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ABSTRACT

In this paper we introduce a unified approach to the problems of circuit

partitioning and placement. By using the matrix inner product formulation, cir

cuit partitioning and placement can be transformed into the standard quadratic

programming. It is thus possible to search for the optimum solution by applying

the eigenvector approach.

For both partitioning and placement, the solution is a permutation of some

positions, and the solution space is found located on an (n-l)-dimensional super-

sphere. A simple matching method combining with vector projection is devised

to search for the solution.

The algorithm discussed here is a constructive method which can be fol

lowed by any iterative procedure such as pairwise-interchange if needed. Experi

mental results indicate that this constructive method yields excellent results.

1. Introduction

Partitioning and Placement are major steps in IC packaging and layout design. In this paper

we give a unified formulation for partitioning and placement and establish the relationship

between them.
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Both partitioning and placement problems are known to be N-P complete. Many heuristic

algorithms have been created to attack these problems.

Our approach depends on the 'matrix inner product' which along with some preliminaries

are discussed in Section 2. The general formulation of our approach is given in Section 3.

The most useful aspect of the 'matrix inner product' is that it reduces both the partitioning

and the placement problems to the quadratic programming problem. Because the connectivity

matrix is always symmetric, there exist efficient programs to find the optimum solution on an

unrestricted solution space. But the main obstacle in discrete optimization problems lies in the

incomplete solution space. Our approach is to use a simple algorithm to choose the closest point

to the unrestricted optimum solution from the discrete solution space. In Section 4, more details

are presented. Some experimental results are shown in Section 5.

2 Matrix Inner Product

Consider two nXn matrices A and B. Let Eti := e,c/ be the basis of RnXtt, where

&i , e2 , •" , ctt is an orthonormal basis of Rn. Then

A= E a,7£0. , B= £ frjEij (2.1)
•\/=i i,/=i

We define the matrix inner product as

< A , B >M := 2 a,;-fty (2.2)
•'.;=l

The subindex, M, is used to denote specifically for matrix inner product throughout this paper.

Now consider the case where B is a summation of a series of outer products.

B=f>*tfcr=W (2-3)
*=»i

Then

<A , B >M = < A , UVT>M = trace( UT A V ) (2.4)
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where 'trace' is defined as the summation of all diagonal elements.

For the special case, U= V=X, we then have

< A , X XT >M = trace (XT AX) (2.5)

If we let B —X XT, we conclude that to optimize < A , B >M is the same as to optimize

trace ( XT A X ).

3. A General Formulation

3.1 Permutation

In a discrete optimization problem, we can always obtain the solution,by exhaustive permu

tation. We define the permutation matrix as

E = [ «*(i) , «*(2) , ' ' ' , «x(n) ]• (3.1)

thus E CET is a permutation of the matrix C. More explicitly, the element cl;- of matrix C is

now changed to c*(;)*(/).

Now we formulate the partitioning and the placement problem as follows. At the outset we

restrict ourselves to 2-terminal nets, thus multi-terminal nets must be preprocessed using any

appropriate methods such as a weighted clique. Two matrices are given: a matrix C whose ele

ment ci;- represents the connectivity or cost between module t and module j, and another sym

metric matrix D called the distance matrix. D is a partition matrix in the case of a partitioning

problem. It is a Manhattan matrix or a Euclidean matrix in the case of a placement problem.

These will be defined later in this section. Then the optimization in partitioning and placement

amounts to minimizing the objective function:

L = < E C ET ,D >M (3.2)

with respect to the permutation matrix E.
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By the adjoint operation, we have

< E C ET , D >M = < C , ET D E >M (3.3)

Let E = ET = E~\ we have

< E C ET , D >M = < C , E D ET >M (3.4)

or

n n n a

E S C«(0«W) dH = E E CH di{i).*U) (3.5)
t'tal /b=1 1= 1 ynal

This equation means that we can solve the problem by permuting either the vertices representing

the modules or the positions of the modules to be assigned. Both will give the same result.

In the following subsections, we are going to discuss different optimization criteria for

different distance matrix D. For convenience, from now on we use C and D to represent the

optimum matrices after the permutation of the matrices C and D respectively. That is

d = E C ET,3 =E D ET.

3.2 The Partition Matrix

In partitioning problems, we want to separate the vertices into several groups such that the

total number of interconnections among the groups is a minimum. Let us define the partition

matrix P whose element p,y is

_ J 1 if vertices i &j belong to thesame group ,„ „x
p,/~^0 otherwise (3-6)

For example, for a 2-way partition matrix,



P =

Let us also define an all-one matrix

1 1

1 1

0 0

0 0

I:—
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1 1

1 1

1 1

10 0

10 0

01 1

01 1 1.

Then the distance matrix, Dp, for the partitioning problem is simply

Dp = I - P (3.7)

Since ctj is the number of edges between vertices i and /, then it is esaily shown that

< C , I >M = 2N [1], where N is the total number of edges. Also < C , P >M = 2Nae,

where Nju is the total number of inner connection, < C , Dp > = 2Ne, where Ne is the total

number of interconnection between each group. Since

2N = 2NW + 2Ne (3.8)

we have

< C ,I>a/ = < C ,P >M+ < C ,DP > M (3.9)

For a given C, < &, I >M is fixed. Thus, to minimize the interconnection < C , Dp >M

is equivalent to maximize the inner cost < C , P >M. We will find later that maximizing

< C , P >m is easier and gives more insight to the problem.

The partition matrix P can also be decomposed into vector outer product. For a k-way par

tition

where

k

lP = E *<i?=Q Q' (3.10)
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Q = [ <7i »<?2 9*

Let qs = E g,- and Q = E Q, we have

E
i=l

p = ifir = 2i.i.f = ««r

(3.11)

(3.12)

Note that for the matrix Q there is only a single "1" on each row. According to (2.5)

< C ,P >M = < C ,P >M = trace ( QT C Q ) (3.13)

i.e. we have converted the problem to an integer valued quadratic programming problem [2].

3.3 The Manhattan Matrix

In some placement problem, the objective is to minimize the Manhattan length of total con

nections. Then the distance matrix is DM = [rf,y] where rf,y := | i-j \. We call DM the 'Manhat

tan matrix'. Now the objective function is

I'M = < O , DM >M = < C , DU >M = J] C,V d^i^fl (3.14)

It is not easy to solve this problem. However, we will see later that there are similarities

among these three distance matrices , and the solutions are expected be near each other.

3.4 The Euclidean Matrix

For this case, the objective is to minimize the total Euclidean length for all interconnec

tions. We define the 'Euclidean matrix' as

DE = [d§ (3.15)
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where dfi := (i-j)2. Then the objective function is

LE =<0 ,6g >u = t t «i 'kw) -tt «tf (*(«) - *0")J* (316)
i'»i y«»i i«ai y=i

We relax the integer requirement for w(i). Let *,- be an unrestricted real number which

takes place of the integer jr(»). The relaxed objective function is as follows:

LE = E E <* ( ^ - */ )2 (3.17)
i-i /-i

Let B be the modified connectivity matrix [3], and the element of B is defined as

n

where c,# := J] c,y. Then

LE = xT B x (3.19)

which is a quadratic form.

3.5 Similarity Among The Problems

Comparing the quadratic objective functions that come with the partition matrix and

Euclidean matrix, we find that the only difference lie in the diagonal elements of the connectivity

matrix C and the modified one B. Using Eq. (3.18), we have

< O,P >M + < B,P >M = fj ( (-. + 6l¥ )= constant (3.20)
1=1

This tells us that maximizing < C , P >M is equivalent to minimizing < B , P >M or alterna

tively using Eq. (3.9), minimizing < C , DP >M.

To reenforce the similarity among the partition matrix, Manhattan matrix, and Euclidean

matrix, we give an explicit form of each matrix in case of a 6-dimension, 2-way partition shown

in Fig. (3.1).



Dp =

Da***

D* =

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 1 4 9 16 25

1 0 1 4 9 16

4 10 14 9

9 4 10 1 4

16 9 4 1 0 1

25 16 9 4 1 0

Fig. (3.1)

To extend the concept we discussed here, we propose a more general distance matrix, the /•

matrix. For /-matrix

Di = f d (3.21)

where </£• := | i-j |'. To our best knowledge, no one has tried this /-matrix as the distance

matrix. It seems interesting to derive the effects of different choices of /.
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3.6 The Geometric Model

A general placement problem is to assign n objects on n positions which is not necessarily

uniformly spaced. For a general linear placement, the n positions mi < m2 < ••• < mn are

ordered along the real line as shown in Fig.(3.2).

m< m, m.

Fig.(3.2)

Now consider a 2-way partitioning problem. Suppose that we want to put k elements in one group

and the remaining (n- k) elements in the other group. Then the geometric representation is as

shown in Fig.(3.3).

••

m^ =nri2s mk m
^

k+1r,,,smn

Fig.(3.3)

It is similar for a general 2-dimensional placement model. There are n positions on a 2-

dimensional space as shown in Fig.(3.4).

y

A (mj.lj)

i

#(m2,l2)

•(mn,ln)

• •(m,.li)

-•x

Fig.(3.4)

Then the 3-way partition problem becomes a special case of the 2-dimensional placement
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problem. The three groups are represented as the three vertices of a equilateral triangle as shown

in Fig.(3.5).

Fig.(3.5)

As in the last subsection, this general placement problem can be transformed into a qua

dratic programming problem.

min L = xTBx + yTBy (3.22)

where

x = ( m»(l) >mx(2) i "' »»»»(«) )

V= ( '*(1) , lt(2) , - , 'ir(n) ) (3.23)

We list the constraints for discrete positions as follows[4]. In the x direction,

E*« = S"1* s=s ci

E*>2 = EW2 = **

E*." = E™." = «» (3.24)



In the y direction,

E* = E'.- = *i
i I

E^=E^=^

11

Ey* = E^=rf» (3.25)

Also we have to consider the correlation between x and y,

Exi-y»-= E^'i = ei
i i

E*/V=EWV = *2

E**y"=E<'"=*» (3.26)
$ j

The first order constraint is a restriction on the d.c level ( center of gravity or average). The

second order constraint corresponds to an a.c level (variance). These two are the properties of the

position vectors. The interesting thing is that the modified connectivity matrix B happens to

have the d.c removing property, i.e.

B 1 = 0 • 1 (3.27)

where 1= [ 1 , 1 , - , 1 ]r.

Now, let p" and p be the d.c. and a.c components of the position vector p, respectively.

Then

F==<p'"fir>'w= '̂1 (328)

|p|2= \p\2~ |p"|2=C2 =* constant (3.29)
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This is illustrated in Fig.(3.6).

• 1

PSP+ P

Fig.(3.6)

Armed with these facts, we can rewrite the optimization equation as follows,

min L = xT B x + yT B y = xT B x + yT B y

subject to

£* = o

X = c2-—-

£* = o

Eir2-^-
it

E- - C1<*1
Xi ' Vi = «i

n

where only the first and second order constraints are considered.

In the case of linear placement with m,- = t, we have

min L = xT B x

subject to

£* = o

(3.30)
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For a 2-way partitioning with k and (n-k) elements in two separate groups, then we have

min L = xT B x

subject to

£* = °

E^o kl*-k) (3.32)
i n

Now we want to show mathematically that a 2-way partitioning is a special case of the

linear placement problems. In 2-way partition, we have

• 9l = [i,-,i,o,..,o]

q2 = [0 , - , 0 , 1 , - , 1 ] (3.33)

Then

li--ft-[ —, -•—•-•-, Tl (3.34)

Hence

£ = qf B qi + ql B q2 = 2 • ( qf B qx ) (3.35)

That is exactly what we have in the general linear placement formulation.

Similarly, for 3-way partitioning,

qx = [1 , •• ,1 ,0,- ,0,0, - ,0]

q2 = [ 0 , .. , 0 , 1 , ••• , 1 , 0 , - , 0 ]

?3 = [ 0 , •» , 0 , 0 , ••• , 0 , 1 , ••• , 1 ] (3.36)

We have

?i + ?2 + h = 0 (3.37)
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or

fa = -{fa + fa) (3.38)

and then

L = 2{qf B fa + ql B q2 ) (3.39)

Again, this is precisely the same objective function as that of the general 2-dimensional place

ment.

4. The Searching Algorithm

4.1 Eigenvector Matching [3]

Recall from the last section, the objective function for linear placement based on minimal

Euclidean length is

L =xT B x (4.1)

where B is the modified connectivity matrix . The rank of this modified connectivity matrix B is

n-1, and the corresponding eigenvalues are 0 = X0 < Xj < • • • < Xn_!. Now the goal is to

minimize xT B x, subject to B being positive semidefinite. Since B is symmetric, it can be

expanded into the outer product of the eigenvectors. More explicitly,

B « £ X, v{ v?= £ X,' v{ v? (4.2)
t=0 i-l

where vf- is the i-th eigenvector corresponding to X,-. Then

xT B x = £ X,. ( xT tv ) ( t* Tx ) = £ X,. | xT v{ |2 (4.3)
f-i i=i

Since x = »0=[l,l,--*,l]risa meaningless solution, we try to align x with vlt the

eigenvector corresponding to the smallest nontrivial eigenvalue.

In other words, we are trying to maximize xTvx. We show in the following theorem that

the optimal linear placement is to assign the positions sequentially corresponding to the order of
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the element of the searching vector.

THEOREM (4.1): Let v = ( i/x , u2 , • • • , uK )T where f! < u2 < • • • < un, and

p = ( mx , m2 , • • , mn )r where mx < m2 < • • • < mn , and let the position vector be

x —( m*(i) f mx(2) » *' * »mx(n))» which is a permutation of the ordered position, then

pT v > xT v , for any x

Proof:

Then

£ m,- = £ m^0 (4.4)
i-i i=i

T = pTv -xT v = £ ( m,. - m^.j )i/,. (4.5)
i=i

From equation (4.4), we have

A

"»i - "»*(i) = £ ( m^ - m,- ) (4.6)
t=2

substituting this into equation (4.5),

T = £ ( m^0 - m, ) ( ^ - ut ) (4.7)
i=2

Since m, is the smallest, it is obvious that mx < m^y Thus from equation (4.6) we have

n n

E m*(0 ^ E mi (4.8)
i—2 1=2

so

Hence

m*W ~m2< £ ( m,- - mx(0 ) (4.9)
i=3



Similarly,

and

also

16

T > £ ( ™*(0 " m,- ) ( u2 - v{ ) (4.10)
1—3

£ m*(.) ^ £ m«" (4.H)
i—3 i=3

™*(3) - "»3 < £ ( m* - "Mo) (4.12)
1—4

^ > £ ( m^,)- m,- ) ( vz- v{ ) (4.13)
•—4

Proceeding in this manner, we obtain

T > ( m^,) - ma ) ( !/„_! - utt ) (4.14)

Since m^j < mB, i/._i < j/n,we conclude that r>0orprw>arrv. #

4.2 Searching Through The Feasible Region

Let us represent the position vector x in terms of the eigenvectors of B. Then

n-l

* = £<*.«V (4.15)
i—O

Thus the objective function can be written as

L = xT B x = £X,a? (4.16)
i—i

If we draw the equipotential contour for different values of L, we will have

S(W=1 (4-17)

This is the equation of an ellipsoid [5].
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Fig.(4.1)

One very interesting point is that the closest point we found by applying the theorem (4.1)

is not necessarily the optimum solution. This is obvious from the example shown in Fig. (4.1).

The position vector xx is closer to vx but is not better than x2.

However, there is some information that we can collect from the initial solution xx. We

know that there is no other feasible points closer to vx than xx. Also, if there are better solutions

they must lie inside the equipotential contour where xx belongs. Hence the feasible region is shown

as the shaded area, which is much smaller than the whole space.

Then we can easily find the new unrestricted optimum points p2 and p3. Here the word

"unrestricted" means that the objects are not required to be legally on slot. Using the same

matching method to p2 and p3 , we pick two new closest points. For the example in Fig. (4.1),

the better solution x2 is chosen to replace xx.

At each step, we confine the feasible region in a smaller area and update the newest set of

unrestricted optimum points for use in the next step. In practice, only a few steps are needed to

obtain fairly good results.

We summarize the algorithm briefly as the following:
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step 1: Perform eigenvector decomposition of the matrix B.

step 2: Let the constraint set S include the first order and second order constraints. Initialize the

minimum MIN = oo .

step 3: Based on the constraints in S, find the unrestricted optimum point pk.

step 4: Find the closest point xk to p*.

step 5: If MIN > cost( xk ) then MIN = cost( xk ). Stop when the user defined condition is

satisfied.

step 6: Add the constraint { < x , pk >v < < xk , pk >v , for any x} to 5.

step 7: k = k+ 1; Go to step 3.

During the first few iterations, the unrestricted optimum points can be derived explicitly.

For instance, the unstricted optimum point, px , at the first iteration is vx. Suppose the normal

ized projection of the closest point to px is equal to alt then the unrestricted optimum points for

the next two iterations are p2 = axvx + (0 - ax2 )v2 and p3 = axvx - [y/l - a? )v2. In our

implementation , we continue the procedure until the eigenvector v4 is involved. The reason we

stop at this step is due to the large size of the constraint set 5 making it difficult to derive an

explicit formula. The user may wish to try different conditions for terminating.

The complexity ofa standard eigenvector decomposition for symmetric real matrix is 0(n*\

which is the critical part of this algorithm. Sparse matrix eigenvector decomposition technique

may be used to speed up the procedure.

5. Experimental Results

A general routine was implemented. We tried some bench mark examples from published

papers [1,4,6,7] ,and obtained promising results. We list the results on the following tables. Note

that for multiple-pin nets, we use clique model and set the edge weight as 2/n for minimum

squared length and weight 23/n3 for minimum Manhattan length. The first three examples deal
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with linear placement and the last two deal with partitioning.

Example 1: 9 vertices, 16 nets and 43 pins [4,6]

Tsay-Kuh Cheng Network Optimization Kang

Manhattan length 50 50 50 50

Squared length 151 152 152 152

Example 2: 16 vertices, 17 nets and 42 pins [4,7]

Tsay-Kuh Cheng Network Optimization Wing

Manhattan length 65 73 79 78

Squared length 375 509 451 628

Example 3: 31 vertices, 33 nets and 81 pins [4,6]

Tsay-Kuh Cheng Network Optimization Kang

Manhattan length 89 88* 102 95

Squared length 500 556* 464 887

* The results are incomplete because the "IO pads", Pi and OPl, were not taken into account.

The actual values are 94 and 578 for Manhattan and squared length, respectively.
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Example 4: 20 vertices, 55 nets and 110 pins [l]

Tsay-Kuh Barnes

cut 13 13

Example 5: 20 vertices, 51 nets and 102 pins [l]

Tsay-Kuh Barnes

cut 13 13
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