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ABSTRACT

We consider stable open Jackson networks and study the rare
events of excessive backlogs. Although, these events occur rarely they
can be critical, since they can impair the functioning of the network. We
attempt to estimate the probability of these events by simulations.
Since, the direct simulation of rare events takes a very long time, this
procedure is very costly. Instead, we devise a method for changing the
network to speed up the simulation of rare events. We try to pursue
this idea with the help of Large Deviation theory. This approach, under
certain assumptions, results in a system of differential equations which
may be difficult to solve. To circumvent this, we develop a heuristic
method which gives the rule for changing the network for the purpose of
simulations. We illustrate, by examples, that our method of simulations
can be several orders of magnitude faster than direct simulations.
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1. Introduction.

1.1. Problem Description.

We consider arbitrary open Jackson networks (e.g. Figure (1)). A Jackson

network is an interconnection of MI Ml 1 queues in which customers visit vari

ous nodes according to state and time independent (Markovian) routing proba

bilities. The heuristic that will be developed can be applied to networks of

Gil Gl 1 queues with Markovian routing. However, most of the discussion will

be limited to the case of Jackson networks, for simplicity. A network is called

open, if every arriving customer leaves the system with probability 1. Let us

define T as the first time that the total population in the network reaches N. In

the last section we also will consider queues with finite buffers. In this case, we

define T as the first time one of the queues gets full. (This case will be con

sidered only in the last section.) In either case, T is a first passage time for the

Markov state process of the network. We are interested in estimating E0{T),

where £0{T) denotes the expected value of T given that the system starts

empty. Notice that we are interested in the transient behavior of the system.

This research was supported in part by NSF Grant No. ECS. 8421128 and by Pacific Bell and a MIC £Q
Grant from the state of California.



Open Jackson Network.

Figured)

Since very little is known about the transient behavior of networks, we attempt

to estimate E0{T) by efficient simulations. Our method of simulation, besides

saving simulation time, also sheds some light on the fundamentals of the

dynamics of the system.

1.2. Principle (Importance Sampling).

If the total backlog N or the buffers' capacities are large, for a stable sys

tem, the events of exceeding the system's capacity are very infrequent. Hence,

direct simulations are very slow and take up a lot of computer time. Besides,

there is also the difficulty of having a pseudo-random generator that can func

tion effectively during very long simulations. The central idea is to make the

rare events under investigation more frequent by changing appropriately the

probability measures governing the system and performing simulations on the

changed system. We then obtain our answers by translating them back to the



original system. This is done by using likelihood ratios.

1.3. Optimal Change of Measure (Largest Speed-up).

Large Deviation Theory deals with certain Markov processes and deter

mines the asymptotic (e.g. as the backlog size N grows for an Ml Ml 1 queue.

See § 3) exponential rate of diminishing probabilities as a solution of a variation

problem. The solution of this variation problem also gives the optimal

exponential change of measure (see § 3) for simulations. An application-oriented

and readable reference for this work is by Cottrell et al. [2]. Unfortunately the

theory does not apply to general Jackson networks. Here a smoothness condi

tion regarding the jump distributions (see § 3) is violated. To our knowledge,

there are no known results of Large Deviation Theory for excursions of Markov

processes with discontinuous kernels. To circumvent this problem, we are going

to have to rely on a heuristic of Borovkov, Ruget etc. (e.g., see [3]) which gives

certain tail probabilities for a Gil GI 1 queue (see § 4). We utilize this heuristic

for obtaining a change of measure that leads to substantial speed-up for simula

tions. We also generalize this heuristic to networks.

1.4. Outline of the Remaining Sections.

In § 2, we motivate the idea of change of measure for simulations of rare

events for an Ml Ml 1 queues. In § 3, we present Large Deviation theory as

applied for the purpose of simulations of rare events. We also point out the

difficulties in applying this theory to Jackson networks. In § 4, we present a

heuristic method for obtaining an optimal change of measure for simulations of

rare events for Jackson networks. Next we extend this heuristic to networks of

Gil Gl 1 queues. We also apply this heuristic for the networks with finite

buffers for estimating the buffer-overflow probabilities. The purpose of this sec

tion is to report the observations we have made rather than to claim new

results. Our hope is that the heuristic explanations and observations presented

here will motivate more research in this area. Finally, we will summarize the



results of this paper in § 5.

2. Ml Ml 1 Example.

2.1. Model and Problem.

Consider an Ml Ml 1 queue with arrival rate X and service rate fi such that

X <fi. Consider the embedded discrete time Markov chain {X"m^n =0,1,2, • • • },

denoting the queue length, defined at the epochs of arrivals and departures of

the queue. We assume, without any loss of generality, X+/z=l (if not, rescale

time). Figure (2) depicts such a queue. As described in § 1.1, we are interested

in estimating, for large N, E0{T) where T denotes the first time {Xm) reaches AT.

-*—@F——
X < fJL

Ml Ml I queue.

Figure (2)

Note that the number of times {Xm} returns to 0 before hitting N is

geometrically distributed with parameter 1-a, where a is the probability that

[Xm) reaches N before returning to 0 given that it starts from 0. For large N,

we can argue that

E0{T) ^EiR).E0{T0) = lZ^L.E0[T0\ ^L.E0[T0},
a

where TQ denotes the time to hit 0 for the first time. Since, for stable systems,

E0{T0} can be easily estimated by direct simulations, the difficult part in

estimating E0\T0) is the estimation of a. So, from now on, our primary concern



will be the estimation of a.

We define a cycle as the duration starting with an empty system and end

ing at the instant the system, for the first time, either becomes empty again or

reaches N. Let us define

Vk := l[Xm reaches N in cycle k ),

where l[B} (or sometimes written 1B) denotes the indicator of an event B. See

Figure (3).

Realization of [Xm}.

Figure (3)

Notice that VL *s are i.i.d.. Also notice that, as shown in Figure (3), we have

modified \Xm) in that we restart [Xm\ at 0, if it exceeds N. Clearly,

a = P{Vk =1}. Here we can find a by the first step method. For this define, for

0<i ^N, Pt = probability that \Xm} hits N before 0 given that it starts from i.



Clearly, P0 = 0, PN = 1 and Px = a. The first step equations give

Pt = /LuPi_1+XJ,i+1, l^t <JV-1.

The solution of these linear equations can be seen to give

<* = />!=_* (1)

(f)JV_1

For future calculations, let us derive the formula for E{Jk), where Jk

denotes the number of random jumps in cycle k. Notice that Jk *s are i.i.d. and

that a cycle begins with a deterministic transition to 1. Let Z, denote a jump

which takes values +1 and —1 w.p. X and /x respectively. Note that cycle k ends

at N with probability a and in this case Zi+Z2+ — +ZJk = N—1. Similarly,

cycle k ends at 0 with probability 1—a and in this case Zi+Z2+ — +Z/4 = —1.

Then, for cycle k,

E{ZX+Z2+ • • • +Z7J = a.0V-l)+(l-a).(-l).

Using Wald's identity we identify the left hand side with

E{Jk)S[Zi) = E{Jk).(\-fi).

This gives

E{Jk} = ±Z»£L. (2)
M-X

In the following subsections we present the idea of change of measure for

estimating a by simulation.

2.2. Direct Simulation.

For direct Monte Carlo simulation, consider an unbiased and convergent

estimator

Vx+V2+ • • • +Vn



Observe that E[Vk } = a and Var [Vk } = a.(l-o).

Suppose we want to ensure that the relative error does not exceed e% with

probability more than 0. We will call such an estimator an (€,0)-confidence

estimator. The normal approximation then gives

c2 Var[Vk)
P{\an -a I >€.a} =*0 <=> nd =*X- , ,~T * 5"

€2 a2

where c = S^K/J/ 2), where <X> denotes the distribution function of a Gaussian

r.v. with the mean equal to 0 and variance equal to 1. Hence nd ^y.d—a)/ a,

where y = c2/ €2, cycles are necessary to achieve the (€,/3)-confidence estimator

by a direct simulation. Let Td denote the units of simulation time required for

achieving the (€,/5)-confidence estimator by a direct simulation. Then,

Td =E{Jk)sid.

Since X <fi, for large N, E [Jk} == 1/ /*-* (see Eqn. (2)). Hence,

Td =*V.!.-V (3)

2.3. Change of Measure.

For estimating a, we propose to consider the Ml Ml 1 queue with arrival

rate fi and service rate X i.e. the Ml Ml 1 queue obtained by interchanging

arrival rate and service rate of the original queue. Let P and P* denote the

measures induced by the corresponding Markov chains. Figure (4) shows these

queues.

In simulations under the changed measure, we observe Vk *s under P\ Let

Lk denote the likelihood ratio dPI dP* during cycle k. Notice that Lk *s are i.i.d.

and that E'{Lk .Vk) = E{Vk} = a, where E'{ } denotes the expectation under the

measure P\ Hence,

ol„ :=



8

Change of Measure for an Ml Ml 1 Queue.

Figure (4)

is also an unbiased and convergent estimator of a. As before, to achieve (e,j8)-

confidence estimator, now the minimum number of cycles required will be

Var'[Lk .Vk }
ne ^y 3 »

or

where Var*{ } denotes the variance under the measure P*. Observe that by inter

changing X and fi in Eqn. (2), we have£*{/*} ^Nl /x. Let Tc denote the units of

simulation time required for achieving the (€,/3)-confidence estimator under the

changed measure. Then,

Tc =E'{Jk}jic *zy—J-.-—, (4)

where <?:=Var'{Lk.Vk).

We should point out that in reality the simulation time will be somewhat

larger like (l+5).7*c, where 5 >0 accounts for the time required to calculate

likelihood ratios Lk 's.

2.4. Comparison of Td and Tc.

Td
Let us define the speed-up factor S := -=-. From Eqns. (3) and (4) we get

(5)



Suppose that o> is a realization such that Vk = 1 and there are I departures

and Af+Z—1 arrivals (not counting the first arrival) during cycle k. So,

7* (a>) = N+21—1. Let <ak denote the section of at that pertains to cycle k.

Then,P[o>k} = X^'V*H<** 1= m"*"1-*'. Therefore,

X N~lLk (a>k ) = (—)
H

This implies that, on the set [Vk =1),

Lk =(*-) . (6)

Hence,

o2 = £'{(£*Vk?\- a2

x N-l

= (±) .a - a2,

where the second equality follows from Eqn. (6). Now using Eqn. (1), we get

£ ss(2L)\ (7)
a fi

Substituting Eqn. (7) in Eqn. (5), we get

X N X -1S *[M(.i) .(1--)] .

2.5. Example.

Consider the Ml Ml 1 queue with X = 0.33 and fi = 0.67. We want to esti

mate a for N = 21. Eqn. (1) gives a = 3-583X10"7. For (e = 0.05,0 = 0.05)-

confidence estimator, Eqn. (3) gives Td = 1.32X1010 units (4.42X109 cycles), while

Eqn. (4) gives Tc = 4.96X104 units (1.58X103 cycles).

Our simulation experiments gave the following results.



# of cycles (n) 1000 2000 10000

«n 0.0 0.0 0.0

•

«n 3.440X10"7 3.520x10-7 3.708X10"7

Example of Change of Measure

Table (1)

10

Table (2) gives results of a few more simulation experiments. It also

shows the time required for simulations and the corresponding number of calls

to the random number generator (RNG). Table (3) gives the empirical standard

deviations, means and coefficients of variation of the estimates obtained by the

change of measure for the same examples as in Table (2). All the simulations

are done on a VAX-750 machine. Notice that the convergence under the changed

measure seems to be more rapid than predicted by Eqn. (4). This is due to the

uncertainty factor introduced in the derivation of Eqn. (4) because of the use of

the normal approximation.



Method Direct Simulation Quick Simulation

Example-I

X = 0.20 ix a 0.80 N = 15

a o 2.794X10"9

X* = 0.80 / = 0.20

# of Cycles (n) 5000 10000 20000 50 100 200

«.<o 0.0 0.0 0.0 2.831X10-' 2.682X10"9 2.663 X10~»

CPU Time 2.5Sec. 5.4Sec. 10.6Sec. 0.3&C. 0.6Sec. 1.25ec.

Calls to RNG 8550 16712 33624 800 1656 3255

Example-II

X = 0.30 m = 0.70 N = 20

a = 5.826X10-8

X* = 0.70 m' = 0.30 <»

# of Cycles (n) 5000 10000 20000 200 300 500

an(«o 0.0 0.0 0.0 6.322x10_i 5.268X10-* 5.955 XI0T*

CPU Time 3.9Sec. 1.6Sec. 16.1 Sec. 2.05ec. 2.4Sec. 4.6Sec.

Calls to RNG 12492 25426 51052 5598 7084 13684

Example-III

X = 0.40 n • 0.60 JV « 30

a = 2.608X10-*

X* = 0.60 fS = 0.40

# of Cycles (n) 20000 30000 40000 1000 2000 3000

an (a •) 0.0 0.0 0.0 2.910X10"* 2.401 XI0"* 2.649 XI 0_*

CPU Time 30.2&C. 44.4Sec. 56.2S*c. 16.4Sec. 30.45ec. 43.2Sec.

Calls to RNG 105738 151322 195760 47466 82956 127832

Simulations for an Ml Ml 1 Queue.

Table (2)

11



Example-I
X = 0.20 (i - 0.80 N = 15

a = 2.794X10""9 # of Experiments = 20
X* = 0.80 ft = 0.20

# of Cycles (n) 100 200

Empirical Mean (£i) 2.744X10"9 2.794X10"9

Empirical Std. Dev. (cr) 1.150X10"10 1.019X10"10

(o7 m)xl00 % * 4.1910 % 3.645 %

Example-H
X = 0.70 ft = 0.30 N = 20

a = 5.826X10"8 # o/ Experiments = 20
X" = 0.70 ft' = 0.30

# of Cycles (n) 300 500

Empirical Mean (m) 5.856X10-8 5.906X10-8

Empirical Std. Dev. (cr) ?.803X10~9 2.474X10"9

(cr/ m)xlOO % 4.786 % 4.190 %

Example-IH
X = 0.40 fi = 0.60 N =30

a = 2.608X10"6 # o/ Experiments = 20
X* = 0.60 fi = 0.40

# of Cycles (n) 2000 3000

Empirical Mean (m) 2.743X10-6 2.680X10"6

Empirical Std. Dev. (cr) 2.652X10""7 2.409X10"7

(o7 m)xl00 % 9.669 % 8.989 %

Empirical Standard Deviation for an MI MI 1 Queue.

Table (3)

3. Large Deviation Theory and Optimal Change of Measure.

3.1. A Fundamental Theorem.

12

Theorem (l) (Cramer's Theorem) [5] : Let £Iffe, • • • be i.i.d. r.v.'s taking

values in Rd. Let F denote the distribution function (d.f.) of £k and m its

mean. Let Pn denote the d.f. of ({,+fo+•••+£,)/*• We assume that the
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Laplace transform of F,

M(s)\= fexp<s,z>dF(z), seRd,

is finite in a neighborhood of 0. Then, Pn satisfies

(i) For each closed subset C of Rd,

limsup —log Pn {C } < —inf h(x)
n—oo n xeC

and

(ii) For each open subset G of Rd,

liminf —.log Pn {G } ^ —inf h (x ),
n-co n x€<5

where the function h, called Cramer or Legendre transform, is defined as

h(y) = sup[<s,y>-\ogM(s)l y€Rd. (8)

(Unless specified, logarithm is always defined to the base e.)

Interested readers can find a lucid proof of this theorem in the succinct

monograph by Varadhan [5]. This theorem gives the rate of convergence for the

Weak Law of Large Numbers (WLLN). This is quite easily seen from an

equivalent statement of this theorem in R1. For this, let a >m, then,

lim Llog PI {l+fe+ '"+i" >a) = -Ha). (9)
n -*» n n

Intuitively, Eqn. (9) states that P[Snl n =a| = exp(-n.h(a)+o(n)), where

Sn = £1+^2+ *** +in • The exponential rate of decay can be expected from the

observation that if the event {(^+ • • • +|2n)/ 2n >a} were to occur, it is most

likely that it happens if and only if events {(^+ — +gn)>a.n) and

{(£„+!+ ••• +£2n) >a.n\ occur. Hence, P[S2n I 2n >a} ^(P{Snl n >o})2.

Next we list some properties of the Cramer transform defined in Eqn. (8).

We define
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Us):=logM(s\ j€Rd.

(PI) h is convex and nonnegative lower semicontinuous.

(P2) For each b <o<^ the set {u I h(u) ^b) is compact in Rd.
(P3) h(y ) has its minimum value 0 at y =m, i.e., h(m) =0.

(P4) / and h are convex dual of each other,

I(s ) = sup [<s \u >- h (u )].

(P5) Let V denote the interior of the set {seRA I Mis) <<x) and U denote the

set {ueRd / h(u) <oo}. The derivatives /»' and V are reciprocals of each other,
i.e.,

h'(l'(s)) = s, seV

and

Z'(/T(u)) = U, U€U.

Finally, we give a few examples of the Cramer transform that will be use

ful to us in the subsequent sections.

(El) (k *s take values +1 and -1 w.p. px and p2 respectively. Then,

A(M)=I^.log(i±fi)+i^.log(iZii), -!<„<!,
2 2./?! 2 2.p2

= «^ otherwise. (10)

(E2) (k *s are exponentially distributed with the parameter v >0. Then,

h(u) = vm-1—log(vM), u >0,

= oq otherwise. (11)
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3.2. Slow Markov Walk.

In this subsection we present a Large Deviation Theorem due to Ventsel

and Freidlin [6], regarding certain Markov chains. Cottrell et al. [2] have a good

discussion on these concepts.

Consider the Markov chain {Xne}€Rd given by

Xq = Xq,

V+i = Xn'+€.V(Xn(,£n ), n >0, (12)

where e >0 is the parameter defining the Markov chain {X„M, x0 is the initial

value, V(.,.) is a function from Rd x R1 -»Rd and £n 's are i.i.d. r.v.'s. We are

interested in analyzing {Xne} when € -*0.

Let Fx denote the d.f. of V(x ,£n). Let

m(x) =JzdFx(z)
R4

be the mean of Fx,

Mx (s ) := J exp< s ,2 >dFx (z )
R*

be its Laplace transform, lx(s ) := logMx (s ) and

hx(u) = sup [< s ,u > — lx(s )]
J€Rd

be its Cramer transform. We assume that

(Al) Mx (s) < ooin a neighborhood of 0 for each x eRd.

(A2) d(FXl,FX2) <c.l \xx—x2\ I, where d is the Prohorov distance [l] and c >0

is a constant, i.e., Fx is Lipschitz smooth in x.

Let us construct continuous time paths from the realizations of {X„€}. To

do this, at the epochs

t = n.e define Xf(t) := Xn€ (13)

and interpolate piecewise linearly. Let Cr denote the set of the continuously

piecewise differentiable functions <f>: [0,7] -»Rd such that <f>(0)=x0 is fixed. Let
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P* denote the measure induced by the Markov chain {XnM on tjie Borel cr-field I

of Cr endowed with the Skorohod topology [l]. It is well known that, under

some technical assumptions, the deterministic trajectory <p(t) which solves

4£(0 =m(?(0)
at

$(0) = x0,

satisfies

for all 7) >0, for all T <o^ P*{ max IXa€-£(n.e)l >7)} -0.
o<n.e<r

Define the action integral

T

7(0) := fh«t)(<f>'(t))dt.
o

Theorem (2) (Ventsel-Freidlin) [6] : Let <f> be a path in Cr- Define a tube

of diameter d around 0, 77, as the set of trajectories of X€(t) such that

IX«(f )-i£(r)l <</, forotf re[0,T].

Then, there exists S0 such that, for 0<S<50,

lim {-eJ»[Tt (*)}) = 7(0)+e(6)

with

lime(8) = 0.
6-0

For establishing this theorem some more assumptions, besides (Al) and (A2),

are necessary. However, the assumptions (Al) and (A2) are the most crucial

ones. It is easy to see, technicalities aside, why Theorem (2) "makes sense".

Notice that

m in i.
= —-• £ Xm+j.+1—Xm.

1=0

m-1

= -L.2lv (««.&#«). C14)
m rz*=o
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where the last equality follows from the definition of [X*] in Eqn. (12). Let us

now use the time-scaling defined in Eqn. (13) and denote t=M.e and dt = m.e.

This along with Eqn. (14) gives

X((t+dt)-X€(t) _ 1 Wrv* t
Tt m k% Xm +k *M+*}*

Hence,

^£-(<) ^"fviXfi* ,£M+k).dt m ks0

Now using the assumption (A2) and Eqn. (12), we can intuitively argue that

V(, )*s on the right hand side are "almost" i.i.d.. Therefore, the set of trajec

tories having the slope approximately <f>'(t) at time t will have probability (up

to logarithmic equivalence)

exp^Ji^ >(*•(*))),

by using Theorem (1). Now arguing that the slope dX'l dt in the interval

(t j +dt ] is almost independent of that in the interval (t +dt * +2uit ], we get

T

exjt-Lfh^WdVdt +o(±))

for the probability (up to logarithmic equivalence) of the set of trajectories hav

ing slope "close" to <f>'(t) over the interval [0,7].

Next, we give a consequence of Theorem (2) that will enable us to estimate

P({S] for SeZ whose boundary satisfies certain smoothness condition.

Corollary (l) (Ventsel-Freidlin) [6] : Let SeZ be such that

inf ll(<f>) I tf>e int(S)} = inf |7ty) / <f> e cl(S)), (15)

then,

lim (-€.logPc{S}) = infl(<f>).

Corollary (1) suggests that

Pe{S}=*Z^ iTi(<f>t)\
k
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*I«p(-I./(04))

^exp^—inf l(<f>)),

where the second approximation follows from Theorem (1) and the last one fol

low from Corollary (1). Using*lowe/ semicontinuity of l(<f>) and the condition

in Eqn. (15), it is not difficult to show that inf I(<f>) is achievable. Let us denote
&S

orgmin I(<f>) by <f>opt. We depict this setup in Figure (5).

Rare Event S and 4>opt.

Figure (5)

Suppose we are interested in the probability of the set S of trajectories

which hit a " rare" set A before hitting 0 given that we start from 0. Assuming

that the condition in Eqn (15) is satisfied, we need to find inf l(<f>). For this,

define

n*)

C(x ) := inf{JH (<f>(t ),0'(f ))dt I <j>(0) =x,0€C, T(<f>)< oo} (16)
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where x = (x(1), • • • ,x(rf)) and v = (v(1), • • • ,v{d)) are vectors in Rd, C denotes

the set of the continuously piecewise differentiable functions <f>: [0,oo) -»Rd and

H($(t )&(t ))=h#t )(<t>'(t)). We denote lx (9) by L(x ,0). Notice that <f>opt is the

trajectory that achieves the infimum for C (0).

The following result gives a recipe for finding <f>opt.

Theorem (3): Assume that C (x) is smooth enough to satisfy

62C ^ Q2C

Define

0(i)(x) =--52-.(x), Ki^rf. (17)
d*(«)

Then, for each x that is on some <f> e S,

L(x,0(x)) = O (18)

and <f>opt is a solution of the following system of differential equations:

d9u<li =- *£_(x,0), 1 **i *d, (19)
dt ax(i)

^ll =_^(x,0), Ki <rf. (20)

Proof : First, we expand C (x) as

C(x ) = inf \H (x ,v ).Ar + C(x +v.& ) + o(\)\
V

= inf{H(x,v)A +C(x)- £v(l).0(()(x).^ + o(*t)),
v i=i

where we have used* the definition of 0 in Eqn. (17). Cancelling C(x) from

both the sides, dividing by t* and letting A/ -* 0, we get

in/{77(x,v)-2>(().0(,)(x)} =0.
i=i

i.e.,

sup[<9,v>-H(x,v)\ =0. (21)
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Using Eqn. (21) and the convex duality property (P4) of Cramer transform,

§ 3.1, we get

£(x,0(x)) = O.

Suppose that the supremum in Eqn. (21) is achieved at v, then by

differentiating, we get

Now using the reciprocity property of V and h\ property (P5) of the Cramer

transform, § 3.1, along <f>optt we get

Observe from Eqn. (18) that

O=-^L(x,0(x))

= W u ,e)+ £ *£_(x JX**iCx) . (23)
o*(o *=id0u) 6*<«)

But, along 0o/tf,

d&u) _ £ ded), n dxu)
., = Z -5: (x ) t

-tjgflKxX^UcjJ), (24)
*=lO*tf) 0yU)

by using Eqn. (22). Now by the assumption regarding smoothness of C(x) and

the definition of theta (x ) in Eqn. (17), we get

-z U ) = — (X ).
0*<*) d*(i)

Using this in Eqn. (24), we have

dt 4=id0u) d*<o

Now using Eqn. (23), along <f>opt, we get



d9n£i =--^_(x,0), 1 <i <<f.
dt ax(i)

Also,

along <f>opn since <£'(*) = v from Eqn. (21). This completes the proof of the

theorem.

Notice that Eqns. (19) and (20), the initial condition x(0) = x0 and the ter

minal condition x (7*) e QA have <f>opt as a solution. To solve for <f>opt sometimes it
is convenient also to use Eqn. (18). This will be illustrated in an example in §
3.4.

Next, we explain the role played by the variable 0. For this, define a new

probability measure F* from Fx as

.rV x « dFxKz)
dF'iz):' MAO,) • &)

where the parameter 0, € Rd. This is called the exponential change of measure

with the parameter 0X.

Suppose we want to select 9X along $opt in such a way that

^VG)8* »"<***>), (26)

where m'(x) denotes the mean of Fx\ Then,

r^'l"*™'"».*.>" •^fer-^>- (27>
Eqns. (26) and (27) indicate that the parameter of the exponential change of
measure that makes the trajectory <f>'opt most likely satisfies

^(O-r^^O^)). (28)

Recalling our notation that L(x,9) = lx(9) and comparing Eqns. (19) and (28),

it is clear that the variable 0 in the system of differential equations (Eqns. (19)

21
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and (20)) represent the parameter for the exponential change of measure

required to achieve the condition in Eqn. (26).

3.3. Quick Simulation Method (Optimal Exponential Change of Measure).

In this section we present the concept of importance sampling, briefly

described in § 1.2, in some more detail. This idea is applied by Cottrell et al. [2]

to slow Markov processes for obtaining speed-ups in simulations. Their tech

nique is called Quick Simulation Method. We will also present a theorem due to

them that will be needed in the next section.

First, we present the idea of change of measure for general Markov chains

that we illustrated by an Ml Ml 1 queue example in § 2.3. Let

\Xn ji = 0.1.2. — } be a discrete time Markov chain and (Q£,P) be the

corresponding probability space. (CI is the collection of sample paths of {Xn)

and P is a probability measure on a o--field Z of (1)

Let S € Z be a rare event, i.e., a := P{S} «1. For the direct Monte Carlo

simulation we have

aR :=l.£l5(«i) (29)
n i=i

as a convergent and unbiased estimator of a. Here u>, 's are the i.i.d. outcomes of

the experiments on (QZ.P). The variance of an is given by

i.(a - a2). (30)
n

As described in § 2.2, we need

nd =y (31)
a

experiments to get an (e,0)-confidence estimator, where y is a positive constant

depending on € and 0.

Alternatively, we may consider a probability measure P' on the measurable

space (fXE) such that P is absolutely continuous with respect to P'. The

Radon-Nikodym derivative (likelihood ratio) L := dPI dP' can be used to obtain
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another convergent and unbiased estimator

«'• =4.Zl*fo»iU(«i) (32)
n i=i

of a. Here a>, are the i.i.d. outcomes of the experiments on (CXZ,P'\ The vari

ance of ctn is given by

I.(fz,2(a>)</7>'(a>)-a2).
n Js

As in Eqn. (31), we need

"c ^7 - (33)

experiments to get an (e ,0)-confidence estimator, where Var'[ } denotes the vari

ance under the measure P'.

A comparison of Eqns. (31) and (33) shows that a'n will be more economi

cal if and only if Var'{a\) < Var {aj, which will be the case if and only if

fL2(<a)dP'M =fL(o))dP(<o) <a. (34)
s s

Obviously, if L (a*) < 1 whenever <a € S then this condition is satisfied.

In the previous section we discussed the Markov chain {Xn*\ e Rd, defined in

Eqn. (12). We now present a theorem due to Cottrell et al. [2] that gives, for

the simulation purpose, the optimality of a measure P*\ obtained by an

exponential change of measure, from P€. Their theorem is presented in [2] for

the case of R1. However, it can be generalized to the caseof Rd.

It is assumed that the mean drift function iKx ) := E{V(Xn',£„ )l X* = x}

is such that the O.D.E., x'(t) = +(x(t)), with x(0) specified, has 0 as a stable

equilibrium point. This is illustrated in Figure(6).

Suppose that we want to estimate, for small € >0, P£ (S), probability of
the event



Sign of if'(x)
positive negative

J t i i t

0
Stable Equilibrium

Point
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Mean Drift Function of {Xne}.

Figure (6)

S := {(D I {Xn() exceeds 1before hitting 0 }

given that X0« =0. Let us define a probability measure P*n as the resultant

measure when Fx* is taken as defined by Eqn. (25), with 9X being the solution of

MX(9X)=1, $x >o. (35)

Under /»«' we have a different Markov chain {*„«'} € Rd, which can be
represented as

where {„ 's are i.i.d. and Fx' is the d.f. of W(x ,{„ ). The probability measure /**
is optimal in the sense made precise by the following theorem due to Cottrell et
al. [2].

Theorem (4) (Cottrell et al.) [2] : Suppose that for the Markov chain
Xne €R\ defined in Eqn. (12), assumptions (Al) and (A2) hold. Then among all
the exponential changes of measure, the transformation P€ -*/»«' is asymptoti
cally optimal in the sense of the variance, i.e., for P*'

lim f LHuXP'Xo),
<-°Js •

where L =dP€l dP*\ is minimum. (Refer to Eqn. (34) to see why this sense of
optimality is meaningful.)
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To end this subsection, we make some observations which are conjectural

for the present. The first conjecture is regarding the transformation P* -»?«'.

We believe that the transformation P« -*P€" is such that it makes L = dP(l dP€'

almost constant (under the measure P€ and say I = 1(e)) on the set S and I <c1.

For examples, see the MI MI 1 example of § 3.4 (particularly Eqn. (6)) and pp.

911 of [2]. This clearly ensures that

£«'{Ul5)2} =*l.P'[S} «P*{S\ =£M(15)2}.

where £«*{ } and E€[ } denote the expectations under the measures P«" and P*

respectively. This.shows why it is more efficient to simulate under P«* (see Eqn.

(34). Hence, if the conditional probability P€(./ 5) is concentrated on a subset

S*' of S then one may select P'* such that it is essentially concentrated on the

set S€\

Next, we point out why we believe that it suffices to make an exponential

change of measure that minimizes the variance of the indicator of S times the

likelihood ratio. More precisely, if we denote by Jk the simulation time of the

experiment * then the expected time for a simulation for the prescribed accu

racy will be E[Jk\jid and E*{Jk )jic under the original and the exponentially

changed measures respectively. Observe from Eqns. (31) and (33) that

_ nc Var*{LAs)
nj~ Var{ls) '

We believe that for exponential changes of measure (up to logarithmic

equivalence)

A*=(*)«,

where k >0 depends on the exponential change of measure. The measure P€*

minimizes k. Furthermore, we believe that

V:=£^>=0(1)
E [Jl T 6

for all the exponential changes of measure. Since we are interested in
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minimizing A.Y, under these conjectures, our assertion, that the exponential

change of measure that minimizes A is optimal, is self-evident for sufficiently

small €. We have observed the validity of these conjectures in our experiments

with Jackson networks. This conjecture was seen to be true for the Ml Ml 1

queue example in § 2.

3.4. Applications and Difficulties.

Consider an open Jackson network of d >0 nodes with infinite buffers. Let

[Xntn = 0,1,2, ••• }e Rd denote the embedded discrete time Markov chain

representing queue-lengths of the nodes at the epochs of the jumps in the net

work (arrivals, departures and transfers), where

Xn = iXnil)tXn(2), • ***Xnid)) € Rd (actually, Xn 6 N"). Let S denote the set of

the realizations of [Xn} that reach the region of the state-space where the total

backlog exceeds N, X(1)+X(2)+... +X(</) >N, before hitting 0,

'(i) ~ *(2) = • • • = *(d) = 0. We want to estimate the probability a := P0[S),
the probability of 5 given that X0 = 0.

We can represent {Xn } as

Xo = Xq»

Xn +1 = Xn +V(Xn ,fc ), n >0, (36)

where V(x ,£n ) denote the r.v. representing the jump from Xn =x. For example,

consider Ml Ml I queues in tandem (see Figure (7)). We assume, for stability,

\ <Hi and X <p2. We also assume, without any loss of generality, that

*+Mi+M2 = 1. For simplicity, we will refer to such a system by a (k,filtfi2)-
network.

Now {Xn } will be a Markov chain in R2 defined by Eqn. (36), where the distri
bution of V(.,£n ) is given as follows.

P\V((0,0).£n)=(l,o)\ = 1,



X<M1 X</x2

Ml Ml 1 Queues in Tandem.

Figure (7)

P{V((0,x(2)),£J =(l,0)} =-^,

P{V((0^(2))i„) = (0,-l)} = M2

k+fi2
, X(2) >0,

P{V((x(1),0),|n) =(1,0)} =T-£—,

P{V((x(1),0)in) = (-l,l)} =
Ml

X+aij
., x(1) >0,

P{V((x(1)^(2))i„) = (l,0)} =X,

P{V((xw,x{2)),£n ) = (-1,1)} = Ml

P{V((x(1),x(2))f^) = (0-l)}=M2. *(i) >0.x(2)>0,

These jump distributions are depicted in Figure (8).
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(37)

Let us return to the discussion of general Jackson networks. It is possible

to represent the embedded Markov chain {X„} in the form of Eqn. (12). For

this define X? = X„ / N. Then,

Xn"+l =Xn^^.V(Xn ,fc )=X?+^.V(N.X»,£n )=X?+irV(X„",£, ). (38)
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'(2)

M2

X+^

M2j

:♦♦

Mi w X

-• X
(1)

Jump Distributions oi Ml Ml 1 Queues in Tandem.

Figure (8)

The last equality follows from the fact that in Jackson networks the distribu

tions of V(x ,£„) and V(cx ,£„) are same for all x and all c > 0. Because of Eqn.

(38), we have an equivalent representation of {Xn } which is in the same form as

Eqn. (12) with € = 1/ N. For the process |Xn"} we are interested in estimating

a = PolS"} is the set of the realizations of {X?} that reach the region of the

state-space where the sum of its coordinates exceeds 1.

Ml Ml 1 Queue : Let us investigate if we can apply the ideas developed in §

3.2 and § 3.3 to an Ml Ml 1. Let X and /x be its arrival rate and service rate

respectively. As usual, we assume X </x and X+/x = 1. For the embedded Mar

kov chain \Xn }, defined in Eqn. (36), the the distribution of V(.,£n ) is now given

by

P{V(0,|„) = 1} = 1

P{V(x,£,) = l}=X = l-P{V(x,£„ ) = -!}, x >0. (39)

We want to estimate a = P0(5), where S now represents the set of realizations

of {X„ } that reach N before hitting 0.
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Observe that the event S considered here is the same as the event that

starting from 1, {X„} reaches N before 0. Hence, the realizations of S can be

assumed to have the same jump distribution

P{V(x ,£n ) = 1) = X = 1 - P{V(x ,£n ) = -XL

everywhere. For {X„ }, note that

Mx(s) = \**+fi.e-'t x >0.

Eqn. (35) which is the same as Eqn. (18) along with the condition <t>opt(T) =1,
gives

9X =log(ii), x >0. (40)

Eqn. (20) gives

*V =M~X (41)

For the jump distribution of Eqn. (39), the example (El) of § 3.1 (Eqn. (10)),
we have

h«t )(4>'(t)) = 0*-x).iog(ii), t >o.

Now we can use Corollary (1), § 3.2, to evaluate P0{S}. Noting that, for <f>opt
defined in Eqn. (41), T = 1/ 0-t-X), we get

This gives (up to logarithmic equivalence)

PAS] *=(A) .

Observe that this matches well with the exact expression for P0{S] given by
Eqn. (1).

Also observe that 04 given by Eqn. (40) gives the exponential change of

measure (see Eqn. (25)) that corresponds to the Ml Ml 1 queue with arrival
rate fi and service rate X (see Figure (4)).
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From the discussion in § 3.3, It follows that, asiV -»«^ the variance of the

estimator a'n is minimum among all exponential changes of measure. It is not

difficult to see that, for an Ml Ml 1 queue {Xj, {X„,(e)} is obtained by an

exponential change of measure with the parameter 0 if and only if {X„"(e>} is a

Markov chain corresponding to an MI MI 1 queue with some X(0) and pi(0) as

its arrival rate and service rate'respectively. Therefore, if we try to estimate

P0{S}, as N -»«\ by running an Ml Ml 1 queue other than that shown in Figure

(4), then we will have a larger variance. Table (4) shows that even for "small"

Af, the minimum variance (empirically obtained) is achieved by running an

Ml Ml 1 queue that corresponds to the interchange of X and fx (see Figure (4)).

X = 03 m = 0.7 N = 15

a = 4.030X10"*

# of Experiments = 100

#of Cycles (n) = 300

X a 0.2 ft ts 0.8 N = 8

. a = 4.578X10"s
# of Experiments = 100

# of Cycles (n) = 500

x(e)= 1.0 -fde) Empirical Std. Dev. (cr) x(0)= ijo- fi(e) Empirics! Std. Dev. (cr)

0.60 1.518X10"7 0.70 7.036 XI0-7

0.62 1.050x10"7 0.72 6.458 xl0-7

0.64 9.039X10"1 0.74 5.402X10~7

0.66 6.301 XI0"1 0.76 4.633 XlO"7

0.68 6.399X10-1 0.78 3.253X10-7

0.70 5.355X10-1 0.80 3.212X10-7

0.72 6.281 XI 0_t 0.82 3.646X10"7

0.74 5.387x10"1 0.84 3348 X10"7

0.76 6327x1O^ 0.86 4.272x10"7

0.78 1307X10-7 0.88 6.952X10-7

Empirical Standard Deviation for an Ml Ml 1 Queue

as a Function of X(0).

Table (4)
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Let us point out that to get <f>opt and hence the optimal change of measure it

is not necessary to go through the derivation of the general method that led us

to Eqns. (19) and (20). Recall from Corollary (1) that we need to minimize

r

o

First observe that in this example h#, )(0'(r)) = h(<f>'(t)), since the jump distri

butions are identical. Since h (.) is convex (see the property (PI) of the Cramer

transform, § 3.1) and <f>(0) = 0 and <f>(T) = 1,

i./Wr ))£/*(!).

So, we find that

Now, here h is given by the example (El) of § 3.1 (Eqn. (10)). The minimiza

tion on the right hand side gives us the same result as before, namely,

This also gives that under the optimal exponential change of measure the drift

should be fi—\t which again corresponds to the interchange of X and ll (see Fig

ure (4)).

Ml Ml 1 Queues in Tandem : We consider a (X,Mi,^-network defined in

the beginningof this section. (See Figures (7) and (8) and Eqn. (37).) This sim

ple Jackson network illustrates the difficulty in applying the results of the pre

vious two sections to Jackson networks.

Observe from Figure (10) that the jump distributions change abruptly near

x(1)-axis (second queue empty) and x(2)-axis (first queue empty) if we move

from these axes to P, the interior region (both the queues non-empty). This

violates the smoothness assumption (A2) of § 3.2. Hence, the results of the pre

vious two sections are not applicable here.
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As a remedy to this difficulty, we ma y consider a process which has jump

distributions modified near the boundaries (x(iraxis and x(2)-axis) such that

over a thin layer they make smooth transitions. We call such a construction a

boundary layer construction. Intuitively, by modifying jump distributions a

little, it is plausible that P0[S] (defined in the beginning of this subsection) does

not change much. For the scaled process {X*} this construction is illustrated in

Figure (9).

X(2)A

t.ri

\ /

Smooth Change in NN
the Boundary Layers \

*
Boundary Layer Construction.

Figure (9)
(D

If such a construction were indeed valid, we could use Eqns. (18), (19) and

(20) to find 0^ and P0iS) by the Quick Simulation Method. However, we find

this numerical approach rather formidable because of the need to solve a system

of differential equations with mixed initial and terminal conditions. Hence, we

will not pursue further this approach here.
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Next, we show that the boundaries in this example are indeed important.

Suppose we assume that the jump distributions are identical everywhere to that

of the interior region P. Then, from Eqns. (19) and (20), we see that <f>'(t) is

constant. Hence, <f>opt will be one of the rays through P (see Figure (10)).

*(2)

<t>0pt* Neglecting the Boundaries.

Figure (10)

(1)

From Eqn. (16) we get C(x) = 0 if x = (x(1),x(2)) € QA, where

$A := {x = (x(1),X(2)) € R2 / X(d >0, x(2) ^0 and X(d+X(2) = l}. Hence,

C((x(1),l-x(1))) = 0, 0<x(1)<l. Therefore, for x € QA,

0=——((x(1),l-x(1))) =_2£_((x(1),l-x(1))) - -|—(U(1),l-x(1))).
«x(l) 0*(1) 0*(2)

So, it follows that, for x e QA ,

^lE- =^£_ (42)
0*(1) 0*(2)

From Eqn. (19), we see that 9, the parameter for the exponential change of
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measure, is constant along 6^,. Then, from Eqns. (17) and*(42), we have

0(i) = * (2) abm-g <t>opf

In the present case

lx(s) = log(X^,(,)+Ati.e",(1>+,<2)+M2.e",(2))

Solving lx(9) = 0 (see Eqn. (18)), with the constraint that 0(1) = 9{2) ( ^0), we

get

0<i> =0(2) =log(^O.

The exponential change of measure with the parameter 0 can be seen to give the

0*2.Mi A)-network (see Figure (11)).

PWl

Change of Measure, Neglecting the Boundaries.

Figure (11)

It is easy to verify by simulations that above is not an optimal exponential

change of measure for a (X,/iltAi2)-network. For example, for the

(X = 0.20,^1 = 0.30,^2 = 0.50) -network and N = 20, o = P0{S) is found by solv

ing the first step equations numerically to be 3.759X10"4. If we simulate the

(0.50,0.30,0.20)-network, as suggested by the above discussion (see Figure (11)),

we get a100o = 8.388X10"5, while simulating the (0.30,0.20,0.50)-network
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0.20 0.30 0.50
N=20, a*3.759x10-4

0.50 0.30 0.20

3iooo c8388 *W

0.30 0.20 0.50

aTooo83-595*10"4

Comparison of Changes of Measure.

Figure (12)

we get arooo = 3.595X10"4. This example is illustrated in Figure (12). Note
that the (0.30,0.20,0.50)-network is also obtained from the original net

work by an exponential change of measure. In the next section we will

present a heuristic that will justify the optimality of this change of meas
ure.

4. Simulation of Events of Excessive Backlog - A Heuristic Approach.

The purpose of this section is to report the observations we have made

rather than to claim new results. Our hope is that the heuristic explanations

and observations presented here will motivate more research in this area. Some

limiting cases for our heuristic are reported in § 4.4.

4.1. Heuristic of Borovkov, Ruget [3] etc. for a Gil Gl 1 Queue and its

Application to Simulations.

Consider a Gil GI 1 Queue shown in Figure (13). Let G and F denote the
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GlIG/l Queue.

Figure (13)

interarrival and service time d.f.'s respectively. Let MD and /ic denote the

Laplace and Cramer transforms of a d.f. D. Let 1/ X and 1/ /^denote the means

of G and P respectively. For stability, we assume 11 X > 11 /*. Let P denote

the measure induced by the stochastic process describing the queue. We want to

calculate o, the probability of the backlog exceeding N in a cycle, i.e., the proba

bility of hitting N before returning to 0 given that the system starts empty.

Let S denote the event that the system reaches N before hitting 0. Then,

a = PolS).

Let X? denote the ith i.i.d. copy of a random variable distributed with the

d.f. D. Then, we let Xf denote the ith interarrival time and Xf denote the ith

virtual service time. Consider the subset of S where the system reaches Af at

time T and the average interarrival and the virtual service times are 1/ X' and

1/ n' respectively with 1/ X* <1/ fi'. Now, by Cramer's Theorem, Theorem (1),

(up to logarithmic equivalence)

XG + • • • +XG
P{X? +•••+Xf. r **T\ =P{ xitp VJ" =*ir} ^expC-VXAeCi)).

* •* A .1 A A

Similarly, (up to logarithmic equivalence)

P{Xf+••• +XF =r} *stxp(-ti'.TJiF(JL)).
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Since 1/ X' < 1/ /*\ for large 7\ we assume that most of the virtual services were

the actual services. Then, T ^Nl (A'—/*'). Since, the interarrival times and the

virtual service times are independent, (up to logarithmic equivalence)

a=P0{S) *£ £ exp{-T.(\'.hc(±r)+ti'JiF(lr))}
T .. . A /*

JV a r.(v-M')

= Z ezP{-1/_.(A^G(ir)+M'.^(-L))}.

Hence, for large N, (up to logarithmic equivalence)

a*=exp{-AT. inf [_l_r.(X'Jic(ir)+/x^(ir))]}. (43)
x*>m>o X—^ X /*

To obtain the exponent, we differentiate

T7!-T.(A\a0 (* h^mA-))
A—/x A ll

with respect to A' and ll' and equate the results to 0. This gives

Mi)+MA-) =(i-^'cti) =(A—i-UX-V). (44)A /.t A /i A ii \ ii

Suppose that A* and ll achieve the infimum. Then, from Eqn. (2.44),

-h'c(X) =h'F(\) = 9' (say). (45)
A ii

We can argue from the convexity of ha and hF that 9' >0. Also, from Eqn.

(44), we have

0\ * +/fc ( * )=9\X~hF(-i-). (46)
A A ll ll

From the convex duality property (P4) of the Cramer transform (see § 3.1) and

Eqns. (45) and (46), we have

logMG (-9') =-9 \ *-hc (*)
A A

and
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logMF(9m) = 9\X-hF(X). (47)

Therefore,

logMc (-0 •) = -logMF(9•), (48 )

i.e., the conditions for determining 9* are

0' >0 and MF(9*)MG(-9') = 1. (49)

From Eqns. (43) and (47), for large N, we also have (up to logarithmic

equivalence)

a *ztxp(-NdogMF(9')). (50)

Let G* denote the measure obtained by an exponential change of measure

from G such that its mean is 1/ A", i.e., the parameter for the exponential change

of measure, 9*Ql satisfies

dG\z) =L^£L
MC(9C)

and

««.*1 _ Jz*c*dG(z) _ d

7s mc(9c) -Tnr10^*^
Using Eqn. (45) and the property of reciprocity of the derivatives of the Cramer

and the log-Laplace transforms (property K5) of the Cramer transform, § 3.1),

we get

Similarly, let F* denote the measure obtained by an exponential change of meas

ure from F such that its mean is 1/ ll. Then, the required parameter for the

exponential change of measure, 9F% can be seen to satisfy

9F = e\
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Now define a transformed Gil Gl 1 queue with G* and F* as its interar

rival time and service time d.f/s respectively. Let P* denote the measure

induced by the transformed stochastic process.

The definitions of X*, ll and P" suggest that, for large N,

d*«l

almost everywhere (under measure P) on the event 5. Then, Eqn. (34) indicates

that it will be faster to estimate a under the measure P* than under P.

Ml Ml 1 Example : Let X and ll (0 <X <ll) denote arrival and service

rates. If D is the exponential d.f. with the mean 1/ v then we denote by Mv

and h „ its Laplace and Cramer transforms respectively. Recall that

Mv(s) = , s. <v,
v—s

= oc^ otherwise.

Eqn. (49) gives

e*>0 and *.*. =!. (51)
X+0 LL—B

It is easily checked that the solution of Eqn. (51) is

e* = M-x.

Then, Eqn. (50) gives (up to logarithmic equivalence)

a = (—) .
V-

Observe that this matches well with the exact expression for a given by Eqn.

(1).

Also, calculations of G" and F\ as defined above, show that the

transformed Ml Ml 1 queue for the purpose of estimating a by simulations is

the one that corresponds to the interchange of X and ll. Recall that we had

obtained the same exponential change of measure by applying Large Deviation

theory in § 3.4.
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To end this subsection, we point out that we can have'similar heuristic as

above for the embedded Markov chain {Xn ji = 1,2, • • •} of an Ml Ml 1 queue

defined at the epochs of the arrivals and departures. As usual, we assume

X+/Z = 1. We can couple paths of any Ml Ml 1 queue to those which have

either an arrival or a virtual departure every unit of time and have probabilities

X and ll respectively. For the embedded Markov chain, consider the paths for

which the event S occurs in T transitions (arrivals and virtual departures) and

X' and ll proportions of arrivals and virtual departures respectively. Now we

can have a heuristic similar to the one that led us to Eqn. (43) where now we

can restrict our minimization to the set of proportions X' and ll' such that

X' > ll'% i.e., \'+/jl' = 1 and X' > ll' ^ 0. Therefore, for simulating the embedded

Markov chain to estimate a, we should use the embedded Markov chain of the

MI MI 1 queue for which X and ll have been interchanged.

4.2. Extension to Simple Jackson Networks (Ml MI 1 Queues in Tandem

and in Parallel).

As in § 3.4, for an open Jackson network of d >0 nodes with infinite

buffers, let [Xnji= 0,1,2, ♦ • • }eRd denote the embedded discrete time Markov

chain representing queue-lengths of the nodes at the epochs of the jumps in the

network (arrivals, departures and transfers). We want to estimate a =P0{S],

where S is the set of the realizations of \X„} that reach the region of the state-

space where the total backlog exceeds N, before hitting 0.

Ml Ml 1 Queues in Tandem : For the embedded Markov chain {Xn }cR2,

Eqn. (37) gives the jump distributions. Recall that we have uniformized the

Markov chain, i.e.,X+Mi+M2 = 1.

Consider the paths of S which require T transitions and have X', ii\ and ll'2

proportions for the arrivals, virtual departures from the first queue and that

from the second queue respectively. Continuing the same line of heuristic as in

§ 4.1, we can write (up to logarithmic equivalence)

* * L tXp{-T(\'4L'l,Ll-2).(\'Jlk(^r)+fL'lJl (4-)+/*V^2(4-))K
X' >o,m\ >o,m3 >o

V+^',+m', = 1
V >m\ wV >/i*2
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where T(\',LL'ltLL'2) is the total number of transitions (which equals the number

of time units due to the uniformization) required for the realizations belonging

to S with X*. il\ and ll'2 proportions of arrivals and virtual services from the

queues respectively.

It can be heuristically argued that, for large N and when X* >ll\ or X* >ll'2,

T(X',iL'lifL'2) *=N.R(Wll'^ll'z), where

R =
1/ (X'-ll'J, if X' >il\ and ll\ ^ll'2,
1/ (\'—LL'2)t otherwise.

Therefore, for large N, (up to logarithmic equivalence)
<»

a =expl-W. inf [R (X'tLL\,ii'2).(X'Jik(±.)+
k' >0tM'l >0,n'2 >0 A

V+^'j+p'j = 1
k' >M'lork' >m'j

M'i^p1(-i-)+M*2^^(-i-))]}. (52)

Numerical minimization gives X", ll\ and ll2 that correspond to the inter

change of X with the smallest of llx and ll2. (For the limiting case where

Mi = M2. § 4.4.) As explained for the case of an Ml Ml 1 queue in § 4.1, to esti

mate a, it will be faster to simulate the embedded Markov chain of the

(xVi^2*)-network.

Table (5) lists some illustrations of simulation speed-ups when simulated

under the transformed system. It also shows the time required for the direct

computation of a by solving the first step equations, the time required for a

simulation and the corresponding number of calls to the random number gen

erator (RNG).

Table (6) gives the empirical standard deviations, means and coefficients of

variation of the estimates obtained by the change of measure for the same exam

ples as in Table (5). All the simulations were done on a VAX-750 machine and

the first step equations were solved using the IMSL routine LEQT2F.
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Method Direct Simulation Quick Simulation

Example-I

X = 0.05 Mi = 0.10 M2 = 0.85 N = 15

a = 3.459X10"5 CPU Time = 61.1Sec.

X* = 0.10 Mi* = 0.05 Ma = 0.85

# of Cycles (n) 10000 20000 40000 200 500 1000

«.(««•) 0.0 0.0 0.0 3.338X10-* 3.577x10-5 3.448xl0_s

CPU Time ll.OSec. 33.3Sec. 69.9Sec. l.SSec. 5.6Sec. 10.4Sec.

Calls to RNG 52769 109573 216395 5512 13595 26303

Example-I I

X = 0.10 Mi = 0.50 Ma = 0-40 N = 13

a = 2.104X10"7 C/V Time = 29.6Sec.

X* = 0.40 Mi = 0.50 Ma = 0.10

# of Cycles (n) 20000 30000 50000 700 1000 1500

«.<«••> 0.0 0.0 0.0 1.979X10-7 2.159X10"7 1.594X10"7

CPU Time 25.4Sec. 38.1Sec. 67.3&C. 7.SSec. 11.7&C. 16.95ec.

Calls to RNG 79816 120270 200917 .18920 27529 40763

Example-III

X « 0.20 mi = 0.30 Ma = 0-50 A> ~ 20

a o 3.759X10"4 Crt/ 7tm* « 310.3Sec.

X* = 0.30 mi = 0.20 Ma = 0.50

# of Cycles (n) 5000 10000 20000 300 500 1000

«.(«:> 2.000X10-4 1.000XI0"4 7.500X10"4 3.848X10-4 3.734x10^* 3.595X10""*

CPU Time 24.6Sec. 48.1Sec. 92.3Sec. lASec. 12.2Sec. 23.0Sec.

Calls to RNG 72234 144913 286539 18006 29854 56489

Simulations for Ml Ml 1 Queues in Tandem.

Table (5)



Example-I
X = 0.05 Mi = 0.10 ll2 = 0.85 N = 15

a = 3.459X10"5 # of Experiments = 20
X' = 0.10 mi = 0.05 ll\ = 0.85

# of Cycles (n) 500 1000

Empirical Mean (m) 3.493X10"5 3.385X10"5

Empirical Std. Dev. (cr) 8.971 XI0-7 7.985X10"7

(cr/ m)xl00 % 2.568 % 2.359 %

Example-II
X = 0.10 Mi = 0.50 ll2 = 0.40 N = 13

a = 2.104X10"7 #o/ Experiments = 20 *
X" = 0.40 ll{ = 0.50 ll2 = 0.10

# of Cycles (n) 700 1500

Empirical Mean (m) 2.223X10"7 2.116X10"7

Empirical Std. Dev. (cr) 2.320X10"8 1.610X10"8

(al m)xl00 % 10.437 % 7.608 %

Example-Hi
X = 0.20 Mi = 0.30 il2 = 0.50 N = 20

a = 3.759X10"4 # o/ Experiments = 20
X* = 0.30 Mi = 0.20 ll2 = 0.50

# of Cycles (n) 500 1000

Empirical Mean (in) 3.765X10"4 3.805X10"4

Empirical Std. Dev. (cr) 2.481X10"5 2.095X10"5

(al m)xl00 % 6.588 % 5.500%

Empirical Standard Deviation for Ml Mil Queues in Tandem.

Table (6)
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Ml Ml 1 Queues in Parallel : Consider two Ml MI 1 queues in parallel

with X; and iiiti = 1,2, as their arrival and service rates respectively. We

assume that X, <M/.» = 1»2, and X1+M1+X2+M2 = 1- We denote such a system by

(XltMi I X2,M2)-network.

As for Ml Ml 1 queues in tandem, we can argue heuristically that (up to

logarithmic equivalence), for large N,



o^exp{-tf. inf [i?(X'1,M,i,X,2.M,2).(ViJiXl(1^-)+
k\ >0,M\ >0,V2 >0 '̂2 >0 A1

X'|+M'i+X'2+M'a = i
k\ >m'\ ork'2 >M'a

44

M,l^M1(-^-)+^2^X2(1i-)+M,2^Ma(-^-^^ ^1 Ml X 2 2 M 2

where (when X'i >m'i or X'2 >M^)

* =

1/ (X'i-M'iX if X'i >M'i and X'2 ^m*

1/ ((X'1-m,i)+(X,2-m,2)). if X*! >m'i and X'2 >m'2.

1/ (X'2—M2)* otherwise.

Numerical minimization gives Xj,MiA2* anc^ M2 that correspond to the inter

change of Xj and ll, with the larger traffic intensity X, / ^. (For the limiting

case where XJ mi = **/ M2. see § 4.4.) Hence, for estimating a, we simulate the

embedded Markov chain corresponding to the (X[,mi I X2,M2)-network.

Table (7) lists some illustrations of simulation speed-ups when simulated

under the transformed system. It also shows the time required for the direct

computation of a by solving the first step equations, the time required for a

simulation and the corresponding number of calls to the random number gen

erator (RNG).

Table (8) gives the empirical standard deviations, means and coefficients of

variation of the estimates obtained by the change of measure for the same exam

ples as in Table (7). All the simulations were done on a VAX-750 machine and

the first step equations were solved using the IMSL routine LEQT2F.
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Method Direct Simulation Quick Simulation

Example-I

Xj = 0.10 Mi = 0.20 X2 = 0.30 Ma = 0.40 N = 23

a = 1.213X10-5 CPU Time = 624.4Sec.

Xi=0.10 mi =0.20 Xj = 0.40 Ma' - 030

# of Cycles (n) 10000 20000 30000 2000 2500 3000

. «n(0 l.OOOxlO-3 1.350X10-3 1.267X10-* 1.228X10"3 1.188X10"3 1.120X10-3

CPU Time 57.0S«c. 120.4Sec. 173.9Sec. 41.6Sec. 52.5Sec. 60.ASec.

Calls to RNG 160278 321031 482256 99576 127937 145472

Example-II

Xi = 0.10 mi = 0.40 X2 = 0.15 fjL2 = 0.35 N = 18

a = 6.935X10'7 CPU Time = 158.1Sec.

Xj = 0.10 mi = 0.40 Xj = 0.35 Ma* = 0.15

# of Cycles (n) 10000 20000 50000 3000 5000 6000

«=(«»> 0.0 0.0 0.0 7.016X10"7 6.264X10"7 6.483X10"7

CPU Time 16.1Sec: 36.0Sec. 84.1Sec. A2.3Sec. 68.0Sec. 80.75ec.

Calls to RNG 46758 94602 236618 93984 150190 179600

Example-III

Xt = 0.08 Mi = 0.12 X3 = 0.20 Ma = 0.60 N • 23

a = 4.635X10-5 CFU Time « 635.0Sec.

X/ = 0.12 mi = 0.08 Xj = 0.20 Ma-0.60

# of Cycles (n) 10000 20000 50000 3000 4000 5000

aD (a*) 0.0 5.000 XI 0"s 0.0 4.725x10"5 4.435X10"5 4.725X10~S

CPU Time 31.2Sec. 66.9Sec. 154.35ec. 68.1 Sec. 85.0Sec. 110.9Sec.

Calls to RNG 87180 186083 417832 153426 202164 262938

Simulations for Ml Ml 1 Queues in Parallel.

Table (7)



Example-I

Xj = 0.10 Mi = 0.20 X2 = 0.30 M2 = 0-40 N = 23
a = 1.213X10"3 # of Experiments = 20
Xj = 0.10 mi = 0.20 X2 = 0.40 M2" = 0.30

# of Cycles (n) 2500 3000

Empirical Mean (m) -31.193x10 1.250X10-3

Empirical Std. Dev. (cr) 9.634X10-5 7.571X10"5

(al m)xl00 % 8.072 % 7.571 %

Example-II
Xl = 0.10 Mi = 0.40 X2 = 0.15 M2 = 0.35 N = 18

a = 6.935X10"7 # of Experiments = 20
Xr = 0.10 Mi = 0-40 X2 = 0.35 M2" = 0.15

# of Cycles (n) 5000 6000

Empirical Mean (m) -76.905x10 6.992X10"7

Empirical Std. Dev. (cr) 6.793X10"8 5.028X10"*8

(al m)xi00 % 9.839 % 7.191 %

Example-m
Xx = 0.08 Mi = 0.12 X2 = 0.20 M2 = 0.60 N = 23

a = 4.635X10"5 # of Experiments = 20
X[ = 0.12 Mi = 0.08 X2 = 0.20 M2" = 0.60

# of Cycles (n) 3000 5000

Empirical Mean (m) 4.471X10"5 4.623X10"5

Empirical Std. Dev. (cr) 2.998X10"6 2.004X10-6

(al m)xl00 % 6.705 % 4.334 %

Empirical Standard Deviation Tot Ml Ml 1 Queues in Parallel.

Table (8)
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4,3. Extension to Networks with Routing.

In § 4.2, we extended our heuristic to Ml Ml 1 queues in tandem and in

Parallel. In this subsection we will extend it further to networks where proba

bilistic routing may be present. By doing so. we will have extended the heuris

tic to arbitrary open Jackson networks.

For this purpose, we need the following theorem due to Sanov [4].

Theorem (5) (Sanov) [4] : Let Z,, i > 1, be random variables whose possi

ble values are «,, •••,an with plt'--,p„ as respective probabilities. For
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N >1, define mt(N) :- # of Zk % 1 ^k £Nt that are equal to a,. Define the

relative frequency

m,OV)
Vi :=

N
-, 1 ^i <n.

Let qlt • • •, qn be real numbers satisfying qt ^0,1 <j <n and qx+ • • • +gn = i.
Then,

^•^••log'P{,,'l(iV)"?l1 <«.-•'.'".Civ)-*, I<€}=-jr(q,p)+e(€),
where

*(q,p) = Z?«.log(~)
i=i ^i

and the term e(e) is 0(€.log(l/ e). (If 9i >0, 1 ^i <n, then Ote.logU/ e) can
be replaced by 0(e).)

Above theorem suggests that (up to logarithmic equivalence)

Pim^N) ^JV, •• • sn»(N) *=?„ JV} ^exp(-N.K(q#)).

Now consider the network shown in Figure (14).

X</i1 X(1-P)</i2

Example of a Network with Routing.

Figure (14)
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For stability, we assume that X <mi and X.(l-p) <il2. We also assume,

without any loss of generality, that X+M1+M2 = !• We consider the embedded

Markov chain [Xn}. See the beginning of § 4.2 for the description of the prob

lem.

As in the cases of MI Ml 1 queues in tandem and in parallel, consider the

paths of S which require T transitions, have X',m'i» aid M'2 proportions for the

arrivals, virtual departures from the first queue and that from the second queue

respectively and have p' and 1—p' proportions of customers routed out of the

network and to the second queue respectively from the outout of the first queue.

Then, as in the last subsection, we can argue heuristically that, for large AT, (up

to logarithmic equivalence)

a ssexp{-JV. inf [R(X\n,1,fJ.'2,p').(X'.hk(±-)+
k' >Otti'i >0t/i'2 >0,0 </>' <1

X'+^+m'j » 1

k' >m*i or V.(l-p') >ft'

M',7i Ml( 4-0+MVA „,(4-)+*(p\p))]l. (54 )
Mi y-2

where

*(p\p) =/>'.log(^)+(l-/>').log(l-^0
P 1—/>

and (when X* >m'i or X'.(l-/>*) >m'2)

R =

1/ (X'-m'i). if X* >m'i and ii^Xl-p') <m'2.
1/ ((X'-LL'O+bL^.tt-p'y-LL'J), if X' >m'i and fi'^l-p') >M*2.

1/ ((X*.(!-/>'>-ll'2), otherwise.

Numerical minimization gives us X*, mi. M2" and p* as the parameters of the

network obtained by an optimal exponential change of measure. Examples

show that the node with higher traffic intensity blows up while the other one

remains stable. The limiting case occurs when the traffic intensities are equal

(see § 4.4).
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Table (9) lists some illustrations of simulation speed-ups when simulated

under the transformed system. It also shows the time required for the direct

computation of a by solving the first step equations, the time required for a

simulation and the corresponding number of calls to the random number gen

erator (RNG).

Table (10) gives the empirical standard deviations, means and coefficients

of variation of the estimates obtained by the change of measure for the same

examples as in Table (9). All the simulations were done on a VAX-750

machine and the first step equations were solved using the IMSL routine

LEQT2F.
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Method Direct Simulation Quick Simulation

Example-I

X • 0.20 Mi = 0.30 Ma = 0.50 p =» 0.10 A = 20

a o 3.269X10-* C/V Time = 288.8&C.

X* = 0.30 mi = 0.20 Ma = 0.50 p* a 0.10

# of Cycles (n) 5000 10000 15000 1000 1500 2000

«acO 0.0 2.000x10-* 2.667X10-4 3.097X10"* 3.479X10-* 3.272 XI0-*

CPU Time 28.6&C. 60.1Sec. 79.4Sec. 25.85ec. 39.3&C. 53.0Sec.

Calls to RNG 84434 170263 245106 67941 106382 138763

Example-U

X = 0.20 mi = 0.60 Ma = 0.20 p = 0.50 N = 20

a = 2.349X10-6 C/17 7£m« = 281.7&C.

X* = 0.30 mi = 0.60 Ma' = 0.10 p* = 0.33

# of Cycles (n) 5000 10000 20000 500 1000 1500

«.<«:> 0.0 0.0 0.0 2.441X10-6 2.447X10-* 2.363 XI0-*

CPU Time 15.7Sec. 31.3Sec. 6i.4Sec. 14.4Sec. 31.iSec. 45.05ec.

Calls to RNG 45873 91234 193429 37768 80186 119749

Example-III

X = 0.10 mi = 0.70 Ma s 0.20 p • 0.20 # = 20

a = 2.390X10'1 CPU Time = 295.0Sec.

X* = 0.22 Mi = 0.70 lk\ = 0.08 p* = 0.09

# of Cycles (n) 10000 30000 50000 1000 2000 5000

«B (a •) 0.0 0.0 0.0 2.364X10-8 2.595X10"1 2.425 XI 0~f

CPU Time 20.7Sec. 60.3Sec. 101.iSec. 25.25ec. 57.2Sec. 79.3Sec.

Calls to RNG 63703 193930 319010 68535 141488 210525

Example of a Network with Routing (see Figure (14)).

Table (9)



Example-I
X = 0.20 llx = 0.30 ll2 = 0.50 p = 0.10 N = 20

a = 3.269X10"4 # o/ Experiments = 20
X* = 0.30 Mi = 0.20 ll\ = 0.50 />* = 0.10

# of Cycles (n) 1500 2000

Empirical Mean (m) 3.194X10™4 3.255X10"4

Empirical Std. Dev. (a) 1.370X10"5 1.011X10"5

(al m)xl00 % 4.288 % 3.107 %

Example-II
X = 0.20 Mi = 0.60 ll2 = 0.20 p = 0.50 N = 13

a = 2.349X10""6 # o/ Experiments = 20
X" = 0.30 ll[ = 0.60 M2 = 0.10 p* = 0.33

# of Cycles (n) 1000 1500

Empirical Mean (m) 2.366X10-6 2.333X10"*6

Empirical Std. Dev. (a) 1.485X10"7 1.294X10-7

(al m)xi00 % 6.278 % 5^546 %

Example-m
X = 0.10 llx = 0.70 ll2 = 0.20 p = 0.20 N = 20

a'= 2.390X10-8 # o/ Experiments = 20
X" = 0.22 ill = 0.70 M2" = 0.08 />* = 0.09

# of Cycles (n) 2000 3000

Empirical Mean (m) 2.405X10"8 2.390X10~8

Empirical Std. Dev. (or) 5.110X10"10 4.357X10-10

(al m)xi00 % 2.125 % 1.823 %

Empirical Standard Deviation for the Examples of Table (9).

Table (10)

4.4. Some Observations.

(I) On Ml Ml 1 Queues in Tandem :
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(a) If the set of arguments for the minimization in Eqn. (52) is not unique, i.e.,
if there are more than one set of parameters (XV1V2) then, even for large #, it

is not possible to have a single most dominant "tube" of paths in S. This case

occurs when llx = n2. For example, for (X = 0.20,ah = 0.40tiL2 = 0.40)-network,

we get (0.40,0.40,0.20) and (0.40,0.20,0.40) as two sets of optimal parameters. In
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this limiting case the speed-up due to the change of measure is less than that for

the examples shown in Table (5) (at least for the "small" N's that were feasible

for us to consider). e.g. for N = 20, a = 1.812X10"5. After simulating

(0.40,0.20,0.40)-network for 20000 cycles we obtained a* = 1.764X10"5 as an

estimate. Our estimates had intolerable errors for less number of cycles. In

summary, if mi = ll2 then we have observed speed-ups as compared to the direct

simulations but they are less than that for the examples of Table (5). Further

more, if mi and M2 are flot much apart then we need larger N's to isolate the

dominant "tube" of S. In this case, we may not get very reliable estimates for

small N 's without running the simulations for relatively more (as compared to

the numbers in Table (5)) number of cycles under the changed measure.

(b) It follows from the result of Weber [7] that (X,Mi,M2)-network and

(X,M2»Mi)-network have identical a's for all N. For sufficiently large N, we have

observed that it may be better to start with (Xji^nJ-network with mi ^M2-

Then the corresponding (X\mi,M2^network as given by our heuristic will be the

interchange of X with ii2. For example, for (X = 0.10,mi = 0.50,^2 - 0.40)-

network a = 1.327X10"14 for N = 25. A simulation of (0.40,0.50,0.10)-network

gives 1.265 xl0"14 after 20000 cycles while a simulation of (0.40,0.10,0.50)-

network gives 1.114x10~14 after 40000 cycles.

(II) OnM/M/l Queues in Parallel:

As in the previous observation, we have the limiting case when the set of argu

ments for the minimization in Eqn. (53) is not unique. In this case, it is not

clear which one is the optimal set of arguments. For example, the

(Xi = 0.20,Mi = 0.30 I X2 = 0.20,^2 = 0.30)-network has three sets of minimizing

arguments, namely, (0.30,0.20 I 0.20,0.30), (0.30,0.20 I 0.30,0.20) and

(0.20,0.30 I 0.30,0.20). For N = 25, a = 4.156xi0~4 After 20000 cycles, these net

works gave 3.337X10"4, 3.855xl0~4 and 3.100X10"4 respectively. It seems to us

that in this limiting case, it might be faster to simulate the network where for

both the queues arrival and service rates have been interchanged. This
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observation also suggests that if the traffic intensities of the two queues are not

much apart then we will require larger N's to single out the dominant "tube" of

paths of S.

(HI) On the Network shown in Figure (14):

If the traffic intensities of the two queues are not much apart the we need larger

N 's for our method of simulation to be effective.

4.5. Extension to Networks of Gl/G/1 Queues.

In this subsection, we extend the heuristic of the previous four subsections

to networks of Gil Gl 1 queues. Observe that for estimating a, we no longer

have an embedded Markov chain to work with. Now we have to simulate the

network in real time, i.e., by generating various random times (service times and

interarrival times).

Consider a general open network of Gil Gl 1 queues shown in Figure (15).

Suppose there are d >0 nodes. Let 1/ Xit 1 <i ^d and 1/ Mi. 1 ^* ^d

denote the means of Gt, the interarrival time d.f. of the external input process

to the node i and Fk, the service time d.f. at the node i. Let pt) denote the pro

bability of routing from the node » to the node j. By ph we denote the proba

bility of leaving the network after the service completion at the node i.

Consider the paths of S which require T time units to have the backlog

build up to AT, have 1/ X', and 1/ m\ average interarrival times and virtual ser

vice times respectively and have F = {p'y) as the apparent routing probabilities.

Let X' and pC denote the d-dimensional vectors {X\} and {m\} respectively. Let

y = {y'i\ denote the effective rate for this paths which we can find approxi

mately (because ll\'s are the virtual service rates) by solving the "flow balance

equations"

y'i = X\ +Z min(y'j ji'j ).p 'Jit 1 <i <d. (55 )
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Network of Gil Gl 1 Queues.

Figure (15)

As in the previous subsections, we can argue heuristically to get the follow

ing relationship between T, y' and ii'.

T **N.R,

where

R =

Z(yi-M'i).i{y, >mM

Finally, the same line of heuristic gives (up to logarithmic equivalence)

«= Z exp{-AUy(X>\P)},
k\n'.r

where

H(\\it'F) =R.ZX'i JiAl^r-)+Zf*'>Jls (-^)+Zmin(yi,M,J).A'(p,1,pi)
»=i Xi i=l ' Hi l=1

and p*i and p-, are the irh rows of the matrices P and P respectively.
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Hence, for large N, (up to logarithmic equivalence)

a = exp{-N.ff*},

where

H*= inf H(X'tfi'P')

with y given by Eqn. (55).

Let X", m* and P* denote the arguments achieving this infimum. Define new

service time distributions ^"s by

e^dFt(z)
dF;(z) =

E{e°'F')

where 9 is such that it satisfies JzdFt(z) =1/ m"« Similarly define new interar
rival time distributionsG*'s by

,rV . e^dGk(z)
dGi (z ) = ,

where 9 is such that it satisfies JzdGi(z) =1/ X,". Then, for large N, we pro
pose to use the network of Gil Gl 1 queues with the parameters X*, m" and P"

for estimating a.

4.6, Extension to Networks of Queues with Finite Buffers and Optimal

Design Problem.

We can extend the heuristic of the previous subsections to networks of

queues with finite buffers. We illustrate this by considering two Ml Ml 1

queues with finite buffers in tandem. Let X, mi and M2 denote arrival and service

rates of the queues respectively. Let Nx and N2 be the sizes of the buffers at the

first and second queue respectively. Such a network is shown in Figure (16).

Let Ni+N2 = N and0 = N^ N.
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N^Ng'N X</x1 X<Ax2

Ml Ml 1 Queues with Finite Buffers in Tandem.

Figure (16)

Now or denotes the probability that one of the two queues exceeds its

buffer capacity before returning to 0 given that the system starts empty. The

heuristic of § 4.2 can be modified to give (up to logarithmic equivalence)

a *» exp{-r(X>,lfM,2).(X'Jix(ir)+M,i^Ml(4-)+M,2^M/4-))}.
A 2 Ml M2

X* >0,m', >0,m'2 >0
V+m'^2 = 1

X' > m'i ork' > n'2

where, T(X\ll\,ll'2) ^NJKX'jl'^ll'z) with (when X' >m'i or X' >ll'2)

R =

3/ (X'-m'i), if X' >m'i and m'i ^M*

min ( 0/ (X'-m*i) . (1-0)/ Oi'rM^) ). if A* >m'i and m'i >M*2.

(1-3)/ (X-M2). otherwise.

Then, for large N, (up to logarithmic equivalence)

a =exp{-JV. inf [R(X',LL'ltii'2).(X'Jik(lr)+
k' >0tM', >0rf*'2 >0 A

V+M'i+M'j = 1
k' > m'| or X* > fi'2

/A^m/t^HmV^-^-))]}-
/* 1 r*2

(56)

We propose to simulate the system with the parameters X", mi and M2*.

which are the arguments giving the minimization in Eqn. (56).
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We finally describe how one can use this simulation technique for an

optimal design problem where we want to allocate Nx and N2 with the con

straint Nx+N2 = N such that a is minimized. There is a well-known conjecture

(amply justified by numerical examples) that the function

cr(Af i) := a(NitN—N1)t the probability a when the buffer allocation is Nx and

N—Nlt is of the cup-shape. More precisely, on the range 1 ^Nt ^N—l, odNi)

has either a unique minimum or two minima at the consecutive points Nl and

#1 +1. The latter case occurs when mi = M2 and N = Nx+N2 is an odd integer.

In that case, the minima of a(Ni) occur at two integers adjacent to Nl 2. We

can use this observation to select Nx and N2 optimally by finding aQV^'s by

our simulation technique. By estimating a(#i)'s, say, for Ni = k and

Nt = k +1, we can decide if we need to check below k or above k +1 for finding

the minimum value of a.

5. Conclusions.

In this paper, we have used some techniques inspired by Large Deviation

theory for obtaining a simulation method for events of excessive backlogs in

networks of queues that is much faster than the direct Monte Carlo simulation

method. We have seen that the classical Large Deviation results of Ventsel and

Freidlin are not directly applicable to networks of queues because of discontinu

ous kernels. To circumvent this difficulty, a heuristic method based on the work

by Borovkov, Ruget etc. for a Gil Gl 1 queue has been developed for the simu

lation purpose and has also been extended to open networks of GlI GI 1 queues

as well as to networks of queues with finite buffers. Further work is needed to

justify analytically our heuristic method and also to connect the transient and

steady state behaviors for rare events in networks of queues.
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