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ABSTRACT

We consider the problem of local stabilization of nonlinear

control systems whose linearizations contain uncontrollable modes

on the jw-aj&s. A general methodology for designing a stabilizing

control is presented. It involves the following steps: 1) Reduction

of the stability problem to the stability of the center manifold sys

tem. 2) Simplification of the vector field on the center manifold

using the theory of normal forms. 3) Finding conditions under

which the simplified vector field is asymptotically stable. Following

these steps, three cases of degeneracies in the linearized system

are treated and necessary and sufficient conditions for the

existence of stabilizing controls are given in each case. Finally a

theorem is presented regarding the robustness of the above con

trol strategies.
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1. Introduction

In this paper we discuss the stabilization of nonlinear systems with degen

erate linearization, i.e. systems whose linearization is not stabilizabie by linear

state feedback. We feel that the present work is part of an ongoing effort at

developing a dynamical systems viewpoint to the control of nonlinear systems.

Such a viewpoint will extend the domain of applicability of techniques for the

exact linearization of non-linear systems, by coordinate transformation and

state feedback, from completeley linearizable to partially linearizable systems.

The present work was inspired by, and is in the spirit of a recent paper of Aeyels

[l], and related work by Abed and Fu [4], [5].

2. Formulation

We consider the problem of stabilizing, by state feedback, systems of the

form:

$=<p($)+bu (2.1)

where £eIRn, uelR, p:]Rn-»IRn is smooth, 6eEn, and 0 is an equilibrium point of

the undriven system (2.1) ie y?(0)=0. The extension to systems of the form

£=0>(£,it) is straightforward and will be discussed in section 6..

• Research supported by the Army Research Office under Grant DAAG 29-85-K-0072
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By way of notation, let A=B^(p(0), the Jacobian of <p at £=0. We partition the

spectrum of A as:

a(A)=aa\jau\jaG

where o*c <C_, o^C C+, and ac<z\jo | welRJ. Using basis vectors for the (general

ized) eigenspaces of 0s,au, and 0° wemay transform (2.1) to the form:

An 0 0 fi
0 AZ2 0 fe +

0 0 Ags *3

^l(^1^2.|s)

^3(^1.^2.^3)

6l
62

&3

It (2.2)

where ff(4n)=o"t o(4b)=o*' cj(i4aa)=o*. fre]Rw\ foeR"8. and feeK"8.

It is easy to see that (2.2) is locally stabilizable by linear state feedback

when (An.bi), and (433,63) are completely controllable. It is also easy to see that

if (433,63) is not controllable, then no feedback law which is smooth at the origin

can stabilize the system (2.2). Consequently we shall be interested in the case

when C433,&3) is controllable, and the critical eigenvalues (those of An) are com

pletely uncontrollable, ie 62=0. Now our objective is to construct a feedback law

u=^*(fitf2i|3) to stabilize the system. From the preceding discussion it is plausi

ble that higher order (quadratic, cubic, etc) terms in f j are needed to stabilize

the system. To make this statement precise we use certain results of center

manifold theory as summarized in section 3 below.

3. Mathematical Preliminaries

For our development we need two sets of tools: center manifold theory and

normal form theory for differential equations. We review them briefly in the con

text that we need them here; the center manifold theorems are taken from Carr

[2], and the normal form theorems from Guckenheimer and Holmes [3].
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3.1. Center Manifold Theory

Consider the following Ck dynamical system in Hn:

*=/(*) (3.1)

A set 5cIRn is said to be a local invariant set if for all x0€.S there exists T>0

such that the solution of the differential equation (3.1) passing through x0 at

*=0 remains in S for |*|<7\ If T can be chosen to be oo, then S is said to be an

invariant set.

Now consider the following Ck dynamical system in IRn:

x = Ax + f(x,y) x£Rn
y =By +g(x,y) y<zMm (3-2)

where (x=0,y=0) is an equilibrium point, that is

/(0,0)=0 ;gr(0,0)=0 (3.3)

Further / and g comprise only of quadratic and higher order terms , that is

A:/(0,0)=0 ;Dyf (0,0)=0 ;Dxg(0,0)=0 ; Dyg (0,0)=Q (3.4)

We also assume that <j(B)c C_ and a(A)c\ja \ o?€Rj. For this system we have

Definition 3.1 A local invariant manifold M for the system (3.2) is called a center

manifold if it contains the origin (x=Qty=0) and is tangent to y=0 at the origin.

Remarks

1) ((z>0) |xei?nj is the generalized eigenspace of the ja-axis eigenvalues of

the linearization of the system (3.2). Thus a center manifold is a "nonlinear

eigenspace" corresponding to thejo-axis eigenvalues.

2) If M is given locally as the graph of a function y=h(x), then:

/i(0)=0

£h(0)=0
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It is a basic theorem that center manifolds exist (though elementary exam

ples show that they are not unique) and are locally given as the graph of a func

tion y=/i(x).

Theorem 3.1 (Existence of Center Manifolds) If / and g in (3.2) are C* vector

fields for k^2, then there exists a center manifold y=h(x)t \x\<st where h is of

class C*.

The flow on the center manifold is governed by

u=Au + / (it,/i(iO) (3.5)

The following theorem connects the stability of the system (3.5) to that of the

system (3.2).

Theorem 3.2 If the zero solution of (3.5) is stable (unstable, asymptotically

stable), then the zero solution of (3.2) is stable (unstable, asymptotically stable).

Remark

In the instance that the zero solution of (3.5) is stable or asymptotically

stable, we can relate the solutions of (3.5) to those of (3.2) for (x(0),y(0))

sufficiently small. Let (x(t),y(t)) be a solution of (3.2) with (x(Q),y(0)) small

enough. Then there exists a solution u(t) of (3.5) such that

x(t)=u(t) + 0{e-*)

y(t)=h(u(t)) + 0{e~^) as t-*°°

where the rate of convergence to the center manifold, y , is related to the eigen

values of B alone.

Thus we see that the study of stability (instability) of the system (3.2) may

be reduced to the study of stability (instability) of (3.5), provided we have an

expression for the function h. To solve for h(x), we use the fact that y=h(x) is
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invariant under the flow of (3.2), thus

if=^(x)=JDh(z)lAc+f(xMx))]

=Bh(x)+g(xth{x))

that is h satisfies the partial differential equation

Dh{x)[Ax +f(x,h(z))]=Bh(x) +g{x,h(x)) (3.6)

with/i(0)=0; Dh(0)=0

Any solution of the PDE (3.6) is a center manifold for (3.2). Typically, it is

difficult to solve the PDE (3.6), consequently the following approximation

theorem is of interest.

Theorem 3.3 Let <p be a C1 mapping from a neighborhood of Rn into Rn such

that

p(0)=0 ;2ty(0)=0

if <p satisfies the PDE (3.6) modulo terms of 0(\x\k) then as x-»0, we have:

\h{x)-<p(x)\ = 0(\x\k)

Remark

In particular, Theorem 3.3 allows us to approximate h(x) by polynomials in

x to any desired accuracy.

With Theorem 3.3, we are now ready to study the stability of the center

manifold system (3.5). Since the linear part of the vector field on the center

manifold has all its eigenvalues on the .yw-axis, we need to study the higher

order terms of the vector field. This is done next in a systematic way.
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3.2. Normal Forms

To study the behavior of the solutions on the center manifold it is helpful to

simplify the vector field but the simplifications should preserve the qualitative

behavior of the solutions at least locally around the equilibrium point. In the fol

lowing discussion a systematic procedure of simplifying the vector fields by

means of repeated coordinate transformations is presented. The resulting

simplified vector fields are called normal forms.

Define Hk to be the real vector space of vector fields whose coefficients are

polynomials of degree k. Given a linear vector field L(x) we have the subspace

ad L (Hk) = I adLh(x) | h(x)eHk J

and its complement Gj.; ie,

Hk=adL (Hk) © q, (3.7)

Theorem 3.4 Let x=f(x) be a (? dynamical system with /(0)=0 and

Df (0)x=L(x). Then there exists an analytic change of coordinates in a neighbor

hood of the origin transforming the system to y=g(y) such that

9(y)=91(y)+g2(y)+^+gr(y)+Br (3.8)

yrhereg\y)=L(y)',gk(y)^Gk, 2^k<r andi?r=o(|i/|r).

Proof It suffices to show that for a given fc>2 the components of ad L (Hk) can

be locally removed from the vector field by an analytic change of coordinates.

Performing this for k=2,..,r we obtain the desired coordinate transformation as

the composition of the transformations for each A:. Thus we let

x = y + P(y)

where P(y) is a polynomial of degree k. We point out that Dyx(Q)=[ so that we

have a local diffeomorphism (preserving the local behavior of the flow of the vec

tor field around the origin). Using this transformation, we get
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y=(I+DP(y))-1[f(y)+Df(y)P(y)+o(\yn] (3.9)

Now note that

(I+DP(y))-l=I-DP(y)+o(\yn (3.10)

and

Dflv)P(y)=Df(0)P(y)+o(\yn

=DL P(y)+o(\y\n (3.11)

Using (3.10) and (3.11) in (3.9) we have:

y=f(y)+2L P-DP L+o(\y\r) (3.12)

If we set

f(y)=fk-i(y)+fk(y)+o(\yn

with/A.-i(l/)=2]/J(y) and/^(y)€/^ for j =l,..,k we get:
i=i

g(y)=9k-i(y)+gk(y)+o(\yn (3.13)

where

flb-i(v)=/*-i(v) (3-14)

gk(y)=fh(y)+*d l (P{y)) (3.u)

By choosing the coefficients of P(y), components of ad Z. (#*) can be removed

from/*(?/) while all lower order terms remain unchanged. Thus gk(y)z:Gk.

Although the transformations for each k leave all lower order terms

unchanged, they do alter the higher order terms. We have the following corollary

to this effect.

Corollary 3.1 Let x=f{x) be a C dynamical system, such that fi{x)^.Gj for

j =2,..,A:—1 ,k<r. Let y=g(y) represent the transformed system after the

removal of 0(k) terms in the span of ad L (Hk). Then we have:



-8-

g'*k(y)=fi+k(y)+ad f^\y)(P(y)) ;=0,..,A:-2 (3.16)

g^-\y)^f^-\y)^ad fk(y)(P(y))-DP(y)[ad L(P(y))] (3.17)

where (3.16) and (3.17) make sense provided j+k<r and 2A-l^r respectively.

Proof Using the change of coordinates x=y+P(y) we have:

y=(/+27P(y))-1/(V+P(y)) (3.18)

We note

(I+BP(y))-1=I-DP(y)+(DP(y))z+0(2k-2)

f(y+P(y))=f(y)+Df(y)P(y)+0(2k)

Now using (3.19) and (3.20) in (3.18) we get:

y =/ (y)+DfP-DPf -DP[DfP-DPf ]+0(2k)

(3.19)

(3.20)

(3.21)

Collecting the 0(0 terms for various values of I we obtain (3.16) and (3.17) for

g(y).

4. Stabilizing Control Laws

Consider the system (2.2), with b:=0

Pi(£i.£2.&)
^2(^1.^2.^3)
^3(^1.^2.^3)

4n 0 0 £i
0 422 0 fe +

0 0 433 &

0

U (2.2)

with o(4„)cy«| wei?J, o(Az>)c C_, ff(433)c <C+, and (433.63) controllable. By

choosing u of the form u=v+K3$3 and o(A33+b3K3)c C_, we may consider the

problem of stabilizing

4n 0 0 £1 ^1(^1.^2.^3) 0

0 422 0 £2 + Vziti.&h) + 62
0 0 4'33 £3 fatei.^.^ 63

u (4.1)

with <T(A'a3)c C_. We will drop the prime superscript on 4'33 in the sequel and
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assume that or(4a3)c C_. Now our objective is to find v=F($h&,&), an analytic

feedback law, such that the equilibrium point of (4.1) is asymptotically stable.

It follows that when we set v =F($i,$z,£3) with 433 stable, that the center

manifoldis tangent to Kli.0,0) | ^eIRnij and is given locally by

=Mfi)=

Further from (3.6) it follows that h satisfies the following PDE:

^^i)[An^+n(UMQM^))]=

A2zh2(^+^2^iA2^i)MU))+b2F(^M^)M^))
Aa&z(Si)+9&iMh)Mti))+W(tiMti)Mti))

(4.2)

and the flow on the center manifold is governed by

*\=4ll$1+p1($1,7i8($l)1/La(f1)) (4.3)

Thus, we need to choose /,(£i.£z.fs) in such a way that the resulting hfa) pro

duces an asymptotically stable equilibrium point on the center manifold. While a

general solution is not available to this problem we consider several cases for

the matrix 4n. The case where 4neIR2x2 and has a pair of imaginary eigenvalues

was solved by D. Aeyels [l]. In [4], Abed and Fu treat the same case using bifur

cation formulae derived from the projection method. The same technique is also

employed in [5] where, the case of a single critical mode is treated. The cases

covered here, which have not been treated by Aeyels or Abed and Fu, are the fol

lowing

(i) Double zero eigenvalues.

(ii) Pair of imaginary and a simple zero eigenvalue.

(iii) Two pairs of imaginary eigenvalues.

In the remainder of this section we assume, for simplicity, that n2=0 and

n3=l. We will show in section 6, by way of an example, that there is no loss of
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generality in this assumption.

4.1. Case of Double Zero Eigenvalues

We consider here the case where 4neR2)<2 and has the form:

4n=
0 1

0 0

We let represent £j and we will drop the subscript from £3 and represent it by

£. We further let

i*}-[g(x,y,

Now rewriting (4.1) with the above notation weget:

0 1

0 0

/(*.V.£)
9(x,y,£)

$=-k$+<p3(x,y,$)+v

(4.4)

where fc>0. Since we will choose v to be of the form F(x,y,£), we can assume

that <p3(x,y,£)=0. The center manifold is given locally by £=h(x,y) with h satis

fying

**<**>[ g{x,yMx.y)) =-kh(x,y)+F(x,y,h(x,y)) (4.5)

A(0)=0;£/i(0)=0

We now use Theorem 3.3 to approximate the center manifold upto terms of 0(3),

ie.

h(x ,y)=ax2+bxy +cy2+0(3) (4.6)

Note that the choice of h in (4.6) automatically gives h(0,0)=0 ; Dh(Q,0)=0. Next

we choose F to be of the form:
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F(x,y,0=ax2+{3xy+yy2 (4.7)

Using (4.6) and (4.7) in (4.5) we get:

(2ax+by)(y+f(x,y,h))+(2cy+bx)g(x,y,h)=

-kax2-kbxy-kcy2+ax2+(3xy+yy2+0(3) (4.8)

Recalling that / and g are both of 0(2), we may equate terms of 0(2) in (4.8) to

get:

k 0 0 a fa
(4.9)

For k*0, we see from (4.9) that (a,b,c) can be arbitrarily assigned by choice of

(a.0.7) in the control law (4.7). In other words, the control law determines a

center manifold upto terms of 0(3). The remaining problem is to determine

what choice of the parameters (a,b,c) in (4.6) stabilizes the flow on the center

manifold, which is given by:

k 0 0 a a

2 k 0 b = 0
0 1 A: c 7,

0 1

0 0
f(x,y,h(x.y))
g(x,y,h(x,y)) (4.10)

This program is continued using the normal form theory of section 3.2 in the fol

lowing theorem, where by a slight abuse of notation we let

/(*•!/)=/(x,y,h(x,y)) andg(x,y)=g(x,y,h(x,y)).

Theorem 4.1 The zero solution of the center manifold system (4.10) is not sta-

bilizabie unless

4&=0 (4.11a)

Di%g+D2f=Q (4.11b)

Furthermore if (4.11) is satisfied, then the zero solution of (4.10) is locally

asymptotically stable provided that

J^h+(D2f)2<0 (4.12a)
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Dly9 +B*f-D2f (D^f +D2g)<0

where all the derivatives above are evaluated at the origin.

Proof For the vector fields in R2,

Hg—span
x2 yz xy 0

t \ f \o fo]
°J l°J o,

. x2 v*\

Further for the system in (4.10),

L(x,y)=

Then,

y
o.

-xy

0 ,

f „\f „}(„}* \

ad L (H2)=span

G2=span

Thus , the normal form of (4.10) can be written as,

x=y

y=6x2+sxy * '

0

y v xy

Thus a complement to ad L (H2) is given by,

(4.12b)

(4.13)

where 6=%D2g and s=D2,g+D2f. It is easy to see that the zero solution of

(4.13) is unstable for all nonzero values of 6 and £. Thus a necessary condition

for stabilization is (4.11). Further with (4.11) holding, we may consider the 0(3)

terms in the expansion of the vector field in (4.10). We have,

H3=span
' 8W - *xhj

f _> t j\

\ t \ - *

xy1

x

t \t \ t \

0

x\
0 o

py )w J



Then,

ad L (H3)=span
3x2y

0

2xy2
0

-13

0

b| [ x*

Therefore a complement to ad L (H3) is given by,

G^—spari
V - '°11

x2y
[2xy2j

xy*

l-!/3J
V

,0,

Thus we see that the normal form of (4.10) upto terms of 0(A) may be written

as.

x=y

y=X*3+/*r2i/+ °^

where, \=jDig', and M^A^'+A?/'). Here

by removal of the 0(2) terms. Now using Corollary 3.1 to

we find for X and /i,

obtained from

relate
9'

and

*s£flfc +kfl?/)86

vj^I&vg +A3/ )-|^x2/ (D*y+D2g)

Next using the Lyapunov function candidate

V=-T*x4+h/Z4 2*

we have for V"

V^-Xx^y +Xx3y+fxx2y2

Thus for X<0 and jj,<0, the equilibrium point of (4.14) is locally asymptotically

stable.

(4.14)

9'
is the 0(3) vector field
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Corollary 4.1 The zero solution of (4.4) is stabilizable by the control

v=axz+pxy+yyz, provided (4.11) is satisfied and D^g^O.

Proof By inspection, if D£$?*0t then the values of Dig and D^g can be

assigned arbitrarily by a proper choice of (a,b,c) (and thus by (a,p,y)). Thus

through the control v the parameters Xand fj, can be made negative.

4.2. Case of a Pair of Imaginary and a Simple Zero Eigenvalues

We consider here the case where 4ueIR3x3 and is of the form

4X1=

•

0 -1 0

1 0 0

p 0 0,

In this case (4.1) may be written as

f(x,y,z,£)
g(x,y,z,$)
p(x,y,z,$)

X 0 -1 0 X

y = 10 0 y +

z poo. z

£=-k£+v k>0

(4.15)

The center manifold is represented by £=h(x,y,z). Letting v=F(x,y,z,£), we get

that h satisfies the following

Dh(x,y,z)

/i(0)=0; m(o)=o

-y+f(x,y,z,h(x,y,z))
x+g(x,y,z,h(x,y,z))

p(x,y,z,h(x,y,z))
=-kh(x,ytz)+F(x,y,z,h(x,y,z)) (4.16)

As before, using Theorem 3.3, we approximate the center manifold upto terms of

0(3)

h(x,y,2)=ar2+6j/2+czz+iiij/ +exz +lyz +0(3) (4-17)

Next we choose the following form for the feedback law F

F(x,y,z ,$)=OLX2+py2+yz2+o'xy +7)xz +/jyz (4.18)
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Using (4.17) and (4.18) in (4.16) and equating the coefficients of the 0(2) terms

we get

A: 0 0 1 0 0

0 A; 0 -1 0 0

0 0 k 0 0 0

-2 2 0 k 0 0

0 0 0 0 A: 1

10 0 0 0 -1 k

a a

b P
c

d
=

7

a

e n

[l. fr

(4.19)

For k*Q, (4.19) implies that (a,b,...) can be arbitrarily assigned by a choice of

the control prameters (a,/?,...). Thus the control law determines a center mani

fold upto 0(3) terms. Next we wish to determine what choice of (a,6,...) renders

an asymptotically stable equilibrium point for the center manifold system

f(x,y,z,h(x,y,z))
g(x,y,z,h(x,y,z))
p(x,y,z,h(x,y,z))

X 0 -1 0 X

if = 10 0 y +

z poo, z

(4.20)

This is done in the next theorem, where as before (f',g',p')T denotes the vector

field obtained from (/ ,g ,p)T after removal of the 0(2) terms.

Theorem 4.2 The zero solution of (4.20) is not stabilizable unless

Dlf+D2sg=0 (4.2ia)

D2p+D2p=0 (4.2ib)

A2J>=0 (4.2lc)

Furthermore if (4.21) is satisfied, then the zero solution of (4.21) is asymptoti

cally stable provided that

A3/ '+Afa '+/&/ '+£>lyg '<0 (4.22a)

AV<0 (4.22b)

Dlzf'+D^g'^ (4.22c)

DSczP'+D&zP^O (4.22d)
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Conditions (4.22c) and (4.22d) may be replaced by the single condition

sgn(Dizzf'i-Dy\ssg')=-sgn(Vlssp'+Dy%zp') (4.22e)

Remark

We may use Corollary 3.1 to express (4.22) in terms of the vector field

(f *9*P)T* The resulting expressions, although extremely involved, would consist

of the terms appearing in (4.22) plus additional terms involving various second

order partial derivatives of (f,g,p)T. The stabilizability conditions on (f.g,p)T,

however, can be determined from (4.22) alone, since the control can only affect

the 0(3) terms in (f,g,p)T.

Proof In R3 we have:

{ 21XA L 2\ ( 2\za xy
- <

xz yz

H2-span 0 0 0 0 0 0

4

,0. ko( .0, .0, ,0. .0,

'0%

.0J

fo

y

loj

' / _ \ f \
o

z

10J

xy

0J

t - \ t - \

0

xz

,0

0

yz

.oj

f*\f*+\f~\f~ \ f n\
0

0

z2\

0

0

l£!/J

0

And for the system in (4.20),

\xz)\yz}

Thus,

L(x,y,z)=
-y

X

10 J

ad L (Hz)=span
\2xy -2xy 0' y2—x2 yz —xz

X2 y2 zz xy XZ yz

1o , . o , ,0, > 0 , ,0, . o ,

—X
f 2 ^
-IT

f o-2l -xy —xz ~7jz

2xy -2an/ 0 y2—x2 yz —xz

. 0 , . 0 . . o ( , 0 , . o t , o t



0

0

£xy,
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\ f~\ t ~ \ t ~ >
0

0

\yz)\-zx)\-2xyw\\yz-xz,

' 0 *
0

It is easy to show that a complement to ad L (H2) is given by,

t
t \
xz

V

yz ' 0 ' °i
yz —xz 0 0

10,
»

. 0 . xz+y2, z2
J

Gjt—span

Therefore the 0(2) normal form associated with (4.20) is of the form,

x--y +6xz +syz

y =x+8yz —exz +0(3)
z =\(x2+yz)+pzz

(4.23)

where, S^jiD&f+D&g), s=^D2zf -D&g), \=fozp+£>&), and p=j^tfp.
Now transforming the normal form in (4.23) to cylindrical coordinates we get,

f=6rz +0(\r,z\3)
z=\r2+pz2+0(\r,zf)
£=1 +0(\r,z\z)

(4.24)

It is easy to show that the zero solution of (4.24) is not asymptotically stable for

any nonzero values of <5,X, and p. Therefore conditions (4.22) are necessary for

stabilization. Note also that s does not appear in (4.24).

Next.assuming (4.22) is satisfied, we consider the 0(3) terms in the expan

sion of the vector field in (4.20). We have,

H3=span
K

f «rt
y3

f «rtz3 x^ f 2 ^xcz f 2 1yax i 2 \yaz i 2 \ZAX ( 2 1z'y xyz

0 0 0 0 0 0 0 0 0 0

lo. .0, .0. .0 , ,0 t .0 t . o , .0 , ,0 , ,0 ,

'0' '0' '0' '0 ' '0' 0 ' '0' 'o' '0 ' '0 '
X3 y3 z3 X2!/ x2z yzx yzz z2x zzy xyz

.0, .0, .0, .0 , .0 , . o , > o t .0 , ,0 , ,0 t

0' 0' '0' '0 ' '0' 0 ' '0" '0' 0 ' 'o }
0 0 0 0 0 0 0 0 0 0

?3 b/3J z3 xZy. x2z4 y2xt yzzt Z2X. ?zy< *yz)
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f

fax2!/ -3xyz 0' 2xy2—x3 2xyz
X3 y3 z3 x^y xzz

I 0 , , o , .0, . o . 0 ,

y3—2xzy
yzx

—2xyz
yzz zzx

0 J

f 2 '—zAx

z*y
. o ,

f 2 2 \
ycz —xcz

xyz

-xa f i \
-z3 -xhj f 2 \—xAz

3x2y -3xy2 0 2x?/2—x3 2xyz
. 0 , . 0 , . o , . 0 , , 0 ,

f 2 \—yAx ( 2 \-y'z f 2 \—zAx -zay
y3-2x2y —2xyz z2y —z2x

0 , . 0 , . o , >0 J

' 0 ' ' o ' 0 ' 0 ' ' 0 '
0 0 0 0 0

3*2y- ,-3xy2 ft ?xt/2-x3 ,2xyz

-xyz

y2z —x2z

y3-2x2y>

It can be shown that a complement to ad L (H3) is given by,

0

0

{-2xyz\

0

0

yz2y-

0

0

l-z2xj

0

0

[yzz —x2z,

Gs—span

U$A.~..2\x*+xy

y3+x2i
. 0 'j

^y3+x^y lfxz2^
—x3—xy2 yz

0 Jl 0 J

-yz'

xz2

I 0 J

' 0 ' 0]
0 0

x2z+y2zt z3

Then the 0(3) normal form of (4.20) can be written in the form,

x=-y +syz +a'(x3+xyz)+p'(y3+x2y)+yxz2-r)'yz2
y=x-exz+a'(y3+xzy)-p(x3+xyz)+y'yz2+7}'xz2 + 0(4)
z=a'(x2+i/2)z+/x,z3

where with some algebra we may find,

(4.25)
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/*'= JQ^-Dz9 '+Bff '-D&yg'+Dlyf ')

Y^falzf'+v&zg')

V'^jiD^g'-D^f)

o-^D^p'+Dj^p')

Next transforming (4.25) into cylindrical coordinates we get,

r=a'r3+yrz2+0(|r,z|4)
z =<5'r2z +^'z3+0(|r,z |4) (4.26)
-6=1 +0(\r,z\z)

Now using with the Lyapunov function candidate,

V=^Rrz+^Szz

we have,

V=fia'r4+By'r2z2+Sa,r2zz+Stj:z4

Therefore for a',y',a', and y! all negative, or for oc'./a' negative and

sgn(y')=—sgn(a'), the equilibrium point of (4.26) is asymptotically stable.

Corollary 4.2 The zero solution of (4.15) is stabilizable by the control

v=ax2+/3T/2+7z2+ax7/+?7xz+^T/z provided (4.21) is satisfied .££$3*0, and either

AV *0 , Dzkg *0, or Dz(f *0 , D2Kg *0.

Proof In view of the Remark following Theorem 4.2, we see that with D^p^O

(4.22b) and (4.22d) can be satisfied by making Dip, and D^p or D^p arbi

trarily negative with a proper choice of parameters c , and a or o of the center

manifold. Furthermore with D2kf *0 , D^g^O (4.22a) and (4.22c) may be

satisfied through the parameters a and I by making D£f and D$zzg arbitrarily
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negative. (4.22a) , (4.22c) may be satisfied with D^f *0 , Dgg^O in a similar
fashion.

4.3. Case of Two Pairs of Imaginary Eigenvalues

Here we consider the case where i4neR4*4 and has the following form:

Au=

0-100

10 0 0

0 0 0 -6

0 0 6 0

where we assume 6$* \±%,±1,±2,±3]. Rewritting (4.1) for this form of An we get,

X

y
_m

z

w

0-100

*

X

10 0 0 y
0 0 0-6 z

+

0 0 6 0 w

f(x,y,z,w,$)
g(x.y,z,w,$)
\p(x,y,z,w,$)
q(x,y,z,w,\)

$=-k$+v

(4.27)

Letting v=F(x,y,z,w) and representing the center manifold by $=h(x,y,z,w)
we get,

Dh(x,y,z,w)

-y+f(z.y,z,w,h(x,y,z,w))
x+g(x,y,z,w,h(x,y,z,w))

-6w+p(x,y,z,w,h(x,y,z,w))
-6z+q(x,y,z,w,h(x,y,z,w))

=-kh(x,y,z,w)+F(x,y,z,vj) (4.28)

h(0)=Q : Dh(0)=0

Choosing the following form for the control law F,

F(x,y,z,w)=ax2+Pyz+yzz+6wz+T]xy+/jtxz+pxw +

\yz+vyw+£zw

and approximating the center manifold upto terms of 0(3) as

h(x ,y ,z ,ii))=ax2+byz+czz+dw2+exy+lxz +mxw+

(4.29)
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nyz+syw+tzw +0(3) (4.30)

Using (4.29) and (4.30) in (4.28) and equating the 0(2) terms we find that for

nonzero values of k there is a 1-1 correspondence between the control parame

ters (a,/?,...) and the center manifold paramters (a,b,...) regardless of the value

of 6. Thus again the control law determines a center manifold completely upto

terms of 0(3). Now in relation to the stability of the center manifold system,

X

y
_„

z

w

0-100 X

10 0 0 y
0 0 0-5 z

+

0 0 6 0 w

f(x,y,z,w,h(x,y,z,w))
g(x,y,z,w,h(x,y,z,w))
p(x,y,z,w,h(x,y,z,w))
q(x,y,z,w,h(x,y,z,w))

we have the following theorem,

Theorem 4.3 The zero solution of (4.31) is asymptotically stable if

Dif '+D*g •+/&,/ '+Dlyg'<0

Dip'+Dfa'+BzlwP'+Dizwq^O

D^zf '+I&m,f '+Dy\zg ,+B3uwg'<0

VzlzP'+D&zP'+Bzlwq'+Dylwq^O

Conditions (4.32c) and (4.32d) may be replaced by the single condition

sgn(B^f '+V3vwf '+D3zzg '^D^g ')=

-sgn&^p^D^p^D^q ^Dg^q')

(4.31)

(4.32a)

(4.32b)

(4.32c)

(4.32d)

(4.32e)

Proof We give a short sketch of the proof since the details, although quite simi

lar to the proof of Theorem 4.2, are extremely lengthy and tedious. Calculating

ad L (H2) and ad L (H3) for the system (4.31) we can show that all 0(2) terms of

the vector field may be removed and that the 0(3) normal form can be written

as,

x=-y+(a'x+py)(x2+y2)+(y'x+o'y)(x2+y2)
y=x+(a!y-^x)(xz^yz)+(y'y-a,x)(x2^y2)
z=-6w^7j'z+jjfw)(zz+w2)+(p'z +v'w)(x2+y2)+0^
w =6z+(r}'w-p'z )(zz+w2)+(p'tv-v'z )(x2+y2)

(4.33)
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where,

?= i^3/'"^ *+D&yf '-D™9')

7*= |<^i/ '+4&»/ '^D^g^D^g')

*'= |<^»/ '+^»/ '-D^g'-D^g •)

M^^^P'-^g'+^^p'-/?^?')

p'=5<fl&rf>'+4Srf>'+/S»g '+^g')

^=jO«Lp '+/&«* '-i&g '-^g')

Now transforming (4.33) into cylindrical coordinates we obtain,

r\=a'rf +7'r1rf +0(|rlfr2|4)
7-2=p'r frz+rj'ri +0(|r1,r2|4)
*i=l +^(|r1,r2|2) <4-3*)
i*2=<5 +^(|r-1.r2|2)

Conditions (4.32) are now clear by considering a Lyapunov function candidate of

the form V=Rrf+Sr§.

Corollary 4.3 The zero solution of (4.27) is stabilizable by the control law in

(4.29) ifDitf, D&g are not both zero, and Dip, D^q are not both zero.

The proof is very reminiscent of that of Corollary4.2 and will, therefore, be omit

ted here.
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5. Robustness Considerations

In this section we study the effects of perturbations of the vector field on

the stability properties of the system. We need the following definitions to

characterize the notion of closeness of two vector fields.

Definition 5.1 Let F(£) be a Ck vector field, then it may be expressed as

P(S)=f1($)+f*(S)+ • ' •+/*(£)+*(£)

where f*eHj , j =l,..,k, and B=o(\$fi). We define the Ck norm ofF as

\\F\\k=max\\\f%\\f2\\,.--\\f><\\l (5.1)

where

Definition 5.2 Avector field G($) is a C* e- perturbation of F if \\F-G\\k<s.

Following the assumptions of section 4, we let the unperturbed system

jt=<p(£)+bu be of the form

^1=^11^1+^1(^1.^2)
&=iW2+*2(fi.&)+&a"tei.fc) (5,3)

where £i£lRni, foeluC2, o(An)c\jo\o<zMl, cr(i422)c C_, <pi,<p2 are at least C* with A:

the order of the smallest order jet of the center manifold system associated with

(5.3), on which the stabilizing control law, u(£lt£2), is based.

Let the perturbed system rj=^p(rj)+bu be such that

||p(.)-?(.)ll**ei (5.4)

\b-b\<E2 (5.5)

Defining £=max{e1,£2||ii(.)||J1.J, we may express the perturbed system as

7j=(p(rj)+s^(r})+bu(r})+sBu(r)) (5.6)
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for some ?(.) and 6 such that

ll?(.)ll^l (5.7)

Il*t*(.)||fc*l (5.8)

Rewriting (5.6) in the form of (5.3) we have

'ii^ii^i+^ii^i+^^^+^i^i.^+e?!^!.^)
^2=^22^2+^2i^i+e^22772+^2(771,?72)+£92(771,?72)+62u(r71,772) ^5*9^

where ?(??)=?(77) -An+Su (77).

Now since the stability properties of (5.3) were derived from the study of

the flow on the center manifold, we wish to find a local invariant manifold for the

system (5.9) such that the stability properties of the vector field restricted to

this invariant coincidewith those of (5.9). This is done in the following theorem

Theorem 5.1 The system (5.9) possesses a Cfc local invariant manifold given

locally by the graph of a function /i:R+xRni-»ETlii1 such that

/i(0.0)=0 ; £fi(0,0)=0

Moreover this invarint manifold is C* close to a center manifold of (5.3), and its

stability properties coincide with those ofthe overall system (5.9).

Proof The technique used is called the suspension technique. We rewrite (5.9) as

follows

^l=^ll^l +£^ll'7l +^12772+^l(?7l,772)+£?1(771,772)

^2=^22^2+̂21^1+^22^2+^2(?7i.??2)+£?2(^1.^2)+fe2^(^1.^2) (5.10)
£=0

Since £ is a state variable in this system, we see that sAn7j1,sA12rj2,£A2i7]l, and

*A227)2 are nonlinear terms in the new system. Therefore the linear part of the

vector field in (5.10) has eigenvalues associated with rjx and s on the ju-axis and

those associated with 772 in the left half plane. Thus from theorem 3.1, there
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exists a C* center manifold for (5.10), r]2=E(r]i,s, \t}i\<6M<62. Furthermore

since ftfai.e) is Ck in r}x and £, there exists <5:IR+-»IR+ such that

||/i(771,£)-^(?71,0)||fc^(5(£) and <5(e)-»0 as e-*0

Now clearly /i(?7i,0) is a center manifold for (5.3) and this completes the proof.

The flow on this invariant manifold is governed by

f=i421f+^I1f+ea12«(fle)+^1(f1«(^le))+e?l(f1^(fle)) (5.11)

Note that for e=0, (5.11) represents the dynamical system on the center mani

fold of (5.3). Therefore by assumption the zero solution of (5.11) is locally

asymptotically stable for £=0. We have the following theorem for the case when

£*0.

Theorem 5.2 For the system (5.11) there exists £* such that for all £<£*, there

exists a ball Br{c) around the origin which is locally asymptotically stable in the

sense that locally outside f?r(c) the vector field is directed inward. Furthermore

r(£)-»0 as £-»0.

Proof Since all the terms on the right hand side of (5.11) are C* we may rewrite

(5.11) as

^11<-+^1(t./?(^,0))+a1(£)/1(0+...+^(£)/*«-)+i?(^I£) (5.12)

where aj(s) are C* in £ and Oj(s)-*0 as £-»0; /*£/£ with ll/^l

;B(M=o(\tf,ek).

By assumption the zero solution of (5.11) is locally asymptotically stable for £=0.

Therefore by a converse theorem on asymptotic stability [6], there exists a

locally positive definite Lyapunov function V(£) with continuous partial deriva

tives such that

-^c=o=-f|W^i(^(<r.O))] (5.13)
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is locally positive definite. Now computing -V)e*o along the flow of (5.12) we

obtain

-<^=-*1«-o-fpffi/I+...+ff*/*]-|^(f.e) (5.14)

For any fixed value of £, /?(£,£) is o(|£|*); therefore there exists /j.(e)>0 and a

monotone increasing function a:R+-*R+ such that

-V|cno-|^?(f.e)Sfea(!Cl) for |f|<M(e) (5.15)

and a(r)>0 for r>0, a(0)=0, jj, is a continuous function of £ with ju(0)>0. Furth

ermore by continuity of the partials of 7 we may define

Using (5.15) and (5.16) in (5.14) we have

-^^a(lCl)-I(£)a(£)[|<-|+|<-|2+...+|^] (5.17)

*a(|fl)-AL(e)<r(e)|f| for |^minU,/z(£)j (5.18)

where cr(£)=77uxx[(T1(£) <7*(£)] and we have used the fact that ||/J'||^1.

Let o(E)=kL(£)a(£). Since -V|e-0 is at least 0(A: +1), a(.) is higher order than

linear. Therefore there exists r(£)>0 such that

~V|«*ofca(KD-*tolfl>0 for |flfcr(e) (5.19)

Moreover since ct(£)-»0 as £-»0, we see that r(£)-»0 as £-»0. Thus for £ small

enough r(s)<p.(e) and we may write

-^Uo>0 for r(e)<|fl<^e) (5.20)

Together with the positive deftniteness of a(.), this shows that the ball of radius

r(£), Br(c), around the origin is locally asymptotically stable. The size of the per

turbation £ is limited by jj,(e), the domain of attraction of the unperturbed sys

tem, and the parameter 62 from theorem 5.1.
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Theorems 5.2 and 3.2 together imply the following result.

Theorem 5.3 Let the zero solution of (5.3) be locally asymptotically stable for

some control law constructed based on the k-jet of the center manifold system.

Then there exists £* such that for all C* £-perturbations of the vector field with

£<£*, there exists a ball i?r(e) around the origin which is locally asymptotically

stable. Further r(£)-»0 as £-»0.

6. Discussion and Examples

The previous sections were based on several seemingly restrictive assump

tions. Here we will show the extension of the previous results to more general

cases. In section 2 we considered systems of the form £=<p(£)+bu. Let us now

consider the general case of the form

£=?(£.") (6.1)

where ^(0,0)=0. Since we are interested in local stability properties of the ori

gin we may expand the vector field as

£=$(t0)+^HS.0)u+D2$($,0)uz+O(u3) (6.2)

Letting A*?(0,0)=o, we may define ^(£) by

A.?tt.0)=6+^(e) (6.3)

We further define

?(£)=?a.O) (6.4)

ra)=4??(£.0) (6.5)

Rewriting (6.1) using the above notation we have

$=<p(S)+bu+f($)u+r($)uz+0(u3) (6.6)
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where (p(0)=0. Now letting A=D^(p(0) and transforming the system as in section 2

we have

1Z2+0(^3)

An 0 0 fl 9i(t) 0 *i(fl ritt)
0 i422 0 b + to(S) + b2 u+ 1>2(S) u + r«tt)
0 0 i4a3 *s *att) 63 ft(f) r8(f)

Representing the center manifold by (£27',£37,)=(^2(£i)7'.'l3(£i)7') we get

A22h2+<p2(^i,h2,h3)+b2u^i/2(^llh2,h3)u+T2(^i,h2,h3)uz
A33ha+<p3Ui,h2th3)+b3u+'tf/3(^ith2,h3)u+r3(^lth2,h3)uz +0(u3)

(6.7)

(6.8)

Assuming the control it is a smooth function of the fs , it is clear that the terms

fju and Tju2 for j =1,2,3 are at least of 0(2) and will, therefore, have no effect

on the 0(2) expansion of the center manifold. The flow on the center manifold,

on the other hand, is now determined by

^=^iili+^i(^i.^2.^3)+^i(^i.^2.^3)^+ri(li./i2,/i3)^2+^('"3) (6.9)

Since the stability of the zero solution of (6.9) is determined by the quadratic

and higher order terms, the presence of fiU and Tiu2 will only relax the stabil-

izability conditions by adding more flexibility in satisfying the conditions of

Theorems 4.1, 4.2, and 4.3 . In other words the special class of systems

k=<p($)+bu represents a least controllable situation.

We next present two illustrative examples. The first example demonstrates

the control design procedure and the effects of perturbations on the stabilized

system. The second example involves the case where the controllable part of the

system is not a scalar.

Example 1 We consider the system

x =y —x3+xyz—2y £
2/=x3+xf
£=-5£+u

(6.10)
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With u=0, a center manifold for (6.10) is given by $=Q. The flow on this center

manifold is governed by

x=y—x3+xy2
y=Xt (6.H)

The origin of (6.11) is unstable as shown in Fig. 1 by the phase portrait of the

system.

To stabilize the system we choose the control as in (4.7) and represent the

center manifold by (4.6). Then the flow on the center manifold is governed by

x =y-x3+xyz-2y (ax2+bxy +cy2)
y=x3+x(ax2+bxy+cy2) +0^ (6'12>

From Theorem 4.1 we see that a choice of parameters of the center manifold

which stabilizes the origin of (6.12) is given by: a=-2, 6=0, and c=0. Using

(4.9), the corresponding control parameters are given by: a=-10, /?=-4, and

7=0. Thus a stabilizing control law is given by

iz=-10x2-4x7/ (6.13)

Fig. 2 shows the phase portrait of the stabilized system (6.12).

Next we introduce a linear perturbation in the original system. The per

turbed system is given by

x =£x +y —x3+xyz—2y £
2/=£i/+x3+x£ £>0 (6.14)
£=-5f+u

Clearly the origin of (6.14) is unstable irrespective of the control u. From

Theorem 5.3, however, we expect that for £ small, using the control (6.13) the

trajectories of the system converge to a small ball around the origin. To demon

strate this we compute the center manifold of the suspended system obtained

from (6.14). This is given by
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M*.2/.£)=-2x2+0.8£X2-0.32£X2/+0.064£y2+G(4)

Then the flow on this invariant manifold is determined by

x=Ex+y-x3+xy2-2yh(x,y,£)
y=sy+x3+xh(x,y,E)

(6.15)

(6.16)

The phase portrait of (6.16) is shown in Fig. 3 for £=0.5. Comparison of figures 2

and 3 shows that as £ changes from zero, the stable equilibrium point at the ori

gin bifurcates into a stable periodic orbit around the origin and an unstable

equilibrium point at the origin.

Example 2 In this example we consider a system whose hyperbolic portion is not

a scalar. Since the approach to all higher dimensional problems is identical, we

consider a two dimensional example. Thus consider the system

li=

$2=S2+U

£3=-2£3+u

0 1

0 0

x3+xy2-x$2
yfcj+x&H-x2?/

Representing the center manifold as

1 k2(x,y a1x2+6lxy+c1T/2
a2xz+b2xy+c2yz +0(3)

we have that with the control u=axz+pxy+yyz, h(x,y) satisfies

m{x'y)]xzy+yh2(x,y)+xh3(x,y)

a xxz—b lxy -c ly2+axz+(3xy+yy2
-2a2x2-2b 2xy-2c2y2+ax2+pxy +yy2

Now equating the 0(2) terms we get

i o o Ol 2 0 0 a2 a

2 10 *1 = 2 2 0 b2 = P
p 1 1

C1.
P 1 2.

°z, 7,

+ 0(3)

(6.17)

(6.18)

(6.19)

(6.20)
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The flow on the center manifold is given by

y +(l-a1)x3+(l-c i)xy2-b jx^
a2x3+(a1+62+l)x27/+(61+c|)xy+c1y3 + 0(4) (6.21)

Then from Theorem 4.1 the zero solution of (6.21) is asymptotically stable if

a2<0 and 3(l-a1)+a1+62+l<0. Thus for example choosing (a1,61,c1)=(-2,-14,2)

and (ct2,&2,c2)=(-l,-8,-2) satisfies (6.20) and the above inequalities.Then we get

that the control law

u =-2x2-lBxy -12y2 (6.22)

stabilizes the zero solution of (6.21) and thus that of (6.17).

It is clear from (6.20) that although the control law does not determine the

center manifold completely, it does give us the same number of degrees free

dom in choosing the center manifold as was available in the case with a scalar

hyperbolic state.
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10.0

5.0 -
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-10.0
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Figure 1. Phase portrait of center manifold system of the unstable system.
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o.o

-5.0

-10.0
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Figure 2. Phase portrait of center manifold system of the stabilized system.
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Figure 3. Phase portrait on the invariant manifold of the perturbed system.
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