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ABSTRACT

We consider the problem of local stabilization of nonlinear
control systems whose linearizations contain uncontrollable modes
on the jw-axis. A general methodology for designing a stabilizing
control is presented. It involves the following steps: 1) Reduction
of the stability problem to the stability of the center manifold sys-
tem. 2) Simplification of the vector field on the center manifold
using the theory of normal forms. 3) Finding conditions under
which the simplified vector field is asymptotically stable. Following
these steps, three cases of degeneracies in the linearized system
are treated and necessary and sufficient conditions for the
existence of stabilizing controls are given in each case. Finally a
theorem is presented regarding the robustness of the above con-

trol strategies.
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STABILIZATION OF NONLINEAR SYSTEMS WITH
DEGENERATE LINEARIZATION '

S. Behtash* and S. Sastry*

Department of Electrical Engineering and Electronics Research Laboratory
University of California, Berkeley, CA 94720

1. Introduction

In this paper we discuss the stabilization of nonlinear sysfems with degen-
erate linearization, i.e. systems whose linearization is not stabilizable by linear
state feedback. We feel that the present work is part of an ongoing effort at
developing a dynamical systems viewpoint to the control of nonlinear systems.
Such a viewpoint will extend the domain of applicability of techniques for the
exact linearization of non-linear systems, by coordinate tr;':\nsformation and
state feedback, from completeley linearizable to partially linearizable systems.
The present work was inspired by, and is in the spirit of a recent paper of Aeyels

[1], and related work by Abed and Fu [4], [5].

2. Formulation

We consider the problem of stabilizing, by state feedback, systems of the

form:

E=p(¢)+bu (1)

where {€R*, u€R, ¢:IR*->R" is smooth, b €R"®, and 0 is an equilibrium point of
the undriven system (2.1) ie ¢(0)=0. The extension to systems of the form

é=cp(£,u) is straightforward and will be discussed in section 6..

¢ Research supported by the Army Research Office under Grant DAAG 29-85-K-0072
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By way of notation, let A=D¢(0), the Jacobian of ¢ at £=0. We partition the

spectrum of 4 as:
a(4)=ac* Yo* Yo®

where °CC_, o“C C,, and 6°C{jw | w€R]. Using basis vectors for the (general-
ized) eigenspaces of ¢%,0%, and ¢° we may transform (2.1) to the form:

G 4y 0 ollg ¢1($1-$2-63)] by

£2(=| 0 Az O ||fol+lpa(t1.bba) |+ [oofu (2.2)

£3) |0 O As)lés| les(é1.éaés)| s
where 0(4,;)=0°, 6(422)=06%" 0(As3)=0", £,cR™!, £,€R™, and &R

It is easy to see that (2.2) is locally stabilizable by linear state feedback

when (4,,,b,), and (A4g,b3) are completely controllable. It is also easy to see that
if (4s3,b3) is not controllable, then no feedback law which is smooth at the origin
can stabilize the system (2.2). Consequently we shall be interested in the case
when (Ag3,b3) is controllable, and the critical eigenvalues (those of A,,) are com-
pletely uncontrollable, ie b,=0. Now our objective is to construct a feedback law
u=F(£,,£2.¢3) to stabilize the system. From the preceding discussion it is plausi-
ble that higher order (quadratic, cubic, etc) terms in £, are needed to stabilize
the system. To make this statement precise we use certain results of center

manifold theory as summarized in section 3 below.

3. Mathematical Preliminaries

For our development we need two sets of tools: center manifold theory and
normal form theory for differential equations. We review them briefly in the con-
text that we need them here; the center manifold theorems are taken from Carr

(2], and the normal form theorems from Guckenheimer and Holmes [3].



3.1. Center Manifold Theory
Consider the following C* dynamical system in R™:
3=f(z) | | (3.1)
A set SCR" is said to be a local invariant set if for all zo€S there exists 7>0

such that the solution of the differential equation (3.1) passing through zg at

t=0 remains in S for |[£|<T. If T can be chosen to be oo, then S is said to be an

invariant set.

Now consider the following C* dynamical system in R™:

T =Ax + f(z,y) ze€R®
= m (3.2)
Y =By +g(z.y) y€R
where (z =0,y =0) is an equilibrium point, that is
F(0,0)=0 ; g(0,0)=0 (3.3)

Further f and g comprise only of quadratic and higher order terms, that is
D.£(0,00=0 ; D,f(0,0)=0 ; D,g(0,0)=0 ; D,g(0,0)=0 (3.4)
We also assume that o(B)C C_ and o(4)c{jw | w€R]. For this system we have

Definition 3.1 A local invariant manifold # for the system (3.2) is called a center

manifold if it contains the origin (z =0,y =0) and is tangent to y =0 at the origin.

Remarks

1) {(z,0) | z€R™] is the generalized eigenspace of the jw-axis eigenvalues of
the linearization of the system (8.2). Thus a center manifold is a "nonlinear

eigenspace’ corresponding to the jw-axis eigenvalues.
2) If M is given locally as the graph of a function y=h(z), then:
h(0)=0

Dh(0)=0
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It is a basic theorem that center manifolds exist (though elementary exam-
ples show that they are not unique) and are locally given as the graph of dfunc-
tion y=h(z).

Theorem 3.1 (Existence of Center Manifolds) If f and g in (3.2) are C*¥ vector
fields for £=2, then there exists a center manifold y=h(z), |z|<e, where & is of

class C*.
The flow on the center manifold is governed by
w=Au + f (u,h(u)) (3.5)
The following theorem connects the stability of the system (3.5) to that of the
system (3.2).

Theorem 3.2 If the zero solution of (3.5) is stable (unstable, asymptotically

stable), then the zero solution of (3.2) is stable (unstable, asymptotically stable).

Remark

In the instance that the zero solution of (3.5) is stable or asymptotically
stable, we can relate the solutions of (3.5) to those of (3.2) for (z(0),y(0))
sufficiently small. Let (z(¢),y(t)) be a solution of (3.2) with (z(0).5(0)) small

enough. Then there exists a solution « (¢) of {3.5) such that

z(t)=u(t) + O(e ™)

y(E)=h(u(t)) + O(e™) as t-oca
where the rate of convergence to the center manifold, ¥, is related to the eigen-
values of B alone.

Thus we see that the study of stability (instability) of the system (3.2) may
be reduced to the study of stability (instability) of (3.5), provided we have an

expression for the function k. To solve for h(z), we use the fact that y=h(z) is



invariant under the flow of (3.2), thus

y=Sch(z)=Dh(z)4z +  (z.h(z))]
=Bh(z) + g(z.h(z))

that is h satisfies the partial differential equation

Dh(z)[4z + f (z.h(z))]=Bh(z) + g (z.h(z)) (3.6)
with 2(0)=0; Dh(0)=0
Any solution of the PDE (3.8) is a center manifold for (3.2). Typically, it is

difficult to solve the PDE (3.8), consequently the following approximation

theorem is of interest.
Theorem 3.3 Let ¢ be a C! mapping from a neighborhood of R® into R® such
that
¢(0)=0 ; Dy(0)=0
if p satisfies the PDE (3.6) modulo terms of O(|z|F) then as z -0, we have:

Ih(z) = o(z)] = O(=[*)

Remark

In particular, Theorem 3.3 allows us to approximate h(z) by polynomials in

z to any desired accuracy.

With Theorem 3.3, we are now ready to study the stability of the center
manifold system (3.5). Since the linear part of the vector field on the center
manifold has all its eigenvalues on the jw-axis, we need to study the higher

order terms of the vector field. This is done next in a systematic way.



3.2. Normal Forms

To study the behavior of the solutions on the center manifold it is heipful to
simplify the vector field but the simplifications should preserve the qualitati\}e
behavior of the solutions at least locally around the equilibrium boint. In the fol-
lowing discussion a systematic procedure of simplifying the vector fields by
means of repeated coordinate transformations is presented. The resulting
simplified vector fields are called normal forms.

Define H} to be the real vector space of vector fields whose coefficients are

polynomials of degree k. Given a linear vector field L(z) we have the subspace
ad L (H) = { adgh(z) | h(z)eH, |
and its complement G;; ie,

Hy=ad L (H,) ® G (3.7)

Theorem 3.4 Let Z=f(z) be a C" dynamical system with f(0)=0 and
Df (0)z=L(z). Then there exists an analytic change of coordinates in a neighbor-

hood of the origin transforming the system to ¥=g (y) such that
g ¥)=g (y)+g¥(y)+...+g™ (y)+R, (3.8)

where g'(y)=L(y )ig* (v )€G*, 2<k<r and R,=o(|y[").

Proof It suflfices to show that for a given k=2 the components of ad L (H;) can
be locally removed from the vector field by an analytic change of coordinates.
Performing this for k=2,..,r we obtain the desired coordinate transformation as

the composition of the transformations for each k. Thus we let
z =y +Ply)

where P(y) is a polynomial of degree k. We point out that Dyz(0)=/ so that we
have a local diffeomorphism (preserving the local behavior of the flow of the vec-

tor field around the origin). Using this transformation, we get
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y=(I+DP(y))7'[f () +Df (y)P(y)+o(lyl)] (3.9)
Now note that

(/+DP(y))~'=I-DP(y)+o(lyl") (3.10)
and

Df (y)P(y)=Df (0)P(y)+o(ly[")

=DL P(y)+o(ly[") (3.11)

Using (3.10) and (3.11) in (3.9) we have:

Y=f{(y)+DL P=DP L+o(ly[") (3.12)

If we set

F @)=fey)+re@)+o(ylM)

k=1 .
with fi(¥)= ), fi(y) and fi(y)eH; for j=1,...k we get:
=1

9(¥)=ge-1(y)+g* () +o(lyI") (3.13)
where

Fe1(¥)=Fe1(y) (3.14)

g*(y)=r*(y)+ad L (P(y)) (3.14)

By choosing the coefficients of P(y), components of ad L (H,) can be removed

from f*(y) while all lower order terms remain unchanged. Thus g*(y )€G.

Although the transformations for each k leave all lower order terms
unchanged, they do alter the higher order terms. We have the following corollary

to this effect.

Corollary 3.1 Let £=f(z) be a C" dynamical system, such that f7(z)e€G; for
j=2,..k—-1 ,k<r. Let y=g(y) represent the transformed system after the

removal of O(k) terms in the span of ad L (H;). Then we have:
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g (y)=ri**(y)+ad FI* (y)(P(y)) j=0...k =2 (3.16)
g% Uy)=r*"y)+ad f*(y)(P(y))-DP(y)[ed L(P(y))] (3.17)
where (3.16) and (3.17) make sense provided j+k<r and 2k ~1<r respectively.

Proof Using the change of coordinates =y +P(y) we have:

J=(1+DP@))f (y +P) (3.18)
We note

(I+DP(y)) '=I-DP(y)+(DP(y))*+0(2k ~2) ' (3.19)

7 (+P)=F (4)+DF (4)P(y)+0(2k) (3.20)

Now using (3.19) and (3.20) in (3.18) we get:
y=f(y)+Df P-DPf —DP[Df P-DPf 1+0(2k) (3.21)

Collecting the O(1) terms for various values of I we obtain (3.16) and (3.17) for

g(y).

4. Stabilizing Control Laws
Consider the system (2.2), with b,=0

: [ nmn 0 O ”1 [501(51-52'53)] 0
£2|=| O Agzz O |[&f+|pa(£1.€2.83)|+ [0 2|u (2.2)

1
3] |0 0 Aas|lés| |ws(61.2.60)| [oa

with o(45)Cijw | weR], o(Az)C C., o(4ss)c Ci, and (Asa.bs) controllable. By
choosing © of the form u=v+K3; and o(A33+b3K3)C C., we may consider the

problem of stabilizing

13
é2

0 Agz O |[é2|+|pa(é1.é2.83) |+ |b2|u (4.1)
€3 '

P an o o lle] buentaen)] lo
' 0 O A'sfés| |ws(éréaés)| [ba

with o(A's3)c C_. We will drop the prime superscript on A's3 in the sequel and
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assume that ¢(As3)C C_. Now our objective is to find v=F(¢,,£2.£3), an analytic
feedback law, such that the equilibrium point of (4.1) is asymptotically stable.
It follows that when we set w=F(¢,,£,£3) with Agg stable, that the center

manifold is tangent to §(£,,0,0) | £,€R™} and is given locally by

ha(€))
ha(é:)

§
L‘szh“ D=

Further from (3.6) it follows that k satisfies the following PDE:
Dh(&)[Ané1+e1(8Lha(£1).ha(£1))]=

[jazha(f ) +ea(€,ha(é1).ha(€1)) +b2F (£ Lha($1).ha(£1))

ssha(€1)+oa(é1.h2(€1)ha(61)) +baF (£ 1.ha(€1).ha(£1)) (4.2)
and the flow on the center manifold is governed by
E1=Ang1+91(€1.hal€1). hs(£1)) (4.3)

Thus, we need to choose F(£,£2.£3) in such a way that the resulting k(£,) pro-
duces an asymptotically stable equilibrium point on the center manifold. While a
general solution is not available to this problem we consider several cases for
the matrix 4,,. The case where 4;,€IR*? and has a pair of imaginary eigenvalues
was solved by D. Aeyels [1]. In [4], Abed and Fu treat the same case using bifur-
cation formulae derived from the projection method. The same technique is also
employed in [5] where, the case of a single critical mode is treated. The cases
covered here, which have not been treated by Aeyels or Abed and Fu, are the fol-
lowing

() Double zero eigenvalues.

(ii) Pair of imaginary and a simple zero eigenvalue.

(iii) Two pairs of imagihary eigenvalues.

In the remainder of this section we assume, for simpliéity, that n2=0 and

n3=1, We will show in section 6, by way of an example, that there is no loss of
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generality in this assumption.

4.1. Case of Double Zero Eigenvalues

We consider here the case where 4;,;€R**? and has the form:
01
Au=[o 0]

z
We let L] represent §; and we will drop the subscript from &5 and represent it by

. We further let

901(&-5):{;((::::8

Now rewriting (4.1) with the above notation we get:

| lo 4l (z.y.¢)
[;/HO 0 [;+ 9(:.3.5) (4.4)

¢=—kt+os(z,y.6)+v

where k£>0. Since we will choose v to be of the form F(z,y,{), we can assume

that g3(z,y,£)=0. The center manifold is given locally by é=h(z,y) with k satis-
fying

+f (z'y,h(z-y))
Dh(z.y){y g(z.y.h(z.y))

h(0)=0; Dr(0)=0

=—kh(z,y)+F(z,y.h(z,y)) (4.5)

We now use Theorem 3.3 to approximate the center manifold upto terms of 0(3),
ie,
h{z,y)=azx?+bzy +cy?+0(3) - (4.8)

Note that the choice of ~ in (4.8) automatically gives h(0,0)=0 ; Dh(0,0)=0. Next

we choose F to be of the form:
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F(z.y.£)=az?+pzy +yy* (4.7)
Using (4.6) and (4.7) in (4.5) we get:
(Raz +by)(y +f (z.y.h))+(2cy +bz)g (z.y k)=
—kaz?—kbzry —kcy?+az?+pzy +yy+ 0(3) : (4.8)

Recalling that f and g are both of 0(2), we may equate terms of O(2) in (4.8) to

get:

onN &
- a0
= ~)
0O o N

o .
= ﬂ (4~9)
V4

For k#0, we see from (4.9) that (a,b,c) can be arbitrarily assigned by choice of
(«,8.7) in the control law (4.7). In other words, the control law determines a
.center manifold upto terms of O(3). The remaining problem is to determine
what choice of the parameters (a,b,c) in (4.8) stabilizes the flow on the center
manifold, which is given by:

- AN I
2 0 1zl f (z.y.h(z.y))
L‘HO olﬁlmz.é’.ux,z» (4.10)

This program is continued using the normal form theory of section 3.2 in the fol-
lowing theorem, where by -a slight abuse of notation we let
S (z.y)=5 (z.y.h(z.y)) and g (z,y)=g (z.y.h(z.y)).

Theorem 4.1 The zero solution of the center manifold system (4.10) is not sta-

bilizable unless
Dfg=0 (4.11a)
D2,g +D2f =0 (4.11b)
Furthermore if (4.11) is satisfied, then the zero solution of (4.10) is locally
asymptotically stable provided that

;ﬁD,"g +(D2f )?<0 (4.12a)
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D2,9 +D3f —D2f (D2,f +DZ2g)<0 (4.12b)

where all the derivatives above are evaluated at the origin.

Proof For the vector fields in R?,

meenl o2} L)

Further for the system in (4.10),

L(z-y)=[g]

Then,

o 1 o 51 Bl 20 5

Thus a complement to ad L (Hj) is given by,

ceorl)

Thus , the normal form of (4.10) can be written as,

=y

g=bz%+emy TO0) (4.13)

where 6§=$D2%g and s=D§yg +D2f. 1t is easy to see that the zero solution of
(4.13) is unstable for all nonzero values of 6 and &. Thus a necessary condition
for stabilization is (4.11). Further with (4.11) holding, we may consider the O(3)

terms in the expansion of the vector field in (4.10). We have,

e ST LR

-~
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Then,

ot meenlC 3 B Lo )

Therefore a complement to ad L (Hj) is given by,

el

Thus we see that the normal form of (4.10) upto terms of 0(4) may be written

as,

g:-z){zs syt 0D ' (4.14)

where, ?\——D g', and }J.-—-(D,g.yg%fo ). Here {;.] is the O(8) vector field

obtained from [:;

relate [';.

A=

by removal of the O(2) terms. Now using Corollary 3.1 to

and we find for A and w,

g

o é.-.

59+ D2 y?
lr—(Dmg +D2f )~ -—1D 2f (D2+D3g)

Next using the Lyapunov function candidate

__1y 2.1 2
V—4—Nt+§y

we have for V
V=-\z%Y +Az3y +uz2y?

Thus for A<0 and u<0, the equilibrium point of (4.14) is locally asymptotically
stable.
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Corollary 4.1 The zero solution of (4.4) is stabilizable by the control
v=ax?+8zy +yy?, provided (4.11) is satisfied and DZg 0.
Proof By inspection, if D%g#0, then the values of Dy and D&,g can be

assigned arbitrarily by a proper choice of (a,b,¢) (and thus by {«,8,7)). Thus

through the control v the parameters A and x4 can be made negative.

4.2. Case of a Pair of Imaginary and a Simple Zero Eigenvalues

We consider here the case where 4,,€R%3 and is of the form

(z.y.2.£)
+9(z.y.2.£) (4.15)
(z’y'z ’6)

f=—ké+u k>0
The center manifold is represented by {=h(z,y,z). Letting v=F(z,y,2.£), we get

that A satisfies the following

-y +f (z.y.2.h(z.y.2))
Dh(z,y.z)| z+g(z.y.2,h(z.y.2)) |=—kh(z.y.2)+F(z,y,2.h(z,y.2)) (4.16)
p(z.y.2.h(z.y.2))
h(0)=0; Dh(0)=0
As before, using Theorem 3.3, we approximate the center manifold upto terms of
0(3)

h(z.y.2)=ax?+by?+cz2+dry +exz +lyz + 0(3) (4.17)
Next we choose the following form for the feedback law F

F(z,y.2.8)=az?+By*+yz2+oxy +nzz + uyz (4.18)
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Using (4.17) and (4.18) in (4.16) and equating the coefficients of the 0(2) terms

we get
[k 00 1 0 O] [«
0 0 -1 0 ofp| |g
0 0k 0 0 ofle| Iy
=220 k 0 o|ld~lo (4.19)
0 00 0 k& 1flel In
0 00 0 -1 &lz] [u

For k#0, (4.19) implies that (a,b....) can be arbitrarily assigned by a choice of
the control prameters (a,8.,...). Thus the control law determines a center mani-
fold upto O(3) terms. Next we wish to determine what choice of (a,b,...) renders
an asymptotically stable equilibrium point for the center manifold system

(z-y 2 oh (z'y 'z ))

z
y|+|9(z.y,2,h(z,y,2)) (4.20)
z| lp(z.y.2,h(z,y,2))

This is done in the next theorem, where as before (f'.g'.p')7 denotes the vector

field obtained from (f,g.p)7 after removal of the 0(2) terms.

Theorem 4.2 The zero solution of (4.20) is not stabilizable unless

DEf +D2g=0 (4.21a)
D2p+Dfp=0 (4.21b)
D2p=0 (4.21c)

Furtheremore if (4.21) is satisfied, then the zero solution of (4.21) is asymptoti-

cally stable provided that

2f+D2g'+ D3, f '+D3,9'<0 (4.22a)
3p'<0 (4.22b)
DE.f'+D3.9'<0 (4.22¢)

D2.p'+D3,p'<0 (4.22d)
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Conditions (4.22c) and (4.22d) may be replaced by the single condition
sgn (D f '+ D29 ')=—sgn(D3,p'+D3,p") (4.22e)
Remark

We may use Corollary 3.1 to express (4.22) in terms of the vector field
(f.g.p)T. The resulting expressions, although extremely involved, would consist
of the terms appearing in (4.22) plus additional terms involving various second
order partial derivatives of (f,9.p)7. The stabilizability conditions on (f.g.p)7,
however, can be determined from (4.22) alone, since the control can only affect

the 0(3) termsin (f.g.p)7.

Proof In R® we have:

e ST

f0){o)(0Y(o)o])o
z?| y?| 23| [y | |z2] lyz],
LoltolkolkolloJkod
(0){o){o)(o)[o](o0)
c{]j]Oo}|O]|Ofi0O||0O
z?) y? 2?) eyl lxz) lyz)

And for the system in (4.20),

—y
L{z,y,2z)=|z
0
Thus,
2zy) [-22y) (0 ) fy2~2?| [yz) [-z=
ad L (Hp)=spani| z2 || y® |[|z3|| zy ||zz||yz |,
L0 JL O 0 0 0 0
—z?|[ —y2 [~23)[ —zy (=2 (~y=
2zy||-2zy|| 0 |[y2-=z?|| yz ||-==|,
Lol o JloJl o Jlo]lo
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0 0
0 0

2_2| bz

LR

It is easy to show that a complement to ad L (Hy) is given by,

z2|| y2z 0 0
Gp=spanjlyz||[-zz|| O 0
0J1 0 Jiz?+y?)l2?

Therefore the O(2) normal form associated with (4.20) is of the form,

=—y+6zx2 +eyz
Y=z +06yz —cxz +0(3) (4.23)
z2=\(z?%+y?)+p2z?

1 1
where, §=2{DZf +DZg), F%‘(D&"zf -DZ%g), A= i-(DEP +Djp), and p=Dip.
Now transforming the normal form in (4.23) to cylindrical coordinates we get,

r=6rz  +0(r,z[8)
2 =Ar2+p22%+ O(jr,2z %) (4.24)
d=1 +0(Jr.z[?)

1t is easy to show that the zero solution of (4.24) is not asymptotically stable for

any nonzero values of §,\, and p. Therefore conditions (4.22) are necessary for

stabilization. Note also that £ does not appear in (4.24).

Next,assuming (4.22) is satisfied, we consider the O(3) terms in the expan-

sion of the vector field in (4.20). We have,

st\ Vys\ Vz 3‘ 'zzy‘ Vzaz! Vysz Pyaz‘ Vz 2 \ W4 2 3 r Y
Ha=spanj[O [[O[oj[{0 |[o|Jo|foflo{lo]l o]
\01 sol \OJnOJLOAAOJLOAAO sOA;OA

O‘(O‘V AW 4 \r A\ W4 \
23| 3| 23| lz Py | |z 22| fy x| fy 22| |2 22| |22y | |zy =],
lolkoliolkolioliolOJNOIKOALOJ

HEHHHE YR
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Then we get,
3z%y| [-3zy?| (0 ) [2zy?—=5| [Rzy=
ad L (Hg)=spani| z8 || 3 ||23|] z% |{z%z
0 0 o 0 0
fy3—2z?y -2zyz z zaz 2z —z22
vz zyz |,
{ O . 0

[ —23 _za -z%y |[~z%z
3z2%y —Sry Zz:y —xa 2zyz
L 0 . 0

B

-Z

zzy

zz —zaz

[0 o }fo 0 0
Lo L H°]
Bz2y) \-3zy?) 0) Rzy?—z5) Rzy=
0) o 0
A KA N
y3-2z%) |-22yz) |z2y) ~222) ly Rz 222

It can be shown that a complement to ad L (H3) is given by,
yi+zPy

S4zy? 22| (~y2? 0 0
Ga=spanily3+z2y||-z3-xy?||ly2z?|| zz* 0 0
0/l 0 Jiz?z+y22)|2®

0 0
Then the O(3) normal form of (4.20) can be written in the form

& =—y +eyz +a'(23+zy?)+ B (y3+ 2% ) +y'z2 2 —n'y2?
Y=z —tzz +'(y3+2%y )~ (z3+zy?) +yy2?+n'z2? + O0(4)
z=0'(z?+y?)z+u'28

where with some algebra we may find,

o'=={D3f "+ D3g"+ D3, [ '+ DSy9")

(4.25)
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' 1 ’ . L ’
§'= (D3 +Df '~D3y 9 +D3, 1)
1 ' '
7'=Z(D3zzf +-Dyazzg )

| e 1 ’ ]
n -Z'('D_a?zzg _Dyazzf )

Next transforming (4.25) into eylindrical coordinates we get,

F=a'rd+yrz?+ 0(jr,z %)
2=0'r?z +u'z3+ 0(r.2 | (4.26)
B=1 +0(|r,z[?) '

Now using with the Lyapunov function candidate,

we have,

V=Ra'T*+Ryr22%+So'r?2%+ Su'z*
Therefore for a'y,0, and u' all negative, or for «',u' negative and
sgn (y')=-sgn(o'), the equilibrium point of (4.26) is asymptotically stable.
Corollary 4.2 The zero solution of (4.15) is stabilizable by the control
v=az®+8y?+yz®+ozy +nzz +uyz provided (4.21) is satisfied ,DZ%p #0, and either
D%f #0, D%g #0, or D%f #0, D3g #0.
Proof In view of the Remark following Theorem 4.2, we see that with DEp#0
(4.22b) and (4.22d) can be satisfied by making Dp, and D3.p or D3.p arbi-
trarily negative with a proper choice of parameters ¢ , and a or b of the center

manifold. Furthermore with DZf#0 , DZ%g#0 (4.22a) and (4.22c) may be

satisfled through the parameters a and ! by making D3f and Dz?zzg arbitrarily



-20-

negative. (4.22a) , (4.22c) may be satisfied with D&f #0 , D%g#0 in a similar

fashion.

4.3. Case of Two Pairs of Imaginary Eigenvalues

Here we consider the case where 4;,€R** and has the following form:

0-10 0
1000
Au=lg 9 0 -5
0060

f(z.y,2,w,¢£)
g(z.y.2.w,§)

(z.y.2.w,¢)
g{z.y.z.w.¢)

(4.27)

¢=—k f+v

Letting v=F(z,y,2,w) and representing the center manifold by é=h(z,y,z,w)

we get,

-y+f(z.y.z2,w.h(z,y,2,w))
z+g(z,y.2,w.h(z,y,2,w))
Dh(z,y,z,w) —6w+p(z,y.2,w,h(z.y.2,w)) =—kh(z,y,z,w)+F(z,y,z,w) (4.28)
=0z +q(zy,z,w.h(z,y,2,w))
h(0)=0; Dh(0)=0
Choosing the following form for the control law F,
F(z,y,z2,w)=az?+py?+yz?+ dw+nzy +uzz +pzw +
Ayz +ryw +ézw (4.29)

and approximating the center manifold upto terms of 0(3) as .

h(z,y.z, w)=az?+by?+cz?+dw+ezy +izz +mzw +
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nyz +syw +tzw + 0(3) (4.30)

Using (4.29) and (4.30) in (4.28) and equating the O(2) terms we find that for
nonzero values of k¥ there is a 1-1 correspondence between the control parame-
ters (a,f....) and the center manifold paramters (z,b,...) regardless of the value
of 6. Thus again the control law determines a center manifold completely upto
terms of O(3). Now in relation to the stability of the center manifold system,

f(z.v.2,w,h(z,y.2,w))
g(z.y.z2,wh(zy.z,w))

(z.y.2,w,h(zy,z,w)) (4.31)
g(z.y.z2,w,h(z,y,2,w))
we have the following theorem,
Theorem 4.3 The zero solution of (4.31) is asymptotically stable if
D3f'+Djg'+ D3y f '+ D39 <0 (4.32a)
D3p'+D3q'+D3,,p'+D3q'<0 (4.32b)
D31 '+ D3] '+ D329 '+ D3nug ' <0 (4.32¢c)
DE.p'+D3.p'+D3,q'+ D3nugq ' <0 (4.32d)
Conditions (4.32c) and (4.32d) may be replaced by the single condition
sgn(Dezf '+ DS '+ Dezg '+ D9 )=
—Sgn(DZp'+ DYep '+ D3uq '+ D3nug ") (4.32¢)

Proof We give a short sketch of the proof since the details, although quite simi-
lar to the proof of Theorem 4.2, are extremely lengthy and tedious. Calculating
ad L (Hz) and ad L (Hg) for the system (4.31) we can show that all O(2) terms of
the vector field may be removed and that the 0(3) normal form can be written
as,

z=—y +{a'z +BY ) z?+y?) +(y'z + o'y )(z?+y?)

Y=z +(ay ) (22432 Yy —o'z) (=)

& =—8w+(n'z +prw)(22+wd)+(p'z +rw)(z?+y?) T O
w=6z+(n'w-p'z )(22+w?)+(o'w—v'z )(z2+y?)

(4.33)



-22-

where,
o'= fs—(Dzaf "+Djg'+ D5, f '+ D2yg")
g'= %(D,,af '=DPg'+D3y f'-D3,9')
7= DS "+ D3l +Dag’ + D)
0'= Do+ D "~D329"~D3mg")

L 1 ’ ' ’ ¢
n'=1g(07P +Diq + Dimip '+ D30 ")

L 1 ' ' ’ '
W= 1 0ip'~DPq'+ Dup '~ D3 q)

(] 1 ’ ’ r 1]
P =—(8 Dip'+D3.p'+D3,,q'+D3,9")
1 ’ t ) !
v=g{ D3P+ D3P =D359'-D32q")

Now transforming (4.33) into cylindrical coordinates we obtain,

=T+ YT T +O(IrolY)
Te=p'rErotn'Td + O(Ir.rol*)
¥,=1 +0(|r.72af)
¥,=6 +0(lry,72f)

(4.34)

Conditions (4.32) are now clear by considering a Lyapunov function candidate of

the form V=Rr?+Sr}.
Corollary 4.3 The zero solution of (4.27) is stabilizable by the control law in
(4.29) if DAf . D%g are not both zero, and DZp, D3,q are not both zero.

The proof is very reminiscent of that of Corollary 4.2 and will, therefore, be omit-

ted here.
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5. Robustness Considerations

In this section we study the effects of perturbations of the vector field on
the stability properties of the system. We need the following definitions to

characterize the notion of closeness of two vector fields.

Definition 5.1 Let F(¢) be a C* vector field, then it may be expreséed as
F(E)=F W)V +F2(&)+ - - - +F*(8)+R8)

where f/€H; , j=1...,k, and R=0(|¢[¥). We define the C* norm of F as

Flle =maz lIf HLIFAL - - - IF*I3 (6.1)
where
L |
79 I=gup T (5.2)

Definition 5.2 A vector field G(£) is a C* &- perturbation of F if ||F -G <e.

Following the assumptions of section 4, we let the unperturbed system

'$=;a(£)+bu. be of the form

f1=Ané 1 +o1(¢1€2)

£2=Anatatoa(é1.€2)+bau (£1.62) (5.3)

where £,€R"!, £eR™, o(A)cijwlweR], 0(4d)C €, ¢1.92 are at least C¢ with k
the order of the smallest order jet of the center manifold system associated with

(5.3), on which the stabilizing control law, u (¢,,£2), is based.

Let the perturbed system #=@(n)+bu be such that
lle()-2( sz, (5.4)
[b=bl=es (5.5)
Defining s=max{e,,&2ll ()|l }. we may express the perturbed system as

N=p(n)+e@(n)+bu(n)+ebu(n) (5.6)
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for some ¢(.) and § such that
IZ( =1 (5.7)

l62()ll=1 (5.8)
Rewriting (5.8) in the form of (5.3) we have

751=A11"71"‘8211711""8312"72"'501(771-772)+3$1(")1-772) (5.9)
N2=AzaNa+&A2,71+8AzaNe+@2(MM2) +£Pa(N1m2) +b 2w (n1,72) )

where $(n)=%(n)-2An+6u(n).

Now since the stability properties of (5.3) were derived from the study of
the flow on the center manifold, we wish to find a local invariant manifold for the
system (5.9) such that the stability properties of the vector field restricted to

this invariant coincide with those of (5.9). This is done in the following theorem.

Theorem 5.1 The system (5.9) possesses a C* local invariant manifold given

locally by the graph of a function A:R,xR"!-R"?, such that

A(0,0)=0 ; DR(0,0)=0

Moreover this invarint manifold is C* close to a center manifold of (5.3), and its

stability properties coincide with those of the overall system (5.9).

Proof The technique used is called the suspension technique. We rewrite (5.9) as

follows

";1-‘-'1411?71‘*'8311")1+€312")2"‘501(7)1372)4'8%(7)1-"72)

N2=AzaN2+eA2 M +£A2aNz+0a(MN2) +EG2(N1.M2) +b 2w (01,75) (5.10)
£=0

Since ¢ is a state variable in this system, we see that eA11M1.£A12m2,6821m1. and

£A2:m2 are nonlinear terms in the new system. Therefore the linear part of the

vector field in (5.10) has eigenvalues associated with 71 and ¢ on the jw-axis and

those associated with 7z in the left half plane. Thus from theorem 3.1, there
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exists a C* center manifold for (5.10), 7p=R(n.&, |n:|<d1.|e|<62. Furthermore

since R(7;,£) is C* in 7, and ¢, there exists 6:R, >R, such that

If(n1.e)-R(n1.0)lr<6(¢) and &(c)-0 as £-0

Now clearly A(%,,0) is a center manifold for (5.3) and this completes the proof.

The flow on this invariant manifold is governed by
‘i':Au(""&zl1§'+5312ﬁ(¢'€)"‘5’1(('-777((:3))"'Swl(fn’i«'-a)) (5.11)

Note that for £=0, (5.11) represents the dynamical system on the center mani-
fold of (5.3). Therefore by assumption the zero solution of (5.11) is locally
asymptotically stable for £=0. We have the following theorem for the case when

£#0.

Theorem 5.2 For the system (5.11) there exists &* such that for all £é<&*, there
exists a ball By(;) around the origin which is locally asymptotically stable in the
sense that locally outside By() the vector field is directed inward. Furthermore
7(e)-0 as £-0.

Proof Since all the terms on the right hand side of (5.11) are C*¥ we may rewrite

(5.11) as

¢=And+pI(GR(E0)+0,(8)f W)+ +0, (£)F (O + R (¢ 2) (5.12)
where oj(¢) are C* in & and 0;(¢)20 as £-0; fleH; with |fi]=<1
R (¢8)=0 (¢, ).
By assumption the zero solution of (5.11) is locally asymptotically stable for £=0.
Therefore by a converse theorem on asymptotic stability [6], there exists a

locally positive definite Lyapunov function V(¢) with continuous partial deriva-

tives such that

—i’],;:o:-—g?V[A”('-l-qpl(('.E(g‘,O))] (5.13)
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is locally positive definite. Now computing —V|..o along the flow of (5.12) we

obtain
—i,]:#O:—i,lc:O- %[axf l+--~+akfk]'%ﬁ«--e) (5- 14)

For any fixed value of &, R(¢{.€) is o(|¢[¥); therefore there exists u(£)>0 and a

monotone increasing function a:IR,+R, such that
. aV 5
-V1==0-F‘?(¢.8)aa(ltl) for [¢l<u(z) (5.15)

and a(r)>0 for >0, a(0)=0,  is a continuous function of & with 4(0)>0. Furth-

ermore by continuity of the partials of ¥ we may define

Lol o .10
Using (5.15) and (5.18) in (5.14) we have

~Wewe=a(|¢) L (&)o(e)[I¢]+1¢P+... +I¢] (5.17)

=a(|¢)—kL(e)a(e)l¢] for |¢l=minfl,u(e)] (5.18)

where o(z)=maz[0,(),...,0¢ (€)] and we have used the fact that ||f7|j<1.
Let 5(c)=kL(e)o(s). Since —V],-q is at least O(k+1), af.) is higher order than

linear. Therefore there exists 7(£)>0 such that

~Vlewo=a(IE)=5(e)I¢[>0  for |¢ler(e) (5.19)

Moreover since @(¢)-+0 as £-0, we see that 7(£)-0 as £-0. Thus for &£ small

enough 7(&)<u(e) and we may write
~V.20>0 for T(&)<|¢|<u(e) (5.20)

Together with the positive definiteness of a(.), this shows that the ball of radius
r(e), Br(), around the origin is locally asymptotically stable. The size of the per-
turbation ¢ is limited by u(e), the domain of attraction of the unperturbed sys-

tem, and the parameter 85 from theorem 5.1.
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Theorems 5.2 and 3.2 together imply the following result.

Theorem 5.3 Let the zero solution of (5.3) be locally asymptotically stable for
some control law constructed based on the k-jet of the center manifold system.
Then there exists &* such that for all C* e-perturbations of the vector field with
e<&*, there exists a ball By(¢) around the origin which is locally asymptotically

stable. Further 7(£)-0 as £-0.

6. Discussion and Examples

The previous sections were based on several seemingly restrictive assump-

tions. Here we will show the extension of the previous results to more general
cases. In section 2 we considered systems of the form é=¢($)+bu. Let us now

consider the general case of the form
£=p(8w) | » (8.1)

where ${0,0)=0. Since we are interested in local stability properties of the ori-

gin we may expand the vector field as

£=(£.0)+ DuP(£,0yu + Dp(¢.0)u+ 0(u) (6.2)
Letting D, $(0,0)=b, we may define ¥(¢) by

D, 9(¢,0)=b +y¥(£) (6.3)
We further define

w(£)=%(¢.0) (6.4)

T'(¢)=DZ%(¢,0) (8.5)
Rewriting (8.1) using the above notation we have

b= (€)+bu +9(E)u +T(Eut+ O(w?) (6.6)
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where ¢(0)=0. Now letting A=D;p(0) and transforming the system as in section 2

we have

=10 Az O [[f2(+|02(4)|+balu+[Ya(é)[u+|le(§) [u+0(x) (6.7)

f:l n 0 0 &y w8 o] Wal®)] [(é)
§2
£a) |0 O Asslés| |ea(€)] [bs| [Wa(€)] [Ts(8)

Representing the center manifold by (&,7,£37)=(ha(¢,)7 h3a(¢,)T) we get

Dh(¢)[Ané1+ei(é1hahg) v, (£ hahg)u + T (€. hahg)u?+ O(ud)]=

Azzhatp2(é1,h2hg) +bau +Ya(£1,ho ha)u +1"2($1,hz,h3)u2]+ o) (6:8) -

Asshatpa(€1.hafs) +bau +9g(€1,hahs)u +T3(€ 1-hz-h3)u2] )
Assuming the control u is a smooth function of the {'s, it is clear that the terms
Y;u and Tju? for j=1,2,3 are at least of O(2) and will, therefore, have no effect
on the O(2) expansion of the center manifold. The flow on the center manifold,

on the other hand, is now determined by
§1=Anb1+e(§1haha) (6L hahg)u + Ty (£1, g hg)u?+ O () (6.9)

Since the stability of the zero solution of (6.9) is determined by the quadratic
and higher order terms, the presence of ¥,u and I'ju; will only relax the stabil-
izability conditions by adding more flexibility in satisfying the conditions of
Theorems 4.1, 4.2, and 4.3 . In other words the special class of systems

é=¢($)+bu represents a least controllable situation.

We next present two illustrative examples. The first example demonstrates
the control design procedure and the effects of perturbations on the stabilized
system. The second example involves the case where the controllable part of the

system is not a scalar.

Example 1 We consider the system

z=y—z3+zy?-2y¢
y=z+z§ (6.10)
£=~5¢+u
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With =0, a center manifold for (6.10) is given by ¢=0. The flow on this center
manifold is governed by

&=y ~z3+zy?

Y =z3 (6 11)

The origin of (6.11) is unstable as shown in Fig. 1 by the phase portrait of the

system.
To stabilize the system we choose the control as in (4.7) and represent the
center manifold by (4.6). Then the flow on the center manifold is governed by

E=y -z +zy?—2y (az®+bzy +cy?)

y=z%+z (ax2+bxy +cy?) +0(4) (8.12)

From Theorem 4.1 we see that a choice of parameters of the center manifold
which stabilizes the origin of (6.12) is given by: a=-2, b=0, and ¢ =0. Using
(4.9), the corresponding control parameters are given by: a=-10, =-4, and

7=0. Thus a stabilizing control law is given by

=—10z%—4zy (6.13)

Fig. 2 shows the phase portrait of the stabilized system (6.12).

Next we introduce a linear perturbation in the original system. The per-

turbed system is given by

t=gx+y—zd+zy?-2y¢

y=ey+z3+z¢ £>0 (6.14)

é=—5£+u
Clearly the origin of (6.14) is unstable irrespective of the control uw. From
Theorem 5.3, however, we expect that for £ small, using the control (6.13) the
trajectories of the system converge to a small ball around the origin. To demon-
strate this we compute the center manifold of the suspendéd system obtained

from (6.14). This is given by
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h(z.y.e)=—22*+0.8e2%-0.32czy +0.0645y%+ 0(4) (6.15)

Then the flow on this invariant manifold is determined by

&=ex+y -z +zy?—2yh(z,y.£)

y=ey+z3+zh(z,y,.c) (6.18)

The phase portrait of (6.18) is shown in Fig. 3 for £=0.5. Comparison of figures 2
and 3 shows that as ¢ changes from zero, the stable equilibrium point at the ori-
gin bifurcates into a stable periodic orbit around the origin and an unstable
equilibrium point at the origin.

Example 2 In this example we consider a system whose hyperbolic portion is not
a scalar. Since the approach to all higher dimensional problems is identical, we

consider a two dimensional example. Thus consider the system

A

fa=—ta+u (6.17)

0 1|k| [P+zyP-zs
0 " yteratarsty

§3=—2¢zt+u

Representing the center manifold as

ta] Tha(zy) laz2+0 2y +01y?
fa]zﬁa(ﬂ?.y) =[agz2+bgry+c2y2]+0(3) (6.18)

we have that with the control u =az?+g8zy +yy?, h(z,y) satisfies

by +z3+zy—zhy(z,y)
Dh(z.y) l_,zy +yho(z .y )+zhs(z.y)|~

[—a. 122 =b 12y —¢ ,y* +az?+Bry +yy?

—2a22%~2b o7y —2¢ 2y %+ oz +pzy +yy? +0(3) (6.19)
Now equating the 0(2) terms we get
1 00'0-1] 200[112 f3
2 1 0f[b,|=|2 2 0|lbo|=|B (8.20)
0 1 1 Cl 0 1 2 02 7
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The flow on the center manifold is given by

E _[y +(1-a,)z%4+(1-c)zy®-b ,z%

@oz3+(a; +b o+ 1)z?y +(b +c§y +c y° +0(4) (6.21)
Then from Theorem 4.1 thé zero solution of (8.21) is asymptotically stable if

a2<0 and 3(1-a,)+a,+ba+1<0. Thus for example choosing (2,b;,¢,)=(—2,—14,2)
and (az,bz,c2)=(—1,—8,~2) satisfies (6.20) and the above inequalities.Then we get
that the control law

u=—2z%-18zy —12y*® | (6.22)

stabilizes the zero solution of (6.21) and thus that of (6.17).

It is clear from (6.20) that although the control law does not determine the
center manifold completely, it does give us the same number of degrees free-
dom in choosing the center manifold as was available in the case with a scalar

hyperbolic state.
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Figure 1. Phase portrait of center manifold system of the unstable system.
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10.0 ) L) |} I =, <+ ! LD L ] L] l ] 1 1 ¥

Figure 2. Phase portrait of center manifold system of the stabilized system.
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18.0

Figure 3. Phase portrait on the invariant manifold of the perturbed system.
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