threshold distance.
Determine the objects which matched the maximum number of points
with the appropriate area.

In order to match edge i to edge j, planar linear homogeneous transformations
including translation, rotation, and fixed scale are used. From Figure 3.12 it is easy
1o see the steps needed for the transformation. Consider points py and p,, Which
define edge i. Their coordinates are respectively (xy, y,) and (xj y3). Four
transformations are necessary for the matching. First, edge i is translated to thé
origin by translating P, to the origin. This will cause p2 to be transformed to a
new point, p. Next, edge i is scaled to correspond to the dimensions used in
obtaining edge j 10 relate the scale of the tactile sensor to the scale of the model.
Then, edge i is rotated by 0 radians by rotating p2’ by 0 radians. Finally, edgeliis
translated to edge j by translating the origin (where p, had been translated) to the

point (xy’, ¥1'). The trapsformation T is given by:

T = Trans(x,", y1')Rot(z .6 )Scale( 1 10 Trans(—x 3, =¥1)

RAT.

where
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cos® —sin® O
Rot(z,0) = | sin@ cos®@ O

o ©0 1
10 2,
Trans(t;,5,) = | 0 1 %
00 1
1 0 o1
RATIO
1 N 1
Scale () = 0 %o °
| o 0 1

and RATIO equals the ratio of the pixel dimension 10 the model dimension.
Transformation T matches edge i to edge ] with points (x, y1) and (xy5¥1)

matching. Likewise,

T* = Trans(x ', y2)Rot(z , 0 )Scale( YTrans(—x 5, —y2)

1
RATIO
matches edge i to edge j with points (x5, y2) matching to point (x5, y2) Inaddi-

tion,

2l . * l
T” = Trans(x,’, y,')Rot(z ,7—8 )Scale( RATIO JTrans(—x 3, =Y 32)

T* = Trans(x 5', ¥ )Rot(z , 7— 6 )Scale( )Trans(—x; =y1)

RATTO
match the opposite orientations.

The main difference between this algorithm and that of [7] is that the optimal |
transformation is not computed. The criterion of a good match is the pumber of
points matched; the actual transformation matching the points is not needed.
Also, the ordered edges of the boundary of the convex hull of each set is used to

determine the transformation. Complete graphs of the convex hull boundaries are



31

y
N
(0 U5 (x5, 8,)
edge j
edge i
(x, y)
L e | . e (x., U‘)
._.../—\“..' R x

Figure 3.12 Transforming Footprint Edges

not used.

There are two advantages to using this algorithm. First, errors in pointwise
matches can be taken into account by setting a threshold distance. Also, the max-
imum number of points will be matched as longA as one edge of D correctly
corresponds to an edge in one of the FP,%. Second, the ordered edges of each FP*
are automatically generated in the process of the gift-wrapping method, so no
additional computations are necessary. The ordered edges of D can be obtained

using the same procedure.

3.4.3. Test Results

The recognition scheme was tested and good results were obtained. Typical
objects used are shown if Figure 3.13. These sample objects were chosen to illus-
trate the operation of the recognition scheme even though they are relatively

uncomplicated. Sample footprints used included isolated points and edges.
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Figure 3.13 Sample Objects Used

In all cases, an approximate tactile f ootprint was obtained by thresholding a

grey level image of a two-dimensional object. This approximauon was necessary

since no tactile pad was available. The resolution used was .80 x 80, although

smaller resolutions would work also.
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Thev recognition software was run on 2 time shared VAX 11/750 computer.
With the five objects of Figure 3.13, the generation of all stable footprints and
recognition with one measured footprint was completed in times ranging from 32
seconds using the simplest measured footprint to 120 seconds using the most com-

plicated measured footprint.

Figures 3.11, 3.14, and 3.15 illustrate some of the steps that the recognition
scheme takes in determining a match. Figure 3.14 shows the basic operation of the
gift-wrapping method for the case of the modeled table. Figure 3.14 (c) shows
some of the generated faces of the convex hull of the table shown in Figure 3.14

(a) as well as their corresponding footprints.

Figure 3.15 (a) shows a sample measured footprint of one face of the three-
dimensional star. Figure 3.15 (b) shows the corresponding detected corners. Note
that one spurious corner was detected incorrectly. Although an incorrectly
detected corner presents a potential threat of incorrectly matching to the corner of
a different object and possibly leading to a wrong recognition, this additional
corner did not interfere with the recognition scheme for the objects used. In addi-
tion, the additional corner did not alter the matching scheme since it is contained in

the interior of the convex hull of the footprint.
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Figure 3.14 Sample Steps Taken in the Gift-Wrapping Method
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The sizes of the objects used were chosen to present ambiguities 10 the recogni-
tion schéme. Although the convex hull boundaries of the three-dimensional star
and pentagon are the same, recognition was obtained given a measured footprint of
the star as data. In this case, the greatest number of corners was matched to the
star. Given a measured footprint of the pentagon (the pentagon f. ace), the recogni-
tion was also obtained in one cycle. Even though the same number of corners was
matched to the three-dimensional star and pentagon, the area constraint of the
matching scheme ruled out the possibility of the star. The faces of the box were
chosen 10 be equ.ivalent to faces of the pentagon, table, and the convex hull of faces
of the star. The recognition scheme behaved as expected, being able to distinguish
between footprints with equivalent convex hull boundaries and different areas, and

requiring additional measurements in the cases where the areas were equivalent.

The computational efficiency of the gift-wrapping method is reported by
Preparata and Shamos [8). The time needed for computing all faces of a polytope
in R grows as n 2 where n is the number of points of the polytope. The times of
the test results supported this analysis; Note that the time used to generate all
stable footprints of a modeled object is a one-lime expense. Once generated, the

footprints are stored.

The time required for the matching scheme, however, is not a one-time
expense. Although the run time is dependent on the number of points in each
footprint being matched as well as the number of points on the convex hull boun-
dary of each footprint, the majority of time is spent in transforming a point from
one footprint to the other. The average time required 1o match a point in one set
to a point in another set was measured as approximately 3.6 milliseconds. In the

matching algorithm, the time required to match one footprint to another grows
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approximately as Amn, where 7 and m are the number of points on the convex

hull boundary of the each footprint and n is the number of points of the measured

footprint.
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4. Future Work

Tactile data is used in many applications. The recognition scheme presented in
this paper utilized two-dimensional binary data to recognize an object from a set
of objects. Future projects, however, may wish to exploit grey level sensing. The’
footprint, in this case, not only gives positional information, but also gives force
information. Possible recognition applications include inspection through feature
extraction, center of mass analysis through the use of multiple footprints, and
medical applications through the analysis of the force distribution of an actual
footprint.

Future developments in tactile sensors will lead to even more possibilities.
Present research is involved in giving future sensors a skin-like sensation. Articu-
lated hands will then have human-like properties which will permit greater dex-
terity. Possible applications include texture detection, automated assembly, and
grasping applications. A detailed survey of future trends of tactile sensing is

described by Harmon [12}.
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Appendix A. Recognition Scheme Implementation

This appendix describes how the recognition scheme were implemented in the
form of a computer code. These programs are written in standard C, and are docu-
mented to allow future projects to be able to use and modify the code as necessary. |

The code is organized into five modules.

Facec contains the code that generates and stores points of all stable foot-
prints of an object and their convex hull boundary points. The objects geometry is
input from files named "aux1”, "aux2", .., "awxn”, where n is the number of
polytopes needed to model the object. The number n , as well as the object number
i , are entered interactively from 2 terminal. The ordered points of all stable foot-
prints of the object i, as well as the number of faces stored, the number of points
in each face, and the { ace’s area is stored in 2 file called "obji .convex". All points
of all stable footprints of the object i, as well as the number of points in each face

is stored in a file called "obji all’.

Cornerc contains the code for the edge and corner detection. A two-
dimensional binary array of data values is input, and a list of all corners as well as
an ordered list of the corners of the conVvex hull boundary is output. The total

aumber of points in each list is also output. This function is used in Recog<.

Recog.c contains the code for the template matching scheme. The number of
objects, 1, as well as the error threshold distance pumber are entered interactively
from a terminal. The generated model footprints are input from the files
* objk .convex” and "objk all” fork = 1,2, el

Vector.c contains routines to perform matrix and vector manipulations. These

routines are used in Face.c, Corner.c, and Recog.C.
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Wolfe.é contains the code to implement the Wolfe Algorithm. This code was

This routine is used in Face.c, Corner, and

obtained from John Hauser 13}

Recog.c.

In addition to the five modules above, there are two small header files defining ‘

contains some mMacros and

and common declarations. The file header.h
some global

parameters
rary functions. The file include.h contains

declarations for standard lib

constants used in Facec and Recog.C.
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/e Faoce.c

/e '

VA This progrom determines the stoble footprints of on object.

/e ~ The object is modeled as a union of polytopes and all possible
/* footprints of the object ore obtoined by finding the faces of
/e resulting poiytope. The vgiftwrapping” method ?in R3) is used
/* to compute these faces, j.e. 0 given face is rototed oround o -
/e given edge until it corresponds to the edjacent face.

/* storage for all point matchings
define TOP (((MAX =1)sMAX)/2) /e 1424, . +(MAX=1) = (MAX=1)sMAX/2
dofine EPSILON 1.0e-5 /e error range o/
define EMPTY =1 /e empty flag ¢/

include <stdio.h>
include "constants.h”
include “"header.h”

/e structure for storing aill points of the mode i
struct pointdatal §
int partno, noncorner;
float coord[3]:

/e structure for storing points of the
/* convex hull of the model
struct pointdate2 {
int partno;
float coord[3]):

/* structure for storing faces
/* ond edges found
struct edgedata §
int face;
float coord[3]:
fioat intercept;

/* structure for storing the c.o.m.
/* ond total moss of each polytope
/* used to model the object
struct inputdatao {
float cofa[3]:
float mass; .

. /* storage for all points of the model
struct pointdatal points[MAX];

struct pointdata2 cpoints[MAX]: /e storage for peoints on the convex
/* hull boundry (CHB) of the object

struct edgedota edgecheck[TOP]): /* storoge for each found edge
/e ond corresponding faces

int ouxnum, objnum; /+ number of polytopes used to model the object
/* and the object number

inf focepts[MAX-1], numfacepts, aunfoces; /e indices of the points on @
/+ face, the number of points
/+ ond the number of facses

FILE efopen(). sfptemp, efpall; /e tile pointers to tiles off oll face
/e points and those on the CHB

tfloot inner(). norm(), dist():

main()

o/
o/

*/
*/

o/
o/

&/
*/

2
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/* indices of points of an edge, ond /-
int ptt1, pt2, total; /e the total number of CHB points
floot conES]. normal [3]). O: /e c.o.m. of the object, ond o normal ¢/

/+ ond intercept of o support plane .

@
N

Initialize ():

InputModel (&total. com):

FindStartData (total, &ptl. gpt2, normali, &D):
FindFoces (pti. pt2, total, com, normal, D):
StorePoints ():

printf ("\nALL DONE\Nn"):

Initiatize ()

/e Initialize all global storoge structures 74
int i, js
numfaces = ©;

for (i =@; i <7
edgecheck[i].f
for (j = ©;
edgecheckli].coo
edgecheck[i].interc

[ )
AN -3

for (i = @; i < MAX; ++i) §
points[i].partno = points[i].noncorner = cpoints[i].portno = 0;
for (j = ©;_j < 3: ++j)
points{i).coord[j] = cpointt[i].coord[]] - 9;

InputPoints (i, ptotall, pmass, com, samepts)

int i, eptotalt, samepts[MAX]:
float spmass, con[3]):

/+ Input points of one polytope of the object model s/

FILE efp, efopen ():
int j, addipts;

if (i == 1)
f

p = fopen (“ouxi®, “r*):
else if (i == 2)
tp = fopen (“aux2”, “p*):
else if (i == 3)
- tp = fopen (“oux3”, "en):
else if (i == 4)
tp = fopen (“"aux4”, “pn);
else if (i == 5)
tp = fopen (“oux5”, “r*):
else if (i == 6)
tp = fopen (“oux6”, “r"):
else if (i == 7)
fp = fopen (“aux7”, “re);

/e input c.o.m. ond total moss o/
fsconf (fp., "%f Xf Xf Xf™, &kcom[0], &kcom[1], kcom[2]., pmass);
/* input points of polytope and flag repeated points o/
fscanf (fp, "%d", &addipts):

while (fscanf (fp, *"%f Xf Xf", poiuts[-ptotcl1].coord.
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points sptotalt}.partno = i
points[eptotall .noncorner = ((cddlpta-) >0) 71 : 0
tor ()} = O: { < eptotall; ++j)
if (dist
somepts[eptotolil] = B
(sptotall)++;

pointstOptotol11.coord + 1, pointa[tptotol1].coord + 2) = EOF) {

§
tclose (fp):

InputModel (ptotal, conm)

int sptotol;
fioat com[3]:

/* lnput all points of the object and compute the
/* c.o.m.

int i, j. ko 1, totall, samepts[MAX]:
float tmass;
struct inputdate auxfile[AUXMAX]:

doublo wolfep_(): /e storage for the Wolfe algorithm
double pp[3 * MAX]. re[28]. x[3]):
int 3[45;

do 1 /* input object number ond data file
°
printf (“\nEnter object number (e to exit): "):
scanf (“%d", gobjnum);

it (objnum == e) {
printf (“\nBYE\n"):
exit (@);

zlso it ((objnum > oBJMAX) || (objnum < 1)3
printf (“Maximua number is %d.". OBJMAX) :
t while ((objnum > 0BJMAX) || (objnum < 1))

if (objnum == 1)

fpall = fopen ("objt1.al ™, “w"):
else if (objnum == 2)

fpall = fopen ("obj2.alt", “w");
else if (objnum == 3

tfpall = fopen (“obj3.all", “w");
else if (objnum == 4

tpall = fopen ("obj4.alt™, "w"):
else if (objnum == S

fpall = fopen (“objS.all”, “w");
else if (objnum ==

fpoll = fopen (“obj6.all”, “w"):
else if (objnum ==

fpall = fopen ("obj7.all"™, “w");:
else if (objnum == 8

fpall = fopon (“obj8.all™, vw*):
else if (objnum == 9)

fpall = fopen (“obj9.all”, "w");
else if (objnum == 10

tpall = fopen ("obj10.0all”, “w");

tptemp = fopen ("temp", “w"):

/¢ input number of files needed for model

do §
printf ("\nEnter numaber of convex polytopos to be unioned: *):
scanf ("%d", kouxnumw) ;

if ((ouxnua > AUXMAX) || (ouxnum < 1))
printf (“Maximun number is %d.", AUXMAX) ;
{ white ((ouxnum > AUXMAX) |1 (auxnum < 1))

/* input model points
j < MAX3 ++j)

3, points[j].coord, pointo[Optotolll.coOfd) < EPSILON)

o/

s/
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so?optzgj¥ - ENPTY:.
'orlgpuzPoints<(?uingf.ttotol1. gaouxfite[i]).mass, touxffle[i].cofm[O]. someptis);
tmoss = O . /* compute total mass o/
for (i = 6; i < oeuxnua; ++i)
tmoss += auxfile[i].mass;

for (i = ©; i < 3; ++i) § /e compute c.o0.Mm. o/
com[i] = ©:
for (j = ©@; j < auxnum; ++j)
com[i] 4= ouxfite[j).cofm[i] ¢ ouxfile[j].moss;
com[1] /= tmoss:

eptotal = 0; /s determine convex hull o/
for (i = 8; i < totatt; ++i) {

k= 0
tor (j = @; J < totall; ++]
() 1= 1) && (samopts[j] == EMPTY))
for (1 = @; | < 3; ++1
pplk++]) = points[]].coord[l] - pointn[i].coord[l];

j = 3;
k /= 3;
it (wolfep_(pp. &j. &k, x, 3. rr) > EPSILON) §
cpointa[optotol].portno = points[i].partno;
for (1 = 0; | < 3; ++|
cpoints[Optotol].coord[l] - pointa[i].coord[l]:
(sptotal)++:

}
; —_—
£ (i, J)
int i, js
/* Convert indices of an upper diagnel motrix to on s/
/* index for an equivaloent one-dimensioal array s/

int index;

index = (int) (j — i + is(MAX - (i + 1)/2) - 1 + 0.5);
return (index):

PosDir (P, e, total)

int P[MAX], total;
float e[3];

/+ Orient vector e in the direction of the points with o/
/+ indices not in P o/

int i, j, found;
f1oat vk[3]:

i = 0;
found = 1;
while (found) § /e find index of point not in plane s/
;oung = 0 )
or (j = ©; j < total; ++j
if (P[}] == 1)
found = 1
if (1found) §
diff (3, cpoints[i].coord, cpoints[{P[@]].coord, vk):
if (tinner (3. e, vk))
found = 1;
else found = 98;

%f (found)
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++i;

pos (e, vk); /e make <e,vk> >= ]

MoxAngle (i, v, normal, o, P, pj. start, pmax)

;?:o:.v?ggfxlar;:{t3i§°:t3]. epmox;

/* Determine the cotangent of the angle betweeon the
/+ noraal and o hyperplane. Store the indices of the
/+ points which moke the largest angle in P

int k;
tloat ratio:

/s determine the cotangent
ratio = =( inner (3, o. v) / inner (3. normal, v)):

/e if moximum, store the index in P
if (P[start] == EMPTY) §
Plstart] = i:
spj = start + 13
spmox = ratio:

}

else if ((ebs (ratio - spmax)) < EPSILON)
P[(epj)++] = i:

else if (ratio > epmox) § )
for (k = start; k < MAX; ++k)

Pik] = EMPTY:

P[start] = i:
epj = start + 1
spnox = ratio;

FindStartData (total, pptl. ppt2, n. pD)

int total, epptl, sppt2;
fioat n[3], epD:

/+ Determine an initial edge and face to start the
/e algorithm

int 1, [. k3

float e[3). v(3]. vk[3]:
int P{MAX]:

float mox, min, ongle;

for Ei = 9; i < totol; ++1)
Pli] = EMPTY:

Py

i=9;
min = cpoints[&].coord[b];

for (i = 0; i < total; ++i) /* find pts with min x value
it (cpointa[i].coord{&] < -in; {
for (k = @; k < total; ++k
Plk] = EMPTY;

s/

o/

Ple] = i: /e store min pt o/

;i: l:cpointa[i].coordlol:

Zlae if cpo!ata[i].coord[O] == min)
Plj++] = §:

:[?1 : 1%2] = 9;

e - e

/e ) = § of pts with min x value ¢/
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o[1) = 1:
posDir (P, . total): /e moke <e, vk> >= ®
for (i = 05 i < total; ++1)

i
if (i 1= P(e]) ]

daitt (3. epointo[l].eoord. cpoints[PSG]].eoord. v):
MaxAngle (i, v. 0., ¢ P, &j, 1, &max);

i

for {t - @ | < 3; ++1) /e update the normal
ali] = nfi] » maox + ofi):

aormalize (3. n):

S%c?’(%! ipointa[?[1]].coord. cpointt[P[Q]].eoord. v):
cross (v, h, ©)3%

PosDir (P, o, total): /e make <e, vky >= ©

for (1 = 98; i < total; ++i)
if ((3 1= pl[e]) && il= P[i])) {
dift (3, cpoints i].coord, cpointa[PSO]].coord. v):
MaxAngle (i, v, f. @, P, &j, 2, &mox);

§

for ii -0; i < 3; ++i) /e update the normal
nli] = nli] o mox + ofi):

normalize (3. n):

(j >= 3)

diff is. cpoints P[1 ].coord. cpoints[P[O]].coord. v):

dift (3. cpoints p[2]].coord, cpoints|PlO “coord, vk):

cross (v, vk, n): /+ compute norma! of plane

PosDir (P. n. total): /¢ moke <n, vk> >= 0

epD = — inner (3. n, cpoints[P[O]].coord):
eppt1 = P[0]:

mox = -2; /+ \owest possible valus = -1

/* determine the second point of the edge
for (i = 2; i < s ++1i) 5 .
ditf (3, cpoints P[i)]).coord. cpoints[?[ﬂ]].eoord. vk):
angle = — inner 3, v, vk):
it (angle > max)
max = angle:
eppt2 = P[i]:

Face (total, normal, D, P)

int totol;
int P[MAX]:
float normal{3}. D:

/+ Detormine the adjocent face of the CHB. Store the
/e the indices of the face points in P

float edge[3]. e[3]. vI3):
int i, J3
float maoximum;

j =33

/e comp

ut
aitt (3, cpoints[P 1]).coord. cpoints[P[O]].coord. edge):

o/

o/

e the unit vector in the direction of the edge s/
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/* deteraine the third orthogonal vector e s/
cross (edge. normal, €): :

lh?i;if(”'°“‘ (normal, cpoints[i].coord. p)) 1 (i == pfel) Il (i == P{11))
ditf ii. cpointa[i].coord. cpointa[P[O]].eoord. v):
pos (e. v):

/* determine the points of the plane o/
for (1 = 08; 1 < total; ++i)
if (1plane (normal, ¢ oints[i].coord, D}) s
diff (3, cpointsli .coord, cpoints[P 0)].coord, v);:
MoxAngle (i, V. normal, o, P. &}, 2, &maximum):

UpdateEdgeCheck (a. b, nornal, D)

int o, b:
float normal[3]. D3
g /+ Update the faces and corresponding edges found o/
int i, index;
if (o < b)
index = f(a, b):
else indox = f(b, 0):
odgecheck[lndox].foco += 13
/e stop if on incorrect edge was o/
/+ computed due to numerical errors o/
it (odgochock[tndox].foco >2) ¢
printf 2"\n\n£rror in determining second face."):
printf »\nChange the volue of EPSILON oppropriotoly and reeonpilo.'):
exit (8):
i
for (i =0; i < 3; ++i)
odgocheck[index].coord[i] = normat[il:
: odgochock[indox].intorcopt = D;

E€dges (normal, pD. total, P)

int total, P MAX]:
tfioat normatl3], epD;

/e Determine the edges of the face s/

int. i, {. e, b, _¢:
froat x[3). y[3):
float angle, maximum;

ait §3. cpoints P{1 .coord, cpointa[?[e]].coord. :;;
diftf (3, cpoints pl2]].coord. cpointslPl® .coord. Y):
cross {(x. Y. normal): /e compute normal of new plane s/
PosDir (P, normal, total): /+ make <normal, vk> >= @ o/

{- compute intercept of new plane o/
spD = — inner (3. normal, cpoints[P 0]).coord);

/+ updote edgecheck o/
UpdateEdgeCheck (p[e]. P[1]. normal. spD):

s 2Rl

/e compute ond store all edges s/



May 16 09:31 1986 Foce.c Poge 8

tocepts[®] = o}
numfocepts = 13

do §
focepts[numfaceptas++t] = b;
ptsl P ] /e compute all edges o/
?"'6(3' cpoints[a].coord, cpoints[b].coord, x):
- 93
maximun = -23 /e Vowest possible volue = -1 s/

Je find adjocent edge point s/
)

while iiP[i = EMPTY) && i <= NAX}) {
if P l! i= a) && P[I t= b)
ditt (3. cpotnt.iP i]).coord, cpoints[d].coord, y):

angle = — inner (3. x. y):
if (ongle > moximum) §
moximuas = angle;
c = P[i):

++1;

§
UpdateEdgeCheck (b, ¢, normal, opD):

a = b;

b = ¢;
; } white (b != Ple]):

PrintPlane (normal. D)

float normal[3]. D:

/e Print the corresponding footprint of o face of the e/
/e CHB. Call StoreData to store the footprint in a tfile s/

§
int i, J, numpts, AP[MAX], numdiffpts, diffpts[MAX], same;

?unp;a = nuadiffpts = 0;
- H
e« deternine all points in the plane o/
while i(pointa[i].pcrtno t= 9) && (i < MAx)) ¢
if (plane (normal, points[i).coord, D ]
sone = 03
for (j = @; j < i-1; ++j}
if (dist (3. points[j].coord, points[i].coord) < EPSILON)
sane = 1;
it (!saome)
diffpts[nundiffpta++] = i

AP[nuapts++] = i

++i
¢
/e print the footprint in terms of the ¢/
/+ decomposed model ports o/

Qrintf (*\nFACE:\n"):

for (i = 1; 1 <= ouxnum; ++i)
printf ("%15d", i):

printf ("\n\n"):

for (I = 1; | <= ouxnum; ++i
printf (" X z"

printf ("\n"):

for (i = @; i < numpts; ++i)
for (J = ©; j < (points[AP[i]].portno — 1): ++j)
printft (" )
for (j = @; J < 3; ++j)
printf ("X5.11%, pointo[AP[i]].coord[i]);
printf ("\n"):

/e store footprint in a file o/
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StoreData (nuapts, AP, nundiffpts, diffpts);

StoreData (numpts, AP, numdiffpts, diffpts)
int numpts, AP[MAX], numdiffpts, diffpts[max]);

/¢ Compute the areod of the footprint ond store the o/
/* points o/

int 1, j. k3
int @, b, ¢, fppts[MAX], numfppts, numnoncorner;
float x[3). y[3). 2[3]. angle, acximum, sin_theta, orea, midpt[3);

crea = 0
/e determine the arec for eoch isolated o/
/e part of the footprint o/

for (i = 8:; 1 < AUXMAX; ++i) {
numfppts = 0O;
for (j = @; j < numpts: ++j)
it (polnta[AP[j]s.portno == (i+1))
fppts{numfppts++] = AP[j]:

for (j = 0; j < 3: ++j) §
midpt[j] = ©:
for (k = ©; k < numfppts: +4k}
midpt[j] += points fpptsfk J.coord[j]:
midpt[j] /= numfppts:
= fppts{@]:
: 2 bl
° /* compute all edges o/
diff (3, points[a].coord, points[b].coord, x):
moximum = -2; /e lowest possible value = -1 s/

for (j = ©; j < numfppts: ++j)
if ((fppts[j] = o) && (fp ts[j] t= b)) {
diftf (3, points fppts(j }.coord. points[b].coord, y):
angle = — inner (3, x, ¥y
if (angle > maximum)
maximum = angle;
c = fpptslil;

" §
/e compute area of sector o/
for (j = @; j < 3; ++j) i
I bl nafey et < ey
iin_thcto = sqrt(1 - squcro(inner(S.y.z)/(norn(s.y) e norm(3.2)))):

/+ update the area o/
oreg += ©.5 ¢ abs (norm (3, y) ¢ nora (3, z) = sin_theta);

¢/

7 a=0b;
b= c;
" } white (b i= tppts[1]):
i
/+ store the area, number of points on the CHB o/
/e of the footprint, and the points
fprintt 2fptonp. “gf\n", area);
fprintf (fptemp, “Xd\n", numfacepts);
for (i = 0; 1 < numfacepts;: ++i) {
for (j = @; j < 3; ++j)
fprintf (fptemp, “%9.5¢", cpointn[fncepts[i]].coord[j]):
tprintf (fptemp, “\n"):

numfocos+d
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/* determine the number of noncorner points s/
7+ contained in the footprint o/
numnoncorner = Q;: -
for (t = @; 1 < numdiffpts; ++i)
it (potnts[diffpts[iS}.noncornor)
numnoncornerst:
/e store the first 3 points the same o/
- /¢ (necessary tor the recognition scheme) o/
fprintft (fpall, wxd\n", aundiffpts = nunnoncornor);
for (i = ©3 i < 3; ++i)
for (J = 03 ) < 3: ++j)
fprintf (fpatl, “%9.51", cpoints[focapta[l]].coord[j]):
tprintf (fpall., “\n");
/e store the remaining points o/
for (1 = ©; i < numdiffpts; +4+1
it ((aist (3, points ditfptslil] .coord, cpoints tocoptsal® .coord) > EPSILON
gt (dist iS.points diffpts[i ].coord.cpoints facepts|? .coord) > EPSILON
&t (dist 3,points diffptsli “ecoord,cpoints facepts|2 .coord) > EPSILON
&t point:[diffpts i]].noncorner == 0)) §
for (j = @: § < 3; ++j
fprintf (fpall, “%9.5f", potnts[diffpta[i]].eoord[j]);
¢printt (fpall, “\n"): .
}
constraint (P, com. normal, D)
int P[qul;
float com[3]. normai (3], D:
/e Determine if the footprint is stable, i.0. project s/
/¢ the c.o.m- porpendiculorly down to the plane and o/
/e check if it is contained in the convex hull of the s/
‘ /* footprint s/
tioot al3):
int §, J. ki
double wolfep_(); /e storage for Woife algorithm s/
double x[3]. rrl28]:

dos ‘[452[3 s MAX].

projectcon (com, normal, D. 9):
i= 0

j = 0
white (P[i] != EMPTY)

[x]):

for (k = 8; k < 3: ++k{

poli++] = cpoints{P i]].coord[k] -0
++1:

t

j =3

it (wolfep_(pP. &j. &i. x. 8. re) < EPSILON)

~ PrintPlone (normal, D):

FindFaces (ptt. pt2, totel, com. normal, D)

int pt1, pt2, totol
float com[3]. noraal[3]. O:
/e Determine all faces of the

/* This is done by checking e
" /e only one face found and deo
int i, j, found:
int P[MAX]:

convex hull of
dgecheck for edg
termining the so

the object ¢/

es with
cond face

7
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for (j = ©; J < MAX: ++])

P{j] = EMPTY;
the 2 o

/e determine all points in the plone

for (1

- i < total; ++i)
it %pl
f

(normal, cpointn[i].coord. D))
1= pt1) && (i I= pt2))
++4) = 13

/* deteraine the edges of

&0, total, P):

/+ check the stability of the cof
Constraint (P, com, normal, D):

do {§

Edges (noraal,

k& (edgecheck[f(i.

the face of the CHB

responding tootprint

/e determine next edge with only one face found

j)}.face 1= DR |

/* if none then stop

if (i == (total - 1))
found = 9;

/e otherwise tfind the

else §
found = 1;
normal = odgecheck[f(l.
D= odgechock[f(i. i)l.
P[O] - i
Pl1] = j:
for {j = 2; j < MAX; ++j)
Plj] = EMPTY;

j)).coord;
intercept:

Face (total, normal, D, P):
Edges (normal, &0, total. P):
Constraint (P, com, normal, D):

t
{ while (found):

StorePoints ()
/*
int i, Jo.

float pt.
FILE sfp:

ki
area:

fctose (fpall):

/* open file to store the CHB poi
it (objnum == 1)
tp = fopon ("obj1.convox'.
else if (objnum == 2)
tfp = fopen (“objz.convex'.
else if (objnum == 3
fp = fopen ("obj3.convex®,
oise if (objnum == 4)
fp = fopen (“obi4.convox‘.
else if (objnum == S
fp = fopen (“objs.convox'.
else if (objnum == 6)
fp = fopen (”objs.convon'.

")
“w");
owt);
“w');
"w");

”'l.) ;

second face

Store the footprint points ond areo datec in files

nts of each footprint

o/

o/
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else if (objnu
tp = fopen
else if (objnu
fp = fopen
else if (objnu
fp = fopen
else if (objnu
fp = fopen

fclose (fptemp

fptemp = fopen
fprintf (fp. "

for (i = ©; i
fscanf (fpt

Foce.c Poge 12

mn == 7)
("obj7.convex”, "w");
m == 8)

vobjB.convex”, *w");
m == 9)

“obj9.convex”™, “w");
m == 10)
("obj10.convex”, “w");

):
/e rewrite doto stored in “temp”,
/e the total number of foces at th
("tﬂlp". .f“):
%d\n", nunfaces):

< numfoces; ++i) ¢
emp, “Xf", &orea);

fprintft (fp, ugf\n", area);
fscanf (fptemp, “%d", &numfocepts):
tprintf (fp. “%d\n", numfocepts);:

for (j = 9;

j < numfocepts; ++]

for (k = @; k < 3; ++k) |

fscan
tprin

}
fprintf

fclose (fp):

fclose gfptomp
unlink (“temp"

t (fptemp, “%f", &pt):
tf (fp., "%9.5f", pt):

(fp. "\n"):
):
):

but include
e beginning
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/e Corner.c ¢/
/e o/
/* This procedure obtains the corners of o meosured footprint. s/
/* The footprint is assumed to be in the form of © two— s/
/* dimensional array of binary values. Value © corresponds s/
/° to the background and 1 corresponds to the footprint. The o/
/* corner points are obtained by troversing each isolated part o/
/* of the footprint ond noting the points where O significant o/
/* direction change occurs. Once the corners are obtained, s/
/* the corners on the convex hull of the boundry (CHB) of the YA
/® footprint are obtained and ordered. Both sets of points ore ¢/
/e stored in orrays passed from the calling progron. o/
define RES 80 /e resolution of the binary footprint o/
define PLENGTH 1 /e minioum number of pixels aclong any o/
/e straight subsection of an sdge s/
define EPSILON2 1.00-6 /e error ronge for wolfe olg. output o/
define EMPTY -1 /e ompty fl09 o/
define EDGE 2 /e pixel value flog for an edge point o/
define CORNER 9 /* pixel vaolue flag for a corner point o/
include <stdio.h>
include "constants.h® /e file containing global constants o/
include “header.h” /e file containing mocro definitions ¢/
t1oat inner():
InputData (fpnum, dpts, pnunmdpts, cdpts, pnuncdpts. poroo)
int fpnum, dpts[AUXMAX e uax]l2]. epnumdpts, cdpts[UAX][Z]. epnumcdpts:
float sparea;
/e deteramine all corner points of the measured data o/
{ /e tootprint as well as all corners on the CHB s/
int dato[RES RES): /e binary erray containing mecsured footprint o/
int edgelRES]LRES): /e binary orroy containing edges of footprint s/
[+ input measured footprint s/
1nputPadDato (fpnum, dota, parea):
/* detect edges of measured footprint s/
gDetect (data. edgo):
/e detect corners of measured footprint ¢/
CDetect (edge. dpts. pnumdpts. parea):
/e detect CHB corners of the footprint o/
ConvexBoundry (dpts. spnumdpts, cdpts, pnuacdpta):
/e order the CHB corners in adjacent order o/
: OrderCorners (cdpts. Opnuncdpta);
InputPadData (tpnum, data, parea)
int fpnum, doto[RES][RES]:
float sporea;
/e Input the measured footprint, printing the number o/
g /e of points input o/
FILE ofp. efopen O:
int i, . ki
/+ open the data file o/
if (fpnum == 9)
fp = fopen (“datal™, “r*);

else if (fpnum
fp = fopen

== 1)

("datao2”, wee)s
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else if (fpnum == 2)

tp = fopen ("dota3”,
else if (fpnum == 3)

tp = fopen ("datos”,
else if (fpnum == 4)

tp = fopen (“datos”,
eise if (fpnum == 5)

tp = fopen (#dataS".
else if (fpnum m= 6)

fp = fopen (“dotab®,
olse if (fpnum == k)

tp = fopen (*dotae7”,
else it (fpnum == B)
fopen (“dotaB”,
(fpnum == 9)

fp = fopon (“datad”,
elge if (fpnum == -10)

fp = fopen ("datal®”,

u'u);
“rv);
“r);
.'n);
.r);
“r)s
I'u);
“re)s

.f“):

fp =
else if

/+ input points and deteraine nuaber
eparea = 0.98;

k = 0;
for (1 = 0; 1 < RES; ++i)
for (j =0: J < RES: ++j) 1

k 4= facaonf (fp, “%1d", gdotali]
it ((i >9) & (i < RES = 1) k&
&t (j < RES = 1) && (datalill

sparec = eparea + 1.0;

i];:a)
j ==

E

)

- .
printf i“\n$1d". K):
printf (" points input\n*);

fclose (fp):

Neighbor (i. . data)
int i, j. dato[RES][RES]:

/+ Return the nuaber of cdjocent pixels wi

{

int count; .
count = ©;

if (dotc[i-1][j-1])
ve ++count;

(dotali-11[i1)
if

++count;
if

(doto[i-l][j+1])
++count;

if

if

(dataliili-1])

++count;

(datalill[j+1])

++count;

(dote[i+1][j-1])
++count;

(datali+1][j])

++count:

(dota[i+1][ji+1])
++count;

it
it

return (count);

Mosk (i, j. count, dato, edge)
int i, j. doto[RES][RES]. odgo[RES][RES];

/* Mask the dota volue to obtain the footp

count,

of | pixels ¢/

th value 1

rint edgeos
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switch (count)
case O:
cose 8:
edge[il[]] = ©:
break:
case 1:
case
case
cose
case
caose
cose
ed

AEUN
e oo

Q @ o0 o0 00 00
xN—
oo

151 = datali)lid:

-4
-
eV NO

EDetect (date, edge)
int data[RES][RES]. edge[RES][RES]: _
/e Detect the edges of the footprint ond print result o/
int 1, }:
for (i = 1; i < (RES = 1): ++i)
for (j = 1: § < (RES - 1): ++j)
Mask (i, j. Neighbor (i. j., doto), data, edge):

printf ("\ndetected edges\n")

-—oe

BRI VIR SR RD
=1 - 1); ++
orpr%ntf (“i1d”. edgo[i}[]])i

printf (“\n"):
P
printf ("\n"):

Traverse (o; b, dir, pedgelength, mindist, edge, pindex, dpts)

int o, b, dir, spedgelongth, edge[RES][RES]. spindex, dpts[AUXMAX e Max]i2]):
float mindist;

/+ Traverse the boundry of the footprint (or jsolated ./
/+ part of the footprint) to obtain the corner points. s/
e The corner points are obtained by noting when the s/
/e direction of the boundry chonges by more than one s/
/+ or when a change of one unit occurs and the original */
/e direction is not maintained for PLENGTH pixels. s/

int i, j. k, V. dirt;

int itemp, jtomp, ktemp, ltemp, dirtenp:
int dirfound, count;

int lostcorner[2]:

4

'k = @3

\ = b;

count = 9;

dirl = dirtenp = dir;
ktemp = lcatcornor[b] = a;
ltemp = lastcorner 1] = b;

do {
dirt = (dir1 + 5)%X8; /+ stort at direction furthest c=clockwise ¢/

dirfound = 9;

do § /s determine position of next pt. on boundry o/
switeh (dirt) #
cagse 9:
i= k = 1;

=1
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oo we

+1
- b

-t b
we we

i
J
b
case
i
J
b

0 (1]
[ -] o
[ ] [ J
T one = O
-- s

*e ®o

(1]
[-]
(-]
O Teme = O
-
eflool L
»x
e

(13
o
(-]
P e = O [. LR
-

(
d
ise di

} while (1dirfound); - -

switch (abs(dirl - dir)) §
case ©:

edgo[k][!] = EDGE;

a-pe?golongth)++;

1= j;

/s directions match

/e if a direction change of one unit occured
/e recentiy, then check to see if PLENGTH
/* pixels with the original dir. hove passed
it ((count < PLENGTH) && (count > 9))
++count;
else count = 9;
breok;
case 1: /e if directions are adjacent
case 7:
if (countst == o) l /+ o possible corner
edge[ktomp = k]l1temp = 1] = EDGE;
(Opedqelonqth)++:
dirtemp = dirt;
/+ store point of pess. corner

/* past three directions are different
o { e a corner exists
) it (sqrt((doublo) square(k - lastcornerf® g +
; square(l - lastcorner[1])) > (mindist
! odge[ktempl[ltonp] = CORNER;
lastcorner e] = ktemp:

: tastcorner[1] = itemp;
/+ if not o mininum distance from the
/+ tast corner
else
odge[ktamp][ltcup] = EDGE:
k = itemp;
| = jtemp:

dir = dirtemp:
count = ©;

break:



Moy 16 09:33 1986 corner.c Page -]

/* directions changed by more then one unit
defoult: /* o corner is found
if (sqrt((doublo) square(k = tastcorner(® ; +
squore(l - lastcorner[1])) > (mindist
edge[k]lV] = CORNER:
lostcornorlo = k;
: fastcornerl1]) = 13
e if not a minimum distance from the
/e last corner
else edge(k][!] = EDGE:

(Opodgelcngth)++;
dir = dirl;

k= i:

it = j:

count = O3

break:

i
t white ((k != a) 11 (1 t=D1))s

/e if first point is o min distance oway from
/+ the last corner then ...
if (aqrt((double) square{a = tastcorner([® +

square(b - lcatcorner[1])) > (mindist
Je if the previous PLENGTH pixels are in the
/+ same direction then a corner is found

if (dir == 2) {

dirfound = 13

for (i = @; i < PLENGTH; ++i) H

if (1 >89
if (edge k+1][1==] == °) _
dirfound = 93

' else dirfound = -H
edgelal[b] = ((dirfound) 2 EDGE : CORNER):

else
edge[a]([b] = CORNER;

else
edgelallb] = EDGE:

/e delete interior “jeftover"” 1°s on

/e the edge for this part of the f.p.
for (i = 1; i < (RES - 1): ++1)

for (j = 1: _1.¢ SRES =T1); ++j)

if (odgefil[j] ==1

if % ogi

(ed ] ]+1¥ 1- epce) |1 (edgo[i][j+1] == CORNER))
' edge[illi) = ©: /e erase interior point
eise if (odge[i][i] == EDGE) # /* erase edge
edgo{il[j] = ©:
it (edgeti [j+1] == 1) /s erase interior point
' edgef[illi+1]) = ©:
eise if (edge iJlj] == CORNER) { /+ keep corner
if (odge?i [j+1] == 1) /e erdse interior point
edgelilli+1] = K
dpts epindex][0] = i /e store corner
' dpta[(epindex ++][1) = §:
i

CDetect (edge, dpts. pnum, parea)

int edge[RES][RES]. dpts[AUXMAX e uax]{2], epnum;
float spareda;

/e Detect the corners of the footprint

{
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int 1, j, found, dir, objects, edgelength;

fioat mindist;

/e minimum distonce a corner can be
/e from cnother corner

printf (“\nEnter mininus distance (in pixels) between corners: ");

sconf (“%Xf", gnindist):

spnun = edgelength = 0;

objects = ©;

< (AUXMAX e MAX); ++1)

for (i = 0; 1
tor (j = 9; < 2; ++j)
dptslillil]l = EMPTY;
l-’-‘],
found = 1;
do {

e find a corner of an objec

white ((i < (RES - 1)) && () < (REé - 1)) 2& (edgeli]li] 1= 1); {

++]3

it (j == (RES - 1)) 1

;+i;1
‘ L
L

if (| == (RES - 1))
found = 93

else 1f (Neighbor (
sape iz ok
dpts (:pnum§++][

else §
spnum = 0;

if (edgo[i][j+14
dir = 2;

else if (edge[i+
dir = 33

else if (edgeli+
dir = 4

else if (edgeli+
dir = 5;

Traverse (i, J.
++objects:

t vailo (found):

/e record isolated point
i, j, edge) == 9) §

= CORNER;

i
1] = ji

e dotermine direction of next pt. on boundry

)
110j+1])
1101
110i-11)

/e find corners of object
dir, tedgelength, mindist, edge, pnum, dpts):

/s determine the number of interior 1 pixeils

spareq = sparea = edge

length / 2 - objects;

/e print detected corners

printf ("\ndetected cornerl\n”g:
for (i = 1;: i < (RES = 1); ++i) {
for (j = 1: J < (RES - 1):

printf ((edge i)
printf ("\n%"):

‘}
printf ("\n"):
printf (“\n\nnumber of

I
[j] == CORNER) ? “e* : * ®)i

isoloted parts: %X1d", objects):

printf (“\n\ncorner points:\n");

for (i = ©; i < epnum;
printf i“%4d xX4d" .,
printf “\n"):

ConvexBoundry (dpts, num.

++i

dptllii[@]. dptsli][1]):

cdpts, penum)

./
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int dpts[AUXMAX e MAx])[2], num, cdpts[NAx][zl. spcnum;

/* Determine the corner

{
int 1, 3. ko V3

double wolfep_();

double pp[AUXMAX @ MAX o 2], rrl(2+1
int s[2 + 1)

epcnun = 03
for (i1 = 0; 1 < num: ++i) 1

]
fortsj = 9; j < num; ++j)

s on the CHB of the footprint

/e voriables for the wolfe olg.
)‘(2"’4)10 ‘[2]3

/+ deteraine convex hull

/e Voad points for wolfe alg.

. 1 € 2; 4+
pplk++] = P"[i]['} - dpts[i][1]):

ji=2:
k = num = 13

it (wolfop_(pP. &j. &k, %, S, rr) > EPSILON2) 1}

for (1 = @; | < 2; ++1)

cdpts[0;cnuu][ll -'dpts[i][l]:

(spcnum)++;

OrderCorners (cdpts. nun)
int cdpta[MAxllzl. num;
/e Order the points on

i

int i, J, 9. B, Co index;
int temp[MAX] 2};
f1oot x[2]. ¥12). maximun, angle;
forf(i zjo; ; < num; *:i))

or = 0; < 2;

rLonitiid S Sntinn:

o= 9;
b= 1;
index = 2;
do {

the CHB of the footprint

/e compute all edges

idiff (2, stemplalle]. stempbllo]. x):

ie 0
moximum = -23

for (i = ©; i < num; ++i) {
if ((i !'= o) &k (i

/* lowest possible value = =1

[+ determine cdjocent corner

= b}) i
idiff (2, etemplillel]. stenp[bllO). ¥):

angle = O;
ongle = — inner (2. x. y):
it (ongle > moximum) #§
maximum = angle;
' c= i3
i
i

for (j = ©: j €. 2% ++j)
cdptslindex]fi) = temp[cllil):

inde;++:

Q= H

b= C;5
t while (b = 1):

/e store ordered corner

/e print results

printf (“\n\nordcred corners of convex hul 1\n"):
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for (i = ®; i < num; ++i) §
printf 2“%46 x4d”, cdpts[i]le]. cdpts[il[1]):

printf (°\n"):
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;o Recog.¢
L ]
/e This progrom matches o measured footprint of an object and
/* compares the footprint to all possible footrints generated
/e by foce.c. The matching is done by templote matching.
/* The corners of the mecsured footprint ore obtained and the
/* resulting set of points is compored to the sets
/* corresponding to the generated footprints. The comparison
/e is obtained by conputing the transformation which matches
/* an edge of the convex hull boundry (CHB) of the nmeasured
/* footprint to each edge of every CHB of the generated
/° footprints.
define EPSILON2 1.0e-1 /+ error range o/
define EMPTY -1 /e enpty flog o/
include <stdio.h>
include “"constants.h® /e file containing global constants
include “heoder.h”

/+ storage for CHB points of a face
struct face §

int numberpts, matchedpts;

floot coord[MAX][3], area:

struct face enext;

-
[

: /+ storage for oll faces of an object
struct object {

int numfoces;

struct foce epts;

}:

struct object Objocts[OBJMAx]: /* structure storing oll CHB
/e points for all faces

int cdptsmax][2]: /+ storage for CHB points of
/* the meosured footprint

int al1dpts[AUXMAX e Max1[2]): /e storage for all points of

/* the mecsured footprint
float inner():
floot dist():
char scalloc():

FILE sfptemp, sfopen O: /+ pointer to a temporary tile
/* used to store all the
/v corners of all generated
/e footprint

float RATIO;

main ()
{

int numobjects, numal ldpts, numcdpts;
int fpnum, poasobjs[OBJMAX]. npossobjs, notdone;
float area;

/* input all corners and CHB corners of the measured
/e footprint
fpnum = O]

InputData (fpnum, alldpts, &numalldpts, cdpts, &numcdpts, &area):
/* input the CHB points for all generated footprints

/e for all modeled objects
InputFoces (&numobjects, possobjs):

o/
o/

»/
«/

*/
o/
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{ /* match tfootprints until recognition or end of dote s/
do .

‘notdone = 1;

Match (numobjects, numcliidpts, numcdpts, possobjs, &npossobjs, area):

if (npossobjs == 1)
notdone = ©;
else §
printf (“\n\nAnother try? (1 for yes, © for no): ");
scaonf (“%Xd", &notdone):
it (notdone)

InputDaota (++fpnum, alidpts, &numalidpts, cdpts, &numcdpts, &karea);

wailo (notdone):

/+ romove temporary file croated for storing oll points ¢/
e of each footprint of each modeled object s/

CleanUp (numobjects);
printf (“\nALL DONE\N");

InputFaces (pnum, possobjs)

int spnun, possobjs[OBJMAX];

/e 1nput the CHB corner points for all goneraoted s/
‘ /* possible footprints ¥4
int i;
do § /* input number of objects s/
printf (“\nEnter nunber of possible objects (e to exit): ")
scanf ("%d", pnum);
if (epnum == @) {
printf (*\nBYE\n"):
' exit (9):
else if ((epnum > 08JMAX) || (epnum < 1))
printf (“"Moximum number is %X1d.”, OBJMAX) ;
} white ((spnum > 0BJMAX) || (epnum < 1)):
for (i = (epnum 4 1); i < OBJMAX; ++i)
possobjs{i] = EMPTY;
/e input object footprints ./
for (i = ©@; i < epnum; ++i) §
InputPoints (ig;
possobjsfi] = 1:
§
InputPoints (i)
int.i;
/+ 1nput and store all possible footprints for ono o/

/* object. Transform each point input from R3 into R2. ¢/

FILE ofpi. sfp2. efopen ():

int j. k, |, numpts; .
float tempi[AUXMAX e MAX][3]. tomp2[AUXMAX e MAX][3]), farea:
struct face eotail;
/* open file of object points o/
switenh (i) §
case 0:

fpt = fopen ﬁ“ob]1.convox“. “r*):

fp2 = fopen vobjl.all"™, “r®);

fptemp = fopen ("temp1", “"w");
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break;

case 1:
fp1 = fopen i“objz.convex”. b 4

- ¢p2 = fopen “obj2.all"”, "r“;;

fptemp = fopen (“temp2", “w"):
break;

cose 2:
fpl = fopen i”objS.convox“. “r
tp2 = fopen “obj3.all”, “r“;;
fptomp = fopen (“teap3”., “w"):
break:

case 3:
fpl = fopen i“ob]4.convox". “r
fp2 = fopen “obj4.0ll"”, “r“;:
tptemp = fopen ("tompa", "w"):
break;

cosoe 4:
fpt = fopen i‘objs.convox“. “r
tp2 = fopen “objS.0l "™, “r';;
fptemp = fopen ("temp5®, "w%):
break;

case S:
tpt = fopen i'objs.convex”. “e):
tp2 = fopen “obj6.all”, "r*):
fptemp = fopen ("temp6”, "w"):
break;

case 6:
fpt = fopen “obj7.convex”, “r
tp2 = fopen "obj7.all”, "r“;;
fptemp = fopon (“temp7", "w"):
break:

case 7:
fpt = fopen 2“obja.convoc“. “r"):
fp2 = fopen “obj8.all", LA H
fptemp = fopen (“tenpB8*, "w"):
break;

case 8:
fpt = fopen "obj9.convex”, “r*);
fp2 = fopen “obj9.all®, “r"):
tptemp = fopen (“tonps*, "w"):
break;

case 9:
tp1 = fopen &'ob]10.convox”. “re);
fp2 = fopen “obj10.ali", “r"):
fptemp = fopen (“tompi0”, “w");
break:

fscanf (fpt., "%d". tObjecta[i].nunfocoo):
for (j = 0; J < Objects[i).numfaces; ++j) §

/e input footprint area o/
tscanf (fp1, "%f %Xd", &farea, &numpts):

/* input footprint points s/
for (k= @0; k < numpts; ++k)
tescanf (fpl1. "%f Xf Xf%, ztempi[k][@]). gtonmpi[k][1]. stempi[k](2]):

/* transform points to R2 o/
Convert (numpts, templ, temp2):

/e store CHB points in global structue o/

it () == 0{ ‘
. Objects[i].pts = (struct foace e) calloe(1, sizeof (struct face)):
. tail = Objects[i].pts:

else

{
toil->next = (struct face e) calloc(l, sizeof (struct face)):
toil = tait=>next;

i

teil->area = fareo; /* store area of footprint o/
toil=>numberpts = nunpts; /e store number of points in footprint o/
for (k = 0; k < numpts; ++k) /e store 2-dimensional points o/

for (i= 0; 1 < 2; ++1)
toil-)coord[k][l] = temp2[k][t]):
tail=>next = NULLS

/e input oll points of footprint ¢/
fscanf (fp2, "%d". &nunpts):
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for (k = 0; k < numpts; ++k)
fsconf (fp2. “"%f Xf %1%, ctempt[kl[eO]. gtempi[k])[1]. gtenmp1fk]}(2)):
Convert (numpts, tempi, temp2): /e convert to R2 o/
/e store points in temp file o/
tprintf (fptemp, ogd\n", numpts):

for (k = @; k < numpts; ++k
tprintf (fptemp, “%9.5¢f X9.5f\n", temp2[kl[e], temp2[k][1]1):

§

fclose fp1;;
fclose (fp2):
fclose (fptemp):

Convert (numpts, templ, temp2)

int numpts;
float templ1[AUXMAX o MAX][3]. temp2[AUXMAX e MAx1[3):

/* Transform points in o plane in R3 to R2 by rotating o/
/e the plone about the xy intercept line e/

t
float x[31. v[3]. n[3]:
floot cos_theta;
/e determine normal and intercept of footprint e/
diff 23. tempt 1}. tonp1[0]. x;;
diff (3. tempil2], temptl@®]), ¥):
cross (x., y. n):
/¢ determine ongle of rotation ¢/
x[ﬁ = x{1] = O;
x[2] = 1;
pos (x. n);
cos_theta = inner (3, x. n):
e determine direction of xy plane intercept e/
xf{e] = -n[1]:
x{1] = n(0]:
x[2] = ©;
/® rotote points about x to xy plane s/
: Rotate (x, cos_theta, numpts, templ, temp2):

Rotate (k, cos_theta, numpts, tsmpil, temp2)

float k[3]. tempi[AUXMAX e MAX][3]. temp2[AUXMAX e mAx][3]):

float cos_theta;

int nuapts;
/+ Rotate points in tempt about x by theta radians e/
/+ ond store the rosulting points in temp2 o/

int i, counter;
tloot x[3]. y[3). =2[3]. A[31[3). c. s, Vi

;countor = 9

do §
c = cos_theta;
s = sqrt (1 - square(c)):
ve1- cos_theta;
/e determine rotaional transformation o/
A'Gl'b] = k[0] k[O] e v 4+ C;
Alollt1] = k{1] o k[©@] ® v
Aleliz] = k(1] & s
al1]{e] = kje} = k[i] * v;
Al 1] = k[1 ¢ ki1 o v + €
Al1](2) = —k[oi L IEH
Al2] o) = =k[1] = 83
al2]{1] = «[e] = s:
AtZ.EZ. = c;
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/+ deternine it rotation is c-wise or cc-wise

mult (A, temp1[0]. Xx):
ault (A, tempti|tl]l, ¥):
mult (A, temp? 2}, z2):

«/

it (((obs(x[Z]Ty[2])) < EPSILON2) &k ((abs (2[2]-2[2])) < EPSILON2))

counter = £

elise If (counter == o) ¢
cos_theta = - cos_theta:
counter = 13

i ‘
{ /e stop if an error due to numerical inoccuracies
else
printf i“\nﬂotatc didn*t work.\n"):
printf *Adjust EPSILON2 opproprlotoly.\n“);
exit(0):;

}
$ white (counter < 2):
/+ rotate points to xy plene
for (i = ©6; i < num ts; ++i{
ault (A, temptlil. temp2lil):

Match (numobjects, numalidpts, numcdpts, possobjs, pindex, aread)

int numobjects, numal ldpts, numcdpts, possobis[OBJMAx]. epindex;
float ared;

/¢ Match footprints for recognition by detormining
/e the object which matches the most number of
/¢ points to the moosured footprint

jnt i, j., max, tempmox;
tloat teaparea, objooroo[OBJMAX]. errorbalil;
struct face etail;

printf (“\nEnter error radius (in model units): "):
scanf ("%t", gerrorball):

printf ("\nEnter ratio of dote units to model units: “):
scanf (“%f", &RATIO):

area /= (square (RATIO)):

max = ©O;

epindex = 0;

for (i = 0; i < numobjects; ++i)
objsareali] = EMPTY;

for (i =0; i < numobjects; ++i) {
tail = ObjoctsSi].pta;
it (possobjs[i] == 1)

if (i == 0)

fptemp = fopen (“tempi”. “r*):
olse if (i == 1)

fptenp = fopen ("temp2”, “r*);
else if (i == 2)

fptemp = fopen (“temp3®., “r"):
else if (i == 3)

fptemp = fopen (“temp4”, “re):
else if (i == &)

tptemp = fopen (“temp5™. “r*):
olse if (i == 5)

tptomp = fopon (“tempb”, “r*);
else if (i == 6)

fptemp = fopon (“temp7°-., “e*):
else if (i == 7)

fptemp = fopen (“temp8”, “r*):
else if (i == 8)

fptemp = fopen (“temps"™, “r*):
else if (i == 9)

fptemp = fopen (“tempid®”, “r*);:

/e for avery possible object
/e for each footprint of that object »
/» determine the best match e

o/
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tompmox = ©;

temparea = 9

for (] = ©; j < Objects[i].numfaces: ++j) §
MaotchEdges (toil, numalldpts, numcdpts, errorboll);

printf (*\nobject number: Xd pts. motched: Sd".l+1.t¢iI->notchodpie);

: /s determine objects with the most matches ¢/
if (tail->matchedpts >= tempmax
tempmaox = tail-=>matchedpts;
temparea = (((abs(toil->area = area)) < (abs(tempareoc - erea))) ?
toil=->areo : temparea);

}

; tail = tail => next;
/e store possible objects "o/

if (tempmax > max) ]

for (j = 0: j < 13 ++j)

possobjs[j] = objsarealj] = EMPTY;
possobjsli) = 13
objsareali} = temparea;

epindex = 1;
max = tempmax;

else if (tempmax == max) §
possobjsli}l = 13
objsareali] = temparea;
(spindex)++;

else if (tempmox < mox) §
possobjsli] = objsarea[i] = EMPTY;

' fclose (fpteap):
i

/* area constraint s/
if (spindex > 1)
for (i = 0; i < numobjects: ++i)
it ((possobjs[i] == 1) && (area != e.0)
&t (abs(V - objsarea{i] / area) > ©.33)) {
possobjsfi] = @;
(*pindex)—:

/e print result s/
printf (*\n\nMeasured footprint area: %6.2f\n", area);

printf (”\nRECOGNlZED OBJECT(S):\n"):
for (i = ©; i < numobjects; ++i)
if (possobjs[i] == 1)
printf ("%X4d orea = %6.2f\n", i + 1, objsarealil):
printf ("\nNumber of points matched: %1d\n", mox);

if (epindex == 8) §
for (i = @; i < numobjects; ++i)
possobjs[i] = 1;
. spindex = numobjects;
S

MotchEdges (tail, numal ldpts, numcdpts, errorball)

int numalidpts, numcdpts;
float errorbailt;
struct face stail;

/e Match the corners of the CHB of the measured .
/e footprint to the corners of the CHB of all possible *
/e footprints generated by the object models

.
NN

int i, j. k, 1, m, n, o
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int ptt, pt2. matches, mOX, maoximum, close;

float
float

x[3]). y[3], testpt 3]. tronsfpt[3]). R[3)[3], ¢. s:
temp[AUXMAX = max]llizl:

int num;

/* input all points in the model footprint o/
/e (these points were stored aofter being o/
/e rototed to R2) o/

¢sconf (fptemp. “gd", &knum):

for

(i = 8; | < num; ++1)
¢scanf (fptemp, "Xf xt~, stenpfille]. gtenp[ill1]):

maximum = 0;

/e for CHB every edge of the dats footprint’ e/
for (1 = @; i < numcdptse; ++i)
idiff (2. cdptslil. cdptsf[(i+1) X numcdpts], x):
x[2] = 13
max = O;

/e for every CHB edge of the model footprint s/

tor (j = @;: Jj < (tail =2 numberpts); ++j)

d{;i(z.i(toil—>coord)[]]. (toil->coord) (j+1)x(toiI—>nuaborpt:)]. y):
yl2) = ¥ :

/e determine the absolute value of the rotation angle s/
c = inner (2, x. y):
s = sqrt (1 - square(c)):
pt1 = i
pt2 = j:

/e determine rotation tronsformotion o/
/» for both possiblo edge orientations ./
for (k = 9; k < 2 ++k) §

/* determine if transformaction is c-wise oOF cc-wise o/
transfpt[@] = ¢ * X 0] — s » x[1]}:
tronsfpt(1] = 8 * X 0] + ¢ ¢« xl1]:

it (dist (2. transfpt, ¥y) 2> EPSILON2)
s = - 8;
/+ match up edges for both sets of endpoints s/
for (I = 0; | < 2; ++1)

e« detormine the matching transformation s/
r{e}{o] = R{1][1]) = ¢ / RATIO;
rlelf1] = -s / RATI1O;
rf1]{e] = s / RATIO;
rioll2] = - cdpts pt1][0e) ¢ ¢ / RATIO +
cdptsfpti ]t} = 8 / RATIO + (toll->coord)[pt2][0];
rR{11[2]) = - cdpts{pti1]le] ¢ s / RATIO -
cdptalptilfi] o ¢/ RATIO + (tcil->coord)[912][1]:
R[Z][O] = R[2][1] = ©:
r{2}(2)] = 1
e determine the numnber of points matched o/
/e trom all points of each footprint e/

matches = O
for (m = 0; m < numal Idpts; ++m) {

tor (n= ©; n< 2; ++n
t) altdptal[mlinl):

testpt[n] = (floa
testpt[2] = 1: )
mult (R, testpt. tronsfpt): /+ transfors one point s/
/e determine it it matches to o point in the o/
/¢ model footprint o/
close = O,
for (n = ©; n < num; ++n) {
for (o = 0; o < 2; ++o}
testpt{o] = tenp[nl)lo]:
if (dist (2, testpt., transtpt) < errorball)
close = 1;

i
it (close)
++natches;

if (matches > max)
maox = matches;
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/e switch pairs of endpoints o/

- - H t1 = i)
{43 Rt I 410 (41 mumedptn) L {Bt0)) Plotz = 1)

/e switch orientation of edge ./

/e detormine the max number of motches for o/
/e all matchings of the CHB edges of the model ¢/
/* to one edge of measured footprint o/
it (max > maxinum)

maximuym = mox;

tail => matchedpts = moximum;

CleanUp (numobjects)
int numobjects;

/e Delete the temporary files created for storing the s/
/e transformed points of all footprints of the nodeled ¢/
/* objects o/

if (numobjects >= 1)
unlink ("temp1™);
it (numobjects >= 2)
unlink ("teap2”);
if (numobjects >= 3)
unlink ("temp3®);
it (numobjects >= 4)
unlink (“temp4”);
if (numobjects >= 5)
unlink ("temp5™):
if (numobjects >= 6)
uniink ("temp6®):
it (numobjects >= 7
unlink ("temp7%);
if (numobjects >= 8)
unlink (“tenp8~);:
if (numobjocts >= 9)
unlink (“temp9"):
it (numobjects >= 19)
unlink (“temp1@“);
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Vector.c o/
o/
. This file contains vector ond matrix routines used in Face.c s/
. Corner.c and Recog.c. ‘;
® L J

doefine EPSILON 1. 0e=3
include “hecder.h”
include <stdio.h>

/e
7
/

/* compute inner product of vectl and vect2 s/
float inner (dim, vecti, vect2)

int dim;
float evectl, esvect2;

int 1
float sum;

sum = ©;
for (i = 9; i < dim; ++1)

sum += svecti++ o svect2++;
return (sum):

}
normalize (dim, vect) /¢ normalize vector vect ¢/
int dim;
float evect;
int i
floot mgnsqd;
mgnsgd = ©;
for (i = 0: i < dim; ++i) {
mgnsqd += lquore(cvoct):
vect++;
* .
it (mgnsqd I= @) }
vect —= dim;
for (i = @; i < dim; ++i)
' svect++ /= sqrt(mgnsqd);
}
cross (vectl, vect2, vect3) /e* take the cross product of vectl and

vect2 and put thee result in vect3 ¢/

float vect1[3], vect2[3]. vect3[3]:

{
vectd = vectt o vect2{2] - vectl e vect2[1]:
voctl = vect?t e vect2[o] - vect?d e vect2|2]:
voct3{2)] = vectt s vect2 - vectt e vect2]0):
: normalize (3, vect3):
plane (normal, pt. D) /e determine if point pt is in the plone o/

float normat[3], pt(3). O:
{
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it (obs (inner (3. normal, pt) + D) < EPSILON)
return (1)
else return (@)

§
ditf (dim, vectl, vect2, vect3) /s compute the normalized difference of
vectt! ond vect2 and put the result in vect3d ¢/
int dim;
float evectl, evect2, evect3:
t
int i3
for (i = @; 1 < dim; ++1)
svect3+t = evectis+t -~ svect2++:
normalize (dim, vectd - dim);
idiff (dim, vecti, vect2, vect3) /» compute the normalized difference of
integer vectors vectl ond vect2 ond
put the result in float vector vect3 o/
int dim, svecti, svect2;
float svect3:
{

int i

for (i = @8; 1 < dim; ++i)
svect3++ = svecti+t ~ svect2++;

normalize (dim, vectd - dim):

projectcom (com, normal, D, pt) /e project point com perpendicularly down
to the plane specified by normal normal
ond intercept D and store the result in

pt o/

float com[3], normal[3]. O. pt(3]):
t

int i

float t:

t = =(inner (3, con, noraal) + D);

for (i = @; i < 3; ++i)

pt{i] = com[i] + normol[i] = t:

pos (vectl, vect2) /s set vect 1 = —vectl if <vectl, vect2> < @ ¢/

floot vect1[3], vect2[3]:

int i:

if (inner (3, vecti, vect2) < 9)
for (i = 0; i < 33 ++i)
vectti[i] = - veect1[i]:
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x by matrix A (on the

/e multiply vector
it tn vector y

ault (A, x. y)
: and put the resu

f10at A[3)[3). x[3). y[(3):

{
int i, ’;

for Ei - 0:.
h‘.‘{;’ oe: { < 33 ++]t
yli] += A[i110]] = i):

t<3:++i)l

/* compute euclidean distance between
vect! and vect2 ¢

float dist (dim, vectl, vect2)
int dim;
float svectt, evect2:
{
int i3
float sum;
sum = ©;
for (i = ©@; 1 < dim; ++i)
sum 4= square ((ovectl - evect2)):
svecti+d;
; svect2++;

return (sqrt(auu)):

/+ compute euclideon norm of vectl ¢/

float norm kdin. vectl)

int diam;
floot svectl:

rcturn'(sqrt(innor (dim, vecti, vecti))):

left)

/
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/* wolfep.c
[ 3 J
e Title: wolfep.
[ ]
o Author: John Hauser
.s hauaerbosvox.borkcloy.odu
. (415) 642-4235
[ 3 J
L2 J
L L This function imploments Philip Wolfe's procedure for
oe finding the nearest point in o polytope o8 described in
(]
L pP.Wolfe, “Finding the nearest point in o polytope”,
oo Mothematical Progranming 11 (1976) 128-149.
[ X J
e The function is written in C with poraometers passed by
e address (pointera) to allow linking with FORTRAN routines.
s Under normal circumstances, the norn of the nearest point
oo i{s returned oo the value of the function with nearest point
*s in the vector 'x*, If @ negative number is returned (-1. to
*s be precise), the test in step 1(d) hos failed. This test
L is o guard on the of fine independence of the points in the
oe corral and may fail when nearly identical points are present.
s 1f this hoppens consult the paper ond consider increasing
o the value of °Z1' (used in stop condition).
'
s The actuol calling sequence is given in the declaration and
s comaents below. The integer array *g* ond the double array
LA ‘rr* are only used cs working oreas == no solution information
oo is return in them.
(R
e In order to koop the size of the work area ¢ function of the
e dimension of the points (*n*) only ond not of the number of
.s points (‘m*), 1 have used dynamic ollocation (*malloc’ aond
.s *free’) to get space to store the squared noras of all the
e points when first computed. 1f this is undesireable or
L unovailoble, o larger *rr® con be used instead by replocing
oo the line with ‘malloc’ in it by:
[ X J
.o pn2 = &r(0,.nn+4):
e
e and deleting the line
es ™
.o tree((char o) pn2);
L R J
ce The °"rr’ must point to o work area of ot least
[ X J
oo (n + 1)e(n + 4) + m
[ R J
o double precision eloments.
s
o/
define Z1 te—-12
define 22 1e-10
define Z3 te-10
define FALSE °
define TRUE ~FALSE
define uoxic.b; iio;>2b;?io :ib ;
define min{ao.b a)<(b)2(a): (b
§include <math.h>
double wolfep_(pp, 0. ™ x, 8, rr)
double spp. ox, srr;
int en, oW, T
/*
se pp — pointer to points array (nem elements ot lecst)
ee n — dimension of points (pointer to)
es B - number of points (pointer to)
se X - ainimizing point in polytope (n eloment vector)
e 3 - index array for corrals (ot least n + 1 elements)
se TP = work space (ot jeast (n + 1) * (n + 4) elemonts
se first n + 1 columans are used for r
e n+ 2 column is w
os a4+ 3 coluan is v
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0; A+ 4 coluan is a scotch vector
L ]
define p$i.j; PP {i; + i];-nn /+ stored columnwise o/
define r(i.) eel(i) + (j)eqq /* stored columnwise ¢/
int 1,
mini,
nn, /* dimension of points s/
an, /¢ number of points o/
sn, /e nunber of points in current corral ¢/
Qq, /e length of column in r o/
saall, /e boolean toggle ¢/
zeroi; /* point with zero weight o/
double d,
dain,
pn2nax, /* max 2 norn of corral points ¢/
epn2, /* pointer to norms of points =/
*w, /s pointer to weights for 'x* s/
ov, /s pointer to weights for 'y* o/
sbb, ;o pointer to acratch vector s/

theta, s convex multiplior o/

:. ?s c. /* used for plane rotation ¢/
ot().

norm2():

char smalloc():

/* initiolize pointers, etc. o/

An = en; /e dimension of points o/

mm = sm; /¢ number of points o/

Qg = nn 4+ 1; /e size of maximal corral ¢/
w=gr(0,nn + 1;; /s weights for 'x' s/

v = gr(@,nn + 2); /+ weights for °‘y* o/

bb = &r(@.nn + 3); e scratch vector o/

/* squared norms of points o/
pn2 = (double ) malloc((unsigned) (mmc(slzeof(dcublt)))):

/s step @ — get initial corral s/

mini = | = an - 1;
gm:n(- ?nz[i} = norm2(&p(0.i),nn):
o ¢ V=3
if ((pn2[i] = norm2(&p(0.i).nn)) < dmin) {
dmin = pn2[i]:
wini = i;

sn = 1 /* one point in the corral ¢/
wfO] = 1.
s[0] = mini;

/* initiol R matrix (1 by 1) and set max squared norm o/

r(0,8) = sqrt(1. + (pn2max = pn2[mini))):;

/* main loop of algorithm o/
for (::) §
/e step 1(a) — set X = P[S]sw o/

for (i = an; i— ; ) §
:o: 233- sn; j—_3 )
¢ += p(i.s[i))ewli):
;[i] = d;

/e step 1(b) — define mini to minimize <X, P[i]>, i < m o/
aini = | = nm -

1
g:in(: ?:1(:.)&9(0.3). nn);
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if ((d = dot(x, ep(0,1), nn)) < dnin) §
dnin = d;
mini = 1;

/s step 1(c) — test for end condition s/

if (dain > (d = norm2(x, an)) - Ztiemax(pn2[mini], pn2mox)) §
/+ stop — we have o solution ¢/
/e clean up for return o/

free((char ¢) pn2);
ioturn (sqrt(d)): /* d contains the squared distance ¢/

/e step 1(d) — check for minl in S ¢/

for (i = sn; i=—; )
it (mini == s[i])
/e temporary disaster seec note 3 ¢/

return (-1.):

/+ step 1(e) - add new point to the corral o/

s[sn] = aini;

v[sn] = 0Q;

pn2max = max{pn2max, pn2[nini]):

/+ steps 1(f) & (g) - compute new column of R s/

for (i = sn; i—; )

bb[i] = 1. + dot ep(0,s[i]). &p(@.mini), nn);
solve_t_uppoer(rr, &r @.sn), bb, sn, qq);
r(sn.,sn) = sqrt(1. + pn2[mini} ~ norm2(&r(@,8n), sn));
snédd3

/* loop for steps 2 & 3 o/
for (::) &
/e stoep 2 — solve system for new v (try for w) o/

for (i = sn; i=— 3 ) /e init vector of ones (e) ¢/
vli]l] = 1.;

solve_t_upper(rr, bb, v, sn, qq):
solve_upper(rr, v, bb., sn, aq);

/% normalize v & chock for small values s/

for G’ i

°r S +: :?%];-.. )

small = FALSE;

theta = 1. /» also coapute theta for 3(a) & (b) ¢/
for (i = sn; i——: ;

it ((v[i] /= d) <= 22) {
00 amin mwli] = v[i1) > 23)
theta = ninz theta, wli}/dmin):

if (! smoll) § /e good positive v = put in w o/
for (I = sn; i—3
wli] = v[i]:
breok; /* break out {(go to step 1) o/

/* step 3 ¢/
/e theta for steps 3(a) & 3(b) computed above o/

~
)

steps 3(c) & 3(d) - intersect segment & convex hull o/
/* note difference from Wolfe's paper: o/
/* w = theta e v + (1 - theta) = w s/
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for ( | = sn; i=—; )
t ((wli] = thetaev[i] + (1
w[i) = 0.

zerol = i

/e steps 3(e) & 3(f) - delete 2
d = pn2[s[zeroi}];: /e save to
sn—;

for (mini = ii = zeroi) + 1; 1
s[i] = s[mini]:

/+ update Pn2max o/

" (:n;;cznimgzgli[(l = sn - 1)
for ( ; 1==:
ph2max =

/* step 3(g) - use plane rot.

for (mini = (i = zaroi) +1; | < sn;

a = r(i,i)
b 7 r(mini
/=

or

ii):
¢ = sqrt(cea + bebd)):

: < ; jee) |
Jas(ens ¢(1.3))

.?) = =bec + 0ed;

Q
b
t

.—theta)sw[i]) <= 22) }

eroi-th element from s, w, &R

update max Pn2 o/

< sn; i++, aini+s) §

11:

max( pn2max, pn2[s[i1]):

to mointain upper triangular R ¢/

j++, mini++) §

+ be(d = l’(ﬂlﬂl.i)):

} /e end of step 2 & 3 loop o/

upper trionguliar

stored columnwise s/

H /e end of main loop o/
‘undof r
undef p
} /* end of dist function =/
/* solve_upper solve Rex = b w/ R
‘; note: do not link with fortran
solve_upper(R, x, b, n, Q)
double eR, sx, sb;
int n, 9
;deflno RR(i.j) R[Ci) + (j)eq] /e
int i, j:
double 2;
for (imn; i=—; ) {
z = 0.;
for (jmi+l; j<n; j4+
z += RR i.j)-x[ji;
;[l] = (b[i] - 2)/RR i.1):
fundef RR
i /+ end of solve_upper

0

:;

solve_t_upper

note:

solve R—trex = b w/ R upper trionguloar

do not link with fortran

*/
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solve_t_upper(R, x, b, n, q)
®

double R, ex, ob;

int ) n, q;

’doflno RR(i1.j) RL(I) + (j)eal
int i, j:

double 2;

for (im@; i<n; i++) {
z = 0.
for (j=i; J=—=3
:[i]z-*zb?? jl‘i;;&%li.i):

fundef RR
} /* end of solve_t_upper

/* dot returns dot product of 2 n-vectors
ee

t; note: not to be linked with tortron routines
®
double dot(x, y. n)
double ax, oy
int n;
double d:
d = 0Q;

for (; n=—; x++, y++)
d +=m sx ® sy;
;oturn(d);

/¢ norm2 returns sqared norm of n=-vector
L X J
-; note: not to be tinked with fortran routines
[ ]

double norm2(x, n)

double ex;
int n;
doublie d;
d= 0;

for (; n——: x++)
d $= sx & oXx;
;oturn(d);
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f§define MAX 40
define AUXMAX 7
define OBJMAX 5



Moy 16 ©9:36 1986 heoader.h Poge 1

define abs(x) ((x
define square(x)

< © 7 =(x) : (x))
) o
double sqrt();

%x (x)
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