

Copyright © 1986, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

PROCESSING RECURSION IN DATABASE SYSTEMS

by

Yannis E. Ioannidis

Memorandum No. UCB/ERL M86/69

2 September 1986

PROCESSING RECURSION IN DATABASE SYSTEMS

by

Yannis E. Ioannidis

Memorandum No. UCB/ERL M86/69

2 September 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

PROCESSING RECURSION IN DATABASE SYSTEMS

by

Yannis E. Ioannidis

Memorandum No. UCB/ERL M86/69

2 September 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Processing Recursion in Database Systems

Copyright © 1986

Yannis E. loannidis

All Rights Reserved

Ph.D.

Processing Recursion in Database Systems

Yannis E. loannidis

ABSTRACT

Computer Science Division
Department of EECS

iProf. Eugene^W^ng
Committee airman

Deductive databases are those in which new facts or rules may be derived from

facts or rules that have been explicitly introduced. An important addition when aug

menting a relational database system with deductive capabilities is the ability to define

relations recursively.

Horn clauses have been the traditional framework for the study of recursion.

We embed the relational algebra operators that are equivalent to Horn clauses into a

dosed semiring. In this setting, linear immediate recursion is formulated as a linear

operator equation. Answering queries on relations defined by recursive Horn clauses

(recursive queries) is equivalent to solving the corresponding linear equations. Given a

linear recursive Horn clause, the solution to the equivalent equation is the transitive

closure of the operator corresponding to the Horn clause. Likewise, linear mutual

recursion is formulated as a linear system ofoperator equations. Equivalence oflinear

and bilinear recursive Horn clauses is also addressed, and sufficient conditions are

given in terms of the corresponding operators.

Recursion raises new computational challenges to a database system, largely

because a recursive query is equivalent to an infinite number of nonrecursive ones.

Uniformly bounded recursive Horn clauses are those that are equivalent to a fixed

finite number of nonrecursive ones. We give necessary and sufficient conditions for

Horn clauses in a specific class to be uniformly bounded.

The power of the algebraic formulation of recursion lies in the ability to manipu

late an explicit representation of the operator equivalent to the query answer. Taking

advantage of that, we propose several new algorithms to answer recursive queries,

whose main characteristic is issuing fewer but more expensive nonrecursive queries

than the traditional ones. Analytical and experimental results show that the new algo

rithms perform best for small relations.

Since no query processing algorithm is universally optimal, optimization becomes

necessary. We devise two optimization algorithms, one based on simulated annealing

and another based on dynamic programming. Both explore a state space of the

equivalent forms of the transitive closure of relational operators. Experiments with

the former show that the cost of the various query processing algorithms varies

significantly, thereby emphasizing the importance of optimization.

Acknowledgements

The unconditional love of my parents and my sister since the first years of my

life has been the only source of my strength that made this dissertation possible.

Their inspiration, encouragement, and emotional support through happy and sad

times has helped me to overcome all the obstacles. I offer this work to them as a small

token of my appreciation for what they have been to me. Dora Tsitsiliani lighted my

life with her love and understanding. Her brief passage through life was enough to

reveal those rare human qualities that make living worth while. I wish to express my

deep gratitude to her for what she revealed to me and wish her memory to be eternal.

Having Professor Gene Wong as my scientific father has been one of the brightest

aspects of my studies at Berkeley. With a remarkable balance between judiciously

advising me and letting me be independent, he has been the perfect guide for my

research. His inexhaustible source of ideas and his insight into a wide range of prob

lems has been of invaluable help to me. I wish to express my deep appreciation to him

for providing me with the research model to which I aspire.

I would also like to express my gratitude to Professor Michael Stonebraker for his

valuable criticism and encouragement during the course of my research as well as Pro

fessor Larry Rowe for his generous help in several problems. Special thanks go to Pro

fessor Phil Bernstein for putting the effort to make the transition from Harvard to

Berkeley a reality. I would also like to thank the members of my thesis committee

Professors Richard Karp and Jack Silver for reading the manuscript of my disserta

tion and providing me with several suggestions for improvement.

1U

My life at Berkeley would be completely different had I not come here with

Timos Sellis. Sharing my first research steps with him, ever since we were in Greece,

has been an enriching experience. His input is to be found in all parts of this disserta

tion and I want to thank him for that. Our friendship, however, goes far beyond the

scientific realm. I am grateful for having him as my "twin brother" and I hope that

our geographic separation will be temporary.

I would like to give thanks to all my friends that shared my life for the past

three years in Berkeley, especially Marilena Sellis, Voula Pandazopoulou, Takis Kon-

stantopoulos, Theologos Kelessoglou, Costas Papamichael, Irene Papamichael, and

Pandelis Tsoucas. I also wish to express my deep appreciation to Hoai Cao for her

valuable friendship.

My friends and colleagues in the INGRES group deserve special thanks for creat

ing this wonderful working environment. Especially, I want to thank Margaret Butler,

Oliver Gunther, Eric Hanson, Stephane Lafortune, Margie Murphy, Brad Rubinstein,

Toni Guttman, and many others that were part of "the turtles" in the past three

years. I also want to thank Lorna Shinkle for our limited yet fruitful collaboration.

Finally, I would like to acknowledge the financial support I have received from

the National Science Foundation under grant ECS-8300463.

2.9. Summary 40

3. UNIFORMLY BOUNDED RECURSION 41

3.1. Algebraic Formulation 41

3.2. Simple Recursive Horn Clauses 44

3.3. Horn Clause Formulation 45

3.4. The Model 52

3.5. Characterizing Uniform Boundedness 54

3.5.1. Sufficiency of the Condition 61

3.5.2. Order of Uniformly Bounded Simple Horn Clauses 62

3.5.3. Necessity of the Condition 70

3.6. Algorithms 76

3.7. Transitive Closure 78

3.8. Applications 80

3.9. Summary 82

4. PROCESSING ALGORITHMS 83

4.1. Previous Work 83

4.1.1. Syntactic Transformations 87

4.1.2. Hybrid Transformations 90

4.1.3. Semantic Transformations 93

4.2. New Algorithms 95

4.2.1. Equivalent Forms of the Solution 95

TABLE OF CONTENTS

Dedication i

Acknowledgements ii

Table of Contents iv

List of Figures viii

1. INTRODUCTION 1

1.1. Expert and Logic Programming Systems 1

1.2. Deductive Database Systems Architectures 3

1.3. Deductive Databases and First Order Logic 5

1.4. Overview of Dissertation 10

2. CLOSED SEMIRING OF RELATIONAL OPERATORS 12

2.1. Closed Semirings 12

2.2. Relational Algebra 14

2.3. Closed Semiring of Relational Operators 15

2.4. Algebraic Formulation of Recursion 24

2.5. Transitive Closure as a Pseudo-Inverse 27

2.6. Mutual Linear Recursion 28

2.7. Regular Languages and Relational Operators 33

2.8. Nonlinear Relational Operators 34

iv

VI

4.2.2. I/O Cost Analysis 100

4.2.3. Experimental Performance Results 107

4.3. More Logarithmic Algorithms 110

4.4. Swapping 114

4.5. Summary 117

5. OPTIMIZATION ALGORITHMS 118

5.1. Strategy Space 118

5.2. Optimization by Simulated Annealing 122

5.2.1. Simulated Annealing 122

5.2.2. Simulated Annealing for A 125

5.2.3. Implementation of Simulated Annealing for A 130

5.2.4. Experiments with Simulated Annealing 134

5.3. Optimization by Dynamic Programming 136

5.3.1. Dynamic Programming for A 137

5.3.2. Implementation Issues for Dynamic Programming 139

5.4. Simulated Annealing vs. Dynamic Programming 142

5.5. Summary 144

6. CONCLUSIONS AND FUTURE RESEARCH 146

6.1. Conclusions 146

6.2. Future Research 149

6.2.1. Algebraic Formulation 149

vu

6.2.2. Uniformly Bounded Recursion 149

6.2.3. Query Processing Algorithms 150

6.2.4. Query Optimization Algorithms 152

BIBLIOGRAPHY 153

LIST OF FIGURES

1. INTRODUCTION

Figure 1.1. Generic architecture of an expert system 1

2. CLOSED SEMIRING OF RELATIONAL OPERATORS

Figure 2.1. FSD for the solution of 3-relation mutual recursion 34

Figure 2.2. Resolving to test linear equivalence 38

3. UNIFORMLY BOUNDED RECURSION

Figure 3.1. The a-graph 53

Figure 3.2. Example of variable naming 57

Figure 3.3. Path in the aQ-graph and corresponding walk in the a-graph.
59

Figure 3.4. Cycle in the aQ-graph 60

Figure 3.5. Distance between variables in the aQ-graph 61

Figure 3.6. General form of the ag-graph with at <r ag, for t > s 63

Figure 3.7. Typical path in the graph of some simple recursive Horn
clause 64

Figure 3.8. Expansions as and at with at <r ag and maximum path-
weight in the corresponding graphs greater than 1 66

Figure 3.9. Cyclic walk in the a-graph 67

Figure 3.10. The a-graph 68

viii

IX

Figure 3.11. The a-graph 69

Figure 3.12. The a2-graph 70

Figure 3.13. Typical cycle in the a-graph 71

Figure 3.14. Expansions as and at with at <r ag and cycles in the
corresponding graphs of weight 1 : 73

Figure 3.15. The 0-graph 74

Figure 3.16. The £fgraph t 74

Figure 3.17. The £2-graph 75

Figure 3.18. Graph violating restriction R5 76

Figure 3.19. The graph corresponding to the transitive closure of a binary
relation 78

Figure 3.20. Graph of decomposable Horn clause 81

Figure 3.21. Graphs of Horn clauses after decomposition 81

4. PROCESSING ALGORITHMS

Figure 4.1. Naive algorithm to answer ancestor(Uranus,y) 96

Figure 4.2. Semi-naive algorithm to answer ancestor(Uranus,y) 97

Figure 4.3. Smart algorithm to answer ancestor(Uranus,y) 98

Figure 4.4. Algorithm types for the computation ofA*. 99

Figure 4.5. Complete trees of outdegree 2 and 1 (list) 103

Figure 4.6. Expected relative I/O performance: r = s_naive_io /
smart_io. (a) Lists, (b) Complete trees, outdegree 2, (c) Complete
trees, outdegree 3 105

Figure 4.7. Observed relative I/O performance: r ~ s_naive_io /

smart^io. (a) Lists, (b) Complete trees of outdegree 2, (c) Complete
trees of outdegree 3 108

Figure 4.8. Observed relative CPU performance: r ~ s_naive„cpu /
smart_cpu. (a) Lists, (b) Complete trees of outdegree 2, (c) Complete
trees of outdegree 3 109

Figure 4.9. Observed relative I/O performance: r = a.naive, to /
smartmio or r =» s^naive^io / minimal_io. (a) Lists, (b) Complete
trees of outdegree 2 113

Figure 4.10. Observed relative CPU performance: r = s_naive„epu /
smart_cpu or r = s_naive_cpu / minimal_cpu. (a) Lists, (b) Com
plete trees of outdegree 2 113

5. OPTIMIZATION ALGORITHMS

Figure 5.1. Strategies corresponding to 1 + A + A2 and (1 + Af. 121

Figure 5.2. Two different strategies corresponding to As + (As) A 121

Figure 5.3. 1 + A of depth 1 and A B + C D of depth 2 122

Figure 5.4. Local and global minima 123

Figure 5.5. State transformation by associativity of + 127

Figure 5.6. State transformation by associativity of * 127

Figure 5.7. State transformation by commutativity of + 127

Figure 5.8. State transformation by distributivity of * over + 128

Figure 5.9. State transformation by distributivity of * over + with 1 the
multiplicative identity 128

Figure 5.10. Initial state to compute 1 + A + A2. 131

Figure 5.11. State space for the computation of 1 + A + A2. 140

Figure 5.12. Heuristic pruning of state space with N—2 and M=8. 141

CHAPTER 1

INTRODUCTION

1.1. Expert and Logic Programming Systems

Expert Systems are problem-solving systems that solve substantial problems con

ceded as being difficult and requiring expertise [Stef82]. They are called knowledge

based because their performance depends critically on the use of facts and heuristics

used by experts, and the construction of them is referred to as knowledge engineering

[Feig77].

The generic architecture of an expert system has two interacting components: a

knowledge base and an inference engine [Clif83,Haye85]. This is shown in Figure 1.1.

Queries Answers

Inference Engine

Facts & Rules Conclusions

Figure 1.1. Generic architecture of an expert system.

The success of an expert system depends largely on the ability of the inference engine

to exploit the knowledge base and perform inferences. Choosing the right representa

tion and organization for the knowledge base affects the inference capabilities of the

system significantly, so it is critical to the design of the system. The experience from

the research of the past fifteen years on the subject has shown that the knowledge

base is best represented declaratively, as opposed to procedurally. As a result of that,

the most widely used representation for the knowledge base is a set of facts and a set

of rules. Rules always express a conditional, with an antecedent and a consequent.

Their interpretation is that if the the antecedent is satisfied, then the consequent is

also.

Expert systems achieve good performance by specialization. Since an expert sys

tem is directed to a narrow domain of applications, the specific representation of the

knowledge base and possibly the structure of the inference engine are specialized to

serve the needs and peculiarities of this domain. This strength of an expert system is

at the same time its weakness; it cannot be used for anything outside its application

domain. Logic Programming Systems [Kowa83] take a more moderate approach.

The generic architecture of expert systems and logic programming systems is the same

(see Figure 1.1). The significant difference is that, in a logic programming system,

both the structure of the inference engine and the representation of the knowledge

base are application-independent. Inevitably, a logic programming system sacrifices

some performance for wider applicability. As the name suggests, logic programming

systems are usually based on first order logic [Ende72], and they employ logical infer

ence rules (e.g. modus ponens [Ende72], resolution [Robi65]) in the inference engine

• Using a logic programming system as a front end to a database system. Even

though at some abstract level logic programming systems and relational database

systems are highly compatible, there are significant difficulties in coupling the

two together. Certain aspects of the one system have no counterpart in the

other (e.g. there is a significant semantic content in the order of clauses in Pro

log, which is absent from database systems). This mismatch makes the task of

integrating the two highly nontrivial. However, this approach has been tried out

in many cases with noticeable success [Nico83, Jark84].

• Enhancing an existing logic programming system with database functionality.

Even though work has been done to partially add database functionality to logic

programming systems [Scio84], doing so to an absolute level requires writing a

large portion of a database system, which accounts for a considerable amount of

work.

• Enhancing an existing relational database system with inferential capabilities.

This approach is the dual of the previous one and is taken by many researchers

[Ioan84,Daya84]. Besides inferencing, there are few other services provided by

logic programming systems that are absent from database systems, e.g. support

for lists in Prolog [Park86]. We believe, however, that this is the approach that

will result in the most effective deductive database systems.

While most of the analysis in this dissertation is applicable to all three system

architectures, our primary conceptual framework is provided by the third approach.

and predicate calculus for the representation of the knowledge base.

Existing expert systems and logic programming systems usually deal with

knowledge bases of small size. They function based on the assumption that the

knowledge base is stored in virtual memory. In addition, they provide only limited

services for concurrent access to distributed knowledge bases, recovery, protection,

etc., if at all. This makes them inadequate for supporting many new knowledge-

intensive applications, such as sophisticated office automation, computer aided design

and manufacturing, decision support, etc. This lack of functionality on the part of

expert systems and logic programming systems has motivated the development of

Expert Database Systems and Deductive Database Systems. Expert database sys

tems incorporate the functionality of both expert and database systems. Likewise,

deductive database systems incorporate the functionality of both logic programming

and database systems.

The focus of this dissertation is inference, independent of any particular applica

tion domain. Hence, the presentation is restricted to deductive database systems. A

fairly complete picture of the research effort on expert database systems can be found

in [Kers86].

1.2. Deductive Database Systems Architectures

Designing and building deductive database systems have taken many forms

[Gall78,Gall81a,Dahl82,Gall84,Kowa84]. A significant role in this effort is played by

the Prolog programming language [ClocSl] and systems based on it. There are three

principal trends in integrating logic programming and database systems:

1.3. Deductive Databases and First Order Logic

We begin with some definitions in first order logic [Ende72], which will serve as a

framework for the formulation of problems in deductive databases.

Definition 1.1: Consider a well-formed formula in a first order language. The

formula is equivalent to a Horn Clause if it is of the form

Ri(li") A Risk?') A ••• A R*(l!*') - R*+i(li*+1)) *><>, (1.1)

where R,- and t^\ l<i<A;+l are predicate symbols and vectors of terms in the

language respectively [Ende72]. In addition, all the variables appearing in the formula

are (implicitly) universally quantified.

The formulas to the left and right of —• are called the antecedent or

qualification and the consequent of the Horn clause respectively. Notice that R,-

may be one of the primitive predicates symbols =,>,>,<,<. In any other case R{

is called a database predicate symbol.

Example 1.1: The following first order formula is a Horn clause

parent(z,*) y\ parent(xr,y) —• grandparent(x,y),

whereas the next one is not

parent(x,y) -• father(x,y) V mother(x,y). •

Definition 1.2: A Horn clause is called function-free if it contains no function

symbol. In other words, all the terms in (1.1) are either variables or constants.

Definition 1.3: A Horn clause is called range-restricted if all its variables

appear under at least one database predicate symbol in the qualification.

Example 1.2: The first Horn clause below is range-restricted, whereas the last

two are not.

parent(x,z) y\ parent(z,y) -* grandparent(x,y)

likes(x,x) —• likes(x,y)

x >6 —•too. many, children (x) Q

Definition 1.4: A Horn clause (1.1) is called recursive if Rfc+1€{R1,R2,...,Rjfe}.

In this case, R*+i is called the recursive predicate, whereas any other predicate is

called nonrecursive.

Definition 1.5: A recursive Horn clause is called linear if its recursive predicate

appears only once in the antecedent.

Example 1.3: The two Horn clauses below are recursive, but only the first is

linear.

ancestor(x,«) /\ father(z,y) -*• ancestor(x,y)

brother(a;,z) /\ brother(z,y) -*• brother(x,y) Q

A deductive database is a relational database [Codd70] enhanced with a set of

Horn clauses. Taking a model theoretic approach, all the predicate symbols that do

not appear in the consequent of any Horn clause in the database are interpreted by

the corresponding relations in the database [Nico78]. These constitute the Exten-

sional Database (EDB). The predicates that do appear in the consequent of some

Horn clause constitute the Intentional Database (IDB). For any given IDB there are

many interpretations. If the IDB is defined by a set of Horn clauses, however, then it

has a minimal interpretation [VanE76]. This is exactly the interpretation assumed in

a deductive database. It is deducing the interpretations of predicate symbols in the

IDB that gave the name "deductive" to these systems. Most importantly, there exists

an algorithm (based on resolution and unification [Robi65]) to answer any query

presented to a Horn clause deductive database. Whenever it creates no confusion,

instead of the term "predicate symbol", the term "relation" (its interpretation) is

used.

Certain forms of Horn clauses do exist in ordinary relational databases as well

[Ston76,Astr76]. In particular, integrity constraints and view definitions can be

thought of as Horn clauses. The semantics of integrity constraints and views are

different from the ones of Horn clauses though. Integrity constraints have a primitive

relation in the consequent (i.e. one of {=,7^,>>>><><}), which is interpreted by an

algorithm within the system. In that sense, integrity constraints are not used for

deductions; they simply have to be satisfied by the database contents at all times.

Being interested in the deductive aspects of these systems we discuss integrity con

straints no further.

View definitions have more restrictive semantics than Horn clauses. They do

have a non-primitive predicate symbol in their consequent, so they are used to deduce

information, but neither can there be two view definitions defining the same view, nor

can a view have a stored part in the database. This implies also that there can be no

nonempty views defined recursively. Finally, there is a certain semantic load on views

concerning updates. Updates on a view are propagated to the underlying relations,

whenever possible. This treatment of updates on views has no counterpart in Horn

clauses.

Despite the above, with respect to their deductive aspects only (no updates),

views are similar to Horn clauses. They are usually processed using query modification

[Ston75], which is a special form of resolution, potentially more efficient than the gen

eral algorithm [Dwor84]. In addition, views with multiple definitions and/or a stored

part can be accommodated in a regular database system with only minimal enhance

ments. This is because all the queries on these extended types of views can still be

transformed into a finite set of queries on the EDB.

What makes the real difference between view definitions and Horn clauses (or

ordinary relational databases and deductive databases, for that matter) is that Horn

clauses can be recursive. In general, queries on relations defined by a recursive Horn

clause are equivalent to an infinite number of queries on the EDB. This creates new

computational challenges to the deductive database system, distinctly different from

those of relational database systems. We believe that identifying efficient ways to pro

cess queries on recursively defined relations is the key issue in building usable deduc

tive database systems. This is exactly the focal point of this dissertation.

Example 1.4: Consider a deductive database whose EDB consists of a binary

relation father with schema father(fath,son). In addition, the IDB consists of the

following two Horn clauses, which define the binary relation ancestor with schema

ancestor(anc,desc):

ancestor(z ,2) A father(c,y) -+ ancestor(x,y)

father(ar,y) —*• ancestor(x,y).

Let ancestor(x,Ermis)? be a query given to the system, asking for Ermis' ancestors.

Resolution theorem proving [Robi65], or query modification [Ston75] gives the follow

ing infinite number of queries:

father (x ,Ermis)?

father(x,z) A f&ther(z,Ermis)?

father(z,w) A father(w,*) A t&ther(z,Ermis)?

The answer to the original query on ancestor is the union of the answers to the

infinite set of queries on father. Intuitively, this says that, to find someone's ances

tors, one has to find their father(s), their grandfathers, their great-grandfathers, etc. •

Recursion may be present in a deductive database even if no Horn clause in the

IDB is recursive. This happens if there is an interaction among the Horn clauses, with

relations appearing on both the consequents of some of them and the qualifications of

some others. This form of recursion is called mutual recursion, whereas the case of a

single recursive Horn clause is called immediate recursion. Except for a very small

part of this dissertation, we concentrate on studying immediate recursion only.

Example 1.5: The following set of Horn clauses gives rise to mutual recursion:

likes, reading (x) —• good, student (x)

good, student (x) —• likes, reading (x).

To the contrary, the following recursive Horn clause gives rise to immediate recursion:

ancestor(x,2) /\ father(z,y) —* ancestor(z,y). •

10

Recursive Horn clauses increase the power of database systems considerably.

"Transfinite queries" are now expressible in finite form. The user can now ask

queries, which even though are simple, conventional systems cannot answer. Some

examples of such questions follow:

What are the ancestors of Mike?
What are the subparts of an airplane wing?
What is the shortest path between A and B?

Notice that all the above questions can be seen as a form of generalized transitive clo

sure of some (not necessarily binary) relation.

Despite its power, recursion has not been considered important in a business data

processing environment. That is the reason why it was not introduced right from the

early days of relational database systems. With the increasing need of combining

artificial intelligence and database techniques, which imply the introduction of various

forms of rules in database systems, recursion is now recognized as an essential charac

teristic of future systems. Therefore, being able to efficiently process queries in such

an environment becomes critical.

1.4. Overview of Dissertation

The goal of this dissertation is to study processing techniques for queries on rela

tions that are defined recursively. Unless otherwise mentioned, we concentrate on

immediate recursion that arises from a range-restricted, function-free, linear, recursive

Horn clause. Chapter 2 introduces an algebraic model for the study of recursion.

Horn clauses are expressed by equations in some particular algebraic structure. Thus,

11

answering queries is accomplished by solving equations. In Chapter 3, a special kind

of recursive Horn clauses is identified, namely recursive Horn clauses that are

equivalent to a finite set of nonrecursive ones. For a restricted class of recursive Horn

clauses, necessary and sufficient conditions are given for a Horn clause in the class to

have this property. Unfortunately, most recursive Horn clauses do not enjoy this pro

perty. Hence, in Chapter 4, some general algorithms for answering queries involving

recursively defined relations are proposed. With respect to performance, the new algo

rithms are compared against some traditional ones by analytical as well as experimen

tal means, and their effectiveness is demonstrated in a large number of cases. How

ever, which algorithm performs best depends on the database contents. This justifies

the need for optimization algorithms. In Chapter 5, two such optimization algorithms

are devised, one based on simulated annealing and another based on dynamic pro

gramming. Finally, the conclusions are reviewed and directions for future work are

outlined in Chapter 6.

CHAPTER 2

CLOSED SEMIRING OF RELATIONAL OPERATORS

So far, in a database environment, recursion has been studied under the formal

ism of relational calculus, which is a subset of first order logic; the exceptions are few

[Zani85]. A possible explanation is that in conventional database systems, where

recursion is not allowed, relational algebra has not proved to be a useful representa

tion for optimizing database commands. Recent results, however, indicate that, in the

presence of recursion, relational algebra offers several advantages over relational cal

culus [Ioan86]. The subject of this chapter is the development of such an algebraic

framework for the study of recursion.

2.1. Closed Semirings

Before investigating recursion from an algebraic viewpoint, some definitions from

algebra are needed. Most of this subsection is taken from [Aho74].

Definition 2.1: A closed semiring is a system (S,+,*,0,1), where S is a set of

elements, and + and * are binary operators on S, satisfying the following properties:

1. (S,+,0) is a monoid, i.e. it is closed under + (if a, beS then a + beS), + is asso

ciative (if a, b, ceS then (a+6) + e=a+(6+c)) and 0 is an identity (if

aeS then a + 0 = 0 + a = a). Likewise (5,*,1) is a monoid. Finally, 0 is

assumed to be an annihilator (if aeS then a*Q =« 0*a = 0).

12

13

2. The operation + is commutative (if a, beS then a + b =6 + a) and idempo-

tent (if aeS then a + a « a).

3. The operation * distributes over + (if a, b, ceS then a*(b + c) = a*b + a*c

and (6 + c)*a = 6*o + c*a).

oo

4. If {a1,02, ' ' ' ,0|, ' ' * } is a countable set of elements in S then the sum JJai
»=*i

exists and is unique and an element of S. Moreover, associativity, commuta-

tivity, and idempotence apply to infinite as well as finite sums.

5. The operation * distributes over countably infinite sums as well as finite ones.

Example 2.1: The following system taken from [Aho74] can be easily seen to be

a closed semiring: ({/a/«e,Jrue},OR,AND,false,true). D

Inductively, the powers of an element a of a closed semiring may be defined as:

a° = l, an=oB-1*fl=a*aB"1, V n>0.

In the following a closed semiring with set S is represented by E$.

Definition 2.2: Consider a closed semiring Es and an element aeS. The tran

sitive closure of a, denoted by a , is defined as:

Notice that property 4 of closed semirings guarantees the existence of a in 5.

Also notice the similarity between the definition of a closed semiring and a path alge

bra [Carr79,Rose86]. The only difference is that a path algebra does not necessarily

satisfy properties 4 and 5.

14

2.2. Relational Algebra

Consider a fixed (infinite) set of constants CONST. A database D is a vector

D = (CONSTD,Rlt...,Rn), where CONSTDCCONST is a finite set, and for each

1<i <n, RiQCONSTi) is a relation of arity a,-. Each element of i?,- is called a tuple.

Relational algebra has been introduced by Codd [Codd70] to formally describe

the operations performed on relations in a database system. This dissertation focuses

on a subset of the operators of the original proposal of relational algebra. We are

interested in the set S = {X, aq, jrp} of relational operators, where

X: Cross product of relations.

oq\ Selection of tuples in the relation satisfying some constraint q of the form

"columnl op column2", with opG{==,>,>,<,<}.

7rp: Projection of the relation on a subset of its columns, specified by p.

The restriction to these operators is only for convenience. We claim that all the

other interesting relational operators can be expressed using the ones in S. Natural

join, denoted by tX, is equal to a cross product followed by an equality selection and

projection of the joined column. A constant c in the constraint of a selection can be

replaced by the name given to the column of the set {c}. Intersection is equal to txj

also. For convenience only, Dx] and selection with constants are occasionally used as

abbreviations of their equivalent fully expanded forms. There are only two relational

operators from the original proposal that are not incorporated in this analysis, namely

division of relations and set-difference. The significance of the exclusion of the latter

from S becomes clear shortly. Finally, arithmetic functions, or for that matter

15

functions in general, are not allowed in the operators.

2.3. Closed Semiring of Relational Operators

Consider a database D = (CONSTD,Rlf...,Rn) and the set S of primitive rela

tional operators for D. Each element of S can be seen as a unary operator applied on

some relation. This is obvious for selection and projection. For cross product, one of

the operand relations is designated as a parameter of the operator, so that the opera

tor is applied on the other relation alone. In this sense, an operator A eS is a mapping

A : CONST}, — CONST%. CONST}, is the domain and CONSTJ, is the range of A.

Operators with the same domain are called domain-compatible and operators with the

same range are called range-compatible. Likewise, if the domain of an operator A is

the same as the range of an operator B, then A is called dr-compatible to B (dr for

domain-range).

Consider S~{X,pqt7rp}, the set of primitive relational operators for database D.

Using S as the basis set, the system ER = (R,+,*,0,1) is defined as follows:

R The set of elements is defined as follows:

• If Ae S\j{0,l,J} then AeR.

• If A, BeR then (A + B)eR

• If A, BeR then (A * B)eR

• Nothing else is an element of R.

' The operator u/ can be thought of as the error operator. Applied on any nonempty relation it
results in the relation {ERROR}, whereas a>0 = 0.

16

+ For A, B domain- and range-compatible operators in R, addition is defined by

(A + B)P = AP u £P. Otherwise, A + B = w.

* For A, £ operators in .R with A dr-compatible to £, multiplication is defined by

(A * £)P = A(£P). Otherwise, A * £ = a;.

0 The operator 0 can be applied on any relation and returns always the empty

relation: OP = 0

1 The operator 1 can be applied on any relation and returns the relation

unchanged: 1P = P

For notational convenience the multiplication symbol * is omitted. Whenever

A£P is used, with A, BeR and P a relation, it actually represents (A * £)P. Notice

that, regarding the error operator w, wl = la; = a; and wO = Ow = 0.

Before proceeding in investigating the structure of ER, some characteristic pro

perties of the relational operators in R are identified.

Definition 2.3: A relational operator AeR is linear iff

(a) For all relations P, Q in its domain, A(P uQ) = AP UAQ, and

(b) A0 = 0.

Proposition 2.1: If AeR then A is linear.

Proof: Consider an operator AeR- The claim is proved by induction on k, the

number of times addition and multiplication is applied on operators in S\j{0,1,uj} to

get A.

17

Basis: For k = 0, Ae$u{0,l,w}. It is simple to show that all these operators

are linear.

Induction Step: Assume this is true for all operators formed using up to &—1

multiplications and additions. Let A be an operator that needs k such operations.

The last operation is either addition or multiplication. So A has one of the following

forms:

(i) A =B +C =*• A(PuQ)«(B+C)(PuQ)

=> A(PuQ) = £(PuQ) U C(PuQ) definition of +

^ A(PuQ) = (£P u £Q) U (CP u C7Q)

induction hypothesis

#> A(PuQ) = (£P UCP) u(BQuCQ) associativity of u

A=B + C

A(PuQ) = (£ + C)P u (£ + C)Q

A(PuQ)=AP uAQ.

A0 = (£ + C)0

A0 = B0uC0

A0 = 0.

(ii) A =BC A(PuQ) = (BC)(PuQ)

A(PuQ) = £(C(PuQ))

A(PuQ) = £(CP uCQ)

A =

=» A(PuQ) = £CP u £CQ

=^ A(PuQ) = AP uAQ.

BC =#• A0==(£C)0

=£> A0 = B{C0)

definition of +

definition of +

induction hypothesis

definition of *

induction hypothesis

induction hypothesis

definition of *

18

=#• A 0 = £ 0 induction hypothesis

=^> A 0 = 0. induction hypothesis

In both cases A is proved to be linear. D

Hereafter, unless otherwise mentioned, the term relational operator refers to a

linear relational operator.

Definition 2.4: A relational operator is monotone iff for all relations P, Q in its

domain P C Q => AP CAQ.

Proposition 2.2: If a relational operator is linear then it is monotone.

Proof:

PCQ =#• Pu4Q=Q =$> A(P u4Q) = AQ

=#• AP uAAQ =AQ =£• AP C AQ. Q

With respect to the exclusion of set-difference from the set of primitive relational

operators S, notice that set-difference is neither linear nor monotone. The system of

linear relational operators ER is characterized algebraically by the following theorem:

Theorem 2.1: The system ER = (£,+,*,0,l) defined as above is a closed semir

ing.

Proof: The proof of properties 1, 2 and 3 of Definition 2.1 follows directly from

the definitions of + and *. For point 4, it is sufficient to show that any countable sum

of operators in £ is equal to a finite sum. Let A = Ax + A2 + • • • be a countable

sum of operators in R. Without loss of generality, assume that each A,- is a product

of primitive operators in S. Otherwise, it can be brought into this form by applying

the distributivity property of * over +. In addition, the following observations restrict

19

the form of A,- further:

• If Ai = £x • • • BklBk+! ••£„, then A=At+ • • • + A\• + • • • , with

A',- sas Bj • • • BkBk+l ••£„.

• If A,- = Bt • • • Bk0Bk+1 •••£„, then A = Ax + • • • + A,-.! + A,+l + • • • .

• If A, = £i • • • BkuBk+1 ••£„, and for all 1<;<« £/7^0, then A = w.

• If for some i, j, A,- and Ay are not domain- or not range-compatible, then

A = uj.

Justified by the above, the assumption is that all A,- are formed out of projec

tions, selections, and cross products, and they all are domain- and range-compatible

with each other. It is trivial to show that the projections and selections in A^ can be

moved to the left and the cross products can be multiplied together to produce a sin

gle cross product with a large relation. Hence, each operator A^- takes the form

A{ = tto^M2) •• • (r*'')(Q,-X). The projection or the selections or the cross product

may be missing. The above represents the most general form of A,-.

Let A = Ax + A2 + • • • , with A,- : CONST}, —CONST%. With respect to

the form of Ai, w« distinguish two cases:

(a) There is no cross product in A,-. In this case all the terms of A,- (a projec

tion or some selections or both) are domain-compatible. They are applied on relations

in the domain of A. From the definition of selection in Section 2.2, there is only a

finite number of conceivable selections applicable on relations of a specific domain.

This is true for projections as well. Hence, there is only a finite number of operators

formed without a cross product.

20

(b) A{ is a cross product, possibly multiplied to the left by some selections and

a projection. Let A,- = ir^o® ••• ^(Q;*). Let Q,CCOJVS2$. The arity c{ of

Qt- can be arbitrarily large. We claim that any such relation can be replaced by

another one of arity less than N, for some finite N. Without loss of generality,

assume that

c{ < b + 2Jfc,-. (2.1)

This is because we need at most 6 columns for the output relation, and exactly two

columns for each selection; any other columns of Qt- can be projected out. We show

that ki is bounded by a fixed number. Consider selection 0$, with <?y of the form

"columnl op column2", op€{=,>,>,<,<}. Partition the selections into three sets:

&i s=s {vq? : fy=(coll op col2), coll, col2 from the input relation}

^2 — {ffqp '• 9y=(coll op col2), coll, col2 from Q,}

S3 = {a$:gy=(coll op col2), coll from the input relation, col2 from Qt-}.

Each one of Slf S2, and S3 can be reduced to a finite set:

(i) There are only 5a2 distinct selections on relations of arity a. Hence, St is finite.

(ii) Consider <tJv€5,2. Any such selection on columns of Q,- can be preprocessed.

Replace Q,- with Q\-CQ,-, so that every tuple teQ'i satisfies gy, and remove 0$ from

A,-. Hence, S2 can be reduced to the empty set.

(iii) If the cardinality of Sz is greater than 5a, it must contain two selections 0$

and 0qy, such that q}- = (coll op col2) and qy = (coll op col3), with coll in the input

relation, and co!2 and col3 in Q,.

21

• If op is =, the two selections can be replaced by 0q, where

g=(col2 op col3), which belongs to Sv

• If op is > or >, each tuple of Qt- can be replace by one, whose value in co!2

is the maximum of the values in col2 and col3. The selection cr[0 can then be

removed.

• If op is < or <, the above can be applied with the minimum of the values in

col2 and col3.

In all cases the number of selections has been reduced by one. Hence, the operator

can be transformed so that the cardinality of S3 is no greater than 5a.

The arguments in (i), (ii), and (iii) above imply that A,- can be transformed so

that k{ < 5a2 + 5a. This together with (2.1) implies that Ci<N, for some fixed N.

Since QiQCONST^, there is only a finite number of such relations. With the same

argument as in case (a), there is only a finite number of selections and projections

applied on relations produced by applying (Qt*X) on a relation of arity a. Hence,

there is a finite number of such operators all together.

From cases (a) and (b) it is implied that every countable sum of operators is

equal to a finite sum. Therefore it is a member of R. Points 4 and 5 of Definition 2.1

are direct consequences of this. D

Had the set-difference operator been included in R, multiplication would not

always distribute over addition (if d is set-difference and A, £ two other operators

then d(A + B)j^dA + d £), and ER would not be a closed semiring.

22

Since ER is a closed semiring, the definitions for the n-th power and the transi

tive closure of a relational operator A that is dr-compatible to itself follow directly:

An=A*A*---*A (n times),

with A0 = 1 and

A = £Ak.

For any specific database D, A is a finite sum. This follows directly from the proof

of Theorem 2.1. However, notice that the number of powers of A needed depends on

the particular relations that are parameters of A and is different for each database D.

This is completely different from the notion of bounded recursion, which is addressed

in Chapter 3. In bounded recursion, A* is equal to the same finite sum for all data

bases.

An interesting question is whether ER is a richer system than simply a closed

semiring. Posing the question more specifically, whether ER is a ring, the answer is

unfortunately negative. In order for ER to be a ring, every relational operator must

have an additive inverse, i.e. for every AeR another operator BeR must exist such

that A 4- £ = 0.

Proposition 2.3: The system ER = (£,+,*,0,l) defined above on the relational

operators R is not a ring.

Proof: It suffices to find one operator in R that lacks an additive inverse. The

multiplicative identity 1 serves this purpose. Assume that there exists an operator -1

such that 1 + (-1) = 0. Then, for any nonempty relation P,

23

(1 + (-1))P = 0 =£> Pu(-l)P = 0,

which is a contradiction since P was taken to be nonempty. O

Equality of relational operators is naturally defined through set equality as

A =£ ^=^ \fP, AP =£P.

Moreover, since + is associative, idempotent, and commutative, system ER may be

enriched in structure in another dimension. A partial order can be defined on R using

set inclusion:

A < £ <£=£• V P, AP C£P.

Evidently, with respect to this ordering, 0 is the least element in R. Strict partial

order < as well as the duals > and > are defined analogously.

Proposition 2.4: Let A, B,C, D eR be relational operators appropriately

compatible. With respect to multiplication and addition the partial order defined

above enjoys the following properties:

(a) A <A + B

(b) A < £ ^=£> A + £ = £

(c) A < £ =#> A + C <B + C

(d) A < £ , C < D andA, £ are monotone =#• AC <B D

Proof: The proofs of these properties are straightforward and are omitted. For

(d), Propositions 2.1 and 2.2 assure that all relational operators under consideration

are monotone. D

24

2.4. Algebraic Formulation of Recursion

Consider a range restricted, function-free, linear recursive Horn clause

P(2.(0)) A Qi(£.(1)) A ••• A Q*(3L(*') - P(*!*+,)). (2-2)

where for each •', ac^ is a subset of some fixed set of variables (xvx2,...,xn). Such a

Horn clause can be expressed in relational terms as follows: Let P, {Q;} be relations

and /(P, {Qt*}) a function with values that are relations over the same columns as P.

Then, (2.2) takes on the form

/(P,{Q.»uP,

or equivalently

Pu/(P,{Q,}) = P-

The problem of recursive inference can now be stated in relational form as follows:

Given fixed relations Q,Qi,.-.>Q* and function /, find P such that

(a) Pu/(P,{Q,})-P

(b) QCP

(c) P is minimal with respect to (a) and (b), i.e. if P' satisfies (a) and (b) then

P CP'.

Relation Q corresponds to a nonrecursive Horn clause of the form:

Q(*)-P(£).

Conditions (a), (b) and (c) are equivalent to:

(a) Qu/(F,{Qi»-P

25

(b) P is minimal with respect to (a), i.e. P' satisfying (a) implies PCP',

This last set is the one we try to satisfy.

Consistent with the previous analysis, the function /(P,{Q,-}), having {Q,-} as

parameters and P as input, can be thought of as a linear relational operator (a pro

duct of some primitive operators, since / corresponds to a single Horn clause) applied

on the recursive relation P to produce another relation union-compatible with it.

Since the operator corresponds to a Horn clause, it is an element of R and therefore is

linear and monotone [Chan76]. Hence, the established algebraic framework can be

used to define the problem of immediate recursion. Consider a recursive Horn clause

that corresponds to a linear operator A, so that

AP CP.

Consider some constant relation Q which is either stored or produced by some other

nonrecursive Horn clause, so that

Q cp.

The relation defined by the Horn clause is the minimal solution to the equation

P==APuQ. (2.3)

Presumably, the solution is a function of Q. Hence, P is written as P = £Q, and

the problem becomes one of finding the operator £. For the time being no assump

tion is made about £. In particular we do not presuppose that BeR- Manipulation

of (2.3) results in the elimination of Q, so that the equation contains operators only.

In this pure operator form the recursion problem can be restated as follows: Given

operator A, find £ satisfying:

26

(a) 1+A£=£
(2.4)

(b) 1+AC = C =-> £ <C

Condition (b) guarantees that the solution found is the minimal one satisfying equa

tion (a).

Theorem 2.2: Consider equation (2.4a) with restriction (2.4b). Its solution is

A'.

Proof: It has already been mentioned that AeR, so it is linear and monotone.

The system ER is a closed semiring (Theorem 2.1). Thus, A exists and is unique for

any A. First, A is a solution of (2.4a):

1 + AA* —1 + A(l + A + • • •)= 1 + A + A2 4- • • • —A*.

The second equality is due to the property that multiplication distributes over count

able sums. Second, A is indeed the minimal solution (least fixpoint) of

1 + A£ = £. That is, for all operators £ that satisfy (2.4a), £ > A*. This is

shown by induction on the number of terms inA = £JA .

o

Basts: For n=0,]JAk = 1, and from (2.4a) and Proposition 2.4b £ > 1.
*=o

n

Induction Step: Assume that £ > J]A* for some n > 0. Then

£ > EAk => AB>A JHA* Proposition 2.4d

» .

=#> 1 + A£ >1+ A £A* Proposition 2.4c

27

=^ 1 + A £ > 27^ closed semiring properties
*=o

=#• £ > n£Ak. from (2.4a)

n uSo, for all n > 0, £ > JJA . Since the sequence (of the partial sums) is

upwards bounded by £ and is monotone, its limit A is also bounded by £. Hence,

for any £ satisfying £ = 1 + A£, £ > A*. This implies that A is the least such

operator, i.e. it is the least fixpoint of (2.4a). Q

Theorem 2.2 is originally due to Tarski [Tars55] and in the database context was

first examined by Aho and Ullman [Aho79a]. It is the first time though that the solu

tion takes on an explicit form within an algebraic structure like the closed semiring

ER. The implications of the manipulative power thus afforded on the implementation

of A are discussed in Chapters 4 and 5.

2.5. Transitive Closure as a Pseudo-Inverse

The lack of additive and multiplicative inverse impairs our ability to manipulate

algebraic expressions of relational operators. In this regard, the transitive closure A

of a relational operator A plays a useful role. It has been shown that A = 1 + A A

(A* is a solution of (2.4a)). Blindly solving for A*, as if + and * were real number

addition and multiplication in the equation, gives

(1-A)A* = 1, A'-fl-A)-1. (2.5)

Neither 1—£ nor B"1 is well defined for every relational operator £. Nonetheless, for

any algebraic expression that can be simplified using (1—A)~l, A can be used in its

place.

28

Example 2.2: Consider the equation

C = AC + £.

Solving for C and replacing (1—A)-1 with A gives C=A B as its solution. Q

Example 2.3: For a more interesting example consider the equation

A + CDA « £ + CA + DA.

Blindly solving for A, gives

(1 - C - D + CD)A = £,

which can then be transformed by the appropriate factorization to

(1 - C)(l - D)A = £.

Multiplying both sides with the "multiplicative inverses" of (1 - C) and (1 - D) and

applying (2.5) whenever possible yields the solution A = D*C*B. The fact that the

above constitutes a solution to the original equation is easily verified by a simple sub

stitution of D C B for A in it. This solution for A is hardly expected from the origi

nal equation. rj

2.6. Mutual Linear Recursion

Until this point we have concentrated on immediate recursion. However, using

the algebraic framework analyzed above, the same ideas can be applied to the cases

where mutual recursion exists as well.

Definition 2.5: Consider a set of Horn clauses, and let {P1,P2,...,Pn} be the

relations in the consequents of its elements. The set of Horn clauses is called linear iff

each Horn clause has at most one of {Pt,P2,...f>n} in its qualification.

29

Example 2.4: The following system of mutually recursive Horn clauses is linear:

Q(s,z) A T(z,y)-*P(x,y)

P(y,x)-+P{x,y)

P(z,x) A S(z,z,y) - Q(x,y)

R(*,y) — Q(*,y).

To the contrary, the next one is not, because of the presence of both P and Q in the

qualification of the first Horn clause.

P(w,z) A Q(*,«) A T(*,y)-P(z,y)

P(y,x)->P{x,y)

P(z,x) A S{z,z,y) - Q(x,y)

R(*,y) — Q(*,y). D

Notice that this definition of linear is different (more restrictive) from the one

given in [Banc86b]. That definition includes systems that are not linear. In particu

lar, it includes systems that can be broken into smaller linear systems. These can be

solved in such an order that the relations produced by one become parameters to the

next one. We believe that a more precise term for such a system is piecewise linear,

and we use the term linear according to Definition 2.5 (see also [Cosm86]).

Consider a linear system of mutually recursive Horn clauses defining relations

{P1,P2,...,Pn}. Each Horn clause is represented algebraically using a linear operator

in R. This way a system of n equations is generated with n unknown variables

{P1,P2,..-,Pn} an<* is solved as an ordinary linear system. The interactions between

the Horn clauses can be arbitrarily complex as long as the resulting system is linear.

The possibility of immediate recursion is not excluded either. The system produced is

30

general enough to give the solution for the relations concerned.

Example 2.5: Consider the most general case of two relations P and Q, that

are defined by both immediately recursive and mutually recursive Horn clauses in a

linear way. Using linear operators from R, the situation is represented by the follow

ing linear system:

P1=APlu£P2uQi

P2 = CP1uDP2uQ2. D

We define the set Mn(R) of nXn, n>\, matrices whose entries belong to the set

of linear relational operators R. Notice that for any such matrix, all the operators in

a column are domain-compatible and all the operators in a row are range-compatible.

Consider A = [A,7], B —[£,7], two matrices in Mn(R). If Vl<i,j<n, A,7 and £,v

are domain-compatible then A, B are called domain-compatible. Likewise, if

V l<*\i<»t Aij and £# are range-compatible then A, B are called range-

compatible. Finally, if \/ l<ij,k<n A,-* is dr-compatible to Bki, then A is called

dr-compatible to B. Using Mn(R) the system EMn{R) = (Mn(£),+,*,0,1) is defined as

follows:

+ If A, B are two matrices in Mn(R) then addition is defined by A + B =

\Aij + By]

* If A, B are two matrices in Mn(R) then multiplication is defined by A * B =

\EAikBhji
A=l

31

0 The matrix 0 has all its elements equal to 0.

1 The matrix 1 has all its elements equal to 0, except the ones on the principle

diagonal, which are equal to 1.

Similarly to the situation for simple operators the multiplication symbol * is

omitted.

Proposition 2.5: System EM^R) = (Afn(£),-H,*,0,l) is a closed semiring.

Proof: It follows directly from the fact that ER is a closed semiring and the

algebraic property that matrices over a closed semiring form a closed semiring. •

Powers of matrices are defined as

Am = A * A * • • • * A (m times),

with A0 =s 1 and the transitive closure of a matrix as

A'- £A*.

The finiteness of A for every specific database follows in the same way as for simple

relational operators.

Consider a linear system of equations like the one of Example 2.5. Using ele

ments of Mn(R) it can be written in matrix form as

P=APuQ, (2.6)

with P_ the vector of unknown relations and Q the vector of stored relations. Since

both ER and Emjr) are closed semirings, the minimal solution to (2.6) can be found in

exactly the same way as that of (2.3) and is P_= A Q.

32

Example 2.6: Consider the linear system of Example 2.5. Written in matrix

form it is equal to

Pi
P2

Solving the system we get that

-M
Pi
p2

Pi
P2

'A B
C D

The individual solutions for Pt and P2 are:

u
Q2

Qi

Pt = (A + BD*C?{BD*Q2 u QJ

P2 = (£> + CA*£)*(C^*Qi UQ2). D

The importance of the algebraic formulation of the problem should be

emphasized at this point. Until now, few people have dealt with mutual recursion in

its full generality. The methods proposed for finding the relations defined by a highly

recursive system of Horn clauses seem to be complicated and in cases incomplete

[Hens84,Viei86]. The power of the algebraic tools gives the solution for arbitrarily

complex linear systems almost for free, in a concise way. The following more complex

example illustrates the effectiveness of this approach.

Example 2.7: Consider the case of three mutually recursive relations, with no

immediate recursion for any of them. The linear system representing the situation is

Pl 0 A21 A31
Pi = Aj2 0 A32
p3 A13 ^23 0

Solving for P lt for example, the solution is

p.
p2
Pj

u

Qi
Q2

33

Pl = [(^12 + ^13^32)(^23^32)%1 + (^13 + ^12^23X^32^23)^31 f Q, (2.7)

where relation Q is equal to

Q = Qi U(A12 + A13A32)(A23A32)*Q2 u (A13 + A^jjsKAaaAjaj'Qs.

The expression may be long, nevertheless it gives a complete solution of the linear sys

tem for P j. This was hard to find before, if at all possible. Q

2.7. Regular Languages and Relational Operators

An interesting relationship exists between the algebraic view of recursion and

regular expressions and finite state automata. Consider a finite alphabet E and take

the system EPo^ =* (Po(E),u,-,0,X) °n the set of regular expressions on E,

Po(E)*. It is known that EPo^ is a closed semiring [Aho74]. Hence, because of the

isomorphism of the structure between ER and EPo^ a solution like (2.7) can be

viewed as a regular expression. The isomorphism maps multiplication of operators to

concatenation of strings, addition to union, transitive closure to Kleene star, 1 to the

empty string X, and 0 to 0. This suggests a different way of finding the solution to a

linear system of Horn clauses by constructing a Finite State Diagram (FSD) and

finding the corresponding regular expression. The FSD is constructed from the given

linear system as follows: There are two states in the diagram for each one of the n

unknown relations; call them 5,- and F,-, 1< j< n. For each 1, 1< »< n, there is

the transition S,- —• F{ on input Qt-. Also, for each i,j , 1< *,i< n, there is a transi

tion S{ —* Sj on input A,y (the element of A in the t-th row and j-th column). The

final states are F{, 1< 1< n. The solution for Pt-, 1< 1< n is the regular expression

' Given a setS its powerset, i.e. the setof itssubsets , is represented by Po{S).

34

corresponding to the FSD having 5t- as its initial state.

Example 2.8: Consider the linear system of Example 2.7 and construct the

corresponding FSD as described above. It is shown in Figure 2.1.

Figure 2.1. FSD for the solution of 3-reIation mutual recursion.

The solution for Pt is given in (2.7). It is straightforward to verify that (2.7) is the

regular expression corresponding to the diagram of Figure 2.1. •

2.8. Nonlinear Relational Operators

The power of the algebraic approach is once more demonstrated in the case of

nonlinear recursion. In particular, the issue of the possible equivalence of nonlinear

and linear recursive Horn clauses is addressed for the case of immediate recursion.

Consider the canonical example for a system of one linear recursive and one nonrecur

sive Horn clause:

35

ancestor(x ,2) /\ fatherly) -* ancestor (a; ,y)

father(x,y) —*• ancestor(x,y).

It is clear that ancestor is equal to the transitive closure of father. Observe that the

above system can be equivalently expressed using a nonlinear Horn clause as:

ancestor (x,z) f\ ancestor (z,y) —• ancestor (a: ,y)
(2.8)

father {x,y) —* ancestor (a: ,y).

The second clause in (2.8) has ancestor appearing twice in the qualification, hence it

is nonlinear. The question that arises is under what conditions a nonlinear recursive

Horn clause is equivalent to a linear one.

We concentrate on quadratic Horn clauses, where the recursive relation appears

exactly twice in the qualification, like in (2.8) above. The assumptions about the Horn

clause being range restricted and function-free are still in effect. Using the algebraic

framework developed in Section 2.3 each system of one quadratic recursive and one

nonrecursive Horn clause is written as:

Ap]PuQ=P. (2.9)

The only difference between (2.9) and (2.3) is that the operator applied on P depends

on P. The notation A\P] is used to indicate that relation P is a parameter to the

operator A. For each quadratic recursive Horn clause there is a choice of which of the

two appearances of the recursive relation in the qualification is the parameter to the

operator. Instead of (2.9), we may take

B[P]PuQ=P, (2.10)

with A[P]P' = BpPTP for all relations P, P'. Notice that both A\P] and B\P] are

linear operators in R. Also notice that they are linear in terms of their parameter

36

also, i.e. A[P uQ]= A[P] + A[Q] and A[0] —0.

The solution to (2.9) (or (2.10)) can be found by iteration [Aho79a]:

Pa-Ap^jP^tuQ.

Due to the finiteness of the database and the absence of function from the operators,

the iteration is guaranteed to terminate at some point, where Pjv+i = Pjv f°r some

N. The solution for P is P = PN.

Definition 2.6: Consider a quadratic Horn clause corresponding to the operator

Ap]. It is equivalent to a linear one, if in equation (2.9) A[P] can be replaced by

A[Q]PuQ=P. (2.11)

The minimal solution of (2.11) is known to be P =A[Q]*Q, so (2.9) is

equivalent to a linear equation if and only ifA[Q]*Q satisfies it.

Theorem 2.3: Consider equation (2.9). If, for all relations P, A[Ap]P] ~

Ap]A[P] = A2p], then (2.9) is equivalent to a linear equation A[Q]P u Q = P.

Proof: Let /(P) denote the function Ap]P u Q.

/(P) = Ap]P uQ. (2.12)

The power /n(P) is inductively defined as /°(P) = P and fn(P) = fn'\f{P)) =

/(/n~1(p))- to this notation, the solution of (2.9) takes on the form P == /N(Q) for

some integer N. It suffices to prove that fN(Q) can take the form

/N(Q) = U n ^*(/'(Q)]/m(Q) (2.13)

37

for any 0<L<N. This is accomplished by a backward induction on L, the maximum

power of /(.) appearing in (2.13).

Basis: For L = N the statement clearly holds, since P = fN(Q).

Induction step: Assume that the statement is true for L. It is proved for L—1.

Take an arbitrary term t = A*[/*(Q)]/m(Q) from the union of products. We distin

guish four cases:

/=m=0: The term is left unchanged: A*[Q]Q.

/=0, m=L: The term t is transformed according to the definition of / (2.12):

t = A*|Q] ^[/'-'(QJl/'-'lQ) u Q)

= A*[Q]X[/i-'(Q)]/i-1(Q) U A*[Q]Q- linearity of Ak[Q]
/=£/, m=0: Again, the term t is written according to the definition of / (2.12) as:

^^[AmQll/^fQluQlQ

r \k
= A[A[.f^(Q)]/1""1^)] + ^[Q] Q linearity of A[J with respect to

its parameter

f 1*= A2[/I'""1(Q)] + A[Q] Q hypothesis of the theorem

Q.= U

l=rn=lj; In this case the transformations of the two previous cases are combined.

In all four cases each term of the union of products is transformed and written as

/iV(Q) = U II ^[/'(Q)]/m(Q).

This concludes the induction step, which proves (2.13). Therefore, choosing

L=0, /N(Q) takes on the form

n Akirm
l'€(J4-l}

/"(Q) = U n Ak[fl(Q)) /*"(q)
4r>0

= u U*[qiq| -
*>ol '

27^'[Ql
*>0

38

u 77A*[Q]Q
*>0

Q=A'[Q]Q.

In the Horn clause formulation, the condition of Theorem 2.3 is stated as follows.

Consider a quadratic recursive Horn clause h defining relation P. Get a second

instance h' of the Horn clause, with its "input" relation replaced by a new arbitrary

relation symbol Q. The two Horn clauses h and h' are resolved [Robi65] in two ways

(see Figure 2.2): One by resolving the consequent of h with the sole instance of P in

the qualification of h1 and another by resolving the consequent of h1 with the "input"

instance of P in the qualification of h. If the two resolvents are the same, the Horn

clause is equivalent to a linear one. The latter is formed by replacing the "parameter"

instance of P in the qualification of the former with the basis relation for P.

hi P A P ti:Q A P

H: Q A P h: P A P
Figure 2.2. Resolving to test linear equivalence.

Example 2.9: Consider the ancestor example again for which it is known that

it is equivalent to a linear Horn clause.

ancestor(a:,*) A ancestor(z,y) —• ancestor(x,y).

39

Let the leftmost instance of ancestor be "input". Get h' by replacing it by another

relation name, say arbitrary.

h1: arbitrary(x,z) A ancestor(z,y) —• ancestor(x,y).

Performing the resolutions mentioned above we get

arbitrary(x,z) y\ ancestor(2,2') J\ ancestor(z\y) -*• ancestor(x,t/)

arbitrary(x,z!) A ancestor (r',z) A ancestor(z,y) -*• ancestor(x,y).

The two Horn clauses are the same (up to renaming of variables). •

One peculiar related fact is that whether a quadratic Horn clause is equivalent to

a linear one or not, does depend on which of (2.9), (2.10) is chosen to represent it.

This can be shown by demonstrating a Horn clause, for which A[A[P]P] ~ A2[P]

holds but B[B[P]P] = B2\P] does not.

Example 2.10: Consider the quadratic Horn clause

P(x,z) A P(y,v)->P(x,y).

Let the leftmost occurrence of P in the qualification be "input", and construct the

two operators A[A[P]P] and A2[P] for the corresponding operator A:

arbitrary(x^) A Pfo,*') A P(v,v')-+P(x,y)

arbitraryfs,*") A P(*V) A P(y,v) - P(ar,y).

Clearly, the two Horn clauses are equal. To the contrary, the same procedure with

the rightmost occurrence of P as "input" yields

P(x}z) A P(y,z') A arbitrary^')-P(s,y)

P(x,z") A P(z,v") A arbitrary(y,v)-P(x,y).

40

These are two different Horn clauses. Therefore, a quadratic recursive Horn clause

may be equivalent to a linear one with respect to one of the occurrences of the recur

sive relation in the qualification but not to the other. D

2.0. Summary

A significant subset of all the function-free linear relational operators have been

embedded into a closed semiring. Within this algebraic structure, recursive inference

by Horn clauses has been reduced to solving recursive equations. For a single linear

Horn clause, the solution to the corresponding operator equation is equal to the transi

tive closure of the operator representing the Horn clause. This approach can be

extended to multiple Horn clauses that are linearly mutual recursive. In that case,

inference is reduced to solving linear systems of operator equations, in the same

manner that immediate recursion is reduced to solving a single such equation. Finally,

sufficient conditions are given for a nonlinear operator to be equivalent to a linear one.

CHAPTER 3

UNIFORMLY BOUNDED RECURSION

In Chapter 2 we argued that for every relational operator A, having relations

, M(Q.» . M(trk«
{Qi»Q2>-,Qm} as parameters, A = £ A* = (1 + Apw')J. That is, a finite

number of terms is always sufficient for A . In general, the particular number

depends on the database instance. However, there are some operators for which

N

A = 2JAk = (1 + A)^, with N independent of the. relation contents. A simple

example is A = 1 the multiplicative identity. Clearly 1 =1. In this chapter, we

investigate the properties of such operators.

3.1. Algebraic Formulation

Definition 3.1: Consider a linear operator AeR. If A = (1 + A)^ for some

N, then A is called uniformly bounded.

Another way of looking at the problem is the following: Consider the cyclic semi

group C1+A generated by (1 + A) [ClifOl]. The elements of the semigroup are

(1 + A), (1 + A)2,...,(l + A)*,.... An operator A is bounded if C1+A is finite.

Definition 3.2: Consider the closed semiring ER and an operator BeR.. If there

exist natural numbers p and g, p <q, such that Bp — Bq, then B is called torsion.

Proposition 3.1: Consider an operator AeR- If 1 + A is torsion then A is

bounded.

41

42

Proof: Obvious. D

Definition 3.3: Consider a finite cyclic semigroup C&, for which Bp = Bq,

p <q, and p and q the smallest such numbers. Then p is called the index, q—l the

order, and q—p the period of B and C^ [ClifOl].

Some partial results in characterizing bounded operators are given below.

Proposition 3.2: The following conditions are equivalent:

(i) A is uniformly bounded with order N.

(ii) A"+1 < (1+A)".

(Hi) (H-A^l+A)" = (1+Af , i.e. (1+A)" is idempotent.

Proof:

(H)<S=Mi):

Clearly, boundedness with order N is equivalent to (l+A)iV+1 = (1+A)N.

Hence,

(1+A)N+1 = (1+A)" <=> (1+A)" + AN+1 = (1+A)N

<#=> AN+1 < (1+A)N. Proposition 2.4b

(i)=>(iii):

Again, the starting point is (l+A)N+l = (1+A)N.

(l+A)"*1 = (1+A)N => (1+A)"+2 = (1+A)N+1

=> (l+A)"*2 = (1+A)".

Iterating, we get (1+A)2" = (l+A^l+A)" = (1+A)N.

43

(Hi)=MH):

2N

We know that (1+A)2^ =» JJAk. Hence, (iii) and Proposition 2.4b imply that
ft«o

2N , N ,
£Ak = £Ak =#> AN+l < (1+A)".

Notice that, for any uniformly bounded operator A, the period of Cl+A is 1, and

the order and index coincide.

Proposition 3.3: Any one of the following conditions is sufficient for an opera

tor A to be uniformly bounded with order N:

(i) For some m,Am> AmAm.

(ii) For some m, Am < 1.

(iii) For some m and for any initial relation R, AmR =0or AmR = Q, where Q

some constant relation (i.e. AmR is in some sense independent of R).

Proof:

(i) Assuming the given condition we can derive the following:

2m 2m—1

Am > AmAm => £Ak = £ A* Proposition 2.4b
jfc=0 k=0

2m—1 /1 . a \2m—1(l+AXl+Af-^l+A)

The uniform boundedness of A is a direct consequence of the last formula.

(ii) Multiplying both sides of Am < 1 by Am yields A2m < Am, which is the condi

tion of (i) above. Hence, A is uniformly bounded.

44

(iii) If AmR = 0, then Am(AmR) — 0 also. If AmR = Q then Am(AmR) =

AmQ is equal to either Q or 0. Nevertheless, in both casesAm(AmR) C AmR

for all R, which by definition implies AmAm < Am. Hence, condition (i) can be

applied to give the uniform boundedness of A. Q

3.2. Simple Recursive Horn Clauses

Even though finite semigroups have been algebraically characterized within

different settings [Mand77,Hash79,Pele84], to our knowledge finite semigroups of

linear operators in R have not. The characterization results presented here are based

on the Horn clause formulation of recursion.

Definition 3.4: Two variables x, y appear under the same relation in a Horn

clause if there is an atomic formula P(...,ar,...,y,...) appearing in the Horn clause,

where P is a relation symbol.

Definition 3.5: A variable is called distinguished if it appears under the recur

sive relation in the consequent of a Horn clause. Otherwise it is called nondis-

tinguished.

We restrict our attention to recursive Horn clauses that satisfy the following con

ditions:

Rl The recursive Horn clause is linear.

R2 There are no function symbols in the Horn clause.

R3 There are no constant symbols in the Horn clause.

R4 There are no repeated variables in the consequent.

R5 No subsequence of distinguished variables in the consequent is a permutation of
the corresponding subsequence of the variables under the recursive relation in the
antecedent.

45

The motivation behind restriction Rl is simplicity. Moreover, most of the recur

sive Horn clauses in a real world system are expected to be linear. Function symbols

in a recursive Horn clause may lead to infinite relations. Situations like that are not

easily handled in a database environment, if at all. Restriction R2 is imposed to avoid

them. The last three restrictions are imposed for the sole purpose of getting a uni

form result. It is the goal of our future research to remove them, thereby generalizing

our results.

Finally, we assume that there are no equalities in the Horn clause. Any equality

may be removed by replacing one of its variables with the other, wherever it appears

in the Horn clause. It is clear that the new Horn clause is equivalent to the initial one.

Definition 3.6: A recursive Horn clause is called simple if it satisfies conditions

Rl through R5 and does not contain any equality symbol.

3.3. Horn Clause Formulation

Consider a simple recursive Horn clause:

P{xltX2,...,Xm) A 0-* P(ifi,tf2»-»tfm)- (3'1)

Subformula 0 is a conjunction of atomic formulas, with relations other than P. The

following infinite sequence of nonrecursive Horn clauses is equivalent to (3.1):

P^Xi,x2,...,xm) A ft0) —Pi(Vi,if»...,lfm)
Po(s\l)Al),...dP) Atl) A^ ->P^i,yt,...,*J
PofsKsK..^) A /*2) A^ A fiF>^*JLM»~,vm)

In the above, ffr) = £[*,•] and P^x^,xlj\...,x$) = P„(21,i2,...,im)[«t-], for some

substitution «,• of the variables in (3.1). Note that sQ substitutes each variable for

46

itself. The t-th Horn clause above is called the (i-l)-th expansion of (3.1). So, the

first one of these Horn clauses is the 0-th expansion. Bach one of these expansions is

00

applied on P0, the initial contents of P. P is equal to UP,-. The t-th expansion of
t'ssO

a recursive Horn clause a is denoted by or,-. Whenever it creates no confusion, the

same is used to denote the recursive Horn clause produced by removing the subscripts

from P in a,-.

In a database environment all the relations are finite. Furthermore, only

function-free recursive Horn clauses are considered. Hence, even though a recursive

Horn clause is equivalent to an infinite sequence of nonrecursive Horn clauses, the

latter stop producing new tuples for P after some point. The process terminates

exactly when some iV-th expansion of (3.1) fails to produce any new tuples for the first

time. In general, N depends on the database contents. Our goal is to identify and

characterize simple recursive Horn clauses, for which this is not true, i.e. the number

of expansions needed to materialize the relation defined is independent of the database

contents.

The problem can be addressed in two frameworks. In the first, P0 is produced

by a given nonrecursive Horn clause. In the second, P0 is stored in the database. The

question in the first case is one of boundedness, whereas in the second is one of uni

form boundedness. We address the question of uniform boundedness only.

Definition 3.7: A simple recursive Horn clause a is called uniformly bounded if,

for some N, a is equivalent to a0, alf ... , a^_j.

47

Definition 3.8: Let a uniformly bounded simple recursive Horn clause a be

equivalent to its first N expansions, a0, av ... , a^_v The smallest such N is called

the order of o.

Example 3.1: Consider the following simple recursive Horn clause a:

a : reachable(x) A edge(z,y) —» reachable(y).

If edge represents the edges of a directed graph, then reachable denotes the nodes of

the graph reachable from the ones originally contained in it. In general, the number

of times a has to be applied to get the materialization of reachable is not known. It

depends on the initial contents of edge (the graph) and reachable. •

Example 3.2: As another example of a simple recursive Horn clause, consider /?:

P : P(z) A NP_c(*) A NP.c(y) - P(y).

If NP. c is the set of NP-complete problems and P is the set of problems evaluated in

polynomial time, then 0 states the well known theorem that if one NP-complete prob

lem is in P, then all are [Lewi8l]. Clearly, one application of 0 is enough to material

ize P, regardless of the initial contents of the relations P and NP_c. If there is one

tuple in P that joins with (that is, is equal to) some tuple in NP„ c, then 0 produces

for P all the tuples in NP_ c. Any further applications of /? fail to produce new tuples

for P. So #, unlike a, is uniformly bounded with order equal to 1. D

Uniform boundedness of Horn clauses has been addressed in the past. Minker

and Nicolas give a sufficient condition for a Horn clause to be uniformly bounded

[Mink83]. In particular, they define a restricted class of Horn clauses, called singular,

and show that any singular Horn clause is uniformly bounded. They do allow non-

48

linearity, but singular Horn clauses are restricted in the way relations share variables.

The problem has also been addressed under a tableau formulation [Sagi85].

Representing a Horn clause by a tableau, Sagiv gives necessary and sufficient condi

tions for a set of Horn clauses to be uniformly bounded. The restrictions imposed are

that there exists only one relation symbol in the Horn clauses, and that the Horn

clauses are typed, i.e. no variable appears in more than one column of the relation.

Similar results have been given by Cosmadakis and Kanellakis also [Cosm86].

More recently, Naughton has addressed the same problem [Naug86]. The class of

Horn clauses he considers is similar to the class of simple Horn clauses. He does not

impose restriction R5, but he does not allow a nonrecursive relation to appear more

than once in the antecedent either. Besides giving a necessary and sufficient condition

for uniform boundedness for this class, he also addresses boundedness as well as the

case with multiple recursive Horn clauses.

Some tools developed for the study of conjunctive queries [Chan76] and tableaux

[Aho79b] are helpful in addressing the uniform boundedness problem of Horn clauses

also.

Definition 3.9: A valuation $ is a function from variables to constants. Apply

ing 0 on an atomic formula Q(xlt...,xn) gives the tuple <0(xi),...,6(xn)>.

Definition 3.10: Consider two nonrecursive Horn clauses a and ft. A

homomorphism h: a —* 0 is a mapping from the variables of a into those of 0, such

that:

49

(i) If x, y are distinguished variables appearing in the same argument position in

the consequent of a and 0 respectively, then A(x)=y.

(ii) If Q(xi,...,xn) appears in the antecedent of a, then Q(h(x1),...,h(xn)) appears in

the antecedent of 0.

When it is well defined, composition of homomorphisms hl and h2 is denoted by

Definition 3.11: For two nonrecursive Horn clauses a and 0, a is more restric

tive than 0, denoted a <P 0, iff for any database instance the relation produced by a

is a subset of that produced by 0. Clearly, <P is a partial order.

Definition 3.12: For two nonrecursive Horn clauses a and 0, a is equivalent to

0, denoted a —r 0, iff there exists an isomorphism h : a —* 0, that is a homomor-

phism that is one-to-one and onto.

The following lemma is a slight extension of a similar result on typed tableaux

[Aho79b].

Lemma 3.1: For two nonrecursive Horn clauses a and 0, a <r 0 iff there exists

a homomorphism h : 0 -*• a.

Proof: Let e/,- (D,*)» 0<t <m, be the distinguished variable in the t-th argument

position in the consequent of a (0).

(//). Assume that there exists a homomorphism h : 0 —» a. Let 6 be a valua

tion on the variables of a. Consider a database instance such that relation Q contains

the tuple <0(a;1),...,0(a:n)> iff an atomic formula Q(xlf...,xn) appears in the

antecedent of a. The composition of 0 and h, &= 0oh, is a valuation on 0. Property

50

(ii) of homomorphisms assures that for an atomic formula Q(yi,...,y„) in the

antecedent of 0, the tuple <(r*(yt)t...,(r'[ifn)>GQ. Property (i) of homomorphisms

guarantees that <0(<f,)> = <0'(Di)>, l<t<m. Thus, any tuple in the relation

produced by a is in the one produced by 0 as well. So, a <f 0.

(Only if). Consider a one-to-one valuation 0 from the variables in a onto some

set of constants C. Consider a database instance such that relation Q contains the

tuple <0(x^,...,0(xn)> iff an atomic formula Q(xv...,xn) appears in the antecedent of

a. Then the tuple <0(d1),...,0(dn)> is in the relation produced by a. Since a <r 0,

it has to be in the relation produced by 0 as well. Thus, a valuation 01 from the vari

ables of 0 into the set of constants C exists, such that &(Di) = 0(di), 0<i<m, and

for any atomic formula Q(yi,...,y„) in the antecedent of 0, <^(yi),—,^(yf»)>€Q. 0 is

one-to-one and onto, so its inverse 0~l is defined. Taking the composition h = 6~1off,

it is easy to verify that it is a homomorphism from the variables of 0 into the vari

ables of or. •

Lemma 3.2. Let ot8 and at, 0<s <t, be two expansions of some simple recur

sive Horn clause a, such that at <r a8. Then, for all k>0, at+fc <r a8+jfe.

Proof: It is shown by induction on k. The basis case &=0 is given. Assume that

<*t+k-i ^r a»+A-i is true. By Lemma 3.1, there exists a homomorphism

h : a$+if-i ~* <*t+k—i' Consider a,+fc and at+^. From the way expansions are

formed, it is clear that the new part in the antecedent of oc8+k is isomorphic to the

new part in the antecedent of af+^ (they are both equivalent to a0). Let hj be this

isomorphism from the part of as+* onto the part of ae-Hfe- Consider the mapping

51

h': <xa+k ""* at+* defined as follows:

h(x) if x appeared in a9+k-i

hj(x) if x is new

Clearly, A' is a homomorphism from a9+k into oct+k. By Lemma 3.1, at+k <r ag+k. Q

Lemma 3.3: A simple recursive Horn clause a is uniformly bounded iff there

exist n, N, n<N, such that aN <r an.

Proof: (//). By Lemma 3.2 and the transitivity of <r, if aN <r an then for

all k>N there exists some n'<N such that a* <r an*. Hence, a is equivalent to its

first N expansions. Its order is at most N.

(Only if). This part follows the proof of [Sagi80], and is similar to Lemma 3.1.

Let a be equivalent to its JV first expansions, a0 through aN_v Assume that all of

them share the same distinguished variables di} l<t<m. Consider a one-to-one

valuation 0 from the variables of aN onto some set of constants C. Consider a data

base instance such that relation Q contains the tuple <0(xl),...,0{xi)> iff an atomic

formula Q(xv...,xi) appears in the antecedent of O/y. Then the tuple

<0(d1),...,0(dm)> is in the relation produced by a^. Since a is equivalent to its first

N expansions, it has to be in the relation produced by ant for some n <N, as well.

Thus, a valuation & from the variables of an into the set of constants C exists, such

that for any atomic formula Q(tfiy*»fVi) in the antecedent of an,

<^(yi)>—>^(yj)>€Q- 0 is one-to-one and onto, so its inverse 0~l is defined. It is easy

to verify that the composition h = 0rlo& is a homomorphism from the variables of

an into the variables of a^. Hence, by Lemma 3.1, a^ <r an. •

V(x) =

52

Consider a uniformly bounded simple recursive Horn clause of order N. By

Lemma 3.3, there exists n, n<N, such that a^ <r an. Whenever a* <r 07 implies

(k—l) = c(N—n), for some integer c>0, following the terminology of [ClifOl], we

define n to be the index and N—n the period of a. Notice the difference in the

definition of the same terms for relational operators.

3.4. The Model

The examples given in Section 3.3 indicate that the way in which the variables of

a Horn clause are connected with each other through the relations, plays an important

role in whether the Horn clause is uniformly bounded or not. In this section a graph

model is developed for simple recursive Horn clauses. The form of the graph reflects

the connection among the variables in the Horn clause.

Let a be a simple recursive Horn clause. It is modeled by a labeled, weighted,

directed graph constructed as follows:

(i) There is a node in the graph for every variable in a.

(ii) If two variables x,y appear under some nonrecursive relation Q in a then an

undirected edge (x—y) is put in the graph between the corresponding two nodes

x,y. The label of the edge is Q and its weight is 0.

(iii) If two variables x,y appear in the same argument position of the recursive rela

tion P in the antecedent and the consequent respectively, then a directed edge

(x—*y) is put in the graph from node x to node y with weight 1 and its inverse

edge {y—x) with weight -1. Each directed edge has label P.

53

The graph corresponding to a simple recursive Horn clause a is called the

a—graph. The subgraph induced on the a-graph by the undirected edges defined in

(ii) is called the static a—graph. The spanning subgraph of the a-graph with edge set

its directed edges defined in (iii) is called the dynamic a—graph. The weight of a

path (cycle) in the graph is the sum of the weights of the edges along the path (cycle).

Regarding static edges, they can be traversed in both directions, as if there were two

opposite directed edges.

Example 3.3: Consider the following simple recursive Horn clause:

a : P(z,w) A Q(z,z) A R(«fti) A S(u,s,y) — P(x,y).

The a-graph is shown in Figure 3.1.

In terms of the graph model, restrictions R4 and R5 together may be stated as

R4, R5 The dynamic graph (restricted on the positive edges) is a forest.

According to the definition of the graph model, there is a one-to-one correspon

dence between the positive and the negative dynamic edges. The positive ones alone

are enough to carry all the information captured by the dynamic edges in the graph.

54

Hereafter, we refer to the dynamic graph as containing the positive edges only, the

negative ones implicitly assumed only whenever the weight of a path is discussed.

Likewise, in all the figures only the positive edges are drawn. Finally, since the weight

of some edge is determined from whether it is static (weight zero) or dynamic (weight

one), no weight is put on the edges.

3.5. Characterizing Uniform Boundedness

Uniform boundedness for simple recursive Horn clauses is characterized by the

following theorem:

Theorem 3.1: A simple recursive Horn clause a is uniformly bounded iff the a-

graph contains no cycle of nonzero weight. In that case the order of a is equal to the

maximum path-weight in the a-graph.

Without loss of generality, we restrict our attention to Horn clauses that involve

only binary nonrecursive relations. Any n-ary relation Q, n >2, can be replaced by n

binary relations Q,, constructed as follows. Each tuple of Q is assigned a unique

identifier, called tid [Ston76]. Relation Q,- is created by combining tids with the

corresponding values in the t-th column of Q. Clearly, Q may be reconstructed from

the Q,'s by joining all of them on the tid column. That generality is not lost when

considering only binary nonrecursive relations is justified by Proposition 3.4:

Proposition 3.4: Let a be a simple recursive Horn clause and a' the Horn

clause produced by replacing all n-ary, n>2, nonrecursive relations of a with binary

relations according to the description above. The a-graph contains no nonzero weight

cycle iff the a'-graph contains no nonzero weight cycle.

55

Proof: Any two variables that appear under some n-ary, n >2, relation in a are

connected through a zero weight edge in the a-graph and through two zero weight

edges in the a'-graph. The common node of the two edges is the one corresponding to

the tid column. Hence, for any path in the a-graph there exists another one in the

a'-graph with the same weight and vice-versa. Q

Also, every (connected) component of the graph of some simple recursive Horn

clause a, expands independently of the other. Hence, uniform boundedness of a is

equivalent to uniform boundedness of all of its components. Lemma 3.4 formalizes the

above.

Lemma 3.4: Let a be a simple recursive Horn clause and the a-graph consist of

M connected components 01 through 0M. If, for all 1<*<M, 0* is uniformly

bounded then a is uniformly bounded as well. Moreover, if 0* is of order AT,- and

period P,-, a is of period P = lcm{Pi) (the least common multiple of {Pi}) and order

N- maxJNi-Pi) + /cm{P,}.

Proof: Since each component expands without any interactions with the other,

uniform boundedness of all of them implies uniform boundedness of the whole graph

also. Since period is well defined for all 0*, it is well defined for a also. Let N be the

order and P the period of a. This means that aN <r a^-p, and N is the minimum

such number. Moreover, this is the case for each 0*, that is (0t)pj <t(0*)n-P' This,

Lemma 3.2, and the transitivity of <r imply that for all l<t <M there exist integers

c,-, c'i, and rt-, with 0<Ci<c'i and 0<r,-<P,—-1, such that

56

(JV..-P,) + Ci Pi + r,- = N-P (3.2)

(7V,.-P,.) + c',P,. + r,.=iV. (3.3)

Subtracting (3.2) from (3.3) yields (c^—c^Pi = P, which implies that P,- divides P,

for all 1<i<M. Hence, P ~lcm{Pi}. Since r,->0 and c,->0, (3.2) yields

N-P>N,—P,-, for all \<i<M. Hence, N-P = max{iV,—PJ or equivalently

N = max{N,—P,-} + lcm{Pi) . Notice that this implies that the index of a is the
*•

maximum of the indices of the 0ils. Q

For the proof of Theorem 3.1, a regular naming scheme for variables is esta

blished. Consider a simple recursive Horn clause a. Restrictions R4 and R5 denote

that the dynamic a-graph is a forest; therefore, every connected component in the

graph is a tree. For every node in such a tree there is a unique path from it to the

root of the tree. Each variable is subscripted by the weight of this path, which is non-

positive. Hence, for a variable Xj,

nondistinguished variable if j=0
*;= . . (3-4)

I distinguished variable if j<0

Variables that belong to the same root-to-leaf path in the dynamic a-graph are

denoted by the same symbol (with different subscripts).

Example 3.4: Figure 3.2 illustrates the established notation for the variables of

some simple recursive Horn clause a.

57

X^fL

X^$f
y-i

*-3

Figure 3.2. Example of variable naming.

The Horn clause corresponding to the figure is

P(*o»*-i»*-2>lfo) A Q(*-i,yo) A Rfo-i,*-*) —P(s-i,S-2>*-3>V-i)- D

In the first expansion of some Horn clause a, each distinguished variable is

replaced by the corresponding variable appearing under the recursive relation in the

antecedent. Due to the variable naming convention, this means that a distinguished

variable x_* is replaced by £_*+!• In addition, some new variables are introduced to

replace the nondistinguished variables. The convention is that each new variable has

the name of the one it replaces with the superscript increased by 1. According to the

above it may be inductively shown that in the n-th expansion a;,- is replaced by s,-+n.

So, the variable substitution for the expansions of a given in Section 3.3 is

8n\xi) — x»+n>

meaning that z,-+n is substituted for z,-.

(3.5)

Lemma 3.5: Consider two variables xk, X\, with k>l. There is a path of

weight c >0 from xk to xl in the dynamic an-graph, n > 0, iffthe following hold:

58

(a) k—l=c(n+l) the distance of the two variables in the dynamic a-graph is a

multiple of (n+1).

(b) k, I < n both variables do appear in an.

Proof: (If). Let xk,xl be two variables satisfying (a) and (b). The conditions

imply that

k-l = c(n+l) =^ / = *-c(n+l) < n-c(n+l) = (l-c)n-c < 0.

Hence, (3.4) implies that xt is a distinguished variable. The lemma is shown by induc

tion on c.

Basis: For c=l, k—l = n+1. Since xi is distinguished, there is an edge from

xl+i to it in the a-graph. The substitution in (3.5) implies that in the an-graph there

is an edge from xi+l+n = xk to 27. Hence the two are connected with a path of

weight 1.

Induction Step: Assume that the above is true for all integers less than c. Take

variable Xj, with j—l = (n+1). From the induction hypothesis there is an edge from

Xj to xi in the an-graph. Also, since k—j = A:—/—(n+1) = (c—l)(n+l), the induc

tion hypothesis implies that there is a path of weight (c—l) from xk to xj. Hence

there is a path of weight c from xk to X[.

(Only if). Let xk, xt be-two variables that are connected through a path of

weight c in the an-graph. Substitution (3.5), implies that the first expansion variable

xk (xi) appears is amBX{kfl} (amaxfl.o})* Hence, k,l<n. Furthermore, (3.5) implies

that the path of weight 1 from xk leads to xk_^n+ly An easy induction shows that the

path of weight c from xk leads to xk_e(n+ly The last variable is equal to x/. Hence,

59

*-c(n+l)=/ <#=#> k-l = c(n+l). •

Consider a path in the an-graph of some expansion of a. In general, this path

corresponds to a walk in the a-graph (when traversing a walk, nodes and edges may

be visited multiple times [Bond76]). Static edges met in a traversal of the path in the

an-graph are met in the same order in a traversal of the walk in the a-graph. Like

wise, a cycle in the an-graph corresponds to a cyclic walk in the a-graph (its end

nodes coincide). The following lemma relates the path in the an-graph and the

corresponding walk in the a-graph.

Lemma 3.0: Let xk, xt be two variables connected through a path of weight Ln

in the an-graph. Let xk>, xy be the end variables of the corresponding walk in the a-

graph, of weight L. Then the following holds:

(k-k1) = (/-/') + (n+l)Ln - L. (3.6)

Proof: Let k=kt, k'=k'1} /=/m, and /'=/'m. Figure 3.3 shows the path from

xk to x{ and the walk from xkr to xy in the an- and the a-graph respectively.

, » , Oi . t t <h- _Sm=! , i ,
XIM *!,/, x2,k3 x2,l9 xm,km xm,lr

1 t , Qi t t t ^2_ _Qm=i , t t
Xl,k\ *U\ *2,A'a x2,lf2 xm,k'm xmf„

Figure 3.3. Path in the an-graph and corresponding walk in the a-graph.

By Lemma 3.5, each section in the dynamic an-graph is of length (&,—/,) / (n+1).

Hence,

60

L~ = -U ECi-h)-
n+1 /„,

(3.7)

Likewise, for the walk in the a-graph

L = EWH'i)- (3.8)
«=1

Consider Q,•(«,•f/,,x,-+i,jfe<+l), l<t <m—1, in the an-graph. Let n,- be the expansion that

this was formed from Qt(zi,{',>xi+i,£'i+i) 'n a* Substitution (3.5) implies that

/,• = /',+n,

*.+i — ^,«+i+"»

/ II. L. _JL».
I,—I ,' »|+1~» i+V (3.9)

m-1

Adding (3.9) for all 1<i <m-l gives £(/,—/',) = 27(*,—*',). Bv (3-7) and (3'8)>
t=l »=«2

since k=klf k'=k\, l=lm, and /'=/'m, the above gets transformed into

(*-*') -(/-/') + (n+l)Ln-L. a

Corollary 1: If there is a cycle of weight Ln in the an-graph, then there is a

cyclic walk of weight L = (n+l)Ln in the a-graph.

Proof: Assume that in Figure 3.3 there is one more static edge Qm between xlm

and xkl (see Figure 3.4).

Qi Q< Qm-l

XUx X2M X2h

Q,

Figure 3.4. Cycle in the an-graph.

The corresponding edge in the a-graph is between xi'm and xkix, which creates a cycle

in the a-graph as well. Like in (3.9), substitution (3.5) implies that lm—Vm = kx—k\.

61

Applying the above on (3.6) yields L = (n+l)Ln. D

3.5.1. Sufficiency of the Condition

Lemma 3.7: Let a be a simple recursive Horn clause such that the a-graph is

connected and has no nonzero weight cycles. If N, N>1, is the maximum path-

weight in the a-graph, then aN <f aN_v

Proof: Consider ajv-i« Let Q(xm, x'mt) appear in its antecedent. Assume that

an is the first expansion in which it appeared, corresponding to Q(x_k, x'_kt),

k, k'>0, in a. In this case, (3.5) implies that n = k+m = k'+m*. Consider a node

Zq in the a-graph whose distance from some other node in the graph is N, i.e. there is

a path in the graph starting at that node whose weight is the maximum possible (see

Figure 3.5).

Zq Xq

rl + r2 = r
^ 7*! + r3 = n"

Figure 3.5. Distance between variables in the a-graph.

Let r be the distance of z0 from x^k. Consider the following mapping

h : aN_i -• aN:

Hxm) —

62

*m+i V *»» r+1 < &+m < N-l

xm otherwise

If xm does not map to itself then m >0. Otherwise,

m < 0 ==#> Ar+m < A: =^ r < k =^ rj + r2 < k

=£• f! + r3 < k - r2 + r3 =^ AT < & - r2 + r3,

i.e. a path of length greater than N exists (see Figure 3.5). Hence, looking at (3.4)

also, we can see that h is meaningful, i.e. it affects only nondistinguished variables.

Since k+m = fc'+m', h affects xm and x*mt the same way. Distinguished variables

map to themselves. For every atomic formula Q(xm, x'mt) in a^v-i there is another

one Q(zm+i, x'm'+i) 'n aN> ^hich appeared in an+1 for the first time (see substitution

(3.5)). The same is true for the recursive relation also. Hence, h is indeed a

homomorphism from oc^-iinto aN- Lemma 3.1 implies that aN <r aN_v Q

Theorem 3.2: Let a be a simple recursive Horn clause. If the a-graph contains

no cycle of nonzero weight then a is uniformly bounded.

Proof: By Lemmas 3.3 and 3.7, each component of the a-graph is uniformly

bounded. Lemma 3.4 implies that a is uniformly bounded as well. D

3.5.2. Order of Uniformly Bounded Simple Horn Clauses

Lemma 3.8: Let a be a simple recursive Horn clause. Consider a, and at,

0< s< t, with at <r ag. Then the maximum path-weight in the dynamic a8-graph

is 1.

63

Proof: Lemma 3.1 implies that there exists a homomorphism h : a, —•> at. This

induces a homomorphism h for the corresponding graphs also. Consider a single com

ponent G of the a,-graph. Partition the nodes of G into two subgraphs H and H1 as

follows:

H = {xeG : h(x)^x}

H' = {xeG :h(x)=x}.

Distinguished variables map to themselves, so all heads of dynamic edges are in H1.

Furthermore, restrictions R3 through R5 imply that no variable appears in the same

argument position of the same relation in two different expansions (see sn in (3.5)).

Since the recursive relation appears exactly once in the antecedent of each expansion,

no variable appearing under it in as can map to itself. Hence, all tails of dynamic

edges are in H. The two points above imply that H is connected to H' as shown in

Figure 3.6.

G

Figure 3.6. General form of the a,-graph with at <r at, for t >s.

Clearly, the maximum path-weight in the dynamic a8-graph is 1. C

For the following analysis it is necessary to define the following family of func

tions fn:TL—* {0,l,...,n—1}, TL the set of integers, defined for all n >0 as follows:

fn(x) = (x mod n).

64

In the above, (x mod n) = r if and only if n divides (x—r) and 0 < r < n.

Lemma 3.9: For all integers x, y and all positive integers n (/n(ar) + y) -

/?»(*+#) — cw f°r some integer c.

Proof: Let x s= P\n + rt and y = p2n + r2, where 0< r!,r2< n. Then,

(/n(*) + y) - /n(«+y) = ix mod n) + y - ((x+y) mod n) =»

ri + P2n + r2 "" ((ri+r2) m°d n) — (P2+C0n> ^here rfG {0,1}.

Therefore, (/„(ar) + y) —fn(x+y) is a multiple of n. •

Lemma 3.10: Let a be a simple recursive Horn clause. If the a-graph contains

a path of weight L with e static edges, then the an-graph contains a path of weight

I J *with e static edges.
n+1

Proof: Consider a path in the a-graph of weight L and e = m—1 (see Figure

3.7).

> i » Q* , , t 32 _2t»=l , , .
XIM xUx X2,ka X2U Xm,km xm,L

Figure 3.7. Typical path in the graph of some simple recursive Horn clause.

From Figure 3.7, the weight of the path from xlkl to xm^m is equal to

m

L = Ufa ~ ',•). (3.10)
»=i

From the way the expansions are formed, an contains n+1 instances of Q,-,

1<» <m—1, each one created at a different expansion. The one created at expansion

*By |a?J we denote the smallest integer greater than or equal to x.

65

r,-, 0<r,<n, is of the form Q»(s,>J+ff>a;»+i,rH-*,-+1)- We claim that the combination of

appropriately chosen instances of the Q,'s in an creates a path in the an-graph. Let

&i be

*.= E(krlj)> for 0<t<m.
;=1

In Figure 3.7, 0",- denotes the distance of the variables appearing under Q,- from x1<kl.

The Q,-'s are chosen so that r,- = /n+i(n+<r,). For every Qt*_i, Q,- chosen as above

the two variables »,•,,_,+*, and X{rt+it are connected with a path in the dynamic an-

graph. This is shown as follows. Lemma 3.9 implies that

(/n+i(»+*.-i) + **) - (/»+i(»+"«) + h) = *(»+!).

for some integer c. Furthermore, from the definition of /n+i and &,-,/,<0

(3.11)

/n+i("+*t-i) + b < n+1 and /n+1(n+er,-) + /,- < n+1.

Hence, the conditions of Lemma 3.5 are satisfied. Therefore, the given variables are

connected in the dynamic an-graph by a path of weight c (as given in (3.11)). Since

this is true for all l<i<m, the Qt-'s chosen as above form a path in the an-graph

with e = m—1 static edges.

Let Ln be the weight of the path. Using (3.11) for the weight of each individual

subpath, Ln becomes equal to

L« =

1 m
/n+l(n+0r»-l) + *» ~ fn+lin+Vi) ~ 'tn+1

n+1

»=l

/»+l(»+*o) - /„+l(»+*m) + E (*.~W
t=l

<^=^

66

From (3.10), which gives the weight L of the original path, and the fact that <70 = 0

we get

n+u- .--/„+1(n+L)]
The last equivalence is an obvious implication of the definition of /n+i.

n + L ~*--l7TT*
o

Theorem 3.3: Let a be a simple recursive Horn clause such that the a-graph

contains no nonzero weight cycles. The order of a is equal to the maximum path-

weight in the a-graph.

Proof: Suppose that the maximum path-weight in the a-graph is N. Theorem

3.2 shows that a is uniformly bounded. Assume that the a-graph is connected. By

Lemma 3.7, TV is an upper bound on the order of a. This upper bound is tight, i.e. N

is indeed the order of a.

Assume to the contrary that for some s, t, with s<t<N, at <r a,. Lemma

3.1 implies that there exists a homomorphism h \ a9 -* at. By Lemma 3.8, the at-

graph is of the form of Figure 3.8. The variables that h maps to themselves are the

ones in H'.

G

a. *<

Figure 3.8. Expansions a, and at with at <f a8 and maximum
path-weight in the corresponding graphs greater than 1.

67

Since s<N—l, Lemma 3.10 guarantees the existence of some path of weight greater

than 1, in the a8-graph. Hence, there exists a path of weight zero with one end in H

and the other, a tail of a dynamic edge, in H1. In Figure 3.8, xm to y^ is such a path.

Because of h, there exists a path of weight zero in the at-graph also, like the one from

xm to yi2'm Figure 3.8. Substitution (3.5) implies that for lt and J2

/j « s+/+i /2 = t+l+l. (3.12)

By Lemma 3.6, in the a-graph there exist two walks between the dynamic components

where xm and yi belong (see Figure 3.9).

'n»i

'm3

Figure 3.9. Cyclic walk in the a-graph.

Let Lj and L2 be the weight of these walks respectively. Figure 3.9 shows that a

cyclic walk of weight

L = (mj-m2)+L2—(kt—k2)—L± (3.13)

exists in the a-graph. Furthermore, Lemma 3.6 implies that the following hold:

(m-mx) = (li-kx)+(s+1)0-1,!

(m-m2) = (l2-k2)+(t+l)0-L2.

Subtracting the two above we get (mi—m2)+L2—(kt—k2)—Lx = (l2—lx). Making the

substitution in (3.13) and using (3.12) yields L = (t—s). Since t >s, the cyclic walk

in the a-graph has nonzero weight. This implies that there exists some cycle in the

a-graph with nonzero weight also, which contradicts the hypothesis. Thus, at <f a9

holds for no s, t, with s<t<N. The smallest such numbers are s=N—l and t—N.

Hence, the order of a is N, the index is N—l, and the period is 1.

If the a-graph is not connected the above is true for each one of its components.

Applying Lemma 3.4, gives again that the maximum path-weight in the complete a-

graph is the order of a. D

Example 3.5: The proofs of Theorems 3.2 and 3.3 are illustrated with the fol

lowing example. Consider the simple recursive Horn clause a:

a : Piu^UtoU^u^y) A Q(«i,«2) A R(«2,«3^) A S(w,z) A T(v) -• P(v,w,x,y,z).

The a-graph appears in Figure 3.10.

Figure 3.10. The a-graph.

69

All the cycles in the a-graph have zero weight. Hence, according to Theorem 3.2, a is

uniformly bounded. The maximum path-weight in the graph being 2, it implies that

a2 is redundant, i.e. a is equivalent to a0 and av This becomes apparent by looking

at aj and a2.

ax: P{u'1,u'2,u,4,u,A,u4) A Q(tt'iV2) A ft(u'2,u's,u4) A S(u2,y) A T(uj)

A Q("i»tt2) A R(«2,«s^) A S(tu,z) A T(v) — P(v,w,x,y,z)

<*2 : P(«VW*«'J A Q(«V2) A R(«WJ A S(u'2,u4) A T(u\)

A Q(tt'i,tt'2) A Rju'fcu'fcttJ A S(«2,y) A T(ttJ

A Q(«i,«2) A R(«2j«3»») A S(w,2) A T(v) -»-P(t;,tt;,x,y,2).

The corresponding graphs are shown in Figures 3.11 and 3.12 respectively. The aj-

graph in Figure 3.11 has two (connected) components, none of which can be the image

of the a-graph under any homomorphism. This implies that there are some instances

of the relations in a that make a{ produce some tuples that are not produced by a0.

Hence, at is necessary. On the other hand the a-graph in Figure 3.12 has three com

ponents. Two of them are homomorphic images of those in the aj-graph. Therefore,

a2 is not necessary.

u\ Q u'o2

Figure 3.11. The a-graph.

70

Figure 3.12. The a-graph.

3.5.3. Necessity of the Condition

The converse of Theorem 3.2 is proved using the following lemmas.

Lemma 3.11: Let a be a recursive Horn clause. If a is uniformly bounded then,

for all k> 0, ak is uniformly bounded as well.

Proof: In what follows the fact that (ak)i = (<*t)k = ot(k+i){l+i)-i —aJfe+/(A+i) *s

used.

Lemma 3.3 implies that aN <r an, for some 0< n< N—1. Consider ak for

some k > 0. Then,

(ak)N = <*N+k{N+l) <r an+k{N+l)

5=3 an+A(n+l)+*(N-n)

<r an+k{n+l)

= («*)n-

Lemma 3.2

Lemma 3.2 and transitivity of <r

71

Lemma 3.3 implies that ak is uniformly bounded. D

Consider a typical cycle in the a-graph (see Figure 3.13). It is essentially the

path of Figure 3.7, with one more static edge labeled Qm between xmjm and xlikl.

. Q2 Qm-l

xUx X2M xVi

Qm

Figure 3.13. Typical cycle in the a-graph.

The following two lemmas are similar to Lemma 3.10.

Lemma 3.12: Let a be a simple recursive Horn clause. If the a-graph contains

a cycle of weight n+1, n >0, with € static edges, then the an-graph contains a cycle of

weight 1 with e static edges also.

Proof: Adding the static edge labeled Qtn to the path of Figure 3.7 creates the

cycle in Figure 3.13, of weight equal to that of the original path with e=m static

edges. Hence, Lemma 3.10 is directly applicable. Since the a-graph contains a cycle

of weight n+1, it implies that the an-graph contains a cycle of weight

I —-—-I = I —J = 1. The number of the static edges in the cycle remains the
1 n+1 J L n+1 J 6 J

same, that is €=m. •

Lemma 3.13: Let a be a simple recursive Horn clause. If the a-graph contains

a cycle of weight 1 with c static edges, then the an-graph, n > 0, contains a cycle of

weight 1 with c(n+l) static edges.

Proof: The proof is similar to that of Lemma 3.10, so it is only sketched here.

The Q,'s are partitioned into n+1 partitions, each partition having exactly one

72

instance of each Q,-, l<t<m. The r-th partition, 0<r<n, contains

Q»(Ij,f,-H<ia!«+i,f<+*iJ) sucn that r» = /n+i(r+<Ti)* Each one of these partitions is

shown to form a path. Furthermore, the last node of partition r and the first node of

partition r+1 are connected by a dynamic path, and so are the last node of partition

n and the first node of partition 0. Hence a cycle is formed. Its weight is calculated

similarly as in Lemma 3.10 and is equal to 1. The static edges in the cycle are those of

all the partitions. Each partition has e = m edges, and there are n+1 partitions.

Hence, the cycle formed has c(n+l) static edges. Q

Theorem 3.4: Let a be a simple recursive Horn clause. If a is uniformly

bounded then the a-graph contains no cycle of nonzero weight.

Proof: Suppose to the contrary that the a-graph contains some nonzero weight

cycles. Consider the one with the smallest number of static edges, say e. Let n+1,

n > 0, be its weight. By Lemma 3.12, the an-graph contains a cycle of weight 1, with

€ static edges also. Lemma 3.11 implies that an is uniformly bounded. Hence, there

are two expansions (an)# and (oen)t, s<t, such that (an)t <f (an)9. By Lemma 3.1,

there exists a homomorphism h : (an)$ —*• (an)t. Lemma 3.13 implies that the (an),-

graph contains a cycle of weight 1 with (s+l)€ static edges, which h maps to another

cycle of weight 1 in the (an)t-graph (see Figure 3.14).

The cycle contains at most as many static edges as the cycle of the (an)8-graph. It

may contain fewer static edges if h is not one-to-one but it can never contain more.

By corollary 1, there exists a cyclic walk in the a-graph of weight

(n+l)(t+l)—1+1 = (n+l)(t+l). Without loss of generality, assume that it is formed

73

G

a,
«e

Figure 3.14. Expansions a9 and at with at <r ag and cycles in
the corresponding graphs of weight 1.

by traversing c times a cycle of weight n' with c' static edges, (the case that it is

formed by traversing multiple cycles connected with each other is a trivial extension of

what follows). Hence,

en' = (n+l)(t+l).

There are c c' static edges in the cyclic walk, and as mentioned above

ct' < (s+l)e.

Combining (3.14) and (3.15) yields

€ > (n+1) (t+l)
rl — -»n' (s+l)

(3.14)

(3.15)

(3.16)

However, from Lemma 3.2 and the transitivity of <r, t may be chosen arbitrarily

large. In (3.16) s and n are fixed, whereas there is an upper bound on the value of n1,

imposed by the form of the a-graph. Hence, there exists some t, satisfying the desired

properties, such that -—j-J-7—-{- > 1. This combined with (3.16) yields €>t', that
n' (s+l)

is there exists a cycle in the a-graph, with fewer static edges than c. This contradicts

the hypothesis. Hence, all the cycles in the a-graph are of weight zero. D

74

Example 3.6: Theorem 3.4 is illustrated with an example. Consider the Horn

clause below:

0: P(ui,w,tt2,Uz)/\Q(u>,tt2)AR(y,uz)AS(x,z)->P(w,x,y,z).

The ^-graph appears in Figure 3.15.

Figure 3.15. The 0-graph.

The j0-graph contains a cycle of weight 1, namely (w—*u2-+y—*uz-+z—*x—*w).

According to Theorem 3.4, 0 is not uniformly bounded. This becomes apparent by

looking at the graphs of the expansions of 0. The 0X- and ^graphs appear in Figures

3.16 and 3.17 respectively. Contrary to what happened to the graphs of uniformly

Figure 3.16. The /0rgraph.

«"i

tt/U
Q «2i? «'* 5«lQ «*2 J* «"s «'l Q «H2

• > • o

75

Figure 3.17. The ^graph.

bounded Horn clauses, the graphs of the expansions of 0 continue to have a single

component, but the number of static edges in the original cycle increases (Lemma

3.13). This continues, no matter how many expansions are taken. D

Theorem 3.1: A simple recursive Horn clause a is uniformly bounded iff the a-

graph contains no cycle of nonzero weight. In that case the order of a is equal to the

maximum path-weight in the a-graph.

Proof: The proof follows immediately from Theorems 3.2, 3.3, and 3.4. •

The condition of Theorem 3.1 is sufficient for a Horn clause to be uniformly

bounded, even when restrictions R3 to R5 of Section 3.2 are removed. It is not neces

sary, however, as the following example shows.

Example 3.7: Consider the following Horn clause:

P(y,x)-+P(x,y).

Clearly, this Horn clause is not simple. It violates restriction R5, since (x,y) is a per

mutation of (y,x). The graph of the Horn clause appears in Figure 3.18.

76

Figure 3.18. Graph violating restriction R5.

As expected, the dynamic graph (restricted to the positive edges) is not a forest. Even

though it is clear that the Horn clause is bounded with bound 1, the graph contains a

cycle of weight 2, thus violating Theorem 3.1. D

3.6. Algorithms

An efficient algorithm exists to test the condition of Theorem 3.1 on the graph of

some simple recursive Horn clause. It is a depth-first search algorithm on the com

plete graph, i.e. with all positive and negative dynamic edges. The number zero is

assigned to the first node visited in each component. Every time some edge is

traversed, its head is assigned the number assigned to its tail, increased by the weight

of the edge. If at any point a node is assigned two different numbers, then there is a

nonzero weight cycle in the graph, and therefore the Horn clause is not uniformly

bounded. Otherwise it is. The maximum path-weight within a component is equal to

the maximum number minus the minimum number assigned to any of its nodes. The

maximum such number over all the components is the order of the Horn clause. The

algorithm just described appears below.

77

Input: Graph G—(V,E,W) corresponding to some simple recursive Horn clause
a, where V is the set of nodes, E the set of edges, and W the mapping of every edge
to its weight; the graph is represented by adjacency lists L[v], for v 6V".

Output: If a is uniformly bounded then give its order, otherwise give
"UNBOUNDED".

Algorithm: In the following, D[v] denotes the number assigned to v, as
described above, and iy[v,w] denotes the weight of the edge (v—•«/).

begin
6ounrf:=0;
for all v in V do mark v "new";
while there exists a vertex v in V marked "new" do

begin
maxpos:=0; maxneg:=Q;
SEARCH (v,0);
bound:=MAX(bound ,maxpos+maxneg)

end

output(bound);

end

procedure SEARCH (v,count):
begin

mark v "old";
D[v] := count;
maxpos := MAX(maxpos,count);
maxneg := MAX(maxneg,—count);
for every vertex w in L[v] do

if w is marked "new" then SEARCH (w,count+W[v,w])
elseif D[w] ^ count+W[v,w] then output ("UNBOUNDED");
exit;

end

Algorithm 3.1. Decision procedure for uniform boundedness.

Lemma 3.14: Algorithm 3.1 returns "UNBOUNDED" iff its input graph has

some cycle of nonzero weight; otherwise, it returns the maximum path-weight in the

graph. Its time complexity is 0(v+t), where v is the number of nodes and e is the

number of edges in the graph.

Proof: The previous discussion proves the correctness of the algorithm. The

algorithm is a depth-first search on a graph, with a constant number of operations in

78

each step. Therefore, its running time is 0(j/+c) [Aho74]. •

3.7. Transitive Closure

Unfortunately, some useful recursive Horn clauses are not simple. A characteris

tic example is the transitive closure P of a binary relation Q expressed by the Horn

clause

P(*,*)A Q(*,y)-P(*,y).

This is clearly unbounded and one would expect to be able to characterize uni

form boundedness for Horn clauses of this form. To achieve that we relax restriction

R5. We define a permutation Horn clause to be one whose corresponding graph is a

dynamic cycle. The dynamic a-graph of a simple recursive Horn clause is a forest.

Restriction R5 is relaxed by allowing components of the dynamic graph to be cycles, as

long as there are no static edges attached to them in the complete graph. That is,

each component of the a-graph is either simple or permutation.

Example 3.8: Let a be the above given Horn clause representing the transitive

closure of Q:

a: P(x,z) A Q(z,y)^P(x,y).

The a-graph is shown in Figure 3.19.

o
Q

x y

Figure 3.19. The graph corresponding to the transitive closure of a binary relation.

79

Clearly, a belongs in the new extended class of Horn clauses, since the one component

in the a-graph is simple and the other is permutation. •

The following theorem characterizes uniform boundedness for the new extended

class of recursive Horn clauses.

Theorem 3.5: Let a be a recursive Horn clause in the extended class. It is uni

formly bounded iff the simple components of the a-graph contain no cycle of nonzero

weight. In that case, a has order N = N9 + lcm{Pi) and period P = lcm{Pi),

where N9 is the maximum path-weight in the simple components of the a-graph, and

{Pi} is the set of weights of the cycles in the permutation components.

Proof: Consider a recursive Horn clause a in the extended class. Assume that

the a-graph contains M permutation components, with P,- dynamic edges in the t-th

one, l<t<M. Each such component is clearly uniformly bounded, since it simply

permutes distinguished variables. Apparently, period is well defined for permutation

components, and for the «-th component is P;. Its order is P,—1. Notice that the

index is equal to (P»—1)—Pt- = —1. This actually represents the identity Horn clause,

with antecedent equal to the consequent, and may be denoted as a_t for consistency.

Furthermore, by Theorem 3.4, each simple component is uniformly bounded iff it con

tains no nonzero weight cycles. In that case it has been shown that the order of the

component is the maximum path-weight in the graph of the component and the period

is 1. Applying Lemma 3.4 yields that a is uniformly bounded iff the simple com

ponents of the a-graph contain no nonzero weight cycles. In that case, if the max

imum path-weight in the simple components is N3, then Lemma 3.4 implies that the

80

period P of a is equal to P == Icm{P,} and the order N is N = Nt + Icm{Pt}. Q

3.8. Applications

Besides its theoretical interest, characterizing boundedness has implications on

general recursive Horn clause processing also. For example, assume that a recursive

Horn clause can be decomposed into "smaller" ones, some of which are uniformly

bounded. The ones that are unbounded are smaller than the initial one and this

results in faster processing. Furthermore, the parts of the result that correspond to

uniformly bounded Horn clauses are obtained in a fixed number of steps independent

of the rest of the Horn clauses. This results in greater efficiency, since processing the

original Horn clause may involve more steps than the order of its bounded com

ponents. Processing the original Horn clause recomputes the same things again and

again. Of course, there is some overhead in the end to combine the results of the vari

ous Horn clauses so that the same result as the original Horn clause is produced. In

many cases, however, there is the potential for some net savings in computational cost.

Example 3.0: As an example of such a decomposition consider the following

Horn clause:

P(*,«;) A Q(*,w) A R(*,y) A S(z,x)^P(x,y).

The graph of this Horn clause is shown in Figure 3.20. The Horn clause can be

decomposed into the two Horn clauses

Pi(*,«;) A Q(*,«0 A R(*,y) - Pi(*,y)

Prf*)A S(z,x)^P2(x).

The corresponding graphs of the two Horn clauses appear in Figure 3.21.

81

Figure 3.20. Graph of decomposable Horn clause.

Figure 3.21. Graphs of Horn clauses after decomposition.

The first Horn clause is uniformly bounded with order 1, whereas the second one is

unbounded. Processing the two Horn clauses separately and then combining the two

results may affect the processing time significantly. D

With respect to processing time, uniformly bounded Horn clauses have several

advantages. They can be expressed nonrecursively in a finite form. Hence, all the

tools used in conventional relational databases to find fast access paths are applicable.

Compiling such an access path is much easier compared to the effort needed for an

unbounded Horn clause [Hens84]. Finally, if a uniformly bounded Horn clause with

order N is processed by some iterative program, only N iterations through the loop

are needed. Iterating for an (iV+l)-th time produces no new tuples. For Horn clauses

with small orders, say 1 or 2, the savings may be significant.

82

3.0. Summary

Recursion is a major source of inefficiencies in a deductive database system. In

this sense, identifying cases where recursion may be removed becomes important. For

a restricted class of linear recursive Horn clauses, necessary and sufficient conditions

are given for a member of the class to be equivalent to a finite number of nonrecursive

Horn clauses, i.e. to be uniformly bounded. This has been accomplished by modeling

the Horn clause with a weighted directed graph. Removal of recursion is possible if

and only if there is no nonzero weight cycle in the graph. The existence of an efficient

(linear time) algorithm for the decision procedure makes the result easy to apply.

Finally, when decomposition is a possibility, identifying parts of a Horn clause that are

uniformly bounded may gracefully affect the processing time.

CHAPTER 4

PROCESSING ALGORITHMS

In the previous chapter, the class of linear recursive Horn clauses that are

equivalent to a finite set of nonrecursive ones was examined. It was mentioned that in

this case recursion can be removed and all queries on the recursive relation can be

answered by a regular relational query optimization and processing engine. However,

the vast majority of linear recursive Horn clauses do not have this property. The

mere fact that only the number 0 as a weight for all cycles in the graph corresponding

to the Horn clause guarantees its uniform boundedness, whereas all the other integers

do not, is already a strong indication of the limited scope of the applicability of the

boundedness criterion to process recursion. So, we now turn into addressing the gen

eral problem of query processing in the presence of recursively defined relations.

4.1. Previous Work

Recently, there has been an extensive effort to develop techniques for answering

queries on recursively defined relations. In [Banc86b] one may find a good survey of an

almost complete subset of them. Detailed descriptions of the algorithms can be found

in [Aho79a, Hens84, Ullm85, Lozi85, Banc85, Banc86a, Han86,Viei86,Demo86]. Also,

some of the first attempts to evaluate queries on recursively defined relations can be

found in [Gall78,Gall81b,Gall83]. We give a synoptic overview of the known

approaches, while still avoid getting into the details of the algorithms that are

83

84

unnecessary for our presentation.

Although most of the known approaches are based on the Horn clause formula

tion of recursion, here they are described using the algebraic framework of Chapter 2.

Also, only linear and immediate recursion is examined, even though some of the tech

niques are applicable to the more general case as well. With these assumptions it has

been shown in Chapter 2 that a recursively defined relation can be seen as the minimal

solution of an equation of the form

APuQ=P, (4.1)

with AeR a multiplication of primitive relational operators and Q a stored relation in

the database. The minimal solution of (4.1) isof the form P = A*Q. Therefore, any

query on relation P can be transformed to a query on A*Q. For example, the query

P(e,...)? that asks for the tuples of P that have the constant c in the first column px

will be the query &piaeA Q, which is a query on base relations. In the following

descriptions of the algorithms the stored relation Q is ignored. Their description is in

terms of computing A . Applying that on Q is straightforward.

There are three major issues that arise in processing queries on recursively

defined relations, that any appropriate algorithm must address and solve.

• The first issue is determining the minimal number of terms from A* that are

needed to answer the query. The importance of solving it is twofold. First, the

algorithms actually stop after a finite number of steps. Otherwise, depending on

the given query, they may run forever without producing the answer, somehow

trying to create all infinite number of terms of A* (an example of such an algo-

85

rithm is the one used in Prolog (Section 4.1.6)). Second, as few terms of A* as possi

ble are generated, avoiding unnecessary computation. It has already been mentioned

in Chapter 2 that A* is equal to only a finite number of its terms for any given data

base. However, the number of terms used there is, in general, much larger than the

one usually needed for any specific instance of the database and any given query.

Therefore, when efficiency becomes an issue, knowing when the answer to a given

query has been computed is crucial.

• The second issue is avoiding repetition of computations. For example, A2 may be

generated at some point and then, it is generated again to be multiplied with A

for the generation of A3. Clearly, generating A2 twice in the computation is

unnecessary. Identifying and avoiding this kind of inefficiencies is of utmost

important for the overall performance of an algorithm.

• The final issue is using the possible selections of the query to guide the execution.

In the presence of a selection, only a subset of the underlying database is needed

to produce the answer. Using selections to minimize the amount of data at which

the system has to look to answer a query has proved crucial in ordinary rela

tional query processing [Wong76,Seli79], and it is even more so in the recursive

case.

In the following subsections an abstract view of the algorithms proposed in the

literature is given. The algorithms described are referred to as Naive and Semi-Naive

[Banc85], Shapiro-McKay [Shap80], Query-Subquery (QSQ) [Viei86], Prolog [Cloc81],

Aho-Ullman [Aho79a], Kifer-Lozinskii [Lozi85], Henschen-Naqvi [Hens84], Han-Lu

86

[Han86], Demo [Demo86], Magic Sets [Banc86a], and Counting [Banc86a].

Each algorithm is based on a particular way of writing A within the closed

semiring ER of the relational operators. In that sense, the algorithms are classified

into the following three categories, according to the type of algebraic transformations

applied on A for the algorithm to be realized:

1) Syntactic: These are transformations that are based solely on the properties of

the closed semiring ER. The operators appearing in A , their parameter rela

tions and the constants in the query are uninterpreted. So, these transformations

are always applicable.

2) Hybrid: These are transformations that are based on individual properties that

the specific operators have. In other words, the operators are interpreted for

these transformations to be applicable. However, the relations and the constants

in the query are still uninterpreted and any value for them is acceptable.

3) Semantic: These are transformations for which the operators, the relations, and

the query constants are interpreted. For each instance of the relations or value

of the constants a different operator results from the transformation. The

transformations include accessing the database and creating relations based on

the contents of the database and the constants in the query. These relations are

then used as parameters to other operators, which behave differently for different

instances of their parameters. It is in this spirit that we call these transforma

tions semantic. Otherwise, all the operators can be constructed by purely syntac

tic means.

87

4.1.1. Syntactic Transformations

• Naive Evaluation

The name of the algorithm is due to Bancilhon [Banc85] and refers to the algo

rithm proposed in [Aho79a]. It has already been shown in Chapter 2 that

J[JA = (1 + A)n. The naive evaluation is a direct application of this form:

A*= lim (1 + A)* = •••(!+ A)(l + A) u2)

(whenever explicit parenthesization is omitted, right associativity is assumed for multi

plication). In other words, A is applied on some initial relation Q and then it is

applied on the union of the result with Q, etc., until nothing new gets produced. This

is a very simple but highly inefficient algorithm because operator A is applied on the

same tuples again and again. This can be seen if (1 + A)n is treated as if A were a

real number. It would then be

where 1.1 are the combinations of k items out of n (n choose k). Proposition 2.4a

states that A + A =^ A, so the binomial coefficients are eliminated. The naive

evaluation actually computes A* as many times as its binomial coefficient above, that

, which is clearly unnecessary*.

* If duplicates were removed after each multiplication then Ak would be computed only n+l—k
times. This is better than what is shown above, but it still includes unnecessary computation.

88

• Semi-naive Evaluation

CO

Consider the original form for A , that is A* = j^A*. Clearly, it is more prac-

tical than the one for the naive evaluation in the sense of being faster. Each power of

A is computed only once. Exactly this form has been followed in [Gutt84] and else

where. Also, this form has been formally extracted using a differential approach in

[Baye84] and [Banc85], even for more general cases of recursion, i.e. without any

assumptions about linearity. In fact, the name to the algorithm was given in the

latter reference. To understand the algorithm, the above equation is written as

A* - £Ak = 1+ (1 + (1 + (•••)A)A)A. (4.3)
Jfe«=0

In this form, in each step A is applied only on the tuples produced during the previous

step, so unnecessary computation is avoided.

• Shapiro-McKay

Another algorithm that is based on similar transformations of A has been pro

posed by Shapiro and McKay [Shap80]. They perform the minimum number of multi

plications of operators, at the expense of not taking into account the possible selec

tions in the query to reduce execution time. Their computation scheme applies semi-

naive evaluation to compute A (using A* to compute A*+1), and then applies the

selection. This delay in applying the selection, results in long execution times for

many queries.

89

• Query-Subquery (QSQ)

A method that tries to take into account the constants of the query as much as

possible has been proposed by Vieille [Viei86] under the name Query/Subquery. Con

sider computing a A . Assume that

aA = &, <rA2 = oJA=o",-- ,

where the selections a, o4, cr*1 have a more general meaning, i.e. they are selections with

multiple values for the selected columns. In this sense, one may think of them as joins

with a single column relation containing the selected values. From the above

aA* = a £Ak = a + (aA) £Ak = <r +^ £Ak
k=*C Jfe=0 Ar=0

= a + o4 + (a1A) £*A* = a + o4 + a" £Ak = •• •

In this form, aA is applied on some stored relation Q to generate the answer to the

query. For the actual implementation of the algorithm, a recursion control mechanism

is used to ensure termination and avoidance of repeated work (e.g. o4 is generated only

once and used for the generation of a" etc.).

In [Viei86] a second method is described, which uses an iterative scheme to

answer the query. It propagates the selection as the previous method. However it

uses the form A = lim(l + A)n as its underlined processing algorithm (i.e. naive
n—*oo

* °°evaluation), instead of A = ^A* (semi-naive evaluation) that the recursive method

does. Hence, it is much less efficient, as it has been pointed out in [Viei86] as well.

90

• Prolog

The programming language Prolog [Cloc8l] uses a method almost identical to the

recursive QSQ of the previous section for query processing. The main difference is

that the processing scheme is tuple-at-a-time instead of a set-at-a-time, and this gen

erates additional inefficiencies, especially when the database is stored on disks. Since

its execution paradigm is the same as that of QSQ we discuss it no further.

4.1.2. Hybrid Transformations

• Aho-Ullman

The naive evaluation was among the first proposals to incorporate recursion in

database systems [Aho79a] (see Section 4.1.1). That proposal included some transfor

mations that occasionally could be applied on queries with selections to get the answer

faster. For example, consider a query with a selection a on the produced relation.

The answer to the query will have the form

a{l + A)N.

In [Aho79a] various cases are identified for which <r and A commute, that is

<7A = A a. Whenever this is true, it may be applied inductively on the solution above

and get transformed into

(i + Ayv

which is presumably more efficient since the operators are applied on smaller relations.

Equivalently, start from the initial equation B = 1 + AB. Having a selection a

in the query is equivalent to asking for an operator aB. Thus,

91

c*B =<t(1 +AB) = <t + <tAB = <t + A(aB).

This equation has almost the same form as the original one, having aB as the unk

nown and a as the constant operator (instead of 1). In Example 2.2, it has been shown

that the solution to the above equation is A a, which is equal to (1 + A)Na for some

N when naive evaluation is used.

Pushing the selection through A , that is writing aA as A a, is not always pos

sible. We have used aA = A a to make it. In [Deva86] some necessary and sufficient

conditions for a generalized version of the problem are given.

• Kifer-Lozinskii

In [Kife85] an extension of the Aho-UUman algorithm for using selections to

answer the query is presented. They use a graph to have the selections propagate into

the query as much as possible. Their improvement mainly consists on having the abil

ity to do this in some cases where the Aho-UUman approach fails. For example, con

sider A that can be written as a sum, A — B + C. If aB = Bcr and aC = Ca then

a(B + C) = <rB + uC = Bo + C(T = (B + C)a.

Once again, this implies that a A = A a. The second form is more efficient than the

first one, since the operators are applied on smaller relations.

• Henschen-Naqvi

A significant contribution to the understanding of query processing with recur

sively defined relations has been made by Henschen and Naqvi [Hens84]. They pro

pose a considerably general technique to compile programs answering specific queries

(involving selections) given a set of Horn clauses. Their goal is to make use of the

92

selections in the query as early as possible. The main idea of their processing para

digm is described for the following special case. Assume that A is of the form

A = BC with B and C such that they commute, i.e. BC = C B. Then,

A*= £Ak —fj(BC)k —£BkCk.
ftszO M Jfe=0

The last equality can be easily proved by induction on k. Given a query with a selec

tion a on attributes of the relations in B only (neither on relations in C nor on the

CO

input relation), it is answered by ^J(aBh)Ck. Repeated computations are avoided by

using old results efficiently. That is, crBk is kept and used for the computation of

aBk+l, which is then multiplied k+l times with C to get A .

• Han-Lu

In [Han86] three algorithms are presented and their performance is analyzed for a

particular operator A and a particular query. The algorithms are called "single wave-

front", which is actually the Henschen-Naqvi algorithm, "central wavefront", which is

the Shapiro-McKay algorithm, and "double wavefront" which is the one we call Han-

Lu algorithm. Since the first two have been described above, only the third one is

described here. It applies to operators with the properties mentioned in the descrip

tion of Henschen-Naqvi, that is A = BC with BC = CB. Also the selection in the

query is on attributes of relations in B only. Again, in this case

A— E(°Bk)(Ck).

The difference of their algorithm from Henschen-Naqyi is that not only oBk is kept to

be used for the computation of the c*BkArX, but also Ck is computed alone and used in

93

the next step to compute Ck+1. This algorithm has potential inefficiencies since Ck is

computed without the graceful effect of a selection as in Henschen-Naqvi. However,

analytical as well as experimental studies have shown that there are many cases for

which that it performs better than Henschen-Naqvi [Han86].

• Demo

In [Demo86] one iterative and one recursive method for processing queries with

selections on recursively defined relations are described. It is pointed out that depend

ing on the selection, one of the methods is preferred over the other. The iterative

method is very close to Aho-Ullman and the recursive method resembles Henschen-

Naqvi so they are described no further.

4.1.3. Semantic Transformations

• Magic Sets

Magic sets were introduced in [Banc86a]. Even though the notion applies to

more general cases as well, we assume that the transformation of the magic sets does

not introduce any mutual recursion (for a more general example see [Banc86b]). The

idea behind magic sets is the following: Consider a query aA Q. First, a relation S is

created, the magic set, as S = B R, where B is a new operator that is constructed

from the specific selection a and operator A, and R is the relation containing the

values in the selection. The answer to the original query is found by computing

crC [S]S, where C is yet another operator constructed from A that has the magic set

S as a parameter (as well as input). By the above transformation, a large portion of

the database that contributes nothing to the answer is not accessed. Even though

94

magic sets are not a panacea [Banc86a), computing B R and then aC [SjS is often

more efficient than applying some of the other algorithms.

• Counting

The last method described, which is the second based on semantic transforma

tions of A , is called counting and was proposed in [Banc86a] as well. It is an

offspring of the magic sets method and transforms the original operators by introduc

ing arithmetic. A counting magic relation S is created again, as S = B R. The

form of the new operator B depends on A and the selection <r, and R is the relation of

the selection values paired with the integer 0. The values generated by B*R are

paired with k. The answer to the original query is found by computing c^C [S]S,

where C is a new operator having S as a parameter and o4 is a enhanced with a selec

tion value for the integer column introduced for the counting.

Counting cannot be applied to all the cases that magic sets can. However, when

ever applicable it usually performs at least as well as any other method described until

now. This has been verified in both [Banc86a] and [Banc86b].

Notice that the above classification into the three categories is very similar to the

one in [Banc86b|. There, the algorithms are classified as methods (evaluation algo

rithms), which correspond to the syntactic transformations of our classification, and

optimization strategies, which correspond to the hybrid and semantic transformations

of our classification. The only point were this correspondence fails to hold is in the

classification of Henschen-Naqvi, which was a method in [Banc86b] and a hybrid

95

transformation here. The discrepancy is only due to the different viewpoint of the two

classifications.

4.2* New Algorithms

By looking at all the algorithms described in Section 4.1, one clearly gets the idea

that, apart from the various transformations that are applied to make use of selections

as much and as early as possible, they all use naive or semi-naive evaluation at some

abstract level. However, these are not the only ways to perform the task in the sense

oo •

that £Ak and lim (1 + A)k are not the only ways to express A . Therefore, the

existence of other evaluation methods of A that are more efficient than the tradi

tional ones (naive and semi-naive) is to a large extent an open problem. In this section

some new algorithms are presented by transforming A in new ways. According to

the classification of Section 4.1. these new transformations are classified as syntactic.

Analytical and experimental results are also given that indicate that the "traditional"

algorithms are not always optimal. In fact, as it becomes apparent in the sequel, using

the new algorithms proposed, significant improvement in both I/O and CPU time is

observed in many cases.

4.2.1. Equivalent Forms of the Solution

Two equivalent forms for A* have already been mentioned, namely lim (1 + A)
A—oo

k

and £Ak, which correspond to the naive and semi-naive evaluation respectively.

Some specific examples help in understanding the flow of the algorithms.

96

Example 4.1: Consider the naive evaluation. Let A be the operator

corresponding to the recursive Horn clause defining the ancestor relation (Example

1.3 in Section 1.2). Assume that the relation father is given by the graph of Figure

4.1, where an edge (a-*6) indicates a tuple father(a,6), i.e. a is the father of 6. Con

sider the query ancestor^Uranus,y), asking for Uranus's descendants. Following the

steps of the algorithm corresponding to (4.2) the answer is developed as shown in Fig

ure 4.1.

Uranus

Figure 4.1. Naive algorithm to answer ancestor(Uranus,y).

The answer is developed by finding in the /r-th step (that is (1 + A)k) Uranus's des

cendants that are / generations below him, !</<&+!, for k>0. Initially Uranus's

children are generated, which taken together with Uranus are used to find their chil

dren, which are Uranus's children and grandchildren together etc. This is clearly not

a good processing strategy, since A is applied on the same tuples many times produc

ing the same result again and again. For example, Cronos is produced as a descendant

of Uranus in every iteration. Q

With respect to efficiency, the form A = £A , which corresponds to the

semi-naive evaluation, is faster and therefore more practical. Formula (4.3) in Section

4.1.1 gives the form of A corresponding to the semi-naive evaluation:

97

oo

A9 — £Ak =» 1+ (1 + (1 +(•••)A)A)A (4.3)

In this form A is applied each time only on the tuples produced during the previous

iteration, so unnecessary computation is avoided.

Example 4.2: For the same example as before, using A* from (4.3), Uranus's

descendants are generated as shown in Figure 4.2.

Ar=0 A;=l *=2 Jk=3 &«4

0 0 0 0 0 •
Uranus Cronos Zeus

Figure 4.2. Semi-naive algorithm to answer an cestorfUranus,y).

In the /r-th step, Ak, k>0, Uranus's descendants that are exactly k+l generations

below him are found. Initially, Uranus's children are generated, in step 1 their children

are generated, which are Uranus's grandchildren, etc. In the end, the union of all the

sets is taken to produce the complete answer. O

In the search for other equivalent forms for A that possibly suggest more

efficient execution algorithms, we arrive at the following form:

A* - /7(1 +A2*) - •• . (1 +A<)(1 + A2)(l + A). (4.4)

The algorithm indicated by this form for A avoids the application of the same opera

tor on the same tuples more than once, so it is faster than the naive evaluation. The

interesting question is how it compares with the second form (4.3) of the semi-naive

evaluation. In the same spirit of naming the original two algorithms naive and semi-

naive [Banc85], we call the algorithm corresponding to (4.4) smart algorithm.

98

Example 4.3: To get a feeling for the smart algorithm, Uranus's descendants

are found again. The steps of the generation of the answer are shown in Figure 4.3.

femsQ Ar="l Ar*™*

>)) > >e-e
Uranus Cronos Zeus

Figure 4.3. Smart algorithm to answer ancestor(Uranus,y).

In the /r-th step Uranus's descendants that are / generations below him, 2*~1</<2*,

Ar >0 are found. Initially, Uranus's children are generated, which in step 1 are taken

them with Uranus to find their grandchildren, which are Uranus's grandchildren and

great-grandchildren together, etc. The particular query that was used in the examples

is not one where (4.4) is the most efficient as it is pointed out in Section 4.3. It is only

presented here because of its simplicity. Q

The algorithm corresponding to (4.4) has been independently proposed by Valdu-

riez and Boral [Vald86]. They use a different formalism to describe it, namely Rela

tional Algebra Programs, but it is essentially the same algorithm as (4.4). Also, the

smart algorithm is reminiscent of graph theory algorithms to find transitive closure of

graphs.

Looking at the three algorithms together, the following observations can be

made: At each step, the naive algorithm applies the same operator on all the tuples

produced up to that point. The semi-naive algorithm does the same but only on the

tuples produced in the last iteration. Finally at each step, the smart algorithm applies

a different operator on all the tuples produced up to that point. In this sense, it is the

dual of the semi-naive algorithm with respect to the naive algorithm. Figure 4.4

summarizes the above.

Same Operator i Different Operator

Last iteration
result

Complete
result

SEMI-NAIVE \

NAIVE SMART

99

Figure 4.4. Algorithm types for the computation of A .

It is an interesting question to study whether there exists an algorithm covering the

last remaining empty box.

The issue raised is whether the smart algorithm runs faster than the others. The

formulas alone are not enough to give any useful conclusion in this direction. On the

one hand, the number of multiplications performed by the smart algorithm is much

smaller than that of the semi-naive one (roughly, it is equal to 2*log2iV, log2iV to find

the powers of 2 and another log2iV for the outer multiplications, with N the number

the semi-naive algorithm needs). Under the assumption that in most cases multiplying

implies joining, the smart algorithm performs fewer joins. On the other hand, in each

step bigger portions of the final outcome are calculated, by applying more expensive

operators on larger relations than the semi-naive algorithm. Hence, each step is

definitely more expensive. When this trade-off of the number of multiplications versus

their individual costs is beneficial for the overall performance, is the focal point of the

discussion that follows.

100

4.2.2. I/O Cost Analysis

In this section, an analysis of the I/O performance of the semi-naive and smart

algorithms (forms (4.3) and (4.4)) is presented. For simplicity, the analysis (and the

experiments in Section 4.2.3) has been restricted on A representing the computation of

the transitive closure of a binary relation. Extensions to more general forms of A are

straightforward. For the semi-naive algorithm, it is assumed that all significant

powers of A are computed first, as A* « AAkmml, and at the end the sum of all of

them is taken. The relation in A is sorted only once in the beginning. Likewise, for

the smart algorithm all operators A* are computed with the results kept sorted

(loopl), and then massive joins are performed between the current result and the

corresponding power of A, which would be of the form A2 , for some Ar (loop2). The

outcome of these joins is appended directly to the current result to be used in the next

iteration.

For the analysis the following parameters are needed.

tup[Ar] Number of tuples in the relation ofAk
page[k\ Number of pages occupied by tup[k\ tuples (= pagenum(tup[k\)f see

below)

pagcnum(t) Number of pages occupied by t tuples

pgsz Number of tuples fitting in a page

buf Number of buffers available in the system

sort(p) = 2pflog^p1, I/O cost to sort p pages having buf buffers [Blas76]
C I/O cost to create a relation

D I/O cost to destroy a relation

xY Number of iterations needed by the semi-naive algorithm

M —llogo'V] = max{A«: tup[2k] ^ 0}
k

101

0 NNotice that the final outcome for A contains £tup[k] tuples. Using the above
*»i

parameters, the I/O cost amnaivemiq and smart.io of the semi-naive and smart algo

rithms respectively are calculated as follows:

semi-naive algorithm

smnaivcmio ==»

sort(page[l\)

+ Npage[l]

N

+ £1sort(page [k])
A-l

iV

+ £pagc[k]

iV xV

+ JJpage[k] + pagenum(£tup[k\)

+ N(C + D) + C

smart algorithm

smartmio =

2£sort(page[2k])

+ yjpage[2k]
A—1

M 2*-l

+ Tjsort(pagcnum(TJtup[l]))
*—l /—i

+ y]page[2k]
A—1

Sort original relation on appropriate
column(s). It is done only once.

At each step read sorted original rela
tion.

Sort the second relation for the join.

Write the outcome of the join.

At the end read all the intermediate

results and put them into one relation.

Create and Destroy the N intermediate
results and also create the final result.

loopl

o*
For each step sort A" on two different

(sets of) columns for the join. One of
them is kept for loop2.

Write the result.

loop2

At each step, sort current answer for

the next join.

Read second relation (A2), which is

sorted from loopl.

102

M 2*—1
+ JJpagcnum(£tup[2h+l]) Join the two relations and append the

A—i f—i

M

outcome to the result.

+ ZJPa9* [2*1 Append the relation of the used A2 to

the result.

+ M(C + D) + C Create and destroy the M intermediate
results and also create the final result.

Before evaluating the above formulas for some specific values of their parameters

we make the following comments:

(a) For large relations, the most significant terms for both formulas are the ones

of sorting, since the other ones are linear in the size of the input. In the smart algo

rithm, relations larger than in the semi-naive one are sorted. Hence, it is expected

that, as the relations grow, the semi-naive algorithm performs better.

(b) On the other hand, the sorting cost is highly dependent on the number of

available buffers. Increasing this number makes the smart algorithm benefit more

than the semi-naive one, and therefore makes its performance more competent.

(c) Also, for small relations (where sorting is not that expensive) the overhead of

creating and destroying temporaries (costs C and D above) may become significant.

In that case, the fact that the factor of C + D in smnaivemio is greater than in

smartmio (N vs. M = llog2NJ) makes the smart algorithm perform better. This is

especially true when N is quite large so that there is significant difference with its log

arithm.

(d) Finally, most of the time, the smart algorithm overcomputes powers of A

that are not significant (they are equal to 0 for the database concerned). This is not

103

true with the semi-naive algorithm since it computes one power at a time. As N

increases the number of joins performed by the smart algorithm changes only when a

power of 2 is reached. This makes the algorithm particularly weak at these points,

where the overcomputation is maximal.

To validate the observations above we apply the formulas for emnaivemio and

smartmio on some specific cases. The number of the parameters involved is

significantly large, so the complete spectrum of possibilities is not covered. Neverthe

less, we believe that the special cases examined below are enough to give some insight

for the rest also. Recall that A represents the transitive closure of a binary relation.

The relations are assumed to be trees. By doing this, we avoid worrying about retain

ing any possible duplicates or not, which is another dimension in the optimization of

such operators, yet unrelated to the purpose of this analysis.

We only examine complete trees of outdegree 1 (simple lists), 2 and 3 (see Figure

4.5).

1

1 ,, 2

2 / X 3 v 3

S \ X \ "4
4 5 6 7

v 5

Figure 4.5. Complete trees of outdegree 2 and 1 (list).

The choice is made because these categories represent two extremes in terms of the

ratio of depth over width of the tree. For the various parameters of the problem the

following values are chosen:

104

C«7 I/O cost to create a relation
D aa 10 I/O cost to destroy a relation
pgsz =» 200 Number of tuples fitting in a page
buf = 50 Number of buffers in the system

Choosing these values allows a comparison of the results of the analytical formulas

above and the results obtained by simulating the semi-naive and smart algorithms on

INGRES (see Section 4.2.3). The numbers for C, D, and buf have been taken as an

average of many experiments. In the experiments, the tuple size has been 8-bytes and

the page size 2K. Due to some overhead information in each page, pgsz a 200. In

Figure 4.6, the plots for the ratio r = a. naive, to j}smartmio as a function of the

depth of the list/tree, for lists and complete trees of outdegree 2 and 3 is shown.

Figure 4.0 validates the comments (a)-(d) above. As the relations grow, sorting

becomes more significant and the semi-naive algorithm performs better compared to

the smart one. However, it takes a considerably big relation for this to happen. For

lists, a depth of at least 2048 is needed. Likewise, for complete trees of outdegree 2,

the breakpoint depth is 10, which even though it is not a large number, it corresponds

to a considerably large tree of 131072 edges (tuples). Incidently, this relation needs

1Mbyte of storage, whereas the result for A needs approximately 20Mbytes. The

same is true for complete trees of outdegree 3. Figure 3.6c shows that the breakpoint

is at depth 8. Thus, it takes an exceptionally large (deep/wide) relation for the semi-

naive algorithm to perform less I/O than the smart one. Furthermore, the wider the

tree is, the shorter it needs to be for this to happen.

2«

1000

3.0n

I 1 I

T_ 3000 4000 5000
ist Depth

(a)

3.0i

2.5-

2.0-

r1.5

1.0

0.5'

0.0+—f
0 10 20 30 40 50 60 70 80

Tree Depth

(«)

I I I

40 80 80 100 120
Tree Depth

(b)

Figure 4.6. Expected relative I/O performance: r = s. naive, to /smartm to
(a) Lists, (b) Complete trees, outdegree 2, (c) Complete trees, outdegree 3

105

106

It is also very interesting to see the particular behavior of the ratio

r sa «„naive, to/'smartmio. In agreement with point (d) above, there are significant

jumps in favor of the semi-naive algorithm at depths N = 2* for any k. This maybe

noticed at depths 256, 512, 1024, 2048, and 4096 for lists, or at depths 16, 32, and 64

for complete trees of outdegree 2 and 3. However, there is a noticeable difference in

the behavior of lists and complete trees in this respect. For lists, r remains relatively

invariant between A2* and A2**1 for some k. On the contrary, for both cases of com

plete trees examined, as the amount of overcomputation decreases (approaching

A***""1) the relative performance of the smart algorithm improves significantly. For

example, for a tree of outdegree 2 and iV=16 there b a drop to r » 0.61, but as N

grows it rises again to a point where for AT=30 it is r = 1.04. Hence,

r =» smnaivemio/smartmio is not a monotone function of N.

It has been mentioned that the smart algorithm has been independently proposed

in [Vald86], where its performance is analyzed in comparison with the semi-naive algo

rithm as well. It is difficult to accurately compare the results of this analysis with

those in [Vald86j. We always use merge-scan join, whereas they mainly use a hash

join similar to the one proposed in [DeWi84]. They also assume a very big buffer pool,

whereas we do not.. For both points above our constraints were put by the system

used for the simulations (see Section 4.2.3). A common observation of both studies,

however, is that the smart algorithm performs well in many cases.

107

4.2.3. Experimental Performance Results

We have simulated the semi-naive and smart algorithms using the commercial

version of INGRES [RTI84] on a VAX1 11/780 running Unix2 4.3. The I/O costs

observed for lists and complete trees of depth 2 and 3 are presented in Figure 4.7.

The ratio r = smnaivemio / smart.io is shown again, together with the corresponding

curve from the analysis of Section 4.2.2. Due to the space (and time) requirements of

the experiments it has not been possible to compare the algorithms on very deep trees,

so we have been unable to verify that after some point the semi-naive algorithm

becomes better and identify that breakpoint. Nevertheless, to the extent that we did

experiment, the results follow more or less the analysis of Section 4.2.2. Whenever

there is a disagreement, it is attributed partly to the simulation overhead and partly

to the pessimism of the analytical model about the way the optimizer uses the buffer

pool and the cost of a sort.

The CPU time consumed by the algorithms in the experiments was also moni

tored. The monitored parameter was the ratio r = amnaivemcpu/smart,cpu, where

s,naivemepu and smart,cpu are the CPU time consumed by the semi-naive and

smart algorithms respectively. For the same categories of trees as above the observed

r is shown in Figure 4.8. The smart algorithm is at least a factor of 2 better in per

formance for lists, whereas it is from marginally better to marginally worse for trees,

for the depths examined. We speculate that, for trees of large depth, sorting cost is

the significant factor, and hence the smart algorithm performs worse.

VAX is a trademark of Digital Equipment Corporation.
<>

* Unix is a trademark of Bell Laboratories.

experiment

—•»

analysis

50 100 150 200 250 300 350 400

List Depth

(a)

3.01

analysis

analysis

108

0 2 4 9 8 10 12 14 16

Tree Depth

(b)

Figure 4.7. Observed relative I/O performance: r = s, naive, io/smart, io.
(a) Lists, (b) Complete trees of outdegree 2, (c) Complete trees of outdegree 3

4.0i

3.5

3.0

2M

2.0

1.5

1.0

0M

0.0
0 50 100 150 200 250 300 350 400

List Depth

(a)

1.21

1.0

0.3-

0.6«

0.4 •

0.2

0.0

1.50

1.25*

1.00

0.751

r

0.50-

0.25'

0.00

109

0 2 4 6 8 10 12 14 16
Tree Depth

(b)

0 12 3 4 5 6
Tree Depth

(«)

Figure 4.8. Observed relative CPU performance: r = s, naive, cpu /smart, cpu,
(a) Lists, (b) Complete trees of outdegree 2, (c) Complete trees of outdegree 3

110

4.3. More Logarithmic Algorithms

A natural question that arises after looking at the smart algorithm (form (4.4)) is

whether in the same spirit one can come up with other,' occasionally even more

efficient algorithms. The idea is to look at A* as a regular expression for which there

are many equivalent forms. Formulas (4.2), (4.3) and (4.4) represent only three of

these forms and therefore correspond to only three of the possible algorithms to com

pute A . Some possible alternative algorithms can be realized by noticing that A

may be written as

A' — • • • (1 + A12){1 + A8)(l + AZ){1 + A + A2) (4.5)

or

A*=» J7(l +A3* +A2*3*)

« • • •(1 + A9 + A18>(1 + A3 + A6)(l + A + A2). (4.6)

Soon, one realizes that there is an infinite number of ways to write A , in the

same sense that there is an infinite number of coding systems to code all integer

numbers. Testing the performance of a large number of them is prohibitive because of

their own time requirements and the complexity of their development. Good heuris

tics must be developed so that the large majority of the suboptimal candidate algo

rithms is not considered.

Expression (4.5) differs from (4.4) in that the grouping starts one iteration later,

that is A and A2 are computed separately, and then ail the results are grouped

together and A3 is applied on them, and then everything is grouped again etc. On the

other hand, expression (4.6) is even more aggressive in the grouping sense. It iterates

Ill

twice, before combining everything that it got up to that point and use it in the next

pair of iterations.

In terms of the number of multiplications, expression (4.5) needs approximately

2 log2iV, where N is the number of multiplications of (4.3) (the greater N is, the

closer the actual number of multiplications gets to 2 log2iV). In the same way, (4.6)

needs about 3 log3iV* multiplications. Generalizing, algorithms can be created that

need mlogmN multiplications, for arbitrary m, at the expense of making each multi

plication more complex. However, with a few exceptions, m = 2 or m « 3 at most b

all that is needed. In particular, assume that we concentrate on the general form

Formulas (4.4) and (4.6) are of this form for m=2 and m«3 respectively. The

number of multiplications required by these formulas is approximately mlogmiV. An

easy analysis shows that

mlogmiV < 2log2iV

only for m in {2,3,4}. In fact, the expression mlogm;V, with m restricted to the

integers, has a minimum for m=3 independent of N. Therefore, all other options are

more expensive than (4.4) and (4.6) and are considered no further.

Of all the alternative algorithms, we have experimented only with the one

represented by expression (4.6), which is called the minimal algorithm (since it per

forms the minimum number of multiplications). The analysis in the previous para

graph is the dominant motive for this choice. Experimental results for lists and com

plete trees of outdegree 2 are shown in Figures 4.9a (I/O), 4.10a (CPU) and 4.9b (I/O),

112

4.10b (CPU) respectively. Assuming that the minimal algorithm consumed

minimalaio and minimal,cpu units of I/O and CPU time respectively, we are

interested in the I/O cost ratio r = 4.naive.to fminimal^io and the CPU cost ratio

r » s, naive, cpu/minimal, cpu. In the figures below the curves for the correspond

ing ratios of the semi-naive over the smart algorithm are shown also, so that ail three

of them are compared simultaneously.

Figures 4.9 and 4.10 show that the minimal algorithm performs consistently

better than the smart one in I/O (and even more so than the semi-naive algorithm).

For the range of our experiments it does about a factor of 2 less I/O for lists, whereas

for complete trees the analogous improvement is about a factor of 1.5. As it concerns

CPU performance for lists the minimal is marginally better than the smart algorithm,

whereas the opposite is the case for trees. A more extensive set of experimental

results is definitely needed to get a better picture of the relative performance of all

three algorithms.

In closing, a comment on the limited scope of the smart and minimal algorithms

is appropriate. Minimizing the number of joins is an issue only when the complete A

is computed. For queries that involve selections on the underlying relations it is the

semi-naive algorithm that must be used, computing one power of A at a time and

using the available selections at each point before performing the join. Most likely,

this is faster than precompiling A using any algorithm and applying the selections

afterwards. One may validly argue that queries involving selections are much more

common than ones asking for a complete materialization of a recursively defined rela

tion. Whether winning in these more rare cases is worth the implementation effort of

15-

14'

13'

12

11«

10«

«•

8«

r 7«

6«

5«

4'

3'

2'

1"

0'

minimal

smart

senu-narre

• i •i"' i i1 i i i i i

0 50 100 150 200 250 300 350 400
List Depth

«

3.0

2.5'

2.0

1.5-

1.0

0.5-

0.0

113

minimal.

smart

semi-naive

—i—r—•*•—• if '!• "i i '•'!

0 2 4 6 8 10 12 14 16
Tree Depth

(b)
Figure 4.9. Observed relative I/O performance: r = s,naive,io/smart,io or

r = «. naive, to /minimal, io.
(a) Lists, (b) Complete trees of outdegree 2

4.0i

3.5

3.0-

2.5-

2.0"

1.5«

1.0

0.54

0.0

minimal

smart

sarm- naive

1.501

1.25-

1.00

0.75-1

r

0.50«

0.25'

0.00

0 50 100 150 200 250 300 350 400
List Depch

(a) (b)
Figure 4.10. Observed relative CPU performance: r = s,naive,cpu/smart_cpu or

r = s, naive, cpu/minimal, cpu.
(a) Lists, (b) Complete trees of outdegree 2

semi-naive

mimimal

0 2 4 6 8 10 12 14 16
Tree Depth

114

the smart (or minimal) algorithm is questionable and to some extent application

dependent.

4.4. Swapping

In Sections 4.2 and 4.3 a small number of equivalent expressions of the transitive

closure A of a relational operator A have been identified. The main characteristic of

these expressions is that A remains unchanged. Each expression is an alternative fac-

tonzation of the polynomial £]A*.

One deviation from this, explored in [Ioan86], is to take advantage of the internal

structure of A. That is, use the fact that A is some multiplication of more primitive

operators (like join, project etc.) and, having these to be the units of algebraic mani

pulation, search for equivalent expressions representing more efficient algorithms.

Consider an operator A such that A = BC. Then,

A* — (BC)' = 1+ B(CB)*C. (4.7)

Expression (4.7) represents a new algorithm for the computation of A , whose

significant difference from the original one is the operator whose transitive closure is

computed, namely (CB) instead of (BC) . Depending on what B and C are and the

contents of their parameter relations, the second algorithm may be more efficient.

The algorithm realized by the transformation in (4.7) is called swapping.

No analytical or experimental studies of the performance of the swapping algo

rithm is available at this time. In compensation, the potential of the algorithm is

illustrated by some characteristic examples.

115

Example 4.4: Consider the following linear recursive Horn clause:

P(«,v,w) A R(«,v,w) A S(w,x,y,z) -+Y(x,ytz). (4.8)

The operator A that corresponds to (4.8) is

A=(SM)(RlXl). (4.9)

For presentation clarity the specific attributes on which the joins are performed have

been omitted. In addition, it is assumed that after each join all the useless columns

are projected out. Let B = (S ixd) and C = (R txd) in (4.9). Swapping gives

A' =1+B(C5)'C =1+(SM)((R|X1)(SIX)]'(RM).
The form above corresponds to the following set of Horn clauses:

P(u,v,w) A R(ti,v,w)-*P'(ii;)

PW A S(«,r,a,t) A R(r,«,*) - P'(0 (4.10)

P'(0 A S(t,x,ufz)^F(x,y,z).

This system gives the same answer to any query on P as the original Horn clause.

However using (4.10) may be more efficient. Assuming that most of the processing

time is consumed in the recursive Horn clause, it may well be that the second Horn

clause of (4.10) is more efficient than (4.8). This depends entirely on the sizes of the

relations involved and the sizes of the intermediate results of operators applied on

these relations. Note, that (4.10) is only one of possible systems equivalent to (4.8)

that swapping may create, each one of which has a different recursive Horn clause. •

Example 4.5: Consider an operator A for which A = Bn, i.e. A is a product of

some operator B with a projection jr. The nice property of A is that, with the

appropriate application of swapping, A is replaced by the transitive closure of an

116

operator whose domain and range are relations of fewer columns than A. This is evi

dent in (4.11):

A' = l + B(xB)\. (4.11)

The new algorithm is guaranteed to be more efficient since it manipulates smaller rela

tions.

A Horn clause for which the above hold is

P(w,z) A R(*,y) A S(ar) — P(xfy).

Since the variable w does not appear anywhere in the Horn clause except under P in

the qualification (implying a projection on the incoming relation), swapping may be

applied to give

P(wtz)-+P\z)

P'(z)A R(*,y)A S(s)-P'(y)

PWA R(*,y)A S(x)->P(x,y).

In this particular case, a test whether S is empty or not can be performed right from

the beginning. This simplifies the above system of Horn clauses even more, since the

second one can be replaced by

PWA R(*,y)-P'(y). •

A final comment for the computation of A is that the smart or the minimal

algorithm can be combined with the swapping algorithm for the final execution plan.

Swapping can also be combined with all of the techniques described in Section 4.1 for

taking into account the possible selections of a given query to speed up processing. It

is evident that any sophisticated optimizer for recursive queries has a problem of a big

117

search space size. In the future good heuristics should be developed to make the

search space manageable. This is further discussed in Chapter 5.

4.5. Summary

Having the answer to a recursive inference process in an explicit form of a rela

tional operator allows the use of the manipulative power of the closed semiring, where

all such operators have been embedded. This way, new algorithms that are poten

tially more efficient than the ones commonly used are realized. Two such algorithms,

called smart and minimal, have been proposed for the computation of the transitive

closure of a relational operator. Their common characteristic is that they perform a

smaller number of operator multiplications on larger relations than the semi-naive

algorithm does. Analytical study as well as experimental measurements shows that as

the relations increase in size the new algorithms are less effective. Nevertheless, the

point after which the new algorithms cease to be optimal corresponds to considerably

large relations. Thus, for a wide range of relation sizes the new algorithms are shown

to be cost-effective.

CHAPTER 5

OPTIMIZATION ALGORITHMS

The performance comparison of the semi-naive, smart, and minimal algorithms in

Chapter 4 shows that none of them is universally optimal, for all database instances.

Naturally the problem of choosing each time the one that performs the best arises.

This optimization problem has never been addressed before in an environment with

recursively defined relations. In addition, we will propose two (heuristic) algorithms to

both explore some space of strategies to compute A and find the one with the least

expected execution cost.

5.1. Strategy Space

Consider a linear operator A and its transitive closure A . A strategy to com

pute A is a sequence of multiplications and additions of simpler algebraic expressions

(operators) forming A . Thus, the set of all the algebraicly equivalent forms of A*is

the strategy space considered. The goal is to find the cheapest one for the database

concerned.

Even though the relative cost of two strategies is in general database dependent

there is a limited number of cases for which the suboptimality of a strategy is prov

able by purely syntactic means, i.e. independent of the database. Bancilhon has pro

posed that, when a strategy is not duplicate-free, i.e. some operator is applied on some

set of tuples more than once (or in the algebraic framework two operators are multi-

118

119

plied with each other more than once), then it is not optimal [Banc85]. Using this cri

terion, he has shown that (1 + A)^, which corresponds to the naive evaluation, is not

duplicate-free and, therefore, not cost effective. This was pointed out in Section 4.1.1

also. Bancilhon's suboptimality criterion is extended as follows:

Definition 5.1: A strategy is repetition'free if it does not form any algebraic

expression more than once.

Notice that a duplicate-free strategy is repetition-free also. However the reverse

is not true. For example, producing both A(AA) and (AA)A in a strategy is not

repetition-free even though it is duplicate-free. Clearly, a strategy that is not

repetition-free is not cost effective since it includes redundant computation. Identify

ing non-repetition-free strategies and removing them from the strategy space con

sidered is highly desirable. Theorem 5.1 provides a result in this direction.

Theorem 5.1: Consider two algebraic expressions B and C such that B = An

and C = JJA '. Consider a strategy that involves the multiplication BC. If
»=»i

ne{kj—ty: l<jtl<m] then the strategy is not repetition-free.

Proof: Let B = An with n=kj—ki, for some l<j\/<m. Multiplying B with

C produces the sum of all the powers ofA of the form An+*', l<i <m. For t=/ the

operator An+ ' = A *~k,+k' = Akj' is produced, which has already been formed before

as part of C. Therefore, multiplying B and C prohibits the strategy from being

repetition-free. •

120

Example 5.1: Consider formula (4.2) which corresponds to the naive evaluation:

A*= lim(l+A)*= •••(1+A)(1+A).
ife-^oo

Its inefficiency follows directly from Theorem 5.1. Naive evaluation is not repetition-

free, because A is multiplied with (1 + A), which corresponds to the values n=l,

kj=Q and k[=l in the statement of the theorem. Q

Even though there is a unique algebraic expression equal to A associated with

each evaluation of A , the opposite does not hold. There is a certain algorithmic

information lost when an evaluation (a strategy) is "flattened out" to an algebraic

expression. In particular, whether a repeated subexpression is computed only once or

not cannot be decided from the algebraic expression alone. For example, consider the

expression A2 + (A2)A. There is no indication of whether A2 is computed only once

or twice. For this reason, a strategy is represented by a directed acyclic graph, whose

leaves are the primitive operators involved in the computation of A , and the other

nodes are multiplications and additions applied on their children. In the examples

that follow, the edges of the graphs always have top to bottom direction.

2

Example 5.2: The graphs in Figure 5.1 represent the states JHA* and (1 + A)2
*=o

respectively. Also, the algebraic expression A2 + (A2)A may correspond to any of the

graphs in Figure 5.2, depending on whether A2 is computed once or twice.

A 1 A

Figure 5.1. Strategies corresponding to 1 + A + A2 and (1 + A)2.

A -A

Figure 5.2. Two different strategies corresponding to A2 + (A2)A. U

Definition 5.2: The depth of a strategy is the depth of its corresponding graph,

i.e. the maximum path-length in the graph.

Notice that all the graphs corresponding to a single algebraic expression have the

same depth. Hence, depth is well defined for an algebraic expression also.

Example 5.3: The algebraic expression 1 + A has depth 1, whereas AB + CD

has depth 2 (see Figure 5.3).

121

122

1 A A B C D

Figure 5.3. 1 + A of depth 1 and AB + CD of depth 2. •

For the remainder of the chapter, a strategy is identified with its graph. Occasionally,

if this does not cause any confusion, the corresponding algebraic expression is used.

In the following two sections, two optimization algorithms for the computation of

A are described. Whenever possible, Theorem 5.1 and other similar results are

applied to exclude some of the strategies that are known to be suboptimal. The first

such algorithm is a simulated annealing process whereas the second one is based on

the dynamic programming principle.

5.2. Optimization by Simulated Annealing

5.2.1. Simulated Annealing

Simulated annealing is a Monte Carlo optimization technique proposed by Kirk-

patrick et al. for complex problems that involve many degrees of freedom [Kirk83].

Such problems are modeled by a state space, each state corresponding to a solution to

the problem. A cost is associated with each state, and the goal is to find the state

that has the globally minimum cost associated with it. For complex problems with

very large state space exhaustive exploration of all the states is impractical.

123

Probabilistic hill climbing algorithms, like simulated annealing, attempt to find the

global minimum by (hopefully) traversing only part of the state space. They move

from state to state allowing both downhill and uphill moves, i.e. moves that reduce

and moves that increase the cost of the state respectively. The purpose of the latter

kind is to allow the algorithm to escape from local minima it may occasionally

encounter. For example, consider the one dimensional function of Figure 5.4. States

S1 and S2 are local minima, whereas Sz is the global minimum. A probabilistic hill

climbing algorithm works in such a way that, even if at any point finds itself in state

52, it climbs up again to eventually terminate in Sz.

Figure 5.4. Local and global minima.

In simulated annealing the uphill moves are controlled by a parameter T, the

temperature. The higher T is the higher the probability an uphill move is taken. As

time passes T decreases, and at the end, when the system is "frozen" (T very close to

0), the probability of making an uphill move is negligible. This simulates the anneal

ing process of growing a crystal in a fluid by melting the fluid (high T) and then

124

slowly decreasing T until the crystal is formed. The fluid is at a low energy state. In

optimizing by simulated annealing, the cost function plays the role of the energy in

the physical phenomenon.

Simulated annealing works as follows: Consider a state space SA (A for Anneal

ing), and a function NA: SA —> Po(SA), such that for a state s, NA(s) is the set of

neighbors of s in SA. Also, consider a cost function cA: S -*JR that associates a cost

with each state in S. Visualizing the state space as the set of nodes in a directed

graph, NA(s) represents the edges emanating from the state (node) s. The state space

is assumed to be strongly connected, i.e. there exists a path from any node to any

other node. Algorithm 5.1 shows the basic structure of simulated annealing.

s = «o>

while (not.yet.frozen) do
while (not.yet.in.equilibrium) do

s* = random state in NA(s); (step 1)
Ac = cA(s'ycA(s);
if (Ac <0) then s = «';

Ac

if (Ac >0) then s = s' with probability e T ; (step 2)
T = reduce (T);

return(s);
Algorithm 5.1. Simulated Annealing.

There are two major loops in Algorithm 5.1. In the inner loop, the temperature

T is kept constant as the algorithm explores part of the state space. Downhill moves

are always accepted but uphill moves are accepted with some probability less than 1.

After some form of equilibrium is reached, the temperature is reduced according to

some function (reduce) and the inner loop is entered again. The whole process stops

when the freezing point is reached. Each iteration of the outer loop, which is done at

125

a constant temperature, is called a stage.

There have been many theoretical investigations for the behavior of the algo

rithm [Rome84,Rome85,Haje85]. It has been shown that, under certain conditions

satisfied by the way the next state is "randomly" chosen (step 1 in Algorithm 5.1) and

the way the temperature is reduced (step 2 in Algorithm 5.1), as the time approaches

oo the algorithm converges to a state s such that cA(s) is a global minimum of cA.

Hence, the original optimization goal is achieved.

5.2.2. Simulated Annealing for A*

Simulated annealing has been applied to a great variety of optimization problems

often with substantial success. The major field of its application seems to be VLSI

design, in particular standard cell placement and global routing [Rome84,Sech86b],

which was also identified as a potential application in the original proposal of simu

lated annealing as an optimization technique [Kirk83]. However, simulated annealing

has been applied to problems of other areas also (e.g. pattern recognition [Ackl85]).

There have also been experimental studies with simulated annealing applied on more

traditional optimization problems, in particular graph partitioning, the traveling sales

man problem, number partitioning and graph coloring [Arag84].

The successful application of simulated annealing on this great variety of optimi

zation problems together with its theoretical foundation and its elegant simplicity has

been the primary motivation to devise a simulated annealing algorithm for the optimi

zation of the computation of A , for some linear relational operator A. Even though

the structure of the simulated annealing algorithm is problem-independent, there are

126

some particular parameters that are specific to the problem. These are the state space

SA to be explored, the neighbor's set for each state s in SA (given by the function

NA(s)) and the cost function cA. The definitions of these parameters for the specific

problem concerned are given in this section. In addition to the above, there are some

parameters of the algorithm that are implementation-dependent (and somewhat

problem-dependent also) and they are specified in the next section, which discusses the

implementation of the algorithm.

• State space

Every strategy that computes A is a state in the state space SA to be explored.

According to Section 5.1, a strategy is a graph. Therefore, the state space is a graph

of graphs. Each state corresponds to an algebraic expression equal to A . Since, for

♦ Nany specific computation, A is a finite operator, only finite sums of the form]jA

N

are considered. For example, J]A* and (1 + A)N are two distinct states in the state

space.

• Neighboring states

For each state seSA the set of its neighbors NA(s) is determined by the proper

ties of multiplication and addition within the closed semiring ER. In particular, s' is a

neighbor of s (i.e. s'eNA(s))t if s1 can be produced by applying one of the following

transformations to a single node in the graph of s.

Associativity of +: For three operators A, B and C, (A + B) + C =

A+(B + C) (see Figure 5.5).

A B B C

Figure 5.5. State transformation by associativity of +.

Associativity of *: For three operators A, B and C, (A * B) * C

A*(B *C) (see Figure 5.6).

A B B C

Figure 5.6. State transformation by associativity of *.

Commutativity of +: For two operators A and £,A + £=£+A (see Figure

5.7).

/

/
A B A B

Figure 5.7. State transformation by commutativity of +.

127

128

Distributivity of * over +: For three operators A, B and C7,

A(B + C) = AB +AC (see Figure 5.8) and (B + C)A = BA + CA.

+

B C A B A 0

Figure 5.8. State transformation by distributivity of * over +.

Distributivity of * over + with 1 the multiplicative identity: For two operators

A and B, A(B + 1) = AB +A (see Figure 5.9) and (B + 1)A = BA + A.

Figure 5.9. State transformation by distributivity of * over +
with 1 the multiplicative identity.

Each transformation corresponds to some property in the first three parts of the

closed semiring definition (Definition 2.1). There are a few notable exceptions to that.

Namely, there are no transformations corresponding to the properties that 0 is the

additive identity (A+0 = 0 + A=A), 1 is the multiplicative identity

129

(A * 1 = 1 * A = A), 0 is an annihilator (A * 0 = 0 * A = 0), and + is idempotent

(A + A = A). The first three are excluded because they create strategies that are

equivalent to strategies already in SA. The last one is excluded because it creates

strategies (states) that are not repetition-free. Its exclusion reduces the state space

size by removing states that are known to be non-optimal. For example, the state

(1 + A)^ is not considered, since the idempotency of + is not a transformation (e.g.

(1 + A)2 = 1 + A + A + A2). The state space can be shrunk further, by applying

Theorem 5.1 or any other similar result about ordering operators according to their

costs. However, any result of this form can be applied only if the reduced state space

remains strongly connected. Otherwise, the optimal state may not be reachable from

the initial state .

• Cost function

Since the problem addressed is one of database query optimization, the cost func

tion cA is the cost of applying the individual operators to their input relations. In a

real system, this is an estimate produced from the statistics that the system keeps

about the database. For the purpose of the presentation of the algorithm we assume

that cA is given.

Modeling the cost cA of applying relational operators on relations may be done at

many levels of detail. In this sense the choice of the cost function cA is

implementation-dependent also. Producing an accurate model is a difficult problem,

even for the case of regular query optimization [Wong76,Seli79, Jark84,Mack86], and a

whole research area of its own. Since it does not affect the applicability or the perfor-

130

mance of the simulated annealing algorithm, our description remains general and

assumes that cA is given. In fact, cA could be an arbitrary cost function, completely

unrelated to relational operator costs. The optimization problem would still be well

defined by the state space SA and the neighbors of each state NA(s) and simulated

annealing would be applicable as well.

5.2.3. Implementation of Simulated Annealing for A*

We have implemented simulated annealing for the optimization of A using the

state space, neighbors and cost function presented in Section 5.2.2 (for the cost func

tion, a simple model was used, which is described shortly). The implementation was

done in Franz LISP [Wile83] under the Unix 4.3 operating system on a VAX 11/780.

LISP was chosen over C, which would be the other obvious choice in our environment,

because of the graph form of the states and LISP's ability to manage lists (and there

fore graphs) efficiently and elegantly. The cost function cA is a simple model of the

I/O cost of database operations. Join and union are the only operations modeled.

The cost of a join is the product of the sizes of the two relations plus some additional

linear terms to read the relations and write the result. The cost of a union is the sum

of the sizes of the two relations to read them plus the size of the result to write it out.

It has been mentioned already that there are some parameters to the simulated

annealing algorithm that are implementation-dependent. These are the initial state

«o> the initial temperature T0, the freezing criterion, the equilibrium criterion, the way

the next state is chosen randomly, and the way the temperature is reduced from stage

to stage (the reduce routine of Algorithm 5.1). In the current implementation they

131

have been chosen as follows:

• Initial state s0

From the theoretical analysis of the simulated annealing algorithm, it is derived

that the effectiveness of the algorithm in finding the global minimum state is indepen

dent of the choice of the initial state of the execution [Rome84,Rome85,Haje85].

Moreover, this is verified by many experimental studies with simulating annealing

algorithms [Arag84,Sech86b]. Since any initial state is as good as any other, the one

corresponding to the semi-naive evaluation is chosen for this purpose. For example,

assuming that only the first two powers of A are to be computed, that is 1 + A + A2,

the initial state is shown in Figure 5.10.

A 1

Figure 5.10. Initial state to compute 1 + A + A2.

• Initial temperature

Contrary to what is the case with the initial state, choosing the right initial tem

perature T0 is important. It has to be considerably high so that the system is rela

tively "hot" in the beginning and allows many uphill moves to be accepted. For the

range of experiments performed, the initial temperature was chosen to be twice the

cost of the initial state:

132

^o==2cA(«0).

• Freezing criterion

There is a great variety of freezing criteria proposed in the literature. Most of

them are a combination of tests verifying that the system is at a low temperature and

that it does not change state often, i.e. it has converged to its final state. For this

implementation, the criterion used is a combination of the ones given in [Arag84] and

[Sech86b] and consists of two parts. First, the temperature has to be below 1 (T*<1)

and second, the value of cA at the final state has to be the same for four consecutive

stages.

• Equilibrium criterion

In all the implementations of simulated annealing that we are aware of, every

stage consists of a specific number of iterations through the inner loop. This number

may be independent of the temperature of the stage [Arag84], or it may get larger as

the temperature decreases [Sech86b] (in the latter reference this is done indirectly

through considering only a smaller subspace of the original state space). The advan

tage of having more state transitions during the later stages of the execution has been

theoretically justified as well [Mitr85]. We have chosen to have a constant number of

iterations through the inner loop, independent of the temperature. This number is

equal to epoch, factor*epoch, where epoch, factor is an arbitrary factor (in the exper

iments chosen to be 16), and epoch is the number of neighbors the initial solution has

(both the terminology and formulation is from [Arag84]).

133

• Choosing the next transition

At any point in the execution, the next state is chosen randomly from among the

neighbors of the current state. More specifically, suppose that there is a transition

probability matrix R over the state space S, such that

1
\N

R(S,S') —

Recall that N(s) is the set of neigh

made to move from a to a' is equal to R(s,s').

• Reducing the temperature T

Many cooling schedules have been proposed for the simulated annealing process.

We distinguish two of them. Specifically, Hajek [Haje85] proposes reducing the tem

perature according to the formula

j

\NA(s)\ if s'eNA(s)

0 otherwise

)ors of state s. The probability that an attempt is

log(k+l)'

In the above, k is the current stage number (it represents time also) and d is some

constant for which he gives a sufficient value for the algorithm to converge to the glo

bal minimum. Unfortunately, from a practical point of view this is not a desirable

schedule, because it is very slow. For this reason, another schedule has been proposed

that reduces the temperature according to the formula

Tnew ~ <x(T0id)T0u-

The factor a is a number between 0 and 1. In [Rome84, Sech86b] a ranges over time

(that is, it depends on Told). It is smaller in the beginning (cooling the system fast),

134

then it rises up to higher values (slowing down the cooling process), and eventually it

becomes small again to drive the system down to a minimum without any uphill

moves. On the contrary, in [Arag84] it is suggested that a does not change but

remains constant at a relatively high value in the range of 0.9 to 0.95. We have exper

imented with both a constant a=0.95 and a variant a modified according to Table

5.1.

T0/T< a

2

4

8

00

0.80

0.85

0.90

0.95

Table 5.1. Factor to reduce the temperature

5.2.4. Experiments with Simulated Annealing

We have performed a limited number of experiments with the system. We have

applied it to small examples with three and seven terms of A*, i.e. JJAk} n=Z or

n=7. In all the experiments, A represented transitive closure of a simple list, as in

the first set of experiments described in Section 4.2. Notice that this represents a very

unfavorable situation for simulated annealing because the state space is not very big,

A is not complex, and the sizes of the relations are so small that one cannot expect

significant variations in the cost of the various states. Nevertheless, even though it is

premature to draw any general conclusions from such a limited range of experiments,

we may dare say that the results have been encouraging. For the case with n=3, the

algorithm always found the minimum cost state, which incidentally is the smart algo-

135

rithm. For the case with n=7, even though it did not always find the global

minimum, it did converge to a state with a cost close to it and much smaller than the

cost of the original state. Further experimentation is definitely needed to verify the

general applicability of the algorithm to the problem.

There are a few points in the way we have applied simulated annealing to the

problem where there is room for improvement. The first one is that \NA(s)\ is

small for any state s. That is, the transformations described in Section 5.2.2 for

changing states give a relatively small number of neighbors to each state. This has

the implication that the paths between states tend to be long, and it takes many steps

for the algorithm to traverse them. A possible solution is to allow the algorithm to

perform a number of these transformations at once (as a single move), thereby putting

direct transitions among more states than now. We expect this to reduce the running

time of the algorithm significantly.

The solution proposed to the first problem above gracefully affects the second one

also. That is, the cost change (Ac in algorithm 5.1) when making a transition is usu

ally small relatively to the total cost. For example, changing the order of two joins

(by applying associativity of multiplication) cannot significantly affect the total cost of

the whole computation of A , if the latter contains many terms. Hence, even at very

high temperatures the system does not undergo drastic changes in terms of its cost. It

has been experimentally verified that a small range of Ac is most of the time disas

trous for the effectiveness of the algorithm [Sech86a]. The combination of a number of

transformations in one state transition may give the desired range to Ac and have the

algorithm perform better. Another possibility may be to choose cA such that it is a

136

monotone function of the actual cost of applying operators on relations but has a

better behavior in the sense mentioned above.

Finally, the way the next state is chosen in the current implementation causes

problems also. Many of the transformations applied on the state leave its cost

unchanged. For example, applying commutativity of + leaves the cost of the state

unchanged. This tends to create a number ofplateaux in the state space. The system

tends to wander in these plateaux for a long time without any progress, neither going

downhill, nor going uphill hoping to explore a more fruitful area of the state space

later. Since every applicable transformation is equally likely to happen, the majority

of the transitions are of this form, with no change in the cost. A better procedure is

needed for choosing the next state, giving higher probability to transitions that do

affect the cost. This discriminative treatment of neighbors has been used elsewhere

with great effectiveness [Sech86b].

5.3. Optimization by Dynamic Programming

Simulated annealing is a probabilistic algorithm to find the most efficient way to

compute A . We now describe a deterministic algorithm for the same problem. It is

based on the dynamic programming principle [Lars78] and uses the algebraic formula

tion of recursion of Chapter 2. Regular query optimization has been modeled success

fully as a dynamic programming process [Lafo85]. The idea is extended here for the

case of recursively defined relations. The task is fundamentally more difficult, because

the number of alternative ways to answer a query is much larger.

137

5.3.1. Dynamic Programming for A

It is assumed that the dynamic programming principle is widely known. So, no

description of the algorithm is given. We only specify the problem-dependent parame

ters of the algorithm. Dynamic programming is applied on a state space SD (D for

Dynamic Programming). The neighbors of each state s in Sp are given by the func

tion Np(s): Sj)—*Po(Sd). Moreover, there is a cost associated with each transition,

given by the function cD: SDXSD—>1R. These are the three problem-dependent

parameters that have to be specified for the particular problem concerned.

Consider an operator of the form A == AiA2 • • • Aj with A,-, l<t </ primitive

relational operators. Given a specific A corresponding to a single Horn clause, there

are various forms it can take as a product of simpler operators, at various levels of

detail. The greater / is the more details about the internal structure of A are known

and the larger the strategy space explored. The internal structure of A is ignored by

choosing /=1. By doing so, certain strategies are excluded, e.g. the swapping algo

rithm of Section 4.4. The specific decomposition of A does not affect the way dynamic

programming works. Thus, the approach taken here is flexible.

• State space

Each state in SD contains some algebraic expressions. Definition 5.2 associates

each algebraic expression with a unique integer, its depth. Using the notion of depth,

an index k, k>0, is associated with every state as follows:

Definition 5.3: Consider a state s. The index k of s is the maximum depth

associated with any algebraic expression in a is k.

138

The state space SD is defined as follows:

• s = {l,AltA2>—>Af} is a state in SD. It is of index 0 and is called the root.

• Let s be a state in Sp of index k. Let s[k] be the subset of algebraic expressions

of s that are of depth exactly k (there is at least one of those, because otherwise

s would not be of index k). In other words s is of the form «=«'u«[A;], with

«'n*[A:] = 0. Then s\jf is a state in SD of index ife+1, where

/ Q {fy + By B%&[k\, Bj-es, and B,-,By are domain— and range—compatible}

U{#,- * By: £,-€«[&], Bye*, and B,- is dr-compatible to By}

U{B{ * By: Bt€«, £/€«[&], and B,- is dr-compatible to By}.

• Nothing else is a state in SD.

• Neighboring states

There is a transition from a state s to a state s' (i.e. s'eND(s)), if s is of index

k, s1 is of index A:+l and sQs'. Hence, in the previous paragraph, the state space

was defined by constructing the children of a state from the father. It takes an easy

induction on the state index to show that the state space is a tree. Apparently, the

set of algebraic expressions in each state is a subset of the one in any of its children

(and by transitivity any of its descendents).

• Cost function

There is a cost function cD defined on the transitions in the state space 5p.

Each transition from one state to another involves a number of multiplications or

additions of operators. Naturally, the sum of the costs of these operations is the cost

associated with the transition. Again, choosing the right cost function so that it

139

adequately models the real cost of the operations is up to the implementor. For the

purpose of this presentation we assume that cD is given. The cost of a path is accord

ingly defined as the sum of the costs of the edges (transitions) along the path.

It has been stated that, for every specific database instance, A is equal to a

finite number of terms. The state space constructed for a finite sum is finite. More

over it is a tree, whose leaves contain A (the equivalent finite sum) as one of their

algebraic expressions, each one being constructed in a different way. The goal is to

find the one that has the minimum cost associated with the path from the root to it.

Example 5.4: Consider optimizing 1 + A + A2. The corresponding state space

is the one shown in Figure 5.11. For simplicity, only the new algebraic expressions are

put in each state. Notice that the distance of a state from the root is equal to its

index. Dynamic programming starts at the root and works its way towards the leaves

of the tree in stages. In stage k it computes the cost of the paths leading to states of

index k. Eventually it computes the cost from the root to all the leaves and chooses

the cheapest one. Q

5.3.2. Implementation Issues for Dynamic Programming

Although the dynamic programming optimization algorithm has not been imple

mented, there are a few comments on the formulation of the algorithm in the previous

section that are appropriate. These should help in a future implementation.

The state space of any real world application that is worth the effort optimizing

is large. The computational requirements of applying the standard procedure of

140

(1+Af 2)

1+ (1+A)A)

Figure 5.11. State space for the computation of 1 + A + A2.

dynamic programming in such a large state space may be prohibitive, let alone the

space requirements of each state. Improvements can be made by changing the way

states are created and visited. At every stage, dynamic programming processes all the

states of some index k and expands them to get all the states of index k+l. Instead,

Best-First search can be used in the state space, expanding only the state that has the

minimum cost associated with the path from the root to it [Rich83]. Thus, the search

is guided to move towards the most promising direction always. Likewise, heuristic

search algorithms (e.g. A) may be used for the same purpose. We believe that

approaches like these are more appropriate for this environment.

141

There are also some other forms of heuristics that, if applied carefully, reduce the

size of the state space without missing the actual optimal strategy to compute A .

One such heuristic is to keep and expand only the M best paths (see Figure 5.12).

Figure 5.12. Heuristic pruning of state space with N=2 and M=3.

N and M are parameters of the heuristic algorithm, whose values must be tuned for

performance and accuracy. The larger they are the slower the execution of the optim

ization algorithm but the higher the probability that the path found is the actual

optimum.

Pruning down the state space in this way seems even more appropriate in an

actual system, where the cost function is only an estimate of the actual cost. In such

142

an environment it may be desirable to interleave parts of the execution of the optimi

zation algorithm (dynamic programming) with the actual execution of database opera

tions. The following is a possible execution paradigm: Execute the optimization algo

rithm for N steps. Apply to the database all the operations involved in the first tran

sition of the best path so far. Keep the best M paths rooted at the state that this

transition leads and continue in the same manner. The tree is pruned down by both

keeping only the subtree rooted at the end of the path that has already been executed

on the database and by keeping only the best M paths in this subtree. One more

advantage of this approach is that the optimization algorithm gets feedback informa

tion about the actual cost of the operations concerned.

A final comment on the structure of the state space SD is that the cost-

indifference of associativity of addition is not taken into account. This is partly true

for the commutativity of addition as well (when two expressions of the same depth are

added). Thus, many states are created that are known to be equivalent (no cost

difference). These equivalence classes in the state space must be identified so that only

one state is created for them. Each root-to-leaf path must be distinctly different from

the rest. In addition, the state space 5^> can be further reduced by applying results

like Theorem 5.1, which has been completely ignored in the construction of Section

5.3.1.

5.4. Simulated Annealing vs. Dynamic Programming

Since we have implemented simulated annealing but not dynamic programming it

is almost impossible and unfair to compare the two algorithms. However, there are

143

some similarities and some differences between them that should be emphasized.

A certain form of duality exists between the two algorithms. Both algorithms are

applied on a state space (SA and SD). The two state spaces are different, yet related

in a nice way. Each state in SA is a strategy to compute A . The same is true for

each leaf (or root-to-leaf path) in SD. In that sense, each leaf state in SD corresponds

to a state in SA.

On the other hand, there are many distinct differences between the two algo

rithms also. In simulated annealing a complete solution is manipulated at any time,

whereas in dynamic programming the solutions are gradually built from simpler

expressions. Because of this, the cost functions cA and cD are defined differently. On

the one hand, cA is defined on SA, the state space, whereas on the other hand cD is

defined on Sj^XSp, i.e. the transitions from state to state.

The following can be drawn from a first qualitative comparison between simu

lated annealing and dynamic programming. Even though both are extremely time

consuming, simulated annealing is much more so than dynamic programming. It

requires a large number of steps to converge. Moreover, simulated annealing, being a

probabilistic algorithm, relies on convergence properties to give a satisfactory answer,

whereas dynamic programming, if no heuristics are used, guarantees to give the global

minimum.

On the other hand, dynamic programming has certain disadvantages compared

to simulated annealing. Its space requirements are much larger. Not only the state

space is larger (\ SD\ >\ SA\) but at any time it has to maintain all the states in the

144

expansion frontier. Simulated annealing stores only one state at a time. Also the

transitions in dynamic programming are more complex, mainly because not all addi

tions and multiplications between algebraic expressions in a state are legal (see

definition of SD and Nd(«)). Finally, some paths in dynamic programming lead to

states that have computed not only A but some useless expressions as well. Such

unnecessary effort does not occur in simulated annealing, since it is always some com

putation of A that is manipulated.

Which of the two approaches gives the most effective optimization algorithm

remains to be seen. Complete implementations of both and extensive experimentation

are needed to draw useful conclusions in this direction. However, both algorithms

may serve a useful role in another direction. There may be many cases that one of

the few traditional approaches to answer the query (e.g. semi-naive evaluation or

smart evaluation) is in fact optimal. If such a situation arises, it is unwise to apply

any optimization algorithm with a huge execution cost only to end up applying one of

the well understood techniques. Simulated annealing or dynamic programming may

well serve as a testbed, within which the strategy state space for various cases of

recursion can be explored so that possible performance patterns are identified.

5.5. Summary

The significant cost difference between the various strategies to compute A

justifies the development of fast and reliable optimization algorithms for recursion.

Simulated annealing and dynamic programming have been used as models to design

two such optimization algorithms. The approach taken by the two algorithms is con-

145

siderably different. Each one has its particular advantages and disadvantages.

Despite the fact that the experience with the two algorithms has been extremely lim

ited the initial results are encouraging.

CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

Deductive database systems have the complete functionality of relational data

base systems and, in addition, the capability to infer new facts and rules from others

that are explicitly stored in the database. Inference on small amounts of facts and

rules has been the primary service provided by expert systems and logic programming

systems. With the evolution of artificial intelligence, computer aided design and

manufacturing, and decision support applications, the significance of inference on large

knowledge bases is now realized as well.

Since the beginning of the development of deductive database systems, Horn

clauses have been identified as the most important subset of first order logic, with

respect to inference in database systems. Relational database systems have supported

a limited subset of Horn clauses in the form of view definitions and integrity con

straints. Even though there are many small differences between a view definition and

a Horn clause, the single most important one is that a Horn clause can be recursive.

There are significant computational challenges faced by a system supporting recursion,

and this dissertation has focused on answering some of them.

6.1. Conclusions

Recursion in database systems has been traditionally studied within a first order

logic framework, Horn clauses in particular. We have presented a different formula-

146

147

tion of the problem, based on algebraic structures. We have embedded a significant

subset of the relational algebra operators in a closed semiring. In this setting, Horn

clauses correspond to equations, and answering queries corresponds to solving these

equations. Even though the techniques and tools that logic offers for Horn clauses

have proved to be powerful for the study of many problems related to recursion, there

are other problems that cannot be addressed as nicely. The most severe limitation

stems from the absence of an explicit representation of query answers in terms of the

underlying Horn clauses. The solution is described algorithmically, e.g. found by

application of resolution theorem proving. The algebraic framework introduced in

Chapter 2 allows the equation solutions (query answers) to be explicitly represented.

In addition, the properties of a closed semiring allow the manipulation of this explicit

representation of the query answer. Thus, we have been able to both address some of

the problems raised (like the possible equivalence of linear and nonlinear recursion)

and identify new algorithms to answer queries. We believe that algebraic manipula

tion of queries will be a significant part of the query optimizer. This, along with the

particular semantics of the individual queries and statistics about the database at the

given point of time, will be used to produce the plan for the query execution. This is

opposite from the case of the regular, nonrecursive queries, where as experience has

shown, algebraic manipulation of the query is of no help to the optimizer.

Uniformly bounded recursion has been studied using the Horn clause representa

tion. We have considered a restricted class of linear recursive Horn clauses and have

demonstrated that some of them are equivalent to a finite number of nonrecursive

ones. Such a Horn clause has been modeled by a weighted directed graph. Uniform

148

boundedness has been proved to be equivalent to the property that the graph has no

cycles of nonzero weight. Finally, we have indicated some possible implications of this

result in the construction of efficient algorithms to process recursive statements.

The power of the operator algebra developed in Chapter 2 is found in its ability

to reveal alternative algorithms to answer queries. We have identified some such algo

rithms to materialize recursively defined relations. We have analyzed and experi

mented with a few promising ones, namely the smart and the minimal algorithm,

which make a trade-off between the number of multiplications performed between

operators and their individual costs. For the transitive closure of trees, both the

analysis and experimental results have shown that, in comparison with the traditional

ones, namely the naive and the semi-naive algorithm, the new algorithms perform

better for more shallow relations than for deeper ones. Nevertheless, the relation size

(width/depth), at which the new algorithms start performing worse that the old ones,

is large. This makes the new algorithms attractive for many of the expected cases.

Finally, comparing the two new algorithms with each other shows again that, for

recursive computations, minimizing the number of multiplications pays off, unless the

relations are large.

In general, recursion is expected to be a major source of processing inefficiency.

Query optimization for recursion is even more important than it is for nonrecursive

relational queries. With the respect to query optimization, the ability to represent

explicitly and manipulate the query answer is important. We have have devised two

optimization algorithms, one based on simulated annealing and another based on

dynamic programming. Both have been applied on state spaces that are constructed

149

from the equivalent algebraic forms of the transitive closure of relational operators.

Simulated annealing has been implemented and experiments have been performed for

a limited class of relational operators. Our initial experience is that there are many

strategies that perform better than the traditional ones, thereby supporting the previ

ous comments on the importance of query optimization for recursion.

6.2. Future Research

This dissertation has merely touched some of the issues related to the efficient

support of recursion in a deductive database system. Most of them need further inves

tigation and improvement. The following are some suggestions in this direction.

6.2.1. Algebraic Formulation

Results pertaining to all aspects of query processing and optimization for recur

sion appear to be limited by the fact that relational operators form a closed semiring

rather than a ring or a richer algebraic structure. Perhaps we need to embed the

operators in such a larger algebraic structure. In terms of processing, this may mean

that more information needs to be kept at each stage of iteration (assuming that

recursive queries are answered by some iterative program), but the additional informa

tion requirements is compensated by greater applicability of cost effective processing

techniques.

8.2.2. Uniformly Bounded Recursion

Many issues related to uniform boundedness have not been answered yet. Neces

sary and sufficient conditions need to be obtained for more general classes of recursive

150

Horn clauses, by removing some of the restrictions Rl to R5 of Section 3.2. Recently,

it has been shown that both boundedness and uniform boundedness are undecidable in

the presense of multiple Horn clauses [Gaif86]. However, the question is open for the

case of a single recursive Horn clause. The partial results known in this direction

seem to indicate that, even if the question is decidable, an efficient decision procedure

is highly unlikely. The algebraic formulation may give new insights in this direction

as well.

0.2.3. Query Processing Algorithms

The scope of the analysis and experiments with the smart and minimal algo

rithms of Chapter 4 is quite limited. There is a number of directions that need to be

investigated further. Wider range of sizes for the relations, different structure of the

relations (other than trees), wider range of the buffer pool size, and other forms of

operators (other than transitive closure of binary relation) are the directions to take.

In addition, all the interesting strategies need to be actually implemented (rather

than simulated), so that there is no limitation imposed on the experimentation by any

preexisting inefficiencies. In that respect, analyzing and testing the semi-naive, smart,

and minimal algorithms using join strategies other than merge-scan is essential. Since

sorting costs become prohibitive as the relations grow, hash-join techniques seem

promising, as was pointed out in [Vald86]. Also, avoiding the creation and destruction

of temporaries as much as possible is another area for investigation.

The smart and minimal strategies of Chapter 4 represent only a small sample of

fast query processing strategies for recursion. There is a wide spectrum of potentially

151

cost-effective techniques, which have been barely mentioned in this dissertation. The

swapping strategy of Section 4.4 is one such example. Careful analysis and experimen

tation with a wide variety of relational operators is needed to get an accurate measure

of its effectiveness.

Finally, there are two key ideas in connection to efficient query processing that

have been neglected from any study of recursion that we are aware of: (a) precompu-

tation and (b) decomposition. The idea of precomputation is to augment the database

with additional relations derived from the database, so that some recursive queries on

the original database are no longer recursive on the augmented one. The main ques

tion that arises is, for a given augmentation, what the set of such queries is. And con

versely, for a given class of recursive queries, what the augmentation must be. The

known results on this are fragmentary. These questions are currently being investi

gated for views in the context of regular relational databases [Blak86] and are

expected to be crucial when the "view" is defined recursively.

Decomposition is related to precomputation. The problem here is to reduce the

complexity of recursion. For example, if A can be expressed in terms of B and C,

both of which are simpler operators, when can A be expressed in terms of B and

C ? An example of that has been given in Section 3.8, where one of the operators is

bounded. Also, the counting strategy [Banc86a], which was mentioned in Section

4.1.3, applies some form of decomposition. The effectiveness of the above suggests

that decomposition may play an important role in the future, and its applicability

should be heavily exploited.

152

8.2.4. Query Optimization Algorithms

Complete implementations of both the simulated annealing and the dynamic pro

gramming algorithms are necessary. These should take into account the problems of

the current formulations of the state spaces and the algorithms mentioned at the end

of Sections 5.2 and 5.3. It may well be that a large part of the state space, con

structed from all the equivalent algebraic expressions of the transitive closure of a

relational operator, is unnecessary, i.e. most of the states represent strategies that are

never optimal. The question then is what part of the state space is the useful one.

Any major result in this direction will increase the effectiveness of the optimization

algorithms significantly.

BIBLIOGRAPHY

[Ackl85]
Ackley, D. H., G. E. Hinton, and T. J. Sejnowski, "A Learning Algorithm for
Boltzmann Machines", Cognitive Science 9 (1985), pages 147-169.

[Aho74]
Aho, A., J. Hopcroft, and J. Ullman, The Design and Analysis of Computer
Algorithms, Addison Wesley, Reading, MA, 1974.

[Aho79a]
Aho, A. and J. Ullman, "Universality of Data Retrieval Languages", in Proceed
ings of the 6th ACM Symposium on Principles of Programming Languages,
San Antonio, TX, January 1979, pages 110-117.

[Aho79b]
Aho, A., Y. Sagiv, and J. Ullman, "Equivalences Among Relational Expressions",
SLAM Computing Journal 8, 2 (May 1979), pages 218-246.

[Arag84]
Aragon, C. R., D. S. Johnson, L. A. Megeoch, and C. Schevon, Optimization by
Simulated Annealing: An Experimental Evaluation, unpublished manuscript,
October 1984.

[Astr76]
Astrahan, M. et al., "System R: Relational Approach to Database Manage
ment", ACM Transactions on Database Systems 1, 2 (June 1976), pages 97-137.

[Banc85]
Bancilhon, F., "Naive Evaluation of Recursively Defined Relations", in Proceed
ings of the Lslamorada Workshop on Large Scale Knowledge Base and Reason
ing Systems, lslamorada, FL, February 1985.

[Banc86b]
Bancilhon, F. and R. Ramakrishnan, "An Amateur's Introduction to Recursive
Query Processing Strategies", in Proceedings of the 1986 ACM-SIGMOD
Conference on the Management of Data, Washington, DC, May 1986, pages
16-52.

153

154

[Banc86a]
Bancilhon, F., D. Maier, Y. Sagiv, and J. D. Ullman, "Magic Sets and Other
Strange Ways to Implement Logic Programs", in Proceedings of the 5th ACM
SIGMOD-SIGACT Symposium on Principles of Database Systems, Boston,
MA, March 1986, pages 1-15.

[Baye84]
Bayer, R., "Query Evaluation and Recursion in Deductive Database Systems", in
Proceedings of the lslamorada Workshop on Knowledge Base Management
Systems, lslamorada, Florida, 1984.

[Blak86]
Blakeley, J. A., P. A. Larson, and F. W. Tompa, "Efficiently Updating Material
ized Views", in Proceedings of the 1986 ACM-SIGMOD Conference on the
Management of Data, Washington, DC, May 1986, pages 61-71.

[Blas76]
Blasgen, M. W. and K. P. Eswaran, On the Evaluation of Queries in a Rela
tional Data Base System, Research Report RJ-1745, IBM San Jose, April 1976.

[Bond76]
Bondy, J. A. and U. S. R. Murty, Graph Theory with Applications, North Hol
land, 1976.

[Carr79]
Carre, B., Graphs and Networks, Oxford University Press, Oxford, England,
1979.

[Chan76]
Chandra, A. K. and P. M. Merlin, "Optimal Implementation of Conjunctive
Queries in Relational Data Bases", in Proc. 9th Annual ACM Symposium on
Theory of Computing, Boulder, CO, May 1976, pages 77-90.

[Clif61]
Clifford, A. H and G. B. Preston, The Algebraic Theory of Semigroups, Ameri-
cal Mathematical Society, Providence, RI, 1961.

[Clif83]
Clifford, J., M. Jarke, and Y. Vassiliou, "A Short Introduction to Expert Sys
tems", Database Engineering 6, 4 (December 1983).

155

[Cloc81]
Clocksin, W. F. and C. S. Mellish, Programming in Prolog, Springer Verlag,
1981.

[Codd70]
Codd, E. F., "A Relational Model of Data for Large Shared Data Banks", CACM
13, 6 (1970), pages 377-387.

[Cosm86]
Cosmadakis, S. and P. Kanellakis, "Parallel Evaluation of Recursive Rule
Queries", in Proceedings of the 5th ACM SIGMOD-SIGACT Symposium on
Principles of Database Systems, Boston, MA, March 1986, pages 280-293.

[Dahl82]
Dahl, V., "On Database Systems Development through Logic", ACM TODS 7, 1
(March 1982), pages 102-123.

[Daya84]
Dayal, U. et al., "Knowledge-Oriented Database Management", Technical
Report, CCA-84-02, Computer Corporation of America, Cambridge, MA, 1984.

[DeWi84]
DeWitt, D. J., R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and D.
Wood, "Implementation Techniques for Main Memory Database Systems", in
Proceedings of the 1984 ACM-SIGMOD Conference, Boston, MA, June 1984.

[Demo86]
Demo, B., Recursive vs. Iterative Schemes for Least Fix Point Computation in
Logical Databases, unpublished manuscript, Universita di Torino, 1986.

[Deva86]
Devanbu, P. and R. Agrawal, Some Considerations on Moving Selections into
Fixpoint Queries, unpublished manuscript, AT&T Bell Laboratories, 1986.

[Dwor84]
Dwork, S., P. C. Kanellakis, and J. C. Mitchell, "On the Sequential Nature of
Unification", Journal of Logic Programming 1 (1984), pages 35-50.

156

[Ende72]
Enderton, H. B., A Mathematical Introduction to Logic, Academic Press, New
York, N.Y., 1972.

[Feig77]
Feigenbaum, E. A., "The Art of Artificial Intelligence: Themes and Case Studies
in Knowledge Engineering", in Proc. 5th IJCAI, 1977, pages 1014-1029.

[Gaif86]
Gaifman, H., NAIL communication, February 1986.

[Gall78]
Gallaire, H. and J. Minker, Logic and Data Bases, Plenum Press, New York,
N.Y., 1978.

[Gall81a]
Gallaire, H., Impacts of Logic on Data Bases, Proc. 7th International VLDB
Conference, Cannes, France, August 1981, pages 248-259.

[Gall81b]
Gallaire, H., J. Minker, and J. M. Nicolas, Advances in Data Base Theory, Vol.
1, Plenum Press, New York, N.Y., 1981.

[Gall83]
Gallaire, H., J. Minker, and J. M. Nicolas, Advances in Data Base Theory, Vol.
2, Plenum Press, New York, N.Y., 1983.

[Gall84]
Gallaire, H., J. Minker, and J. M. Nicolas, "Logic and Databases: A Deductive
Approach", ACM Computing Surveys 16, 2 (June 1984), pages 153-185.

[Gutt84]
Guttman, A., "New Features for Relational Database Systems to Support CAD
Applications ", PhD Thesis, University of California, Berkeley, CA, June 1984.

[Haje85]
Hajek, B., Cooling Schedules for Optimal Annealing, unpublished manuscript,
January 1985.

157

[Han86]
Han, J. and H. Lu, " Some Performance Results on Recursive Query Processing
in Relational Database Systems", in Proceedings International Conference on
Data Engineering, Los Angeles, CA, January 1986, pages 533-539.

[Hash79]
Hashiguchi, K., "A Decision Procedure for the Order of Regular Events",
Theoretical Computer Science 8 (1979), pages 69-72.

[Haye85]
Hayes-Roth, F., "Rule-Based Systems", CACM 28, 9 (September 1985), pages
921-932.

[Hens84]
Henschen, L. and S. Naqyi, "On Compiling Queries in Recursive First-Order
Databases", JACM 31, 1 (January 1984), pages 47-85.

[Ioan84]
Ioannidis, Y. E., L. D. Shinkle, and E. Wong, "Enhancing INGRES with Deduc
tive Power" (Position Paper), in Proceedings of the 1st International Workshop
on Expert Database Systems, Kiawah Isl., SC, October 1984, pages 847-850.

[Ioan86]
Ioannidis, Y. E. and E. Wong, "An Algebraic Approach to Recursive Inference",
in Proceedings of the 1st International Conference on Expert Database Sys
tems, Charleston, South Carolina, April 1986, pages 209-223.

[Jark84]
Jarke, M., J. Clifford, and Y. Vassiliou, "An Optimizing Prolog Front-End to a
Relational Query System", in Proceedings of the 1984 ACM-SIGMOD Confer
ence on the Management of Data, Boston, MA, June 1984.

[Kers86]
Kerschberg, L., Expert Database Systems, Proceedings from the First Interna
tional Workshop, Benjamin/Cummings, Inc., Menlo Park, CA, 1986.

[Kife85]
Kifer, M. and E. Lozinskii, Query Optimization in Logic Databases, Technical
report, SUNY, Stonybrook, June 1985.

158

[Kirk83|
Kirkpatrick, S., C. D. Gelatt, Jr., and M. P. Vecchi, "Optimization by Simulated
Annealing", Science 220, 4598 (May 1983), pages 671-680.

[Kowa83]
Kowalski, R. A., "Logic Programming", in Information Processing 83, edited by
R. E. Mason, North Holland, 1983, pages 133-145.

[Kowa84]
Kowalski, R. A., "Logic as a Database Language", in Proc. 3rd British National
Conference on Databases, edited by J. Longstaff, Leeds, U.K., July84, pages
103-132.

[Lafo85]
Lafortune, S. and E. Wong, A State Transition Model for Distributed Query
Processing, (to appear in ACM-TODS), Memorandum No. UCB/ERL M85/75,
University of California, Berkeley, September 1985.

[Lars78]
Larson, R. E. and J. L. Casti, Principles of Dynamic Programming, Part I,
Marcel Dekker, Inc., New York, N.Y., 1978.

[Lewi81]
Lewis, H. and C. Papadimitriou, Elements of the Theory of Computation, Pren
tice Hall, Englewood Cliffs, NJ, 1981.

[Lozi85]
Lozinskii, E., "Evaluating Queries in Deductive Databases by Generating", in
Proc. Uth IJCAI, Los Angeles, CA, 1985, pages 173-177.

[Mack86]
Mackert, L. F. and G. M. Lohman, "R Validation and Performance Evaluation
for Local Queries", in Proceedings of the 1986 ACM-SIGMOD Conference on
the Management of Data, Washington, DC, May 1986, pages 84-95.

[Mand77]
Mandel, A. and I. Simon, "On Finite Semigroups of Matrices", Theoretical Com
puter Science 5 (1977), pages 101-111.

159

[Mink83]
Minker, J. and J. M. Nicolas, "On Recursive Axioms in Deductive Databases",
Information Systems 8, 1 (1983), pages 1-13.

[Mitr85]
Mitra, D., F. Romeo, and A. Sangiovanni-Vincentelli, "Convergence and Finite-
Time Behavior of Simulated Annealing", in Proc. 24th Conference on Decision
and Control, Ft. Lauderdale, FL, December 1985.

[Naug86]
Naughton, J., "Data Independent Recursion in Deductive Databases", in Proceed
ings of the 5th ACM SIGMOD-SIGACT Symposium on Principles of Data
base Systems, Boston, MA, March 1986, pages 267-279.

[Nico78]
Nicolas, J. M. and H. Gallaire, "Data Base: Theory vs. Interpretation", in Logic
and Data Bases, edited by H. Gallaire and J. Minker, Plenum Press, New York,
N.Y., 1978, pages 33-54.

[Nico83]
Nicolas, J. M. and K. Yazdanian, "An Outline of BDGEN: A Deductive DBMS",
in Information Processing 83, edited by R. E. Mason, North Holland, 1983,
pages 711-717.

[Park86]
Parker, R. et al., "Logic Programming Databases", in Expert Database Sys
tems, Proceedings from the First International Workshop, edited by L. Kersch-
berg, Benjamin/Cummings, Inc., Menlo Park, CA, 1986, pages 35-48.

[Pele84]
Peleg, D., "A Generalized Closure and Complement Phenomenon", Discrete
Mathematics 50 (1984), pages 285-293.

[RTI84]
RTI„ INGRES Reference Manual, Version 2.1, July 1984.

[Rich83]
Rich, E., Artificial Intelligence, McGraw-Hill, New York, N.Y., 1983.

160

[Robi65]
Robinson, J. A., "A Machine Oriented Logic Based on the Resolution Principle",
JACM 12, 1 (January 1965), pages 23-41.

[Rome84]
Romeo, F., A. Sangiovanni-Vincentelli, and C. Sechen, "Research on Simulated
Annealing at Berkeley", in Proc. 1984 IEEE International Conference on Com
puter Design, Port Chester, N.Y., October 1984, pages 652-657.

[Rome85]
Romeo, F., A. Sangiovanni-Vincentelli, and ""Probabilistic Hill Climbing Algo
rithms: Properties and Applications", , in Proc. 1985 Chapel Hill Conference on
VLSI, edited by H. Fuchs, Computer Science Press, Chapel Hill, N.C., 1985,
pages 393-417.

[Rose86]
Rosenthal, A., S. Heiler, U. Dayal, and F. Manola, "Traversal Recursion: A Prac
tical Approach to Supporting Recursive Applications", in Proceedings of the
1986 ACM-SIGMOD Conference on the Management of Data, Washington,
DC, May 1986, pages 166-176.

[Sagi80]
Sagiv, Y. and M. Yannakakis, "Equivalences Among Relational Expressions with
the Union and Difference Operators", JACM 27, 4 (October 1980), pages 633-
655.

[Sagi85]
Sagiv, Y., "On Computing Restricted Projections of Representative Instances", in
Proceedings of the 4th ACM SIGMOD-SIGACT Symposium on Principles of
Database Systems, Portland, OR, March 1985, pages 171-180.

[Scio84]
Sciore, E. and D. Warren, "Towards an Integrated Database-Prolog System", in
Proceedings of the 1st International Workshop on Expert Database Systems,
Kiawah Isl., SC, October 1984, pages 801-815.

[Sech86b]
Sechen, C. and A. Sangiovanni-Vincentelli, "TimberWolf 3.2: A New Standard
Cell Placement and Global Routing Package", in Proc. Design Automation
Conference, Las Vegas, NV, June 1986.

161

[Sech86a]
Sechen, C, private communication, June 1986.

[Seli79]
Selinger, P. et al., "Access Path Selection in a Relational Data Base System", in
Proceedings of the 1979 ACM-SIGMOD Conference on the Management of
Data, Boston, MA, June 1979, pages 23-34.

[Shap80]
Shapiro, S. and D. McKay, "Inference with Recursive Rules", in Proc. 1st
Annual National Conference on Artificial Intelligence, Palo Alto, CA, August
1980.

[Stef82]
Stefik, M., J. Aikins, R. Balzer, J. Benoit, L. Birnbaum, F. Hayes-Roth, and E.
Sacerdoti, "The Organization of Expert Systems: A Prescriptive Tutorial", (to
appear in ACM-TODS), Technical Report, VLSI-82-1, XEROX-PARC, Palo Alto,
CA, January 1982.

[Ston75]
Stonebraker, M., "Implementation of Integrity Constraints and Views by Query
Modification", in Proceedings of the 1975 ACM-SIGMOD Conference on the
Management of Data, San Jose, CA, June 1975, pages 23-34.

[Ston76]
Stonebraker, M., E. Wong, P. Kreps, and G. Held, "The Design and Implementa
tion of INGRES", ACM Transactions on Database Systems 1, 3 (September
1976), pages 189-222.

[Tars55]
Tarski, A., "A Lattice Theoretical Fixpoint Theorem and its Applications",
Pacific Journal of Mathematics 5 (1955), pages 285-309.

[Ullm85]
Ullman, J., "Implementation of Logical Query Languages for Databases", ACM
TODS 10, 3 (September 1985), pages 289-321.

[Vald86]
Valduriez, P. and H. Boral, "Evaluation of Recursive Queries Using Join Indices",
in Proceedings of the 1st International Conference on Expert Database Sys
tems, Charleston, SC, April 1986, pages 197-208.

162

[VanE76]
VanEmden, M. H. and R. A. Kowalski, "The Semantics of Predicate Logic as a
Programming Language", JACM 23, 4 (January 1976), pages 733-742.

[Viei86]
Vieille, L., "Recursive Axioms in Deductive Databases: The Query / Subquery
Approach", in Proceedings of the 1st International Conference on Expert
Database Systems, Charleston, SC, April 1986, pages 179-193.

[Wile83]
Wilensky, R., LISPcraft, 1983.

[Wong76]
Wong, E. and K. Youssefi, "Decomposition - A Strategy for Query Processing",
ACM Transactions on Database Systems 1, 3 (September 1976), pages 223-241.

[Zani85]
Zaniolo, C, "The Representation and Deductive Retrieval of Complex Objects",
Proc. 11th International VLDB Conference, Stockholm, Sweden, August 1985,
pages 458-469.

	Copyright notice1986
	ERL-86-69 (1 of 3)
	ERL-86-69 (2 of 3)
	ERL-86-69 (3 of 3)

