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1. Introduction.

1.1. Instability of the Aloha Protocol.

In this paper we consider the uncontrolled slotted Aloha protocol. This

protocol is described in § 2.1.

It is well-known that this protocol is unstable. Mathematically, this

means that the embedded Markov chain describing the backlog of the system is

transient (e.g., see [2] and [6]). This, in turn, implies that after sufficiently long

time the system backlog will drift towards infinity and the throughput of the

system will decline towards 0. However, usually the protocol works well for a

"long" period of time. During this time the system backlog is restricted to

moderate values. It is only after this random "stable" period that the system

backlog makes its rare excursion to higher values and then onwards the system

is very likely to get further backlogged and hence more sluggish.

*This research was supported in part by NSF Grant No. ECS. 8421128 and by Pacific Bell and a MICRO
Grant from the state of California.



1.2. Quantifying Instability.

In this paper we will quantify instability described above by eigenvalue
analysis. We will see that it is meaningful to quantify this instability by acer

tain first passage time.

The idea of quantifying this instability in this way is due to Schoute [7].
In [7], the author makes some important observations numerically regarding the

transition matrix of the embedded Markov chain. In this paper we will prove

these observations. It might be possible to use more general work that relies on

Spectral theory of Generators (e.g., see Van Doom [9]) for a part of our proof.
However, in the present case, our probabilistic proof is more intuitive and

simpler.

1.3. Outline of the Remaining Sections.

In § 2, we describe the Aloha protocol. In § 3, we collect some mathemati

cal facts that will be useful later in the paper. § 4 will be spent describing the

main ideas and § 5 will be devoted to proving them. In § 6, we will put the

results of § 4 and § 5 in proper perspective to define a new performance measure

quantifying instability of the system. In §6, -we will also describe aconjecture
that makes a connection between the first passage time considered here and the

first passage time considered in the work by Cottrell et al. [l] which can be
analyzed using the techniques of Large Deviation theory. Finally, we will sum
marize the results of this paper in § 7.

2. The Protocol.

2.1. Aloha Model.

Aloha is a multi-access radio channel protocol. Users of the system

transmit packets according to a specified rule over the channel as they get
requests. The channel time is divided into slots. The duration of a slot equals
the transmission time of a packet and this is assumed to be constant. If there



are more than one transmission during the same slot then all the transmissions

fail and will be retransmitted at some later randomly selected times. All the

colliding users will perceive the failure through the channel feedback. Users

with messages to be retransmitted are called backlogged users. A user who is

not backlogged attempts a transmission during the next time slot after the

request. We assume the infinite users model.

The mathematical modelling of this protocol is done in the following

widely accepted manner.

Assume that transmissions are attempted only at times n =b,l,2, •••.

Arrivals of new requests to the system for transmissions are assumed to be

governed by a global Poisson process with parameter X >0. Hence, for the time

slot [n ,n+l), there will be k new arrivals with probability pk := e~\A* / k!. If

there is a collision before during the slot [n ji +1), all the transmitting users will

know about the collision before time n+1. Then, the backlogged users will

attempt to retransmit with probability p > 0 at times n +l,n +2, • • • until they

succeed. Let {Xn jn = 0,1,2, • • •} denote the number of backlogged users at time

n. For our model [Xn) is a time-homogeneous Markov chain with the transition

probability matrix P = {pij) given as follows:

Pu = 0, if j <i —2 and i ^ 2,

Pid-i) = i.p£l—p y ~l*~\ if * ^ 1»

Pu =(l-jp)'.X^-x+(l-i.^.(l-/>),"1).e-x, if* >19

= X^-x,+e"\if i >lt

piu+i) = d-(i-/>)').x^-\ in >i,

= 0, if i = 0,

PiJ = e .'*'' , if j >i+2 and i >0. (l)



2.2. Some Observations about the Transition Probabilities fpij}.

We make the following observations regarding the shapes of the transition

probabilities. They will be useful to us in the coming sections.

(1) pid-Di There exists i0 Zl such that ao-d & increasing for i <i0 and then

decreasing to 0 for i >i0. It has its maximum at i0.

(2) pu: For i > 1, pu can be rewritten as

pa = «-x+(l-/»)|-1^-x.((l-^U-i.ip)

Then, clearly, there exists i x> 1 such that pu is increasing to e~x for i >ix.

(3) Pia+i): For f> 1, p.o+n is increasing to X*~\

3. Some Facts.

In this section we collect some facts about Markov chains. These facts are

a well-established part of the theory of Markov chains. We have used Seneta

[8] and Kendall ([4] and [5]) as our references.

We consider countable (can be finite) non-negative matrices and denote

them generically by T. If T is stochastic, then it can be thought of as the tran

sition probability matrix of a Markov chain evolving in a countable state-space.

In throughout this section, we assume that T is irreducible, i.e., for each

ij = 1,2,- •• , there exists k = k(i.;) such that tJ*} >0.

Fact 1 (Seneta [8], pp. 200): The power series

all have common convergence radius R, 0 ^R <o^ for each pair (ij).

Fact 2 (Seneta [8], pp. 201) : If T is finite then R = 1/ r, where r is the

Perron-Frobenius eigenvalue (the largest eigenvalue) of T. (r is a strictly posi

tive real number.)

Fact 3 (Seneta [8], pp. 205) : If T is positive-recurrent or null-recurrent then

R - 1. There exists stochastic T's which are transient with R > 1.



Fact 4 : Let T be aperiodic and stochastic. Then, Tk converges elementwise to

T* as k —oo.

Definition (Kendall [5]) : Aperiodic and stochastic T is called geometrically

ergodic if numbers Mjk and 8Jk exist such that

0 ^MJk <oq 0 ^Bjk <1 and

1tj{ >-*/* I <Mjt .8£, k = 0,1,2,

for all pairs (j ,£).

Fact 5 (Kendall [5D : An aperiodic and stochastic T is geometrically ergodic if

and only if there exists 8 satisfyingJ) <S < 1 such that

Fact 6 (Seneta [8], pp. 209): Stochastic T satisfies

,.<*> = 0(8*), (2)

as %->ca,foT some 8, 0 <8 < 1, and for some fixed, pair (i,;), if and only if T

has convergence parameter R > 1. In this case Eqn. (2) holds uniformly in delta

for each pair GJ), for only fixed 8 satisfying R~* <8 < 1; and no 8 <£~x for

any pair (*,y).

Fact 7 : For a stochastic transient or null-recurrent T, T* = 0.

Definition : A stochastic transient T which is geometrically ergodic is called

geometrically transient.

Let (n)T denote the (*xn) northwest corner truncation of T. Let {n)R denote

the convergence parameter of (n >T.

Fact 8 (Seneta [8], pp. 211) : (n+D* < („>* for all irreducible (n)T and

(n yR ->R (decreasing) as n -♦ «* where £ is theconvergence parameter of 7.

Fact 9 (Kendall [4D : Let T be aperiodic and stochastic. Let /1j4> denote the

probability that the system reaches j for the first time with the nth step given
that it starts from i. /ij°'s are called the first passage probabilities. By

definition, /ij0) = 0, for all (iJ ). Fix any i. Then, T is geometrically ergodic if



and only if the series

*=i

has a radius of convergence greater than one.

Fact 10 (Kendall [5]) : Let T be finite, aperiodic and stochastic. Then, T is

geometrically ergodic.

4. Statement of the Main Theorem and the Idea of Domination.

Now we concentrate on the Markov chain {Xn ) defined in § 2. For simpli

city, we denote />,(,•-n by </,. Recall that we are denoting Poisson probabilities

e"\X* / k! by pk.

Theorem (1) : The Markov chain {Xn} is geometrically transient.

To prove this theorem we will consider a simpler Markov chain [Yn}. We

construct [Yn} from {XR} as follows: Choose N large enough so that

</i+1 <diti >N and pu <e"\i >N. (4)

Note that we can always find such N. (See § 2.2.) Let

- Q-j>)^..,. (5)€ = ^J-^+i

Let ?fj denote the transition probabilities of [Yn }. We define qX) 's as follows:

Fori <N,

9ij =Pu>

and, fori ^N,

*«=«-* (=:/3X

?i0+i) =l-(e~x+€) =(|»i-€)+ f ft ( =: / i). W)

?«(i-i) = € (=:/2)-



The following Lemma will be used to prove the theorem. It also ensures

that the expressions in the definition of qi} 's are positive.

Lemma (1): e defined in Eqn. (5) satisfies

(1) € <e~\

(2)€ >dN%

(3);>l-€>0,

(4) (/>!-€).€ >piuiN+u

(5)/i = l-(e-*+€)>€.

Proof:

(1) Obvious from Eqns. (3) and (5).

(2) From Eqn. (5),

e ^x. 1
<*JV+1 (1-/0

and from Eqn. (1)

.dN N

Hence,

>(!-;>).4n+i

dN

Now, multiplying €/ dN+x and dN+x/ dN, we get

4- >l+(l-/>) >1.

(3) Note from Eqns. (3) and (5) that

(4) From Eqn. (5)

€"^+1" TF=?T

Hence,

.(!-/>).
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e* _ T^pT^"*1 _A (2-p? (7)

TT=7T

Now, from Eqn. (3), we have

^/>!.(!-/>) (g)
<*n+i <—- «*-• v y

Hence, using Eqns. (7) and (8), we have

e2

which is equivalent to

(/>!—€).€ >pi4lrt+1.

(5) Again, from Eqns. (3) and (5), we have

„ , (2-/0 A „ (1-e-^)
€-XI=7Trfjf+,<—1—

Hence,

l-(e~x+e) >€.

This completes the proof of the lemma.

The following lemma states the idea of domination and hence the purpose

of introducing the Markov chain [Yn)

Lemma (2) : If [Yn} is geometrically transient then so is {X„}.

Proof : Let w/j** denote the first passage probability fora Markov chain [Wn }.
Suppose [Yn } is geometrically transient. Then, the series

k=l

has a radius of convergence greater than one (Fact 9, § 3). We will show that

xfMP < rfM? for k 21. Then, due to Fact 9, § 3, this will clearly prove the

lemma.



We give a pathwise domination argument. Note that, for i > N, the proba

bility of a forward jump for [Ya) is

ao

/i = (/>i-«)+£/>*

Envisage such transitions as made up of countable possible steps with weights

(/>i-€) and pk, k >2 respectively. We will refer to them by arcs in the follow

ing. The arc with the weight (/>i-€) will be referred to as arc 1 and the arc
with the weight pk, k >2 will be referred to as arc k. This decomposition is

shown in Figure (1).

Decomposition of Transition Probabilities of [Yn}.

Figured)

Consider a realization ux of {Xn} that contributes to xfUt?- We now

correspond to a>x a realization utY of {Ya} (with specific arcs specified) by the

following rules.

a>r imitates the jumps of atx except when o>x takes a forward jump from

i >N. If a forward jump in <ax from i >N is of size one then <aY takes a for

ward jump via arc 1. On the other hand, if a forward jump in o»x is of size

larger than 1 (say A) then wr takes a forward jump via arc A and to balance the

time to return to N it adds A-l self-loop transitions at N +1 just before the last

transition into N. Following are some illustrations of this correspondence.
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(1) vx = {N -TV+1 -TV+2 -TV+1 -TV+5 -TV+6 -TV+5 -

TV+4 -TV+3 -TV+2 -TV+1 -TV},

«y = {TV -TV+1 -TV+2 -TV+1 -(arc5) -TV+2 -TV+3 -TV+2 -

TV+1 -TV +1 -TV+1 -TV+1 -tv}.

- (arc 5) - in the above example indicates that the transition from TV +1 to TV +2

in wy is via arc 5. If not specified, transitions from i >N to i +1 is via arc 1.

(2) Wx = {TV -TV-1 -TV-1 -TV+3 -•••},

oiy = {TV -TV-1 -»iV—1 -TV+3 -•••}.

Observe that o>Y, thus constructed, contributes to yfjfi?. Also observe that
wy's (with arcs specified) constructed above have one-to-one correspondence
with <ax 's. We want to show that Px (<dx ) <PY (o>y ) for each o)X contributing to
xfjfj?. Instead of giving a long descriptive proof, we make the following

salient observations. They make the gaps in the proof obvious.

(01) If b>x starts off by going to TV-1, then <oY has more weight for the first
step, since e >dN> from Lemma (1), (2), § 4. After the first step difference in
weights occur only if o»x visits the set (TV +1.TV +2, • ••).

(02) Since /2 =€<*-\ dN <e (Lemma (1), (1) and (2), § 4) and
di+i <diti >N (Eqn. (4)), we have o\ <«-\ i >TV. Hence the addition of the
self-loop transitions instead of having to come back increases the contribution to

Py(<Dy).

(03) For <da- ={TV -TV+1 -TV} and the corresponding a>y ={TV -TV+1 -TV}
(the transition TV to iV+1 wy is via arc 1), we should compare the weights

Pn(n+i>*»+i a1"1 O^)-€- But from Lemma CD. C2) and (4), and Eqns. (1) and
(4), we have

(Pi—€).e >Pi-o'n+i >/>jv+i«^jv+i«

Now, sinceoV+i >diti >TV +1, we also have (/>!-€).€ >/>i(i-+ih*,+i, i >TV. This
explain why o>r has more weight for a forward jump via arc 1 from i >N and
the required jump to TV as compared to that for o>x
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Above observations make the claim that Yfi^ > xfMt\ k >\, quite clear.

It is well-known that {Xn} is transient (e.g., see [2] and [6]). Hence, Fact 9, § 3,

shows that if {Yn} is geometrically transient then so is {Xn}. This completes the

proof of the lemma.

5. Proof of the Theorem (1).

Because of Lemma (2), it is sufficient to show that {Yn} is geometrically

transient. To show this we further dominate [Yn} by a finite Markov chain {Zn}

that evolves in the set {0,1,2, • • • ,TV+1}. To define {Z„}, we modify [Yn} as fol

lows: Replace each jump from i <TV+1 to j >TV+1 by a jump from i to TV+1

with the same weight as for {Yn}. More precisely, ru, 0 <i J <TV +1, the tran

sition probabilities of \Zn}, are defined as follows:

ru = qvj»if i ^TV and / <TV,

oo oo

n<w+n= Z 9ij (= Z Pij)*'*1 <#-!.
j=JV+l J=N+1

riv<jv+i) = 9n(n+D = / i» ^

rcv+DUv+i) = °(iv+i)(^+l)+a(^+i)(iV+2) = / l+/s-

From Fact 10, § 3, we know that {Z„} is geometrically ergodic and hence,

from Fact 9, § 3, we also know that the series

Z zfM?*'
*=i

has the radius of convergence larger than 1. From Lemma (1), (5), § 4, {Yn I is

clearly transient. Then, due to Fact 9, § 3, it is sufficient to show that

zfiA?^ y/An\ k £1 (see the definition of geometric transience, § 3).

As in the proof of Lemma (2), § 4, we give a pathwise argument to show

that for each k >1, zf&tf £ y/j&}. For the Markov chain {Z„}, the transition

from i <TV to TV+1, with the probability £ pu , can be decomposed into arcs
J=N+l
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of weights pu, j ^TV+1. (Recall that [Yn) has the same jump distributions as

{XR} for jumps from i <TV.) The transition of {Zn} from TV+1 to TV+1, with

the probability (/ x+/ 3), can be decomposed into arcs of weights / j and / 3

respectively. These decompositions of transition probabilities is shown in Figure

(2).

0 ~ i

KN*1)

N N+1 0 — i

ac*
N N+1

Decomposition of Transition Probabilities of {Z„}.

Figure (2)

N N+1

A
N N+1

Consider a realization 6>r of [Yn) that contributes to y/^jv*. Now,

correspond to a>Y a realization of {Z„}, o»z (with arcs specified), as follow: a>z

imitates o>y for all the jumps which are from i ^N+l to j <TV +1. For each

jump of o>y from i <TV+1 to / >TV+1, u>z jumps from i to TV+1 via the arc

with the weight pu and y-(TV+l) self-loop transitions at TV+1 via the arc with

the weight /1. The self-loop transitions compensate the backward jumps to

TV+l of o»y. For each jump of o>Y from i >N+1 to i+1 and i—1, o>z jumps

from TV+l to TV +1 via the arc with the weight /1# Finally, for each jump of o»r

from i >TV=1 to i, (t>2 jumps from TV+1 to TV+1 via the arc with the weight

/3. Observe that o*z*s defined above (with arcs specified) have one-to-one
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correspondence with <oY *s.

Since, in the above construction of o>z 's from o>y *s, we only substitute some

of the jumps of the weight / 2=€ with the jumps of the weight / xand /1 >€
(Lemma (1), (5), § 4), we have Pz(a>z) ZPY(a>Y) for each <oY contributing to

yfjtf. This shows that z f&? > YfikN\ k > 1. This completes the proof of the

theorem.

6. Consequence of Theorem (1).

6.1. New Performance Measure.

Consider the Markov chain [Xn) and P, its transition matrix, which

describe the evolution of the number of backlogged users in the uncontrolled

slotted Aloha protocol. Let (n yP denote the (n xn) northwest corner truncation

of P. Let {n)R and 0„ denote the convergence parameter (see § 3) and the
Perron-Frobenius eigenvalue respectively of („ >P.

Theorem (2): 0n - 0 (increasing), where 0 < j3 < 1.

Proof: Observe that P and (RyP are aperiodic and irreducible. From Fact 2, § 3,

we know that {ayR =l//3„. Also, from Fact 8, § 3, we have („>* -R
(decreasing), where R is the convergence parameter of P. Since, from Theorem

(1), we know that P is geometrically transient, Fact 6, § 3, implies that R > 1.

Define j3 := 1/ R. Then, clearly 0„ -0 (increasing). Also, from Fact 1, § 3, we

have R < «x Hence, 0 < & < 1. This completes the proof of the theorem.

The above result is counterintuitive because the largest eigenvalue of P is 1.

Let vn denote a right eigenvector corresponding to 0n. From the Perron-

Frobenius theory (e.g., see [8], pp. 4, 21 and 22) it follows that the components

of v„ are strictly positive and v„ 's are unique up to scalar multiples. Let vn

denote the unique scalar multiple of vn which has the sum of its components

equal to 1. Since

(n )PVn = 3n V„ ,
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we have

{nyPkvn =0*vnffor* >1.

Let t [n j denote the random time before the first visit to the set (n +l/i +2, • • •).

Let / [„]*(v#) denote the probability that t[a) ^k given that the initial distribu

tion is v. Then,

/[njk(v„)= 1-0*

and

*v„{'i«]} =f *.W"x-«)= ^J^J.

where £„.{ } denotes the expected value given that the initial distribution is v.

From Theorem (2), we readily observe that E- {*[„]} —1/ (1-0) (increasing)

as n -coand 1/ (1-0) <«* We define 1/ (1-0) as a new performance measure

of the Aloha protocol. Roughly, 1/ (1-0) "represents" the average time before

the system starts "drifting" towards infinity. Closer is the value of 0 to 1,

more stable is the protocol. It is in this sense that 1/ (1—0) quantifies instabil

ity of the protocol. Observe that if P were to be recurrent, 0 would be equal to

1 and this matches the notion of stability.

6.2. Conjecture about the applicability of the Quick Simulation Method of

Cottrell et al. [ll

The exit time t[n] starting with the initial distribution v„ is termed quasi-

stationary exit time in literature (e.g., see Keilson [3], pp. 90).

Let E0[t[„)} denote the expected value of *[„] given that the system starts

from 0. It is possible to show by a coupling argument that

' E-Jt[n]) ^E0U[n]).

We believe that the above upper bound for £r {*[„)} is tight in the following

sense.
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It is well-known that the Aloha protocol has two equilibrium points, ns, a

stable one, and nc, an unstable one (e.g., see [l], pp. 914, and [6]). In the vicin

ity of ns the "drift" of the process is towards ns while in the vicinity of ne the

"drift" of the process is away from ne. In particular, as the retransmission pro

bability, p, goes to 0, nc - ogc We believe that

lim —=-i r— = 1.
P-o E0[t[„c)i

Now, for small />, E0[t[aJ can be estimated using the Quick Simulation Method

[1], which relies on the theory of Large Deviation. Since, it may be difficult to

calculate v„ , the above conjecture, makes a useful connection between 1/ (l-0„c)

and E0{t[nJ, where the latter can be estimated efficiently by the the Quick

Simulation Method.

7. Conclusions.

In this paper we have established that the embedded Markov chain describ

ing the backlog of the uncontrolled slotted Aloha protocol is geometrically tran

sient. As a consequence of this, we have shown that the largest eigenvalues of

the northwest truncations of the original transition matrix P tend towards a

constant less than 1. This, in turn, results in the definition of a meaningful per

formance measure for the protocol. We have also described a conjecture that

makes a connection between two different exit times of the protocol. This, in

tum, makes a connection to the Quick Simulation Method that is inspired by

Large Deviation theory.
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