

Copyright © 1986, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A COUPLED HARDWARE AND SOFTWARE ARCHITECTURE

FOR PROGRAMMABLE DIGITAL SIGNAL PROCESSORS

by

Edward Ashford Lee

Memorandum No. UCB/ERL M86/54

18 June 1986

A COUPLED HARDWARE AND SOFTWARE ARCHITECTURE

FOR PROGRAMMABLE DIGITAL SIGNAL PROCESSORS

by

Edward Ashford Lee

Memorandum No. UCB/ERL M86/54

18 June 1986

ELECTRONICS RESEARCH LABORATORY />

College of Engineering
University of California, Berkeley

94720

A COUPLED HARDWARE AND SOFTWARE ARCHITECTURE FOR
PROGRAMMABLE DIGITAL SIGNAL PROCESSORS

Edward Ashford Lee

ABSTRACT

Programmable signal processor architectures using extensive concurrency

are considered together with the programming of such architectures. A synchro

nous data flow (SDF) programming paradigm, a special case of data flow (either

large grain or atomic), is proposed as an attractive way of partitioning signal

processing algorithms for concurrent execution on homogeneous parallel proces

sors sharing memory. SDF programs are directed graphs where each arc

represents a signal path and each node represents an operation. The number of

samples consumed or produced each time a node is invoked is specified for each

input or output path of each node. A SDF graph can be statically scheduled

onto parallel processors, so the run time overhead usually associated with data

flow evaporates.

We show how to identify errors in the construction of an SDF graph, such

as sample rate inconsistencies and directed loops with insufficient delay. We

prove that a broad class of algorithms will find a periodic schedule if one exists

and give specific algorithms, for both single and parallel processors. A procedure

for finding a tight lower bound on the iteration period of a SDF graph is

derived, and techniques for approaching this bound using cutset transformations

are described. Minimizing the amount of memory dedicated to buffering is con

sidered, as is asynchrony, in which the number of samples produced or

consumed by a node is not specified.

In addition to homogeneous parallel processors, SDF can be used to program

extensively pipelined single processor architectures using an old but rarely used

architectural approach. Multiple processes are interleaved through a single

deeply pipelined processor. The use of both pipelining and interleaving suggests

the designation PI or v processors. Instead of programming a single pipelined

processor, users construct programs that can execute as concurrent processes. A

specific ir architecture is outlined and its programming using SDF is described.

A voiceband data modem example implemented on this architecture illustrates

the efficacy of one scheduling algorithm for finding parallel implementations

without requiring the programmer to consider synchronization, scheduling, or

deadlock avoidance.

(Ut

David G. Messerschmitt

Chairman of Committee

ACKNOWLEDGEMENTS

Financial support for mywork came from a variety of sources. Special appreci

ation goes to General Electric, whose generous fellowship supported me for the first

year, and to IBM, whose fellowship supported me for all subsequent years. During

the summers, Grant ECS-8211071 from the National Science Foundation and a

grant from the Shell Development Corporation provided support. Partial support

was also provided by DARPA Contract N00039-86-R-0365.

On the personal side, I amparticulariy indebted to my advisor, Professor David

Messerschmitt, who treated me like a colleague well before it was deserved, and to

my committee members Prof. Robert Brodersen and Prof. Frank Morrison. Fre

quent eady consultation with Amine Haoui, Don Chin, and Graham Brand, senior

graduate students when I started, helped keep me on the right path. Prof. Eugene

Lawler and Prof. Alvin Despain both directed me to valuable prior art. Prof. David

Schwartz, of Georgia Tech, andSilesh Rao, formerly of Stanford, now at Bell Labs,

wrote dissertations that were an inspiration, and gave me their valuable time to

explain their ideas. Conversations with Teresa Meng, Eovich Mordechay, Keshab

Parhi, and Vijay Madisetti were enlightening. Rodion Rathbone carefully read and

commented on an early draft. Finally, my best critic was Rhonda Righter, who suf

fered through many dinners during which I made my first attempts to express vague

new ideas.

Ill

Table of Contents

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: SYNCHRONOUS DATA FLOW 7

2.1. THE DATA FLOW PARADIGM .. 11

2.2. PRIOR ART AND RELATED MODELS 15

2.3. SYNCHRONOUS DATA FLOW GRAPHS 25

2.4 A LARGE GRAIN COMPILER FOR A SEQUENTIAL MACHINE 30

2.5 THE PARALLEL SCHEDULING PROBLEM 51

2.6 LIMITATIONS OF THE MODEL 60

2.7 CONCLUSIONS ~ 63

CHAPTER 3: IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 65

3.1 CUTSET TRANSFORMATIONS ~ 68

3.2 THE BOUND ON THE COMPUTATION RATE 78

3.3 TRANSFORMING GENERAL SDF GRAPHS INTO HOMOGENEOUS

SDF GRAPHS .. ~ — 84

3.4 THE OPTIMAL BLOCKING FACTOR 93

3.5 MINIMIZING MEMORY USAGE .. 101

CHAPTER 4: THE TT ARCHITECTURE - 107

4.1. MONOLITHIC PROGRAMMABLE DSPs 108

4.2. HAZARDS -.. 117

4.3 THE PROGRAMMING/PERFORMANCE TRADEOFF 119

4.4 PIPELINING AND INTERLEAVING - 130

IV

4.5 A SAMPLE ARCHITECTURE 147

4.6 PROGRAMMING EXAMPLES . 164

4.7 THE COLUMBU ARCHTTECTURE 173

4.8 CONCLUSIONS 177

CHAPTER 5: PROGRAMMING A IT PROCESSOR USING SDF GRAPHS 178

5.1 BUFFERS AND DELAYS 180

5.2 LANGUAGE DESIGN 188

5.3 A VOICEBAND DATA MODEM EXAMPLE 193

5.4 CONCLUSIONS 203

CHAPTER 6: FURTHER WORK 205

6.1 FUNDAMENTALS 206

6.3 HARDWARE 210

6.2 SOFTWARE 212

6.2 APPLICATIONS 214

6.2 CONCLUSION 214

GLOSSARY 216

REFERENCES „ M „ 220

INTRODUCTHON

The main objective of this thesis is to propose techniques that will help

harness the potential of VLSI for high performance, real-time digital signal pro

cessing. Ideally, state of the art implementation techniques will be within the

reach of the algorithm developers, communications specialists, numerical

analysts, and signal processing specialists. Currently, a major technological

chasm separates these individuals from the hardware and software tools

required to implement and test their ideas in real-time. In spite of slow steady

progress with silicon compilation, chip design still requires a circuit designer to

do the layout. The language of a circuit designer is usually foreign to the com

munications specialist with an interest in estimation, adaptive filters, or distri

buted control. Software implementation techniques are not much better.

Although significant progress has been made with software interfaces on general

purpose computers, such machines often cannot approach real-time, and inter

facing such machines in real environments is often difficult even for the architec-

INTRODUCTION 2

ture specialist. High performance architectures, such as programmable monol

ithic DSP chips, usually require specialized programming in assembly language,

complicated by extensive pipelining and parallelism.

With VLSI technology improving, the problem may be getting worse, not

better. Increased parallelism in architectures means that algorithm designers

need to worry more about "vectorizing" their algorithms, or finding pipelinable

or systolic versions. Adaptation of algorithms to parallel implementations is

traditionally done on a case-by-case basis, with each application laboriously

analyzed for available concurrency, and each parallel algorithm studied for

quantization effects and convergence (see for

example[Thom77af John84a, Ahme82a, Kung83a, Kung80a]). Techniques for

automatically finding parallelism in programs have met with limited

success[Padu80a, Fish84a], so although parallel and pipelined architectures offer

greatly improved performance, they usually require more implementation effort.

(There are experimental architectures specialized to particular languages which

also try to avoid this phenomenon.) This thesis represents one small effort to

close the algorithm-implementation chasm without compromising the perfor

mance of the implementations.

The long term objective is to rapidly and easily prototype real-time signal

processing systems. The aim is to bring state-of-the-art implementation tools

closer to the algorithm designer, without requiring valuable time and energy to

learn a language that is not relevant in any fundamental way to his or her

expertise. This is an ambitious goal, and maybe the best we can hope to do in

the near term is to keep the chasm from widening as more parallelism intrudes

INTRODUCTION 3

into implementation architectures.

This thesis has two main themes. The first is a proposal for a new pro

gramming methodology, called synchronous data flow (SDF). The second is an

architecture for real-time programmable digital signal processors that takes

advantage of SDF programming to significantly improve performance. We

attempt to enhance performance while narrowing the algorithm-implementation

chasm. Attributes of the hardware and software methodologies are designed

specifically for a complementary fit.

The basic idea behind the architecture is old[Shar74a], and can be used to

overcome difficulties associated with deeply pipelined programmable processors.

The technique, previously applied to general purpose

supercomputers[Smit78a, Jord84a, Cohn83a], is to interleave multiple programs

through the pipeline in such a way that each program is unaffected by the pipe

lining. An instruction from a given program is fetched only after execution of

the previous instruction from the same program has been completed.

Meanwhile, instructions from the other programs are fetched, so that the

hardware resources of the pipelined machine can. be fully used. In each clock

cycle, an instruction from a new program is fetched, suggesting that the tech

nique can be described as a context switch on every clock cycle. The main

advantage is that extensive pipelining can be introduced into the architecture

without affecting the instruction set. This advantage is relatively technology

independent, because it can probably be used to extensively pipeline any archi

tecture implemented in any technology. For this reason, although we refer to

some relatively old programmable digital signal processors (dating back to

INTRODUCTION 4

1979), the architecture proposed in this thesis should be relevant for some time

to come, barring a major upheaval in the technology. The cost in hardware of

this technique is not trivial, because the entire processor state must be stored

(and be readily accessible) for each interleaved process. But the cost is much

less than the cost of brute-force parallelism, in which a non-pipelined pro

grammable processor would be replicated several times[Shar74a]. The interleav

ing technique has not gained wide acceptance in the design of general purpose

computers, but we believe that because of the narrow application domain and

the existence of an efficient and practical programming technique, pipelined

interleaving is ideally suited to the design of programmable digital signal pro

cessors.

From the point of view of the user, the most visible feature is parallelism,

which replaces pipelining. The programmer has to construct parallel programs

that cooperate on a signal processing task, itself not a trivial task. Unless an

appropriate method for constructing such programs is devised, the value of such

an architecture is questionable. We propose programming signal processing

applications using synchronous data flow graphs. SDF graphs are related to data

flow graphs!Denn80a], with the difference that nodes in the graph consume and

produce a fixed amount of data on each input or output path. In signal process

ing terminology, systems with fixed sample rates related by rational factors can

be specified as SDF graphs. Taken alone, such a programming methodology

helps to narrow the algorithm-implementation chasm because data flow (espe

cially large grain data flow[Acke82a]) is similar to block diagrams and signal

flow graphs that signal processing specialists like to use to describe

algorithms[Gold69a, Croc75a, Babb84a]. Specifying signal processing algorithms

INTRODUCTION 5

as block diagrams is certainly more natural than specifying them as Fortran

programs, although comfortable familiarity with Fortran may lead some readers

to deny this.

Although programmer convenience is of overriding importance, the tech

nique would not be useful if efficient implementations were not possible. For

tunately, they are. SDF graphs naturally exhibit considerable concurrency

which can be automatically and efficiently mapped onto parallel processors.

Unlike more general data flow, SDF graphs can be statically scheduled (at com

pile time), so that at run time, most processing resources do signal processing

rather than support for the programming methodology. Demonstrating that

this is possible (and practical) is a major objective of this thesis. SDF can also

be used on conventional architectures with single or parallel processors, but the

v processor is a particularly good match.

This first chapter is only a brief overview of the material to come. Most of

the substantial body of literature contributing to the background of this work is

described and referenced in the body of the thesis. Chapter 2 describes the SDF

paradigm, proves that static scheduling is possible for all correctly constructed

SDF graphs, and details how such scheduUng can be done. Chapter 3 describes

the lower bound on the throughput of a given SDF graph and systematic

methods for approaching this bound. Chapter 4 describes the pipelining and

interleaving technique and outlines a specific it architecture. Chapter 5 shows

how SDF can be practically implemented on a ir processor and details an exam

ple of a practical application, a voiceband data modem implementation. The

modem application illustrates the attractiveness of the programming methodol-

INTRODUCTION 6

ogy both for programming ease and efficient implementation on modest numbers

of parallel processors. Chapter 6 wraps it up with some conclusions and an

extensive catalog of spinoff problems derived from this work. *

Chapters 2 and 4 are intended to each stand alone, in case particular readers

are interested strictly in the v or SDF topics. Chapter 3 depends on chapter 2.

Chapter 5depends on arudimentary understanding of chapters 2through 4.

SYNCHRONOUS DATA FLOW

To achieve high performance in real-time signal processing and related

numeric-intensive computations, the need to depart from the simplicity of von

Neumann computer architectures is axiomatic. Pipelining and parallelism are

two forms of concurrency that can take advantage of increasing VLSI complex

ity, but both approaches can considerably complicate the programming. It

would be unacceptable to design a digital signal processor (DSP) architecture

with spectacular throughput that required an army of specialists to program. In

chapter 4 we will describe an architecture for programmable DSPs that replaces

deeply pipelined architectures with what appears to be cooperating parallel pro

cessors. The modified architecture is called a it processor. The technique is to

interleave concurrent processes through the pipeline in such a way that each

instruction in each process is completed before the next instruction in the same

process is begun. This technique has been used in the peripheral processors of

the CDC 6600, the HEP-l[Smit78a, Jord84a], and an experimental architecture

SYNCHRONOUS DATA FLOW 8

at Columbia[Cohn83a], all large general purpose machines. Applied to signal

processors, the technique is much simpler, and promises to mitigate the

difficulties associated with deep pipelining,* allowing a potentially large gain in

performance through deeper pipelining than is generally considered practical for

programmable processors. But since pipeline difficulties are replaced with

difficulties associated with parallelism, a reasonably effective solution to the

parallel programming problem for modest numbers of processors is a mandatory

prerequisite.

For the purposes of this chapter, the ir processor described in chapter 4 can

be viewed simply as a set of synchronized parallel processors sharing memory

without contention. The programming of a v processor is, on the surface, no

different from programming any such multiprocessor system. However, the fact

that the application is real-time digital signal processing greatly simplifies the

programming problem, opening up the possibility of conceptually simple and

elegant programming techniques.

The it processor promises considerably enhanced performance at the

expense of a non-Von Neumann structure. In the software realm, however,

deviations from von Neumann programming are often viewed with suspicion.

The hardware of most successful commercial signal processors today deviates

significantly from Von Nuemann architecture, but compromises are made to

preserve sequential programming. Two notable exceptions are the Bell Labs DSP

family[Chap81a, Kers85a], the NEC data flow chip[Chas84a], and the Motorola

DSP56000[Moto86a], all of which are programmed with concurrency in mind.

For the majority, however, preserving von Neumann programming style is given

SYNCHRONOUS DATA FLOW 9

priority. Interestingly, Motorala touts the sequential nature of the programming

of the 56000, a Von Neumann attribute, but the programming includes

significant parallelism.

Sequential programming has a long and distinguished history. Often, a

new non-von Neumann architecture has elaborate hardware and software tech

niques enabling a programmer to write sequential code irrespective of the paral

lel nature of the underlying hardware. For example, in machines with multiple

function units, such as the CDC6600 and Cray family, so called " scoreboarding"

hardware resolves conflicts to ensure the integrity of sequential code. In deeply

pipelined machines such as the IBM 360 model 91, interlocking

mechanisms[Kogg81a] resolve pipeline conflicts. In the MIT Lincoln Labs signal

processor[Paul80a] specialized associative memories are used to ensure the

integrity of data precedences.

The affinity for von Neumann programming is not at all surprising, stem

ming from familiarity and a proven track record, but the cost is high in the

design of specialized digital signal processors. In chapter 4, the TI TMS32010

and the Bell Labs DSP20, two pipelined chips that differ radically only in pro

gramming methodology, will be compared. They achieve exactly the same per

formance on the most basic benchmark, the FIR (finite impulse response) filter,

but the Bell Labs chip outperforms the TI chip on the next most basic bench

mark, the IIR (infinite impulse response) filter. Surprisingly, close examination

reveals that the arithmetic hardware (multiplier and ALU) of the Bell Labs chip

is half as fast as in the TI chip. The performance gain appears to follow from

the departure from conventional sequential programming.

SYNCHRONOUS DATA FLOW 10

However, programming the Bell Labs chip is not easy. The code more

closely resembles horizontal microcode than assembly languages. Programmers

invariably adhere to the quaint custom of programming these processors in

assembler-level languages, for maximum use of hardware resources. Satisfac

tory compilers have failed to appear.

In this chapter, we propose programming signal processors using a tech

nique based on large grain data flow (LGDF) languages[Acke82a], which should

ease the programming task by enhancing the modularity of code and permitting

algorithms to be described more naturally. In addition, concurrency is immedi

ately evident in the program description, so parallel hardware resources such as

those in the v architecture can be used more effectively. The technique is partic

ularly well suited to programming the it processor, so it is described in that

context, but it is also potentially useful for programming existing single and

multiple processor systems, and may be extensible to semi-custom hardware

definition for a parametrized macrocell silicon compiler. This latter application

is proposed in chapter 6.

We begin by reviewing the data flow paradigm and its relationship with

previous methods applied to signal processing. Synchronous data flow (SDF) is

introduced, with its suitability for describing signal processing systems

explained. The advantage of SDF over conventional data flow is that more

efficient run-time code can be generated because the data flow nodes can be

scheduled at compile time, rather than at run-time. A class of algorithms for

constructing sequential (single processor) schedules is proven valid, and a simple

heuristic for constructing parallel (multi-processor) schedules is described.

SYNCHRONOUS DATA FLOW 11

Finally, the limitations of the model are considered.

2.1. THE DATA FLOW PARADIGM

For concurrency, a program is broken into subtasks which are then

automatically, semiautomatically, or manually scheduled onto parallel proces

sors or v slices, either at compile time {.statically) or at run time {dynamically^

Automatic breakdown of an ordinary sequential program is an appealing

concept[Padu80a], but the success of existing techniques is limited. If the pro

grammer provides the breakdown as a natural consequence of the programming

methodology, we should expect more efficient use of concurrent resources.

Dividing a program into subtasks is not new to programmers; structured

programming has insisted on it throughout much of the history of computers.

The usual technique for breaking up a program is to divide it into subroutines,

functions, or procedures. But these are all ill suited to parallel execution,

because they are written with sequential execution in mind. Furthermore, pro

cedures are not usually a natural way of describing DSP algorithms; functional

blocks interconnected with signal flow paths are more suitable.

DSP systems are usually described using block diagrams consisting of func

tional blocks connected by data flow paths. An example that we will discuss

extensively in chapter 5, a voiceband data modem, is illustrated in figure 2-1.

The figure illustrates an implementation of a 2400 BPS, 600 baud frequency-

division-multiplexed full-duplex data modem with bandsplitting filters, and a

fractionally-spaced passband adaptive equalizer[Unge76a, Gitl81a,Falc76a].

Such diagrams are often viewed as descriptions of hardware realizations, which

are usually inherently highly concurrent. Block diagram descriptions are

9600 Hz

-* Real samples
+> Complex samples

600 Hz

In: Input routine
Filt: Bandsplitting filters
HII: Hilbert filters

Eq: Adaptive equalizer
Pll: Phase locked loop
Deci: Decision

Deco: Decoder

Out: Output
Mul: Complex multiplier

12

Figure 2-1: A block diagram of a2400 bit per second, 600 baud modem. Three
sample rates are evident. The first, 9600 Hz, is the Nyquist rate samples of the
data bearing signal, the second is twice the baud rate (at the input to a fraction
ally spaced equalizer), and the third is the baud rate, 600Hz.

SYNCHRONOUS DATA FLOW 13

modular, meaning that once a block is denned it is easily re-used. They can also

be hierarchical, where a block may itself represent another block-diagram, yield

ing programs with much of the elegance of structured programming. Mixed

mode programming is possible, where frequently used blocks are programmed in

assembly language and less common blocks in a high level language. Hardware

descriptions can also be mixed with assembly language or higher level func

tional descriptions, in principle. Concurrency is explicit, without requiring

undue programming effort. Furthermore, we will show that additional con

currency can often be easily found, automatically, by a compiler.

The block diagram of figure 2-1 is a data flow graph. The fundamental

premise behind data flow graphs is that each node represents a function that can

be invoked whenever input data is available to it. Functions may. be elemental

(addition, multiplication, etc.) or non-elemental (digital filters, FFT units,

modulators, phase locked loops, etc.), and the directed arcs represent paths

taken by successive data samples. The complexity of the functions (or the

"granularity") will determine the amount of parallelism available. If the

granularity is at the level of signal processing subsystems (second order sec

tions, butterfly units, etc.), the paradigm is called large grain data flow

(LGDF)[Davi78a, Rumb77a, Babb84a, Acke82a]. Otherwise, it is called atomic

data flow, from the Greek word atomos, meaning indivisible. Atomic data flow

is obviously a special case of LGDF. Data flow specifications are related to the

experimental computer language techniques known as applicative languages, sin

gle assignment languages, and functional languages.

SYNCHRONOUS DATA FLOW 14

The original data /tow[Denn80a, Wats82a] is a computer architecture tech

nique, not a programming technique for multiprocessors. Specialized hardware

blocks perform their function {fire) wnen operands appear at their inputs. At

the lowest level, therefore, the machine is data rfriven[Trel81a]. Control of the

hardware is achieved by supplying operands to hardware blocks. This carries

over to the software realm. Software functions fire when inputs are available.

LGDF is ideally suited for signal processing, and has been adopted in simu

lators in the past[Mess84a]. Other signal processing systems use a data-driven

paradigm to partition a task among cooperating processors[Snyd84a], and many

so called " block diagram languages" have been developed to permit programmers

to describe signal processing systems more naturally. These and other related

models are discussed in the following subsections.

In addition to being natural for DSP, large grain data flow has another

significant advantage for signal processing. As long as the integrity of the flow

of data is preserved, any implementation of a data flow description will produce

the same results. This means that the same software description of a signal pro

cessing system can be simulated on a single processor or multiple processors,

implemented in specialized hardware, or even, ultimately, compiled into a VLSI

chip[Jhon85a].

Common objections leveled against data flow center around the overhead

required to schedule and synchronize the hardware or software blocks. How

ever, it will be shown in this chapter very low overhead is required for most

types of synchronization required in digital signal processing. In particular, for

synchronous DSP systems, in which sample rates are known and are rational

SYNCHRONOUS DATA F1X)W 15

multiples of one another, it is possible to statically (at compile time) schedule

blocks onto parallel processors. In figure 2-1, sample rates are shown explicitly.

A data flow graph from which relative sample rates can be determined (the

absolute numbers are not important, only their relation to one another) is called

a synchronous data flow graph (SDF graph). The SDF paradigm is rigorously

defined in section 2.3, and its properties explored.

2.2. PRIOR ART AND RELATED MODELS

Before proceeding, it is worth reviewing the rich collection of related

methods for defining DSP systems.

2.2.1. Block Diagram Languages

Many so called block diagram languages have been developed to permit

users to more easily implement signal processing algorithms, at least in simula

tion, rather than real-time. Block diagrams are an appropriate description of

DSP systems. Some examples are BLODI[Kell61a], PATSI[Gold69a],

BLODIB[Kara65a], LOTUS[Dert69a], DARE[Korn77a], MTTSYN[Henk75a],

Circus[Crys74a], and TOPSIMfDipaa]. But these simulators are based on the

principle of next state simulation[Go\d69a, Kope80a] and thus have difficulty

with multiple sample rates, not to mention asynchronous systems. (We use the

term asynchronous here in the DSP sense to refer to systems with sample rates

that are not related by a rational multiplicative factor.) Although true asyn-

chrony is relatively rare in digital signal processing, multiple sample rates are

common, stemming from the frequent use of decimation and interpolation. The

technique we propose in this paper shares the appropriateness of block diagram

SYNCHRONOUS DATA FXOW 16

languages, and it handles multiple sample rates easily. Furthermore, a it pro

cessor architecture combined with a data flow programming paradigm easily

handles systems with limited asynchrony.

2.2.2. Large Grain Data Flow

One way to avoid the limitations of next-state simulators but retain the

convenience of expressing algorithms as block diagrams is to use LGDF, as done

in BLOSIM[Mess84b, Mess84a], a single-processor digital signal processing simu

lator that naturally accommodates multiple sample rates and asynchronous sys

tems. Dynamically allocated linked-lists are used to buffer data between data

flow blocks. The scheduling is straightforward; a simple heuristic is used to

construct a list of all blocks approximately ordered according to their pre

cedences. Blocks are invoked in the order specified by this list. When a block is

invoked, the software within the block checks the input buffers to see if there is

adequate data, and runs until such data is exhausted. If a block has no inputs,

it runs until it has generated a predetermined amount of new data on its output

buffers. The system continues forever, or until a deadlock occurs, in which no

block in the list has data on its input buffers. This type of control is effectively

dynamic because the execution of block functions is determined at run time, in

response to changing conditions. The ordering of the list of blocks approxi

mately according to their precedences helps ensure that most blocks are ready to

run when their input buffers are checked, but it is not required for correct exe

cution. Another way of ensuring this is to maintain a list of runnable blocks

which is expanded each time a block generates enough data to run another block.

SYNCHRONOUS DATA FLOW 17

Such dynamic control mechanisms are traditional in data flow implementa

tions, but they involve considerable overhead. First of all, in the latest version

of BLOSIM, buffers are unbounded in size so that a block does not need to check

its output buffers to see if there is room. The amount of memory required for

the buffers is difficult to determine, and even for fully synchronous systems

may depend on the order in which the blocks are invoked. In programmable

DSPs, where memory is a scarce commodity, such inefficiencies must be avoided.

Secondly, the supervisory overhead can be substantial. Checking input buffers,

and possibly trying many blocks before one is finally run, consumes program

execution time, also a scarce commodity in real-time signal processing applica

tions. On the other hand, this mechanism supports asynchronous communica

tion between blocks, and no elaborate scheduling is required for correct execu-

tion of the program. This gives it a generality that is extremely useful for

simulation, but probably too costly for real-time implementations on DSPs.

2.23. Signal Flow Graphs

Some work with synchronous data flow descriptions, centered around sig

nal flow graphs, was originally used to describe linear, single-sample-rate

systems[Croc75a]. Crochiere and Oppenheim[Croc75a] systematically translate

signal flow graphs into acyclic precedence graphs. The method is quite simple,

based on the observation that arcs with unit delays are not precedence relation

ships, but arcs without delays are. Equivalently, arcs with delays can be bro

ken and replaced with I/O operations. But the method does not consider the

repetitive nature of a desired schedule, and therefore does not always properly

indicate long-term precedences when more than one delay is present in a loop.

SYNCHRONOUS DATA FLOW 18

It also does not support multiple sample rates. In spite of these deficiencies,

BrafmaniBraf78a] and Zeman[Zema83a] both recommend this method to obtain

acyclic precedence graphs, and then both apply critical path methods to the

scheduling problem.

2.2.4. Homogeneous Synchronous Data Flow

The term "signal flow graph" is often used to described single-sample-rate

data flow graphs, regardless of whether the the system is linear. Homogeneous

SDF graphs are a special case of single-sample-rate SDF graphs where each time

a node is invoked it consumes or produces exactly one sample on each input or

output path. Multiprocessor implementations of algorithms specified this way

have been explored at Georgia Tech[Schw85a]. Algorithms are assumed to

repeatedly operate on an infinite stream of data, and optimal periodic schedules

can be systematically generated. One of the implementations proposed is called

skewed single instruction multiple data (SSIMD)[Barn82a, Barn83a], in which a

set of processing elements perform the same functions, but skewed in time with

respect to one another. This allows much more flexibility than traditional

SIMD, and is particularly well suited to simple signal processing tasks. SSIMD

is described for atomic data flow graphs but it applies as well to LGDF. It is

worth reviewing in more detail. Such a review serves as a good introduction to

the scheduling problem for SDF graphs.

Figure 2-2(a) shows a simple data flow graph, where A, B, and C designate

operations in the program, such as multiplications or additions, the arcs illus

trate the flow of data, and the directed loop represents a recursion. The D asso

ciated with an arc indicates a unit delay, required for computability in any

SYNCHRONOUS DATA FLOW

PROC. 1:

PROC. 2:

19

B

(a)

Figure 2-2.

(a)^ A single-sample-rate data flow graph with a directed loop and a delay, in
dicating recursion.

(b) A two processor SSIMD schedule, assuming equal execution times.

directed loop. Figure 2-2(b) shows how the functions A, B, and C can be repeti

tively executed by two cooperating processors, assuming that the execution time

of each block is identical. The notation Aj (or A2 ...) refers to the first (or

second ...) execution of the function A, and time proceeds to the right. Observe

that each of the two processors performs exactly the same sequence of opera

tions, but skewed in time. Hence the name SSIMD. The amount of skew is

determined by the precedence constraint that the nth run of A must be preceded

by the {n—\Yh run of B. For SSIMD, the problem of scheduling tasks onto

parallel processors simply reduces to determining a single processor schedule and

the optimum starting time for each processor.

SYNCHRONOUS DATA FLOW 20

If a state variable is involved, for example a parameter in memory that is

updated in a data dependent way, then the data flow graph will have self-loops,

as shown in figure 2-3(a). These are handled just like the recursion. A three

processor schedule is shown in figure 2-3(b). Without state variables or other

directed loops, as shown in figure 2-4(a), there is no distinction between the

first and second execution of an operation, and the schedule can have arbitrary

start times. If the start times are identical for all processors, as shown in figure

2-4(b) for three processors, then SSIMD reduces to classical SIMD, a much more

restrictive paradigm sometimes applied to the construction of concurrent pro

grams.

Signal processing algorithms repetitively operating on an infinite stream of

data can be mapped onto parallel processors using the SSIMD paradigm.

Surprisingly, in many cases, the mapping is pretty good. However, exceptions

are easily constructed. Figure 2-5(a) shows a data flow graph that results in the

suboptimal SSIMD schedule of figure 2-5(b). Clearly the multiple instruction,

multiple data (MIMD) schedule of figure 2-5(c) will run faster. Since the archi

tecture of a tr processor readily accommodates MIMD programs, a scheduling

methodology yielding the schedule of figure 2-5(c) is preferable. SSIMD

schedules remain a special case that can be used when they are optimal, or

nearly so.

The technique has been generalized to what are called cyclo-static

sys?ems[Schw85a], in which the function performed by each processor is

periodic, but each processor can perform different functions. Optimal scheduling

can be done for such systems. The scheduling algorithm given by Schwartz is of

PROC. 1

PROC. 2

PROC. 3

(a)

*1 Bi Ci A4 B4 c4
A2 B2 c2 A5 Bs c5

A3 B3 c3 A6 B6 c6

(b)

21

Figure 2-3: A single-sample-rate data flow graph with a self loop (a), and an
SSIMD schedule (b), assuming the execution times are all the same.

PROC. 1

PROC. 2

PROC. 3

B

(a)

Ai Bi Ci A4 B4 c4
A2 B2 c2 A5 B5 cs
A3 B3 c3 A6 B6 c6

(b)

Figure 2-4: A single-sample-rate data flow graph with no recursion (a) and an
SSIMD schedule (b). Note that there is no precedence between successive invo
cations of the same node, because there are no self-loops.

PROC. 1:

PROC. 2:

PROC. 1:

PROC. 2:

(a)

(b)

Ai Bi Di A2 B2 D2

• Cn mmm C2 ^^

(c)

Figure 2-5:

(a) A single-sample-rate SDF graph.

(b) A SSIMD schedule with iteration period 4.

(c) A MIMD schedule, with iteration period 3.

22

SYNCHRONOUS DATA FLOW 23

exponential complexity, but Schwartz argues that for special problems the com

plexity is manageable. Particularly, constructing maximum throughput

schedules using the minimum number of processors from a homogeneous SDF

graph is apparently easy. The admirable work on cyclo-static systems has some

deficiencies in our application, however. Primarily, it has no provision for mul

tiple sample rates, thus restricting the range of applications. Also, when the

problem is to find a maximum throughput schedule for a fixed number of pro

cessors, the complexity may become unmanageable.

2.2.5. Reduced Dependence Graphs.

Explored recently at Stanford, reduced dependence graphs are specifications

of systems in terms of periodic acyclic precedence graphs, where only one period

is illustrated, and its dependence on previous periods is done by

indexing[Karp67a, Rao85a]. The resulting description is close to a data flow

graph with the sample rate again restricted to be uniform throughout the sys

tem. A major difference is that delays on arcs are generalized to vectors in an

index space so iterations in time can be combined with iterations in any other

variable. Reduced dependence graphs are used to describe regular iterative algo

rithms, which can then be mapped onto processor arrays. This approach seems

particularly well suited to descriptions of well structured algorithms to be

implemented in systolic arrays. The range of applications is again excessively

limited for our objectives.

SYNCHRONOUS DATA FLOW 24

2.2.6. Computation Graphs.

Computation graphs are large grain data flow graphs which, like signal flow

graphs, and reduced dependence graphs, are restricted to modeling synchronous

systems. Unlike these previous models, however, computation graphs naturally

accommodate multiple sample rates. The differences between SDF graphs and

computation graphs are so minor as to be insignificant, but our use of the model

differs significantly.

Computation graphs were introduced in 1966 by Karp and Miller[Karp66a]

and were further explored by Reiter[Reit67a]. The analysis concentrated on

fundamental theoretical considerations, with, for example, a proof that compu

tation graphs are determinate, meaning that any admissible execution yields the

same result. Such a theorem, of course, also underlies the validity of data flow.

Other early analysis using the general computation graph model concentrated on

graphs that terminate, or deadlock after some time. Most DSP applications,

however, do not terminate, so these results are not useful in this application.

Simplified versions of the model have been explored by Commoner and

Holt[Comm71a] and Reiter[Reit68a], but the restrictions imposed on the model

are excessive. Specifically, the restricted models have nodes that can only con

sume or produce one sample on each input or output path. Reiter[Reit68a] tack

led a scheduling problem, but assumed that each node in the graph corresponded

to a processor, so only the firing times of the nodes needed to be determined.

SYNCHRONOUS DATA FLOW 25

2.2.7. Petri Nets.

Computation graphs have been shown to be a special case of Petri

nefs[Pete77a, Pete81a,Ager79a] or vector addition systems{K.arp69a]. These more

general models can be used to describe asynchronous systems, but implementa

tions generally require expensive dynamic control flow.

2.2.8. Signal Representation Language

A final technique worth mentioning, although it has no apparent connection

with data flow, is the signal representation language[Kope&4a, Kope85a]. This

representation deals with finite segments of signals as objects, operating on them

as one would operate on numbers in a stack oriented calculator. Although

undoubtedly a useful tool for experimenting with algorithms, the treatment of

signals as objects does not seem at all appropriate for real-time applications.

2.3. SYNCHRONOUS DATA FLOW GRAPHS

In this chapter we concentrate on synchronous systems. At the risk of

being pedantic, we define this precisely. A node in a data flow graph is a func

tion that is invoked when there is enough input available to perform a computa

tion (nodes lacking inputs can be invoked at any time). When a node is

invoked, it will consume a fixed number of new input samples on each input

path. These samples may remain in the system for some time to be used as old

samples[Mess84a], but they will never again be considered new samples. A

node is said to be synchronous if we can specify a-priori the number of input

samples consumed on each input and the number of output samples produced

on each output each time the node is invoked. Thus a synchronous node is

SYNCHRONOUS DATA FLOW 26

shown in figure 2-6(a) with a number associated with each input or output

specifying the number of inputs consumed or the number of outputs produced.

These numbers are part of the node definition. For example, a digital filter node

would have one input and one output, and the number of input samples con

sumed or output samples produced would be one. A 2:1 dedmator node would

also have one input and one output, but would consume two samples for every

sample produced. A synchronous data flow (SDF) graph is a network of syn

chronous nodes, as in figure 2-6(b). The modem example of figure 2-1 is shown

in figure 2-7 as a SDF graph.

An immediate potential objection to the SDF paradigm is that general SDF

graphs can be expressed as single sample rate SDF graphs, as shown in figure 2-

8(a). This means that the prior art applicable to single sample rate SDF graphs

can be applied to multiple sample rate SDF

graphs[Comm71a, Reit68a, Croc75a, Braf78a, Zema83a, Schw85a]. However, the

transformation is not always simple, as illustrated in figure 2-8(b), and may

require replicating some of the nodes. A systematic method for performing this

transformation is described in chapter 3, where the transformation is used to

find a tight bound on the throughput achievable for a given SDF graph.

As mentioned before, SDF graphs are closely related to computation graphs,

introduced in 1966 by Karp and Miller[Karp66a] and further explored by

Reiter[Reit67a]. Computation graphs are slightly more elaborate than SDF

graphs, in that each input to a node has two numbers associated with it, a thres

hold and the number of samples consumed. The threshold specifies the number

of samples required to invoke the node, and may be different from the number

27

(a) *f A

(b)

Figure 2-6: A synchronous data flow node (a) andgraph (b).

Figure 2-7: A voiceband data modem described as a synchronous data flow
graph.

28

(a)

(b)

Figure 2-8: Two transformations of multiple-sample-rate SDF graphs into
single-sample-rate SDF graphs using parallel data flow paths. The transforma
tion in (a) is clearly simpler than the transformation in (b).

SYNCHRONOUS DATA FLOW 29

of samples consumed by the node. It cannot, of course, be smaller than the

number of samples consumed. The use of a distinct threshold in the model,

however, does not significantly change the results presented in this thesis, so for

simplidty, we assume these two numbers are the same. To make it easier to

describe such applications, we expand the model slightly to allow nodes with no

inputs. These can fire at any time. Other results presented in[Karp66a] are only

applicable to computations that terminate.

Implementing the signal processing system described by a SDF graph

requires buffering the data samples passed between nodes and scheduling nodes

so that they are executed when data is available. This could be done dynami

cally, in which case a run-time supervisor determines when nodes are ready for

execution and schedules them onto processors as they become free. This run

time supervisor may be a software routine or specialized hardware, and is the

same as the control mechanisms generally associated with data flow. It is a

costly approach, however, in that the supervisory overhead can become severe,

particularly if relatively little computation is done each time a node is invoked.

Our first task is to show that SDF graphs can be scheduled statically (at

compile time), regardless of the number of processors, so that the overhead asso

ciated with dynamic control evaporates. Specifically, a large grain compiler

determines the order in which nodes can be executed and constructs sequential

code for each processor. Communication between nodes and between processors

is set up by the compiler, so no run-time control is required beyond the tradi

tional sequential control in the processors. The SDF paradigm gives the pro

grammer a natural interface for easily constructing well structured signal pro-

SYNCHRONOUS DATA FLOW 30

cessing programs, with evident concurrency, and the large grain compiler maps

this concurrency onto parallel processors. This chapter is dedicated mainly to

demonstrating the feasibility of such a large grain compiler.

2.4. A LARGE GRAIN COMPILER FOR A SEQUENTIAL MACHINE

We need a methodology for translating from a SDF graph to a set of

sequential programs running on a number of processors. Such a compiler has

two basic tasks:

• Allocation of shared memory for the passing of data between nodes, if

shared memory exists, or setting up communication paths if not.

• Scheduling nodes onto processors in such a way that data is available for a

node when that node is invoked.

The first task is not an unfamiliar one. A single processor solution (which

also handles asynchronous systems) is given by the buffer management tech

niques in BLOSIM[Mess84b]. The buffering problem is discussed in chapter 5, so

this chapter will concentrate on the second task, that of scheduling nodes onto

processors so that data is available when a node is invoked.

Some assumptions are necessary.

• The SDF graph has more nodes than processors. This is not a necessary

assumption for feasibility, but it is certainly necessary for effident use of

available computing resources.

• The SDF graph is connected. If not, the separate graphs can be scheduled

separately using subsets of the processors.

SYNCHRONOUS DATA FLOW 31

• The SDF graph is non terminating (cfjKarp66a, Reit67a]) meaning that it

can run forever without deadlock. As mentioned earlier, this assumption is

natural for signal processing. We give below necessary and sufficient condi

tions for this to be true.

Specifically, our ultimate goal is a periodic admissible parallel schedule,

designated PAPS. The schedule should be periodic because of the assumption

that we are repetitively applying the same program on an infinite stream of

data. The desired schedule is admissible, meaning that nodes will be scheduled

to run only when data is available, and that a finite amount of memory is

required for buffering. It is parallel in that more than one processing resource

can be used. A special case is a periodic admissible sequential schedule, or PASS,

which implements a SDF graph on a single processor. The method for con

structing a PASS leads to a simple solution to the problem of constructing a

PAPS, so we begin with the sequential schedule

2.4.1. Construction of a PASS

A simple SDF graph is shown in figure 2-9, with each node and each arc

labeled with a number. (The connections to the outside world are not con

sidered, and for the remainder of this chapter, will not be shown. Thus, a node

with one input from the outside will be considered a node with no inputs,

which can therefore be scheduled at any time. The limitations of this approxi

mation are discussed later in the chapter.) A SDF graph can be characterized by

a matrix similar to the incidence matrix associated with directed graphs in graph

theory. It is constructed by first numbering each node and arc, as in figure 2-9,

and assigning a column to each node and a row to each arc. The (i ,j Yh entry in

SYNCHRONOUS DATA FLOW 32

Figure 2-9. A synchronous data flow (SDF) graph showing the numbering of the nodes and arcs.
The input and output arcs are ignored for now.

the matrix is the amount of data produced by node j on arc i each time it is

invoked. If node j consumes data from arc i, the number is negative, and if it

is not connected to arc i, then the number is zero. For the graph in figure 2-9

we get

c -e 0

r= d 0 -/ (2.1)
0 i -g

This matrix can be called a topology matrix, and need not be square, in general.

If a node has a connection to itself (a self loop), then only one entry in T

describes this link. This entry gives the net difference between the amount of

data produced on this link and the amount consumed each time the node is

invoked. This difference should clearly be zero for a correctly constructed

graph, so the T entry describing a self loop should be zero.

SYNCHRONOUS DATA FLOW 33

We can replace each arc with a FIFO queue (buffer) to pass data from one

node to another. The size of the queue will vary at different times in the execu

tion. Define the vector b(n) to contain the queue sizes of all the buffers at time

n. In BLOSIM[Mess84b] buffers are also used to store old samples (samples

that have already been "consumed"), making implementations of delay lines

particularly easy. These past samples are not considered part of the buffer size

here.

For the sequential schedule, only one node can be invoked at a time, and

for the purposes of scheduling it does not matter how long it runs. Thus, the

index n can simply be incremented each time a node finishes and a new node is

begun. We specify the node invoked at time n with a vector v{n), which has a

one in the position corresponding to the number of the node that is invoked at

time n and zeros for each node that is not invoked. For the system in figure 2-

9, in a sequential schedule, v(n) can take one of three values,

v(n) =

1 0 0

0 OR 1 OR 0

0 0 1

(2.2)

depending on which of the three nodes is invoked. Each time a node is invoked,

it will consume data from zero or more input arcs and produce data on zero or

more output arcs. The change in the size of the buffer queues caused by invok

ing a node is given by

Kn +1) = b{n) + Tv{n) (2.3)

The topology matrix T characterizes the effect on the buffers of running a node

program.

SYNCHRONOUS DATA FLOW 34

This simple computation model is powerful. First we note that the compu

tation model handles delays. The term delay is used in the signal processing

sense, corresponding to a sample offset between the input and the output. We

define a unit delay on an arc from node A to node B to mean that the nth sample

consumed by B will be the {n— l)th sample produced by A. This implies that

the first sample the destination node consumes is not produced by the source

node at all, but is part of the initial state of the arc buffer. Indeed, a delay of d

samples on an arc is implemented in our model simply by setting an initial con

dition for equation (2.3). Specifically, the initial buffer state, b(0), should have

a d in the position corresponding to the arc with the delay of d units.

To make this idea firm, consider the example system in figure 2-10. The

symbol "D" on an arc means a single sample delay, while "2D" means a two

Figure 2-10. An example of a SDF graph with delays on the arcs. A delay simply means that
the n sample produced by the source is the (n +1) sample consumed by the destination.

SYNCHRONOUS DATA FLOW 35

sample delay. The initial condition for the buffers is thus

b(0) =

Because of these initial conditions, node 2 can be invoked once and node 3 twice

before node 1 is invoked at all. Delays, therefore, affect the way the system

starts up.

Given this computation model we can

• find necessary and sufficient conditions for the existence of a PASS, and

hence a PAPS;

• find practical algorithms that provably find a PASS if one exists;

• find practical algorithms that construct a reasonable (but not necessarily

optimal) PAPS, if a PASS exists.

We begin by showing that a necessary condition for the existence of a PASS

is

rank{T) = s-l (2.5)

where s is the number of nodes in the graph. We need a series of lemmas before

we can prove this.

LEMMA 1: All topology matrices for a given SDF graph have the same rank.

PROOF: Topology matrices are related by renumbering of nodes and arcs, which

translates into row and column permutations in the topology matrix. Such

operations preserve the rank. QED.

1

21*
(2.4)

SYNCHRONOUS DATA FLOW 36

LEMMA 2: A topology matrix for a tree graph has rank s—1 where s is the

number of nodes (a tree is a connected graph without cycles, where we ignore

the directions of the arcs).

PROOF: Proof is by induction. The lemma is clearly true for a two node tree.

Assume that for an N node tree rank {TN) = N—1. Adding one node and one

link connecting that node to our graph will yield an N+l node tree. A topol

ogy matrix for the new graph can be written

TN IO

Iat+1 —

PT

where O is a column vector full of zeros, and pT is a row vector corresponding

to the arc we just added. The last entry in the vector pT is non-zero, because

the node we just added corresponds to the last column, and it must be con

nected to the graph. Hence the last row is linearly independent from the other

rows, so rank {TN+l) = rank {TN) + 1. QED.

LEMMA 3: For a connected SDF graph with topology matrix T,

rank{T)^s—l

where 5 is the number of nodes in the graph.

PROOF: Consider any spanning tree r of the connected SDF graph (a spanning

tree is a tree that includes every node in the graph). Now define TT to be the

topology matrix for this subgraph. By lemma 2 rank (Tr) = s—1. Adding arcs

SYNCHRONOUS DATA FLOW 37

to the subgraph simply adds rows to the topology matrix. Adding rows to a

matrix can increase the rank, if the rows are linearly independent of existing

rows, but cannot decrease it. QED.

COROLLARY: rank (D is s-1 or s.

PROOF: T has only s columns, so its rank cannot exceed s. Therefore, by

lemma 3, s and 5—1 are the only possibilities. QED.

DEFINITION 1: An admissible sequential schedule 0 is a non-empty ordered list

of nodes such that if the nodes are executed in the sequence given by <t>, the

amount of data in the buffers ("buffer sizes") will remain non-negative and

bounded. Each node must appear in 0 at least once.

A periodic admissible sequential schedule (PASS) is a periodic and infinite admis

sible sequential schedule. It is specified by a list <t> that is the list of nodes in

one period.

For the example in figure 2-12 (ahead), 0= {1,2,3,3} is a PASS, but

<£ = {2,1,3,31 is not because node 2 cannot be run before node 1. The list

<t> = {1,2,31 is not a PASS because the infinite schedule resulting from repetitions

of this list will result in an infinite accumulation of data samples on the arcs

leading into node 3.

THEOREM 1: For a connected SDF graph with s nodes and topology matrix T,

rank (D = s—1 isa necessary condition for a PASS to exist.

SYNCHRONOUS DATA FLOW 38

PROOF: We must prove that the existence of a PASS of period p implies

rank (D = s —1. Observefrom equation (2.3) that we can write

Up) = KO) + Tq

where

p-\

q= Iv(n).
n=0

Since the PASS is periodic, we can write

Unp) = b(0) + n Tq.

Since the PASS is admissible, the buffers must remain bounded, by definition 1.

The buffers remain bounded if and only if

Tq = 0

where O is a vector full of zeros. For qsO, this implies that rank {I) <s,

where 5 is the dimension of q. From the corollary of lemma 3, rank{T) is

either s or 5—1, and so it must be 5—1. QED.

This theorem tells us that if we have a SDF graph with a topology matrix

of rank s, then the graph is somehow defective, because no PASS can be found

for it. Figure 2-11 illustrates such a graph and its topology matrix. Any

schedule for this graph will result either in deadlock or unbounded buffer sizes,

as the reader can easily verify. The rank of the topology matrix indicates a sam

ple rate inconsistency in the graph. In figure 2-12, by contrast, a graph without

this defect is shown. The topology matrix has rank s—1 = 2, so we can find a

vector q such that Tq = O. Furthermore, the following theorem shows that we

can find a positive integer vector q in the nullspace of T. This vector tells us

how many times we should invoke each node in one period of a PASS. Referring

SYNCHRONOUS DATA FLOW 39

Figure 2-11. Example of a defective SDF graph with sample rate inconsistencies. The topology
matrix is

r =

1 -1 0

0 1 -1

2 0 -1

rank(T) = 5=3

SYNCHRONOUS DATA FLOW 40

Figure 2-12. A SDF graph with consistent sample rates, and a positive integer vector q in the
nullspace of the topology matrix T.

r =

1 -1 0 1

0 2-1 q= 1
2 0 -1 2

€T)(r)

again to figure 2-12, the reader can easily verify that if we invoke node 1 once,

node 2 once, followed by node 3 twice, that the buffers will end up once again

in their initial state. As before, we prove some lemmas before getting to the

theorem.

LEMMA 4: Assume a connected SDF graph with topology matrix T. Let q be

any vector such that Tq = O. Denote a connected path through the graph by

the set B = {blt • • • ,bL (, where each entry designates a node, and node &j is

connected to node b2, node b2 to node 63, up to bL. Then all qit i € B are zero,

or all are strictly positive, or all are strictly negative. Furthermore, if any qt is

rational then all qt are rational.

SYNCHRONOUS DATA FLOW 41

PROOF: By induction. First consider a connected path of two nodes,

B2 = \bi,b2). If the 3TC connecting these two nodes is the jth arc, then

(by definition of the topology matrix, the jth row has only two entries). Also

by definition, T^ and T^2 are nonzero integers of opposite sign. The lemma

thus follows immediately for B2.

Now assuming the lemma is true for Bn, proving it true for Bn+1 is trivial,

using the same reasoning as in the proof for B2, and considering the connection

between nodes bn and bn+v

COROLLARY: Given a SDF graph as in lemma 4, either all qt are zero, or all are

strictly positive, or all are strictly negative. Furthermore, if any one qt is

rational, then all are.

PROOF: In a connected SDF graph, a path exists from any node to any other.

Thus, the corollary follows immediately from the lemma.

THEOREM 2: For a connected"SDF graph with 5 nodes and topology matrix T,

and with rank (D = s—1, we can find a positive integer vector q?0 such that

Tq = O, where O is the zero vector.

PROOF: Since rank {T) = s—1, a vector vsO can be found such that Tv = O.

Furthermore, for any scalar a, Itav) = O. Let a = 1/ vx and v' = a v. Then

v'j = 1, and by the corollary to lemma 4, all other elements in v' are positive

SYNCHRONOUS DATA FLOW 42

rational numbers. Let r\ be a common multiple of all the denominators of the

elements of V and let q = t)v'. Then q is a positive integer vector such that

Tq = O. QED.

It may be desirable to solve for the smallest positive integer vector in the

nullspace, in the sense of the sum of the elements. To do this, reduce each

rational entry in v' so that its numerator and denominator are relatively prime.

Euclid's algorithm (see for example[Blah85a]) will work for this. Now find the

least common multiple tj of all the denominators, again using Euchd's algo

rithm. Now t)v' is the smallest positive integer vector in the nullspace of T.

We now have a necessary condition for the existence of a PASS, that the

rank of T be 5—1. A sufficient condition and an algorithm for finding a PASS

would be'useful. We now characterize a class of algorithms that will find a

PASS if such exists, and will fail clearly if not. Thus, successful completion of

such an algorithm is a sufficient condition for the existence of the PASS.

DEFINITION 2: A predecessor to a node *n is a node feeding data to 77.

LEMMA 5: To determine whether a node 77 in a SDF graph can be scheduled at

time 1, it is sufficient to know how many times -n and its predecessors have been

scheduled, and to know b(0), the initial state of the buffers. That is, we need

not know in what order the predecessors were scheduled nor what other nodes

have been scheduled in between.

PROOF: To schedule node *n, each input buffer must have sufficient data. The

SYNCHRONOUS DATA FLOW 43

size of each input buffer j at time i is given by [b(i)]j, the jth entry in the

vector b(z). From equation (2.3) we can write

Ki) = b(0) + Tq(i)

where

i-\

q(0 = £v(n). (2.6)
n=0

The vector q{i) only contains information about how many times each node has

been invoked before iteration i. The buffer sizes [b(i)]j clearly depend only on

[b(0)]y and [Tq(i)]j. The jth rows of T each have only two entries,

corresponding to the two nodes connected to the /** buffer, so only the two

corresponding entries of the q(i) vector can affect the buffer size. These entries

specify the number of times -n and its predecessors have been invoked, so this

information and the initial buffer sizes [b(0)]y is all that is needed. QED.

DEFINITION 3 (CLASS S ALGORITHMS): Given a positive integer vector q s.t.

Tq = O and an initial state for the buffers b(0), the ith node is runnable at a

given time if it has not been run qt times and running it will not cause a buffer

size to go negative. A class S algorithm is any algorithm that schedules a node if

it is runnable, updates b{n) and stops (terminates) only when no more nodes

are runnable. If a class S algorithms terminates before it has scheduled each

node the number of times specified in the q vector, then it is said to be

deadlocked.

Class S algorithms ("S" for Sequential) construct static schedules by simu

lating the effects on the buffers of an actual run. That is, the node programs are

SYNCHRONOUS DATA FLOW 44

not actually run. But they could be run, and the algorithm would not change in

any significant way. Therefore, any dynamic (run time) scheduling algorithm

Jjecomes a class S algorithm simply by specifying a stopping condition, which

depends on the vector q. It is necessary to prove that the stopping condition is

sufficient to construct a PASS for any valid graph.

THEOREM 3: Given a SDF graph with topology matrix T and given a positive

integer vector q s.t. Tq = O, if a PASS of period p = l7q exists, where lT is a

row vector full of ones, any class S algorithm will find such a PASS.

PROOF: It is sufficient to prove that if a PASS <f> of any period p exists, a class

S algorithm will not deadlock before the termination condition is satisfied.

Assume that a PASS <t> exists, and define <Kn) to its first n entries, for any n

such that l^n^p. Assume a given class S algorithm iteratively constructs a

schedule, and define x(n) to be the list of the first n nodes scheduled by itera

tion n.

We need to show that as n increases, the algorithm will build x(n) and not

deadlock before n =p, when the termination condition is satisfied. That is, we

need to show that for all n € (1,...,/>), there is a node that is runnable for any

x(n) that the algorithm may have constructed.

If x(n) is any permutation of <t>(n), then the (n + lYh entry in <t> is runnable,

by lemma 5, because all necessary predecessors must be in <t>(n) and thus in

xin). Otherwise, the first node a in <Kn) and not in x(n) is runnable, also by

SYNCHRONOUS DATA FLOW 45

lemma 5. This is true for all n e (1,...,/?), so the algorithm will not deadlock

before n =p.

At n = p, each node i has been scheduled qt times because no node can be

scheduled more that qt times (by definition 3), and p = l^q. Therefore, the

termination condition is satisfied, and 7&p) is a PASS. QED.

Theorem 3 tells us that if we are given a positive integer vector q in the

nullspace of the topology matrix, that class S algorithms will find a PASS with

its period equal to the sum of the elements in the vector, if such a PASS exists.

It is possible, even if rank (T) = s—1, for no PASS to exist. Two such graphs

are shown in figure 2-13. Networks with insufficient delays in directed loops

are not computable.

(a) (b)

Figure 2-13. Two SDF graphs with consistent sample rates but no admissible schedule.

SYNCHRONOUS DATA FLOW 46

One problem remains. There are an infinite number of vectors in the

nullspace of the topology matrix. How do we select one to use in the class S

algorithm? We now set out to prove that given any positive integer vector in

the nullspace of the topology matrix, if a class S algorithm fails to find a PASS

then no PASS of any period exists.

LEMMA 6: Connecting one more node to a graph increases the rank of the

topology matrix by at least one.

The proof of this lemma follows the same kinds of arguments as the proof of

lemma 2. Rows are added to the topology matrix to describe the added connec

tions to the new node, and these rows must be linearly independent of rows

already in the topology matrix.

LEMMA 7: For any connected SDF graph with s nodes and topology matrix T a

connected subgraph L with m nodes has a topology matrix TL for which

rank(D = s-1 ^ rank (TL) = m-1.

I. e. all subgraphs have the right rank.

PROOF: By contraposition. We prove that

rank(TL)^m-l => rank(T) *s-l.

From the corollary to lemma 3, if rank(TL) 5*m—1 then rank (TL)= m .

Then rank(T)^m + (s—m) = s, by repeated applications of lemma 6, so

rank(T) = s. QED.

SYNCHRONOUS DATA FLOW 47

The next lemma shows that given a nullspace vector q, in order to run any

node the number of times specified by this vector, it is never necessary to run

any other node more than the number of times specified by the vector.

LEMMA 8: Consider the subgraph of a SDF graph formed by any node a and

all its immediate predecessors (nodes that feed it data, which may include a

itself). Construct a topology matrix T for this subgraph. If the original graph

has a PASS, then by theorem 1 and lemma 7, rank (T) = m —1, where m is the

number of nodes in the subgraph. Find any positive integer vector q s.t.

Tq = O. Such a vector exists because of theorem 2. Then it is never necessary

to run any predecessor /3 more than q$ times in order to run or x times, for any

x ^qa.

PROOF: The node a will not consume any data produced by the yth run of 3

for any y >q$. From the definition of T and q we know that aqa = bqfi where

a and b are the amount of data consumed and produced on the link from £ to

a. Therefore, running /3 only q$ times generates enough data on the link to run

a q a times. More runs will not help. QED.

THEOREM 4: Given a SDF graph with topology matrix T and a positive integer

vector q s.t. Tq = O, a PASS of period p = lTq exists if and only if a PASS of

period Np exists for any integer N.

PROOF:

SYNCHRONOUS DATA FLOW 48

PARTI:

It is trivial to prove that the existence of a PASS of period p implies the

existence of a PASS of period Np because the first PASS can be composed

N times to produce the second PASS.

PART 2:

We now prove that the existence of a PASS $ of period Np implies the

existence of a PASS of period p.

Consider the subset 0 of <£ containing the first qa runs of each node a. If

9 is the first p elements of 4> then it is a schedule of period p and we are

done. If it is not, then there must be some node (S that is executed more

than q$ times before all nodes have been executed q times. But by lemma

8, these "more than q" executions of /3 cannot be necessary for the later

"less than or equal to q" executions of other nodes. Therefore, the "less

than or equal to q" executions can be moved up in the list <t> so that they

precede all " more than q" executions of j3, yielding a new PASS <t>' of period

Np . If this process is repeated until all "less than q" executions precede all

"more than q" executions, then the first p elements of the resulting

schedule will constitute a schedule of period p. QED.

COROLLARY: Given any positive integer vector q € T)(T), the null space of T, a

PASS of period p = l7q exists if and only if a PASS exists of period r = lrv

for any other positive integer vector v € Tj(T).

PROOF: For any PASS at all to exist, it is necessary that rank (T) = s-1, by

SYNCHRONOUS DATA FLOW 49

theorem 1. So the nullspace of T has dimension one, and we can find a scalar c

such that

q = cv.

Furthermore, if both of these vectors are integer vectors, then c is rational and

we can write

where n and d are both integers. Therefore,

d q = n v.

By theorem 4, a PASS of period p = lrq exists if and only if a PASS of period

dp = l7(a*q) exists. By theorem 4 again, a PASS of period dp exists if and

only if a PASS of period r = l7v exists. QED.

DISCUSSION: The four theorems and their corollaries have great practical

importance. We have specified a very broad class of algorithms, deisgnated class

S algorithms, which, given a positive integer vector q in the nullspace of the

topology matrix, find a PASS with period equal to the sum of the elements in q.

Theorem 3 guarantees that these algorithms will find a PASS if one exists.

Theorems 1 and 2 guarantee that such a vector q exists if a PASS exists, and the

proof to theorem 2 suggests a simple algorithm for solving for the smallest such

vector. The corollary to theorem 4 tells us that is does not matter what posi

tive integer vector we use from the nullspace of the topology matrix, so we can

simplify our system by using the smallest such vector, thus obtaining a PASS

with minimum period.

SYNCHRONOUS DATA FLOW 50

Given these theorems, we now give a simple sequential scheduling algo

rithm that is of class S, and therefore will find a PASS if one exists.

1. Solve for the smallest positive integer vector q € Tj(T).

2. Form an arbitrarily ordered list L of all nodes in the system.

3. For each a e L, schedule a if it is runnable, trying each node once.

4. If each node or has been scheduled qa times, STOP.

5. If no node in L can be scheduled, indicate a deadlock (an error in the graph)

6. Else, go to 3 and repeat.

Theorem 3 tells us that this algorithms will not deadlock if a PASS exists.

Two SDF graphs which cause deadlock and have no PASS are shown in figure

2-13.

Since the run time is the same for any PASS (the one machine available is

always busy), no algorithm will produce a better run time than this one. How

ever, class S algorithms exist which construct schedules minimizing the memory

required to buffer data between nodes. Using dynamic programming or integer

programming, such algorithms are easily constructed. Such algorithms are dis

cussed in chapter 3.

A large grain data flow programming methodology offers concrete advan

tages for single processor implementations. The ability to interconnect modular

blocks of code (nodes) in a natural way could considerably ease the task of pro

gramming high performance signal processors, even if the blocks of code them

selves are programmed in assembly language. The gain is somewhat analogous

to that experienced in VLSI design through the use of standard cells. For syn

chronous systems, the penalty in run time overhead is minimal. But a single

SYNCHRONOUS DATA FLOW 51

processor implementation cannot take advantage of the explicit concurrency in a

SDF description. The next section is dedicated to explaining how the con

currency in the description can be used to improve the throughput of a mul

tiprocessor implementation.

2.5. THE PARALLEL SCHEDULING PROBLEM

Clearly, if a workable schedule for a single processor can be generated, then

a workable schedule for a multiprocessor system can also be generated. Trivi

ally, all the computation could be scheduled onto only one of the processors.

However, in general, the run time can be reduced substantially by distributing

the load more evenly. We show in this section how the multiprocessor schedul

ing problem can be reduced to a familiar problem in operations research for

which good heuristic methods are available.

We assume a tightly coupled parallel architecture, so that communication

costs are not the overriding concern. Furthermore, we assume homogeneity; all

processors are the same, so they process a node in a SDF graph in the same

amount of time. The ir processor of chapter 4 meets these assumptions. It is

not necessary that the processors be synchronous, although the implementation

will be simpler if they are.

A periodic admissible parallel schedule (PAPS) is a set of lists

{xlfi ; i = 1, • • • ,M | where M is the number of processors, and t^ specifies a

periodic schedule for processor i. If ^ is the corresponding PASS with the smal

lest possible period Ps, then it follows that the total numberPp of node invoca

tions in the PAPS should be some integer multiple J of Ps. The multiple J is

SYNCHRONOUS DATA FLOW 52

called the blocking factor. We could, of course, choose 7 = 1, but as we will

show below, schedules that run faster might result if a larger / is used. If the

"best" blocking factor is known, then construction of a good PAPS is not too

hard. Unfortunately, as we will see, a method for determining the optimal

blocking factor has not been found, so heuristic solutions are required.

For a sequential schedule, precedences are enforced by the schedule. For a

multiprocessor schedule, the situation is not so simple. We will assume that

some method enforces the integrity of the parallel schedules. That is, if a

schedule on a given processor dictates that a node should be invoked, but there

is no input data for that node, then the processor halts until this input data is

available. The task of the scheduler is thus to construct a PAPS that minimizes

the iteration period, the run time for one period of the PAPS divided by J, and

avoids deadlocks. The mechanism to enforce the integrity of the communication

between nodes on different processors could use semaphores in shared memory

or simple "instruction-count" synchronization, where no-ops are executed as

necessary to maintain synchrony among processors, depending on the multipro

cessor architecture. Instruction count synchronization will work with the v

architecture of chapter 4 as long as the execution time of each node in the graph

is data independent.

The first step is to construct an acyclic precedence graph for / periods of

the PASS <t>. A precise class S algorithm will be given for this procedure below,

but we start by illustrating it with the example in figure 2-14(a). The SDF

graph in figure 2-14(a) is neither acyclic nor a precedence graph. Examination of

the number of inputs consumed and outputs produced for each node reveals that

(a)

(b)

(c)

Figure 2-14:

(a) A synchronous data flow graph without self-loops.

(b) An acyclic precedence graph for 7=1.

(c) An acyclic precedence graph for 7-2.

53

SYNCHRONOUS DATA FLOW 54

node 1 should be invoked twice as often as the other two nodes. Further, given

the delays on two of the arcs, we note that there are three possible minimum

period PASS'S, 4>i = {1,3,1.2}, 4>2 = {3,1,1,2), or 0, = {1,1,3,2|, each with period

Ps = 4. A schedule that is not a PASS is <t>\ = {2,1,3,11, because node 2 is not

immediately runnable. Figure 2-14(b) shows the precedences involved in all

three schedules. Figure 2-14(c) shows the precedences using a blocking factor of

two (7=2). In these figures, there is no precedence shown between successive

invocations of the same node. A practical implementation, however, is likely to

have such precedences in order to preserve the integrity of the buffers. In other

words, two processors accessing the same buffer at the same time may not be

tolerable, depending on how the buffers are implemented. Precedences between

successive invocations of the same node are the result of implicit self-loops in the

SDF graph, shown explicitly in figure 2-15(a). The 7=1 and 7=2 precedence

graphs are also shown. The self-loops are also required, of course, if the node

has a state that is updated when it is invoked. Self loops have no effect on the

topology matrix, because the number of samples consumed and produced are the

same, and the node is the same, so they cancel. We will henceforth assume that

all nodes have self loops, thus avoiding the potential implementation difficulties.

If we have two processors available, a PAPS for 7=1 is

0, = {3}

tf2 = (U,2l.

When this system starts up, nodes 3 and 1 will run concurrently. The precise

timing of the run depends on the run time of the nodes. If we assume that the

run time of node 1 is a single time unit, the run time of node 2 is 2 time units,

and the run time of node 3 is 3 time units, then the timing is shown in figure

(a)

(b)

(c)

I '3r

3^
—ik)

Figure 2-15:

(a) A synchronous data flow graph with self-loops.
(b) An acyclic precedence graph for 7 = 1.
(c) An acyclic precedence graph for 7 = 2.

55

SYNCHRONOUS DATA FLOW 56

2-16(a). We assume for now that the entire system is resynchronized after each

execution of one period of the PAPS. Such a schedule is called a blocked

schedule.

PROC. 1: [
(a)

. PROC. 2: 1 I 1 I 2 I

cz=2> TIME

PROC. 1:

CbD

PROC. 2:

Figure 2-16. One period of each of two periodic blocked schedules for the SDF graph in figure
2-15(a) for 7 = 1 (a) and 7=2 (b).

SYNCHRONOUS DATA FLOW 57

A PAPS constructed for 7=2, using the precedence graph of figure 2-15(c)

will, however, perform better. Such a PAPS is given by

i/r, = {3,1,3}

\lt2 = {1,1,2,1,2}

and its timing is shown in figure 2-16(b). Since both processors are kept always

busy, this schedule is better than the 7=1 schedule, and no better schedule

exists. The problem of choosing the blocking factor 7 will be considered in the

following chapter.

The problem of constructing a parallel schedule given an acyclic precedence

graph is a familiar one. It is identical with assembly line problems in opera

tions research, and can be solved for the optimal schedule, but the solution is

combinatorial in complexity. This may not be a problem for small SDF graphs,

and for large ones we can use well studied heuristic methods, the best being

members of a family of "critical path" methodsfAdam74a]. An early example,

known as the Hu-level-scheduling algorithm[Hu61a], closely approximates an

optimal solution for most graphs[Kohl75a, Adam74a], and is simple. To imple

ment this method, a level is determined for each node in the acyclic precedence

graph, where the level of a given node is the worst case of the total of the run

times of nodes on a path from the given node to the terminal node of the graph.

The terminal node is a node with no successors. If there is no unique terminal

node, one can be created with zero run time. This node is then considered a suc

cessor to all nodes that otherwise have no successors. Figure 2-17(a) shows the

levels for the 7=1 precedence graph and figure 2-17(b) shows them for the 7=2

precedence graph, for the example of figure 2-15. Finally, the Hu level schedul

ing algorithm simply schedules available nodes with the highest level first.

(a)

(b)

Figure 2-17:
(a) An acyclic precedence graph for 7 =1with levels indicated.
(b) An acyclic precedence graph for 7 - 2with levels indicated.

58

SYNCHRONOUS DATA FLOW 60

how many instances of each node have been put into the precedence graph. We

let L designate an arbitrarily ordered list of all nodes in the graph.

INITIALIZATION:

i«0;
q(0) = o;

THE MAIN BODY:

while nodes are runnable {
for each oc e L {

if a is runnable then {
create the (qa(i)+lYh instance of the node a;
for each input arc a on a {

let 7) be the predecessor node for arc a;
compute d using equation (2.7);
if dO then let d«=0;
establish precedence links with the first d instances of 17;

i
let v(i) be a vector with zeros except a 1 In position at;
letb(i+l) = b(z)+rv(i);
let i-i+1;

I
)

)

This algorithm has been programmed in LISP as part of the Gabriel system, an

experimental synchronous data flow programming environment. The examples

in chapter 5 were all scheduled using this program.

2.6. LIMITATIONS OF THE MODEL

We rely on experience to claim that most signal processing systems are ade

quately described by SDF graphs. However, the model does not describe all sys

tems of interest. In this section, we explore some specific limitations.

SYNCHRONOUS DATA FLOW 59

When there are more available nodes with the same highest level than there are

processors, a reasonable heuristic is to schedule the ones with the longest run

time first. Such an algorithm produces the schedules shown in figure 2-16, the

optimal schedules for the given precedence graphs. More elaborate examples are

given in chapter 5.

We now give a class S algorithm that systematically constructs an acyclic

precedence graph. First we need to understand how we can determine when the

execution of a particular node is necessary for the invocation of another node.

Consider a SDF graph with a single arc a connecting node t) to node a.

Assume this arc is part of a SDF graph with topology matrix T. The number of

samples required to run a j times is —j Taa, where Taa is the entry in the

topology matrix corresponding to the connection between arc a and node a. Of

these samples, ba are provided as initial conditions. If ba ^—j Taa then there is

no dependence of the jth run of ot on 7). Otherwise, the number of samples

required of tj is —j Taa —ba. Each run of t> produces Tay) samples. Therefore,

the jth run of a depends on the first d runs of *n, where

d=\ -JT°°-b° |, (2.7)

where the notation [— | indicates the ceiling function.

Now we give a precise algorithm. We assume that we are given the smal

lest integer vector q in the nullspace of T and the " best" multiple 7, so that we

wish to construct an acyclic precedence graph with the number of repetitions of

each node given by 7 q. We will discuss later how we get 7. Each time we add

a node to the graph we will increment a counter i, update the buffer state b(i),

and update the vector q(x) defined in equation 2.6. This latter vector indicates

SYNCHRONOUS DATA FLOW 61

2.6.1. Conditionals

The SDF model permits conditional control flow within a node, but not on

a greater scale. While large scale conditional control flow is a mainstay in gen

eral purpose computing, it is rare in signal processing. Occasionally, however, it

is required, and therefore must be supported by any practical programming sys

tem. Two types on conditional control may be required, data dependent or state

dependent. An example of a system with data dependent control flow contains

a node that passes its input sample to its first output if the sample is less than

some threshold, and to its second output otherwise. Such a node is an asynchro

nous node, because it is not possible to specify a priori how many samples will

be produced on each output when the node is invoked. Systems with asynchro

nous nodes are dealt with in the next subsection.

State dependent control flow refers to such control structures as iteration,

where the number of iterations does not depend on data coming into the system

from outside. Such iteration is easily handled by the SDF model. On a small

scale, of course, it may he handled entirely within a node. On a larger scale, it

may be handled by replicating a node as many times as required. The iteration

is then managed by the scheduler.

2.6J2. Asynchronous Graphs

Although rare in signal processing, asynchronous graphs do exist. That is,

we can conceive of nodes where the amount of data consumed or produced on

the input or output paths is data dependent, so no fixed number can be specified

statically. The simplest solution is to divide a graph into synchronous sub

graphs connected only by asynchronous links. Then these subgraphs can be

SYNCHRONOUS DATA FLOW 62

scheduled on different processors with an asynchronous communication protocol

enforced in interprocessor communication. Such a protocol is generally readily

available in multiprocessor systems. The asynchronous links are then handled

by the scheduler as if they were connections to the outside world (discussed in

the next subsection).

Another solution that is not so simple but may sometimes yield better per

formance in exceptional circumstances, is to implement a run time supervisor, as

done in[Mess84b, Mess84a]. The run time supervisor would only handle the

scheduling of entire synchronous subsystems, a much smaller task than

scheduling all the nodes.

2.63. Connections to the Outside World

The SDF model does not adequately address the possible real time nature of

connections to the outside world. Arcs into a SDF graph from the outside world

are ignored by the scheduler. It may be desirable to schedule a node that col

lects inputs as regularly as possible, to minimize the amount of buffering

required on the inputs. As it stands now, the model cannot reflect this, so

buffering of input data is likely to be required.

2.6.4. Data Dependent Run Times

In the construction of a PAPS, we assume the run time of each node is

known a priori. The run time, however, may be data dependent. However, in

hard real time applications, it must also be bounded, independent of the data.

The schedule must perform even with worst case data that causes maximum

run times for all nodes. In this situation, there is no disadvantage to scheduling

SYNCHRONOUS DATA FLOW 63

using the worst case run times.

2.7. CONCLUSION

This chapter describes the theory necessary to develop a signal processing

programming methodology that offers programmer convenience without

squandering computation resources. Programs are described as synchronous data

flow graphs, where connections between nodes indicate the flow of data samples,

and the function of each node can be specified using a conventional programming

language. Blocks are executed whenever input data samples are available. The

advantages of such a description are numerous. First, it is a natural way to

describe signal processing systems, where the nodes are second order recursive

digital filters, FFT butterfly operators, adaptive filters, and so on. Second, such

a description exhibits much of the available concurrency in a signal processing

algorithm, making multiple processor implementations easier to achieve. Third,

nodes are modular, and may be re-used in new system designs. Nodes are

viewed as black boxes with input and output data streams, so re-using a node

simply means reconnecting it in a new system. Fourth, multiple sample rates

are easily described under the programming paradigm.

We describe high efficiency techniques for converting a large grain data flow

description of a signal processing system into a set of ordinary sequential pro

grams that run on parallel machines (or, as a special case, a single machine).

This conversion is accomplished by a large grain compiler so called because it

does not translate a high level language into a low level language, but rather

assembles pieces of code (written in any language) for sequential or parallel exe

cution. Given the number of samples produced or consumed by any node on

SYNCHRONOUS DATA FLOW 64

each invocation, techniques are given (and proven valid) for constructing

sequential or parallel schedules that will execute deterministically, without the

run time overhead generally associated with data flow. For the multiprocessor

case, the problem of constructing a blocked schedule that executes with max

imum throughput is shown to be equivalent to a standard operations research

problem with well studied heuristic solutions that closely approximate the

optimum. Given these techniques, the benefits of large grain data flow program

ming can be extended to those signal processing applications where performance

demands are so severe that little inefficiency for the sake of programmer con

venience can be tolerated. The next chapter discusses bounds on the perfor

mance of a parallel schedule, optimal blocking factors, cutset transformations

for improving a schedule for a given blocking factor, and techniques for minim

izing memory dedicated to buffering.

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE

In the last chapter we derived necessary and sufficient conditions for the

existence of periodic admissible sequential schedules for a SDF graph and gave

algorithms for both sequential and parallel scheduling. The periodic schedules

generated are blocked schedules, meaning that one cycle is completed before the

next is begun. In this chapter we assess the limitations of blocked schedules and

describe techniques for improving performance.

Recall if q is the smallest positive integer vector in the nullspace of the

topology matrix, and 7 is the blocking factor, then 7q tells us how many times

each node will be scheduled in one cycle of a periodic schedule. For some SDF

graphs, it is possible to improve the performance of a blocked schedule for a

given blocking factor by rearranging and adding delays to a graph. The basic

technique is the cutset transformation, explained in section 3.1. However, even

with such techniques, it is not always possible to construct a blocked schedule

that performs as well as any unblocked schedule. To study the absolute

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 66

performance of blocked schedules, we need to understand the bounds on perfor

mance imposed by the structure of the algorithm.

For DSP applications in which algorithms are applied to an infinite stream

of data, it is sometimes possible to take advantage of any number of parallel

processors to arbitrarily increase the throughput. Most algorithms, however,

involve some form of recursion, or feedback, in which an output is a function of

previous outputs. Such recursions appear in SDF graphs as directed loops. Any

algorithm involving recursive computations has an upper bound on its

throughput, denned loosely as the number of outputs that can be computed per

unit time. (More precise terminology is given in section 3.2.) Often it is possible

to modify the realization of the algorithm to get unbounded throughput (See for

example[Lu85a]), but given a realization of an algorithm, the throughput is

bounded if there is recursion. If the throughput is bounded, then there is a limit

on the number of parallel processors that can be used effectively.

For a special case of SDF graphs with a single sample rate, a bound on the

throughput is the worst case computation time in a directed loop divided by the

number of delays in the loop[Fett76a, Renf81a]. This result is reviewed in sec

tion 3.2. In section 3.3 we give a systematic method for transforming a general

SDF graph into such a single-sample-rate SDF graph so that we can compute the

throughput bound for general SDF graphs using this bound.

Once the bound on the throughput for general SDF graphs is known, we

would hope that with an optimal blocking factor and enough processors, the

bound can be met using a blocked schedule. Unfortunately, as we show in sec

tion 3.4, the optimal blocking factor is not always finite. In such circumstances,

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 67

restricting ourselves to blocked schedules implies an engineering tradeoff

between approximating the throughput bound with a large blocking factor and

minimizing the memory required by the realization. Alternatively, given the

systematic method for translating a general SDF graph into a single sample rate

SDF graph, the techniques given by Schwartz[Schw85a] can be used to construct

cyclo static schedules. Cyclo static schedules, unlike blocked schedules, overlap

successive cycles such that the throughput bound is always achievable. Unfor

tunately, the method Schwartz gives for constructing cyclo static schedules is

exponential in complexity. Schwartz argues that for practical applications the

complexity is manageable if we construct a schedule with maximum throughput

using the minimum number of processors. The search for the solution is

sufficiently constrained that most alternatives can be immediately rejected, so

the algorithm runs quickly enough, at least for simple examples. In the case of

the it processor, the number of processors is fixed a priori, and we wish to find

the schedule that maximizes the throughput. The search is not adequately con

strained, and all but the most trivial examples may not be solvable in a reason

able time. Therefore, for cyclo static scheduling to be applied to the it proces

sor, a polynomial time algorithm (or heuristic) must be found.

Finally, in section 3.5, we describe techniques for minimizing of the

amount of memory dedicated to buffering data. This is done through scheduling

to minimize the maximum length of buffers and/or memory allocation so that

multiple buffers share the same memory locations.

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 68

3.1. CUTSET TRANSFORMATIONS

Given a SDF graph, it is often possible to systematically manipulate the

delays in the graph to enhance the parallelism and improve the throughput of a

schedule with a particular blocking factor. This is done through cutset transfor

mations. A simple example is illustrated in figure 3-1. The toplology matrix is

_ [l -1 0
r~ [o 1 -1

and the smallest positive integer vector in its nullspace is q = [l,l,lF. The SDF

graph in figure 3-1(a) has the acyclic precedence graph in figure 3-1(b) for 7=1,

where 7 is the blocking factor. There is no evident concurrency in the pre

cedence graph, and only one processor can be effectively used. However, putting

delays on the feed-forward arcs as shown in figure 3-1 (c) does not usually alter

the computation. This is analogous to pipelining, and greatly increases the con

currency evident in the acyclic precedence graph for the 7=1, shown in figure

3-1 (d). If the three nodes have equal execution time, then three processors can

be block-scheduled on three processors with 100% utilization.

The above simple example illustrates a principle that is quite useful. Con

sider any feed-forward cutset of a SDF graph. A cutset is a set of arcs that cross

a closed surface in the graph (or curve, for a planar graph). The closed surface

(or curve) cannot touch any node in the graph. Figure 3-2 shows the graph of

figure 3-1 with the closed curves corresponding to the two cutsets on which we

put the delays. A feed-forward cutset is one for which the directed arcs all go

in the same direction across the surface.

For multiple-sample rate SDF graphs we cannot simply put an equal

number of delays on all arcs in the cutset. Consider the example shown in

0^0^0 (a>-(T^0
(a)

A ^^TbV^C

(c)

(b)

©
B

<<0

Figure 3-1:

(a) A synchronous data flow graph without directed loops.

(b) It's precedence graph for unity blocking factor.

(c) A pipelined synchronous data flow graph.

(d) It's precedence graph for unity blocking factor, showing much more con
currency.

69

i /

i f
i i
\

\ \

1 \ X
B

\

\

1 \
L

D/

70

Figure 3-2: The SDF graph of figure 3-1 with the curves corresponding to the
cutsets on which we put the delays.

Figure 3-3: A multiple-sample-rate SDF graph with the proper delays on the
feedforward cutset.

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 71

figure 3-3. If we put a unit delay on each arc in the cutset, we would not

achieve pipelining (because node 2 cannot be invoked until node 1 is invoked

once) and we would probably alter the computation. The proper number of

delays is illustrated in the figure. To systematically determine the number of

delays appropriate to pipeline a graph across a feed-forward cutset we need the

notion of consolidating a subgraph.

Given a cutset, we wish to reduce the sub-graphs on either side of a cutset

to single nodes, as shown in figure 3-4. The graph in figure 3-4(b) is said to be

consolidated. We can determine the numbers a i through a4 and b\ through bA

as follows. Define TA to be the topology matrix for the subgraph inside the

cutset curve and TB to be the topology matrix for the subgraph outside the

curve. These subgraphs do not include the arcs in the cutset. Compute q^ and

q^, the smallest positive integer vectors in the nuUspaces of the respective

topology matrices. For the example shown in figure 3-4(a), we can determine

q^ and qB by inspection,

<U = q* =

Invoking the subgraph once means invoking each node in the subgraph the

number of times specified by q^ or q^. To determine the number of samples

produced on each arc out of the consolidated subgraph on each invocation, sim

ply multiply the number of samples produced on that arc in the unconsolidated

graph by the entry in q^ corresponding to the node connected to that arc. The

figure shows the values of ax through aA and bx through b4 computed in this

(a)

(b)

d2

d3

a4=K?
d4

"^=V^=4

Figure 3-4: The nodes on either side of the cutset in (a) are consolidated in (b).

72

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 73

way.

Pipelining across a feed-forward cutset will be denned as adding delays to

the cutset such that the consolidated destination node can be immediately

invoked an integer number of times, and after such invocation, the buffers

corresponding to the cutset arcs will have the same number of samples that

they had before pipelining. Define the vectors a and b to contain the number of

samples consumed and produced on the cutset, so that for the example in the

figure,

a = b =

Also, define the vector d to contain the delays on the arcs in the cutset. Now to

pipeline across the cutset, we can let

d = nb

for any positive integer n. In chapter 5, pipelining the voiceband data modem

example results in a considerable improvement in the achievable throughput

with a blocked schedule.

The notion of altering the delays on cutsets in a SDF graph can be general

ized. To show how this might be useful, consider the example in figure 3-5(a),

which has a precedence graph for 7=1 shown in figure 3-5(b). Assuming all the

run times are unity, for unit blocking factor, the critical path of the precedence

graph is three, so the schedule period cannot be less than three. However, if the

delays are rearranged as shown in figure 3-5(c), getting the precedence graph in

3-6(d), the critical path length is only two, so a schedule period of two is

achievable with unity blocking factor. This technique is called retiming and has

(a)

B

(c)

B) H C) 4 A

(b)

(d)

74

Figure 3-5: The SDF graph of (a) has precedence graph (b) for / = 1, indicating
that its critical path includes all three nodes. If one of the delays is migrated
across'B, as shown in (c), then the precedence graph (d) shows a shorter critical
path.

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 75

been successfully applied to maximizing the throughput of clocked digital

circuits[Leis83a].

The transformation from figure 3-5(a) to 3-5(c) can be viewed as migrating

one of the delays across node B. This is equivalent to running node B once

before we begin the periodic schedule, clearly an admissible operation. Alterna

tively, the delay migration can be viewed as a cutset transformation, as done by

Kung for single-sample-rate SDF graphs[Kung84a]. The cutset is shown in

figure 3-6. The cutset transformation given by Kung is to put a fixed delay on

any arc entering the cutset region and put an identical negative delay to any arc

leaving the cutset region. In other words, positive delays can be put on arcs

going one direction in the cutset if negative delays are put on arcs going the

other way. Negative delays are like z operators in signal processing, as opposed

to z~l. Negative delays don't usually make much physical sense for infinite

periodic computations, but can be used to offset other positive delays on the

same arc

Kung's transformation is easily extended to multiple sample rate SDF

graphs. Given any cutset in a general SDF graph, the graph may be consolidated

as shown in figure 3-4. Define the vectors

a =

<*1 "*i

*n

-a;v+i
b =

—bN

"aN+M bjv+M

These vectors contain the information about the number of samples consumed

and produced on the cutset arcs by each invocation of the consolidated nodes A

76

(b)

(a) 1

•K Bnj >(cy
(c)

M B M C

Figure 3-6:

(a) Transformations on the illustrated cutset can be used to improve the
schedule for fixed blocking factor /. This is called retiming.

(b) The consolidated graph.
(c) Acyclic precedence graph with a blocking factor of two. Note that retiming

will be less useful as the blocking factor is increased.

Figure 3-7: Cutset transformations are sometimes possible on cutsets with arcs
going both ways. The nodes on either side of this cutset are shown consoli
dated.

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 77

and B. Positive numbers indicate samples produced while negative samples indi

cate samples consumed. Now define the cutset delay vector to be

a =

d =

1

-1

dN

dN+l

dN+M

As before we can put delays on the cutset arcs that are any integer multiple n

(positive or negative) of the b vector

d = nb.

If n is positive, the delays going from right to left are negative. These delays

should be added to any delays already on the arcs. The graph is essentially

symmetric, so we could also put delays on the cutset arc that are any integer

multiple of the a vector.

Returning now to the example in figures 3-5 and 3-6, we see that

b =

and the pre-existing delay can be written

d„ =

-1

1

To get the graph of figure 3-5(c), let n =1 to get the new delay vector

d! = d0 + n b =

In general, cutset transformations are less useful as the blocking factor

increases. The acyclic precedence with a blocking factor of two for the example

in figure 3-5(a) is shown in figure 3-6(c). Notice that the critical path is the

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 78

same as with unity blocking factor. Suppose that the run time of each node is

unity. Then with a blocking factor of two, the critical path has length three, so

a schedule can be constructed that executes each node twice in every cycle of

length three. This outperforms any blocked schedule using the retimed graph of

figure 3-5(c) with unity blocking factor, which requires a period of two to exe

cute each node once. We will see in the next section that the throughput that

we can get with a blocking factor of two cannot be exceeded by any schedule.

Furthermore, in the limit, with infinite blocking factor, retiming is useless.

Retiming is a useful technique when we are constrained to use a fixed

blocking factor, or we wish to minimize the cost of implementing a schedule by

minimizing the blocking factor. To determine how well we can expect to do, we

need to understand the limits of the performance we should expect from a

schedule for a given SDF graph.

3.2. THE BOUND ON THE COMPUTATION RATE

Recall that /q, the blocking factor multiplied by the smallest positive

integer vector in the nullspace of the topology matrix, tells us how many times

we are to schedule each node in one cycle of a periodic schedule. Define the

schedule period Sj (<t>) to be the amount of time a particular schedule <f> (with

blocking factor 7) requires for one cycle. Assume as in the previous chapter

that the schedule is strictly blocked, meaning that each cycle must be completed

before the next cycle is begun. The schedule period is not a good measure of the

performance of a schedule because it increases with the blocking factor J but

does not reflect the fact that more work may be done per cycle.

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 79

The vector q contains the number of times each node gets invoked in a

schedule with unity blocking factor, and is therefore a measure of the minimum

amount of work done in one cycle. With a larger blocking factor J, the amount

of work done is always an integer multiple J of this. We define the iteration

period Tj (<£) for the schedule 0 to be the normalized schedule period

This is a better measure of the performance of the schedule because two

schedules with different blocking factors can now be compared; the one with a

smaller iteration period has a greater computation rate. The computation rate of

a schedule <t> is defined to be 1/ Tj(<t>)' The iteration period is the average

amount of time taken to invoke each node the number of times given in the vec

tor q. Define the minimum iteration period over all periodic admissible parallel

blocked schedules <t> with blocking factor J to be

Tj =min7>(0).

The minimum iteration period is the reciprocal of the maximum achievable com

putation rate for a fixed blocking factor. It is equal to the computation time of

the critical path in the acyclic precedence graph divided by the blocking factor

(if a processor is dedicated to each node in the precedence graph, then then the

computation time for one iteration will equal the computation time in the criti

cal path, and the computation time cannot be reduced further). The iteration

bound T^ is the minimum Tj over the extended positive integers J (i.e.

1 <J <oo),

T— = min 7> = min min =—
J J J 4> J

Although the iteration bound is defined here in terms of blocked schedules, it is

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 80

clear that no unblocked schedule can undercut the iteration bound, because with

J — oo , any unblocked schedule is also a blocked schedule. Hence the iteration

bound is the reciprocal of an absolute upper bound on the computation rate.

For practical scheduling, in section 3.4 we discuss trying to find a finite value

for J such that Tj = T^. It turns out that such a / does not always exist

One might conjecture that the minimum iteration period Tj is non-

increasing with 7, but this is not so. Consider the example in figures 2-15

through 2-17. The methods of the previous chapter can be used to construct an

acyclic precedence graph for each J, and the critical path length of the acyclic

precedence graph can be identified. The results are given in the following table.

J Critical path Tj
1 4 4.0

2 7 3.5

3 11 3.667

4 14 3.5

5 18 3.6

6 21 3.5

We will see that the iteration bound is 3.5, which can be met with blocked

schedules with any even blocking factor, but cannot be met with any finite odd

blocking factor. Clearly, the non-increasing conjecture is not true.

The iteration bound is easily determined for SDF graphs where the number

of samples produced or consumed is unity for all arcs. We will call such a

graph a homogeneous SDF graph. Homogeneous SDF graphs obviously have the

same sample rate throughout (but not all single-sample-rate SDF graphs are

homogeneous, see figure 3-8). Also, the vector q=[l,**-,lF is in the

nullspace of the topology matrix, which is populated only with ±1, so a

81

Figure 3-8: A single-sample-rate SDFgraph that is not homogeneous.

Figure 3-9: Atwo-sample output can be replaced with two one-sample outputs
to transform a general SDF graph into a homogeneous SDF graph.

A£>
Figure 3-10: Athree-sample input can be replaced by three one-sample inputs
to transform a general SDF graph into a homogeneous SDF graph.

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 82

schedule with unity blocking factor will run each node once per period. For

homogeneous SDF graphs, Renfors and Neuvo give a tight lower bound on the

iteration period, which equals the iteration bound because it is

tight[Renf81a,Fett76a, Schw85a]. We review this bound in this section. The

iteration bound for multiple sample rate SDF graphs will be discussed in section

3.3.

Given any feedforward cutset in the graph, the iteration bound is deter

mined by the maximum of the iteration bounds of the right or left subgraphs.

This follows from our ability to decouple the right or left subgraphs using pipe

lining, as discussed in the previous section. As a consequence, we need only con

sider subgraphs with no feedforward cutsets, and determine the maximum

iteration bound of all such subgraphs. Every node in a subgraph with no feed

forward cutsets is in a directed loop, so we need only to consider directed loops.

Any implementation of a homogeneous SDF graph has a sample period T,

which can be denned as the average amount of time between samples on any

signal path. The sample period T equals the iteration period because each node

is run once per iteration period and consumes or produces one sample on each

signal path.

Call the set of directed loops in a graph A and consider a loop X € A If all

the nodes in the loop have zero execution time, then each logical delay in the

loop corresponds to a time delay of T. Since the nodes in the loop generally

have non-zero execution times, the actual time delay corresponding to each logi

cal delay is less than T. Renfors and Neuvo call this actual time delay a shim

ming delay. It can be understood as the time a sample is delayed when it

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 83

encounters a logical delay, for a given implementation. It is obvious that all

shimming delays must be non-negative. Call the total computation time in a

loop Cx, the number of logical delays N\ >0, and the total shimming delay S^.

Then

CX + SX = NXT.

Since 5 x >0,

r > Cx

This implies that the sample period must be greater than or equal to the compu

tation time of each loop divided by the number of logical delays in the loop.

The Renfors and Neuvo bound on the sample period is therefore

T >J0 = max _-i. (3.1)
xca yvx

Any loop A. € A such that

is called a critical loop.

The iteration bound T^ is the best achievable iteration period over all

blocking factors, so to keep the shimming delays positive, a realization has a

sample period satisfying

T >roo>r0 = max —!.
XcA NK

To show that 7^ = T0 we simply need to show that

T = max —-
Xea yvx

is achievable. Schwartz proves this for reachable graphs by elaborating and elu

cidating the proof by Renfors and Neuvo[Renf81a, Schw85a]. A reachable graph

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 84

is defined to be a SDF graph with a directed path from a unique "input" node to

all other nodes in the graph. Any connected homogeneous SDF graph is easily

converted into a reachable graph by defining a new node with zero execution

time and establishing an arc from that node to any node that is otherwise not

reachable. Schwartz's proof is by construction of an implementation that

achieves the iteration bound, but since at least one processor is required for each

node in the graph, there is no intention that the constructed implementation be

efficient.

In conclusion, the Renfors and Neuvo lower bound T0 on the sample period

T for a realization of a homogeneous SDF graph is the maximum (over all

directed loops) of the loop computation time divided by number of delays in

the loop. This bound is equal to the iteration bound T^ , the best achievable

iteration period. Determining this bound for general SDF graphs is not so easy.

In the next section we show that general SDF graphs can be systematically

transformed into homogeneous SDF graphs.

3.3. TRANSFORMING GENERAL SDF GRAPHS INTO HOMOGENEOUS

SDF GRAPHS

In the previous section we reproduced a bound on the iteration period for

homogeneous SDF graphs, which are single-sample-rate SDF graphs where the

number of samples produced and consumed by each node is unity. The iteration

bound is the reciprocal of the best (maximum) achievable computation rate. To

find the bound for general SDF graphs, we can convert the graphs into

equivalent homogeneous SDF graphs. By "equivalent" we mean that any

schedule that is admissible for the general SDF graph will also be admissible for

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 85

the homogeneous graph, and vice-versa. Every node producing more than one

sample on an output arc for each invocation can be replaced with a node that

produces one sample each on several parallel output arcs, as shown in figure 3-9.

We do the same with inputs, as shown in figure 3-10. These transformations

suggest that multiple samples are passed from one node to another in parallel,

but we generally need to preserve the ordering of samples. For example, com

plex numbers might be passed as a sequence of two numbers, the real part fol

lowed by the imaginary part, so the order is important. We adopt the conven

tion that for any group of input arcs such as those in figure 3-10, the samples

are ordered top to bottom, as shown.

Using these transformations, the nodes in figure 3-11(a) may be connected

as shown in figure 3-11(b). If there is a unit delay on the arc, the connection is

a little more complicated, as shown in figure 3-12. The first sample consumed

by B is the sample in the buffer initially put there to implement the delay. The

second sample consumed by B is the first sample produced by A. In general, the

rule for handling delays is as follows.

(1) Each delay on an arc that is being replaced by parallel arcs causes a circular

permutation of the parallel arcs. A single circular permutation of the set of

parallel arcs in figure 3-13(a) means that the bottom arc crosses over the

other arcs to become the top arc, as shown in figure 3-13(b). A double cir

cular permutation is shown in figure 3-13(c).

(2) Each delay on an arc that is being replaced with parallel arcs becomes a sin

gle delay on the permuted parallel arcs, starting at the top. The single

delay in figure 3-14(a) becomes the single delay in figure 3-14(b), and the

B

(a) (b)

Figure 3-11: An arc with the same number of samples consumed and produced
is easily transformed into parallel homogeneous arcs.

i0

Figure 3-12: A delay on an arc causes a circular permutation of the parallel
homogeneous arcs, as shown.

86

(a)

(b)

(c)

Figure 3-13:
(a) Unpermuted parallel homogeneous arcs.
(b) A single circular permutation.

(c) A double circular permutation.

87

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 88

double delay in 3-14(c) becomes the two single delays in figure 3-14(d).

Obviously, if the number of delays equals the number of parallel arcs, as

shown in figure 3-14(e), then the arcs are not permuted (equivalent to per

muting N times) and each arc gets a single delay. If there are M >N

delays, then put a delay on each arc and apply this procedure assuming

M mod N delays.

This general procedure will preserve the ordering of samples for the special

case when the nodes on either side of an arc produce and consume the same

number of samples. But what do we do when this is not so? Consider the

example in figure 3-15(a). This can be converted to the homogeneous SDF graph

shown in figure 3-15(b). Here, At means the ith invocation of A. To do this

systematically, observe that for the graph in figure 3-15(a),

3q=|2
is the smallest positive integer vector in the nullspace of the topology matrix.

Thus, for unit blocking factor, node A must be invoked three times and node B

twice. These invocations become separate nodesin the homogeneous SDF graph.

The "equivalence" of the two graphs is guaranteed, however, in that any

schedule that works for the general SDF graph will also work for the homo

geneous SDF graph, and vice-versa.

If there are self-loops, as shown in figure 3-15(c), then the multiple invoca

tions of each node are chained together and put into one big loop as shown in

figure 3-15(d).

Each set of replicated nodes can now be consolidated, as shown in figure 3-

4, and the delay operations noted above applied to the parallel arcs connecting

89

N AT>
d \^/

(a) (b)

N aT>
2D v_y

(c)
(d)

N y^
nd _y

(•) (f)

Figure 3-14: SDF graphs with varying numbers of delays (a,c,e) and homogene
ous SDF graphs with the delays properly placed (b,d,f). The ones are omitted
from (d) and (f) for clarity.

90

B

(a)

Ofy-*®
n xi

(c)

v_y

Figure 3-15: Two transformations of multiple-sample-rate SDF graphs into
homogeneous SDF graphs using parallel data flow paths. The transformation
from (c) to (d) shows how self-loops are handled.

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 91

the two consolidated nodes.

Let us illustrate the procedure by computing the iteration bound for the

multiple sample rate SDF graph of figure 3-16(a). Notice that the logical delay

on the path A—*B does not correspond to the same time delay as the logical

delay on the path B—»C, because the sample rates on these two paths are

different. To transform this graph into a homogeneous SDF graph, solve for the

smallest integer vector in the nullspace of the topology matrix,

2

q= 1

1

where we have assumed that the nodes are numbered in alphabetical order.

Replicate node A twice and chain the replicated nodes as shown in figure 3-

16(c). The other two nodes are not replicated. The delay on the path A-*B

causes the circular permutation as shown. The two arcs onC-»A are not per

muted because there is no delay. Knowing the execution times of each of the

nodes, we can now compute the iteration bound for the homogeneous SDF graph

of figure 3-16(c). If the computation times of all the nodes are unity, then the

bold path in the figure is the critical loop. It has a computation time of Cx = 3

and only one delay, so the iteration bound is three. One cycle of a blocked

schedule with unit blocking factor that achieves this bound with two processors

is shown in figure 3-16(d).

Now that we have a method for computing the iteration bound of a general

SDF graph, we wish to determine what blocking factor, if it is bounded, we

should use to construct a blocked schedule that matches the bound.

(c)

(d) PR0C1: C B

PROC 2: Ai A2

92

(b)

Figure 3-16:

(a) A multiple-sample-rate SDF graph.

(b) An acyclic precedence graph for unity blocking factor.

(c) An equivalent homogeneous SDF graph.
(d) One period of a blocked schedule with unity blocking factor that achieves

the iteration bound of three.

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 93

3.4. THE OPTIMAL BLOCKING FACTOR

Unfortunately, the problem of systematically finding the optimal blocking

factor is still open. An optimality condition was conjectured by

Schwartz[Schw85a] (page 46), but unfortunately it is only a necessary and not

sufficient condition for being able to construct a blocked schedule that achieves

the iteration bound. We will show instead that the blocking factor that

achieves the iteration bound does not always exist, and suggest heuristic solu

tions. When the optimal blocking factor does not exist, no blocked schedule can

meet the iteration bound. Interestingly, the modem example described in

chapter 5 does not benefit at all from a blocking factor greater than unity.

To understand Schwartz's conjecture on the optimality condition for the

blocking factor, it is necessary to understand the mechanics of Schwartz's block

ing. Consider the homogeneous SDF graph in figure 3-17(a). Assume that the

run time of each node is unity. Then T0 = 3 (with or without implicit self-

loops), where T0 is the Renfors and Neuvo bound, equal to the iteration bound.

If we wish to construct a schedule for the blocking factor J =2, then using the

technique of the previous section we would construct the acyclic precedence

graph shown in figure 3-17(b). Schwartz, instead, constructs an analogous SDF

graph, called a blocked graph, with twice as many nodes, as shown in figure 3-

17(c). Notice that if we break the arc with the delay, then we have exactly the

precedence graph of 3-17(b). Not surprisingly, the systematic technique given

by Schwartz for constructing the blocked graph is somewhat similar to the algo

rithm given above for constructing the acyclic precedence graph. The iteration

bound for the graph in 3-17(c) is T0 = 6, so Schwartz defines the iteration

(a)

(b)

(c)

94

B, Wc B M Ci

Figure 3-17:
(a) A single-sample-rate SDF graph.
(b) A precedence graph for 7 =2.
(c) A homogeneous SDF graph representing the graph in (a) with a blocking

factor 7 = 2 [Schw85].

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 95

bound per output To/o to be the iteration bound divided by the blocking factor.

This terminology becomes awkward when multiple sample rates are considered,

but works acceptably well for homogeneous graphs.

For the example in figure 3-17, there is no scheduling advantage to any

blocking factor greater than unity, so although the example is useful to demon

strate Schwartz's blocked SDF graphs, it is not an interesting example. Consider

instead the example in figure 3-18. With unity run times, the Renfors and

Neuvo bound is T0 = 3/ 2. With a blocking factor of unity, the minimal

schedule period is S\ = 3, so the minimal iteration period is Tx = 3, which is

short of the optimum by a factor of two. However, with a blocking factor of

7=2, the acyclic precedence graph is shown in figure 3-18(b), the minimal

schedule period is S2 = 3, achievable for two or more processors, so the minimal

iteration period equals the iteration bound

T2 = T0 = 3/ 2.

Recall that the length of the critical path in the acyclic precedence graph deter

mines the minimum achievable schedule period Sj. Schwartz's blocked graph

with a blocking factor of two is shown in figure 3-18(c). Just like the pre

cedence graph 3-18(b), the blocked SDF graph shows two independent systems

with three nodes each. Again, if the arcs with delays are broken, the blocked

graph is identical to the precedence graph. The iteration bound is three and the

iteration bound per output is 3/2.

According to Schwartz, the iteration bound can be met if the blocking fac

tor 7 is large enough that the iteration bound for the blocked graph is an

integer. This requires that the numerator in equation (3.1) be an integer multi-

96

(a)

Bo A0

(b)

B Ci

(c)

Figure 3-1&
(a) A homogeneous SDF graph.

(b) A precedence graph for 7 = 2.
(c) A homogeneous SDF graph representing the graph in (a) with a blocking

factor 7 = 2 [Schw85].

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 97

pie of the denominator for the critical loop in the blocked graph. This blocking

factor can always be found, and is always finite. However, for blocked

schedules, in which we require that each period of the periodic schedule com

plete before the next period begin, this condition on 7 is only necessary and not

sufficient. The counter-example to Schwartz's conjecture in figure 3-19(a)

requires an infinite blocking factor to achieve the iteration bound. Assume unit

run times. There are two loops in this graph, but the critical loop is the one

including nodes 2 and 4. This loop sets the iteration bound at J0 = 2. For the

blocking factor of unity, the iteration bound of the graph is an integer, so

Schwartz's conjecture indicates that unity is the optimal blocking factor. How

ever, the iteration bound cannot be met by any blocked schedule for any finite

blocking factor. The acyclic precedence graphs for 7=1, 7=2, and 7=3 are

shown in figure 3-20, with the critical path indicated with heavier lines. The

length of the critical path increases by two each time 7 is increased, so the best

achievable schedule period for a blocked schedule is

Sj = 1 + 27.

The best iteration period is therefore

This iteration period is always greater than the iteration bound T0 = 2 for any

finite 7.

Schwartz proposes cycle static schedules, rather than blocked schedules, to

avoid the cost of blocking. For the example of 3-19(a), the cydo-static schedule

of figure 3-19(b) achieves the iteration bound. This suggests that using

Schwartz's cyclo-static scheduling on the transformed homogeneous SDF graphs

98

(a)

(b)
3 1

4 2

Figure 3-19:
(a) A homogeneous SDF graph for which no blocked schedule achieves the

iteration bound with finite blocking factor.

(b) A cyclo static schedule for this graph.

99

(a)

(b)

(c)

Figure 3-20: Acyclic precedence graphs for the SDF graph of figure 3-19 for (a)
7 - 1, (b) 7 - 2, and (c) 7-3. The critical paths are indicated with the bold
branches.

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 100

may yield better schedules than the Hu level scheduling algorithm proposed in

the previous chapter. However, the method proposed by Schwartz for finding

the cyclo static schedule has complexity that is exponential in the number of

nodes. For the problem of constructing a schedule that matches the iteration

bound with the minimum number of processors the complexity is manageable,

at least for simple examples, because of the optimality constraints. But our

problem is to construct schedules that maximize the throughput subject to a

constraint on the number of processors, and in this case, Schwartz's search

method becomes intractable for all but the most trivial examples.

The conclusion, therefore, is that the technique conjectured by Schwartz for

determining the optimal blocking factor does not work for blocked schedules,

and for some graphs the optimal blocking factor is infinite So no systematic

technique is known for determining the optimal blocking factor. The theory has

not even begun to tackle the problem of determining the optimal blocking factor

when the number of processors is smaller than the number required to achieve

the iteration bound.

Until a better solution is proposed, we rely on heuristics for determining 7.

A useful observation is that as 7 increases, the cost of implementing the

periodic schedule increases because of the memory cost of storing the schedule.

Furthermore, the time required to construct the schedule increases. One possible

technique is to manually increase 7 until each increase results in negligible

improvement in the schedule, or the scheduling requires excessive computer

resources. This is clearly an issue deserving further study.

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 101

3.5, MINIMIZING MEMORY USAGE

To accommodate cost sensitive real-time signal processing applications,

most monolithic programmable DSP chips are microcomputers, with on-board

memory, rather than microprocessors. This makes single-chip implementations

possible if the memory requirements of an application are sufficiently small.

Conserving memory in an implementation is therefore desirable. This section

describes two techniques for minimizing the memory used for buffering data

between blocks. The first method is to construct the schedule such that the

maximum memory usage is minimized. The second method is to share memory

locations among buffers when said buffers do not simultaneously have valid

data.

3.5.1. Scheduling to Minimize Memory Usage

So far, parallel schedules have been constructed to maximize throughput.

Minimizing memory usage might imply a throughput penalty, because the set of

maximum throughput schedules may be disjoint from the set of minimum

memory schedules. For sequential schedules, however, the throughput is con

stant, independent of the schedule, so minimizing memory does not imply a

throughput penalty. For this reason, the problem of scheduling to minimize

memory usage is described herein the context of sequential schedules.

There are two reasonable memory usage criteria we may wish to optimize.

The most straightforward is

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE

Criterion A:

min lT max bin)
0 <n <p

102

where <t> is the schedule, l7 = [1, • • • ,1], p is the schedule period, and b(n) is

the vector of buffer sizes at time n, and the max is computed for each element

of the vector. That is,

max

Criterion A minimizes the sum of memory that must be allocated to each buffer

if memory is not shared among buffers. Alternatively, we could minimize the

total amount of memory dedicated to buffering at any given time;

Criterion B:

min max \Th(n).
$ 0 <n ^p

To take advantage of a schedule constructed according to criterion B, we need a

systematic method for sharing memory locations among buffers. Such a method

is described in the next subsection.

The problem of constructing a schedule that minimizes memory under

either criterion can be formulated as an integer programming problem, or as a

dynamic programming problem. We will do the latter because it gives more

insight. In general, the optimization is combinatorial in complexity, but for

many SDF graphs, the complexity is often manageable because of the constraints

on the problem. A heuristic with polynomial execution time would be desir

able, but is not given in this thesis.

I2
1 •

1

2

2

2

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 103

Define the vector r(n) to be of length s, the number of nodes in the SDF

graph, and to contain the number of times each node has been invoked by time

n. Thus,* if v(n) is the execution vector, indicating which node is invoked at

time n, then

Kn)="l v(y),

r(0)=[0.---,0F=0,

and

rip) = q,

where p is the period of the schedule, and q is a positive integer vector in the

nullspace of the topology matrix. We can now construct a trellis indicating all

possible sequences of vectors r(n), as shown in figure 3-21. In the figure, there

are three possible nodes that we can invoke at time 0, so r(1) has three possible

values. The nodes that can be invoked at time 1 are dependent on the choice

made at time 0, but all admissible paths converge after p stages on rip) = q.

Each path through the graph has a cost, measured as the amount of memory

required under either criterion. The problem is to select the path with the least

cost. This is easily recognized as a dynamic programming problem, because

whenever two paths converge at the same point, the more costly path can be

immediately rejected.

Consider constructing a sequential schedule with unity blocking factor for

the example in figure 3-22. It is easy to see that

2

q= 2

1

is in the nullspace of the topology matrix. The full trellis is shown in figure 3-

• • •

r(0) = r(p-1) r(p) = q

Figure 3-21: Atrellis of admissible sequential schedules.

Figure 3-22: A SDFgraph example.

1

0
3**>w

0

1

1

0

104

Figure 3-23: The trellis of unit blocking factor schedules for the graph in figure
3-22.

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 105

23. The nodes are labeled with r(n) and the arcs with the memory required by

the schedule so far under criterion A. The only decision point is at n =3, where

r(3) = [2,1,0], and the optimal path through the trellis is shown with bold

lines. It is better to run node B before running node A a second time because the

buffer on the arc A -* B will only require one memory location.

3.52. Sharing Buffer Memory

The method illustrated in the previous subsection can be used with either

memory minimization criterion to construct a minimum memory schedule.

Given a schedule, it is sometimes possible to share the same memory locations in

different buffers. The method is applicable for any schedule, regardless of

whether memory use is minimized by the schedule, and therefore is still useful

for multiprocessor realizations where throughput is more important than

minimizing memory usage.

Any given location in any buffer has valid data for only part of each period

of a periodic schedule. Determining when data is valid is an easy byproduct of

constructing the schedule. Define a graph that contains one node for each buffer

location. Connect all nodes that contain valid data at the same time. The prob

lem is to allocate memory locations to nodes such that no two nodes with arcs

connecting them share the same memory location and the total number of

memory locations is minimized. This is equivalent to coloring the graph with

the minimum number of colors such that no neighboring nodes have the same

color. Graph coloring problems in general are NP-complete, but this particular

graph is an interval graph, and interval graphs can be colored in linear

time[Golu80a].

IMPROVING PERFORMANCE OF A PARALLEL SCHEDULE 106

We have not yet implemented the algorithm, so the amount of memory it

will save on practical applications is not clear. A successful technique for

minimizing memory use through both scheduling and memory sharing should

exhibit no increase in the amount of memory required when the granularity of

the SDF graph is changed. That is, the memory required is ideally a function

only of the size of the state required by the algorithm, and not the granularity

of the specification of the algorithm.

Problems that might be encountered in implementing the memory sharing

technique include difficulty reconciling memory sharing with circular buffer

techniques. A processor with programming support for circular buffers usually

requires that the memory in the buffer be contiguous, which imposes an addi

tional constraint on the memory allocation algorithm. A second potential prob

lem is the management of buffers that are used to store past data for future

reference. Such buffers, however, contain part of the inherent state of the sys

tem, so it is probably unreasonable to expect to reduce the memory they require.

In spite of these problems, memory sharing is likely to work well for buffers

with a maximum length of unity, and such buffers are likely to dominate if

scheduling is done to minimize buffer lengths.

THE ^ARCHITECTURE

The impressive performance of monolithic digital signal processors (DSPs)

is moderated by the difficulty of programming them. Hardware techniques such

as extensive pipelining typically increase raw computational power, but if taken

too far, they lead to unwieldy programming. Standard methods for overcoming

this difficulty are effective only for modest amounts of

pipelining[Sher84a, Kogg81a].

The tradeoff between programmability and performance is explored in sec

tion 4.3 by comparing DSPs from different manufacturers, with the conclusion

that maximizing the performance of a moderately pipelined programmable

architecture requires abandoning traditional sequential programming. In addi

tion, extensive pipelining leads to lost resources due to hazardslKoggSla]. To

avoid these difficulties, architects tend to limit their use of pipelining, which

means significant performance sacrifices. Here, architecture is considered together

with programmability, yielding a system solution that permits efficiently

THE IT ARCHITECTURE 108

combining extensive pipelining with simple programming.

In this chapter, we resurrect an old but rarely used architectural technique

to drastically alter the character of a deeply pipelined processor. Instead of a

single program, multiple programs are interleaved in a pipeline. Each program

experiences none of the difficulties of pipelining, and will be consequently easier

to write and optimize, regardless of the amount of pipelining used. However,

multiple processes must now cooperate on a signal processing task, or multiple

signal processing tasks must share the same hardware. In the later case, the

latency of each process will be greatly increased, compared to running on a

non-interleaved pipelined processor. This may be important in some applica

tions, such as control.

In the following chapter we illustrate the use of SDF programming for a it

processor. Very low overhead implementation of such programs on such a pro

cessor is possible. The combination of transparent pipelining in the architecture

and a natural paradigm for expressing concurrency in signal processing systems

makes possible a powerful high level language for high performance signal pro

cessing.

4.1. MONOLITHIC PROGRAMMABLE DSPs

Monolithic programmable DSPs.are usually applied to problems that differ

significantly from general purpose computations. They are consistently numeri

cally intensive, and many are real-time, meaning that the full set of input data

is not available before output data must be computed[Acke82a]. For most such

applications, algorithms are repetitively applied to an essentially infinite stream

of input data. Most of these applications are hard real-time, meaning that the

THE IT ARCHITECTURE 109

time constraints are firm. In other words, the probability of failing to meet a

time constraint must be identically zero. Consequently, probabilistic speedup

techniques that are so effective in general purpose computing, such as cache

memories, are more difficult to use effectively. Hard real-time numerically

intensive applications demand much more performance than general purpose

applications, so I will consider only applications of this type.

When extreme performance is demanded of DSPs, custom VLSI, in princi

ple, has considerable advantages over off-the-shelf programmable devices. The

. hardware can be fine-tuned to provide only the requisite arithmetic precision

and speed for each part of an algorithm. In addition, silicon

compilers[Pope84a, Jhon85a, Kahr84a] have begun to demonstrate their efficacy

by considerably reducing the design effort while maintaining some of the

benefits of custom. However, the performance of programmable devices is not

far behind custom for many applications, and there are considerable disadvan

tages to custom. The design-time for most applications of silicon compilers is

still substantial, greater than the design time for software for programmable

processors. Although silicon compilers are closing the gap, software improve

ments in programmable processors may widen it again. There is substantial

room for improvement in real-time programming for signal processing. The

evaluation-time for custom devices is considerably greater than for programm

able devices. Evaluation of algorithm implementations can either be done in

simulation, or in real-time, using fabricated hardware. Usually, both are

required, especially if the application requires some experimentation with

untried algorithms. Functional simulation clearly offers considerable advantages

in turnaround time, but it generally runs a factor of 100-1000 slower than

THE 7T ARCHITECTURE 110

real-time. This is sometimes not sufficient for proper evaluation of an imple

mentation. For example, a superbly qualified design team might produce an

adaptive equalizer chip for a modem. If the equalizer is fractionally

spaced[Unge76a, Git18 la], and the implementation does not use saturation arith

metic, tap drift[Gitl82a] will cause the equalizer to lose convergence after possi

bly hours of real-time operation. Tap drift is a slow phenomenon unlikely to

show up in any but the longest simulations. A design change may be required

quite late in a custom development. The tap drift phenomenon was not recog

nized until relatively late in the history of adaptive filters, suggesting that even

algorithms that are considered understood can produce unexpected results. Real

time evaluation, using fabricated chips, is slower because fabrication is in the

loop. Even rapid turnaround techniques will be only able to reduce this to

weeks, as compared to the seconds or minutes required to compile a program. A

closely related problem is the turnaround-time for engineering changes. Designs

need to be frozen earlier when custom chips are developed.

To take advantage of concurrency in algorithms, systolic arrays are some

times promising for implementation[Kung80a]. But systolic arrays have so far

failed to materialize as a competitive alternative except in very few isolated cir

cumstances. They apply only to problems with regular structure, and therefore

are unlikely to be useful for more than a part of a large application. Our aim

here is to design a system that easily implements algorithms lacking regular

structure.

Specialized architectures for signal processing have been around for quite

some time[Alle75al, but monolithic DSPs are a relatively new phenomenon.

THE IT ARCHITECTURE 111

Before the emergence of the first generation chips, such as the DSP1 from Bell

Labs[Chap81a], the S28211 from AMI[AMI,a], the TMS32010 from Texas

Instruments[Texa83a], the MB8764 from Fujitsu[Tsud83a], the uPD7720 from

NEC[NEC], and the IBM DSP[Unge85a], real-time programmable signal process

ing was mostly beyond the capacity of microcomputers and was therefore

confined to the laboratory. Monolithic DSP devices achieve throughputs

equivalent to one multiply and accumulate instruction every 100 to 800

nanoseconds, and use a restricted fixed point data precision of 16 to 20 bits. It

is mainly the multiply and accumulate speed that makes these devices useful.

They have been applied to digital filtering, modem design, transmultiplexers,

and speech processing. Nonetheless, the first generation devices have barely the

processing power required to be able to do useful work with voiceband applica

tions, which involve sample rates ranging from 600 samples per second (for low

speed modems) to 8000 samples per second for speech. (DSPs without

hardware multipliers, such as the IBM RSP[Mint83a] and the Intel 2920, have

not been as successful.) They are rarely useful for applications with higher sam

ple rates. Singer[Sing85a] gives a detailed analysis of the limitations of some of

these devices for certain speech and modem applications.

The first generation DSPs are all difficult to program compared to more

traditional microprocessor architectures; the "assembly" language of an early

device (the Bell Labs DSP1) closely resembles horizontal microcode; the pro

grammer must be cognizant of each stage of the pipeline and the operations

simultaneously performed in these stages. Other manufacturers make some

attempt to hide the pipelining from the user, but the result is lost efficiency or

sometimes cryptic programming techniques. There is a paucity of software

THE TT ARCHITECTURE 112

support, such as compilers, partly because of the difficulty of designing efficient

compilers for such machines, and partly because these devices have capabilities

so close to the bare minimum to be useful, that little inefficiency can be

tolerated for the benefit of programmer convenience. "High lever programming

for these devices typically consists of code generators for specialized applica

tions, (FIR filters, for example[Mint83a]) and macro or subroutine packages.

One of the reasons that high level languages have failed to materialize is

that traditional high level languages easily support features that are not

appropriate in a signal processor. A compiler that attempts to manage capabili

ties such as strings, flexible I/O, and relative addressing will be difficult to write

for a machine that was not intended for this type of use. For this reason, a

more specialized, more minimal language is required.

Key features common to first generation DSPs are

• fixed point arithmetic, with hardware multiplication,

• Harvard architecture, or some variant,

• hard wired instruction set (not microcoded),

• parallelism, and

• pipelining.

An example of such a machine is shown in figure 4-1. The term Harvard archi

tecture describes machines which use separate memories to store instructions and

data. The advantage is that these memories can be accessed in parallel, so

effective memory bandwidth increases. This technique can be modified by sim

ply using more than one memory without restricting the contents of the

memories to instructions or data. Besides parallel memories, other forms of

Address bus

Memory A:™
Program and
Data

I
Memory B:
Dataonly

20

L J
16

N, Multiplier X

f
I Product register I

iy r~

J40
I Accumulator 1

i
I Quantizer I

40

Figure4-1: Simplified block diagramof a DSP

113

THE IT ARCHITECTURE 114

parallelism are used in these devices. Figure 4-1 shows separate hardware for

I/O, and hardware for address arithmetic and control. The "quantizer"

hardware is used to round the full precision (40 bit) accumulator contents to

get a 20 bit result to store in memory.

The key feature we will be most concerned with is pipelining. The first

generation DSPs generally have pipelined data paths with simple, single-path

control. Figure 4-2 schematically illustrates the pipelined execution of a multi

ply and accumulate operation on the Bell Labs DSPl[Chap81a], the first genera

tion device with the most pipelining. It is clear that there are certain arithmetic

tasks that will be performed more efficiently than others. Inner products, criti

cal in signal processing, are particularly efficient. Divisions, on the other hand,

are considerably more difficult. Since every arithmetic instruction uses this data

path, if an instruction appears that does not require a multiplication, no

efficiency is lost by passing it through the multiplier (and multiplying by one)

because the multiplier cycle would be lost anyway if the throughput of the

multiplier equals that of the control circuitry and the memory.

The simple control flow in the data path is a principal reason that we can

expect to dramatically increase the throughput of these devices by using deeper

pipelining. Multipliers are particularly easy to divide into pipeline

stages[Capp84a]. The cost of the additional pipelining (in VLSI real estate) is

modest. For example, a 16x16 array multiplier with five pipeline stages has

three times the throughput of a flow-through version, with only 13% more

VLSI area[Capp84a]. But as the amount of pipelining increases, the program

ming problem dominates.

I
hstructfon Fetch

—r~
y///////////////////////^^^^^

Decode

y////////////////////////^^^^^

Fetch Operands

essA^ WZZEfflfr
—V"-

MulttpBer 7
^^^«^^«^^^^^^

I
ALU

I
7

^^^^^^^^^5^^^^
Accumulator

Quantize

—T"
y//////////////////////////^^^^

Write result

Figure 4-2: An abstraction of the arithmetic pipeline of the DSP in figure 4-1

115

THE 7T ARCHITECTURE 116

Inevitably, second generation DSPs have more capability. The Texas

Instruments TMS32020 has a larger address space and an enhanced instruction

set[Maga85a]; the Bell Labs DSP32 has 32 bit floating point arithmetic

hardware[Kers85a]; the NTT DSP has 18 bit floating point arithmetic and ela

borate addressing modes[Yama85a]. The Motorola DSP56000 has support for

Circular buffers[Moto86a]. There are many ways to enhance a basic architecture

for greater flexibility. The designers of semiconductor processes continue to sup

ply systems engineers with greater circuit capacity on VLSI chips. However,

circuit speed increases only modestly with each reduction in circuit geometries,

especially for the processes that yield the greatest density. As a consequence,

system designers tend to upgrade VLSI products by increasing their functional

ity rather than increasing the speed of the simple architecture. After a point,

more enhanced architectures are not likely to perform the basic signal processing

functions significantly faster than their predecessors. In order to expand the

applications of these devices beyond the voiceband range, it will be necessary to

use improving VLSI technology to improve the speed at which basic signal pro

cessing functions are performed and to increase the memory capacity, rather

than to embellish the architecture.

Successful experiments with reduced instruction set computers

(RISCs)[Patt81a] support the notion that simply increasing functionality is not

necessarily the best use of the improving hardware technology. A RISC is a pro

cessor with a small instruction set that executes very fast. The chip resources

saved by restricting the functionality are then applied to increasing the size of

the register set or making other changes that improve the speed of the processor.

Thus, costly hardware that supports esoteric and rarely used instructions is

THE IT ARCHITECTURE 117

avoided. The first generation DSPs share some of the RISC philosophy, but for a

different reason. The technology has been unable to support more than a

minimal instruction set combined with fast arithmetic hardware and memory

on a single device. There is potential benefit in deliberately embracing the RISC

philosophy and concentrating on enhancing the speed of these devices.

4.2. HAZARDS

Many existing high performance systems depend heavily on pipelining to

achieve high throughput. Although many researchers discuss the virtues of

pipelining, citing increased use of circuit resources for better

performance[Shar74a, Jump78a,Davi73a, Capp83a, Capp84a], pipelining has

considerable disadvantages in programmed machines. Pipeline hazardslKoggSla]

cause idle resources that degrade performance. The most common types of

hazards are due to data conflicts and branching conflicts. Branching conflicts

occur when instructions that are prefetched prior to the execution of a (possibly

conditional) branch are not executed; machine cycles are wasted. Data conflicts

occur when computed results are not ready when they are needed. For example,

an instruction may require the result of a previous instruction, and the result

may not be ready when execution of the second instruction begins. A delay

must be inserted between the execution of these instructions in order to keep the

second instruction from executing before its data is ready. Such delays cause

idle machine cycles called pipeline bubbles and degrade the performance of the

machine. The following table shows an example with three successive multiply

and accumulate operations on an architecture with the pipelining of figure 4-1.

THE IT ARCHITECTURE 118

TIME

SLOT

MULTIPLY AND ACCUMULATE OPERATIONS

1 2 3

1 I-fetch •

2 decode & address I-fetch

3 op. fetch decode & address

4 multiply op. fetch

5 accumulate multiply

6 quantize accumulate

7 write quantize I-fetch

8 write decode & address

9 op. fetch

10 multiply

11 *••

The first two operations have no operand dependencies, so the second can begin

immediately after the first; but the third instruction is delayed. The third

operation requires the result of the second, in this example. Its operand fetch

needs to follow the write operation of the second instruction. The penalty is a

pipeline bubble of four time slots. Kogge cites a 66% loss on the IBM 360/91

due to pipeline bubbles[Kogg81a]. In that machine, the extensive pipelining is

transparent to the programmer; bubbles are automatically handled by the

hardware using an interlocking mechanism. Conflicts are detected automatically

and instructions are delayed.

There are, of course, some simple techniques available for reducing the

number of cycles lost to pipeline bubbles. For example, if the programmer,

compiler, assembler, or hardware can detect the conflict illustrated in the above

table, a short czro/#[Kogg81a] can be implemented, in which the offending

operand in instruction 3 would be taken directly from the quantizer hardware,

bypassing the memory. (The quantizer rounds or truncates the 40 bit accumu

lator so the result can be written in memory or used as a multiplier operand.)

THE 7T ARCHITECTURE 119

Instruction 3 can be started one cycle earlier. A general form of this is imple

mented in a Lincoln Labs signal processor[Paul80a], using a writequeue, which is

a tagged memory with the write address serving as the tag. As a further

defense against pipeline bubbles, compilers can optimize code by reordering

instructions and predicting branching.

These techniques are not completely effective, however. Many researchers

involved in practical design of more-or-less general purpose computers cite the

difficulty of preventing pipeline bubbles, and conclude that after a point, noth

ing is gained by deeper pipelines[Sher84a, Patt81a].

4.3. THE PROGRAMMING/PERFORMANCE TRADEOFF

Architects of high performance DSPs determine how. much of the peculiari

ties of the architecture are hidden from the programmer. Two first generation

DSPs, the Bell Labs DSP20, a faster version of the DSPl[Chap81a], and the

Texas Instruments TMS32010[Maga82a], have very similar capabilities, but rad

ically different architectures. Comparing them is instructive.

The widely used Texas Instruments TMS32010 uses a limited amount of

pipelining and variable instruction execution times so that the user need not be

aware of the pipelining. The pipeline stages are shown in the following table

(simplified).

THE IT ARCHITECTURE 120

stage function

1 Instruction fetch

2 Decode and operand fetch
3 Execute

To avoid pipeline hazards, some instructions, such as branches, take more than

one cycle to execute. Each instruction therefore appears to complete before the

next instruction begins.

By contrast, the Bell Labs DSP20, with the same hardware capabilities,

uses much more pipelining. To program the machine, the user is required to be

fully aware of the pipelining. The second generation Texas Instruments device,

the TMS32020[Maga85a], and the second generation Bell Labs device, the

DSP32[Kers85a], will also be briefly compared, but the features of these devices

differ more significantly, so the comparison is less meaningful.

4.3.1. Computing Inner Products

Perhaps the most basic benchmark for digitial signal processors is the finite

impulse response (FIR) filter. An FIR filter consists of a delay line and a set of

tap values, and the output is the inner product of samples in the delay line and

the taps. The Bell Labs DSP20 and TI TMS32010 achieve precisely the same

performance on this benchmark, but the TMS32010 requires considerably faster

hardware to do this.

The TMS32010 has single operand instructions that execute in a pipeline

schematically illustrated in the above table. This illustration of the pipelining

neglects the finer division of each instruction cycle into finer machine cycles but

THE TT ARCHITECTURE 121

adequately explains the behavior of all instructions. The instruction cycle time

is 200ns. Multiply and accumulate operations require three successive instruc

tions:

load one operand

multiply by the other operand
accumulate

For successive multiply and accumulate operations, commonly used to compute

inner products and FIR filters, the accumulate operation is combined with fetch

ing the next operand.

load one operand

multiply by the other operand

accumulate, and load another operand

multiply by yet another operand
accumulate, and load a fourth operand

etc.

For long inner products the time required is 400ns per multiply.

This approach to computing inner products has been improved in two

different ways in the TMS32020[Maga85a] and the IBM DSP[Unge85a]. In the

TMS32020 a repeat (RPT) instruction precedes a two operand multiply and

accumulate instruction. The second instruction is repeated the number of times

specified by the operand of the RPT instruction without having to be refetched.

The saved memory cycle is used to fetch the second operand in parallel with the

first. In the IBM device, two accumulators are used to simultaneously compute

THE 7T ARCHITECTURE 122

two outputs of an FIR filter. The computation of the two outputs is inter

leaved, so the technique is called zipping, presumably from the word zipper.

Most operands (filter coefficients or data) are used twice each time they are

fetched, once for each output. Both the repeat instruction and zipping save

memory accesses, permitting the throughput to be roughly doubled, but only for

inner products.

In the TMS32010 most instructions specify only one operand, so it takes

twice as many instructions to perform the same function, compared to the Bell

Labs device. Its instruction cycle time is twice as fast as the Bell Labs DSP20,

however, so for inner products, the performance of the two devices is identical.

Achieving the same performance with fewer pipeline stages suggests that

the pipelining in the Bell Labs chip is excessive. However, the TI device pays a

price for its reduced pipelining. Twice as many instructions are required for the

same operations, so twice the program memory bandwidth is devoted to

instruction fetches (both devices have 16 bit instructions). Consequently, for

the same speed memory (200ns per access), the TI device cannot access data in

the program memory in a single cycle. Arithmetic instructions in the

TMS32010, therefore, access data only from the data memory. This puts pres

sure on the data memory bandwidth. In particular, for efficient FIR filter

implementation without circular buffers, three memory accesses are performed

for every multiplication, two operand reads and a write (to shift data in the

delay line). The Bell Labs DSP20 requires only one instruction fetch per two

operand multiply, for a total of four memory accesses per FIR filter tap. The

TMS32010 requires five. The data memory of the TMS32010 is designed to

THE W ARCHITECTURE 123

include both a read and a write cycle in one 200ns instruction cycle, whereas the

the DSP20 requires only a read or write cycle every 200ns.

More dramatically, the arithmetic hardware in the TMS32010 is twice as

fast as that in the DSP20 to achieve the same performance. The multiplier and

ALU of the DSP20 each have a full 400ns to complete their operations, whereas

only 200ns is available in the TMS32010. This suggests that with more pipe

lining, the TMS32010 hardware could have been used to build a significantly

faster processor.

4.3.2. Explicit Pipelines

There is a price for the additional pipelining of the DSP20. In addition to

more difficult programming, we would expect increased incidence of pipeline

bubbles, causing lost resources. However, the programmer of the DSP20 has

explicit control over the pipeline, meaning that bubbles can be avoided by care

ful code construction.

There are many ways to make sure the programmer is aware of the pipelin

ing of each instruction. A simple way is used in the Bell Labs DSP32[Kers85a].

For that device, a multiply and accumulate instruction looks like

a3 = a3 + (*r9++)*(*r8++);

The registers r8 and r9 are addressing registers, the asterisk is used to indicate

indirection, and (*rN++) indicates a post auto-increment by one. The register a3

is one of four accumulators. The accumulator a3 is not updated until three

instructions later. That is, if instructions II, 12, and 13 all update a3, and

instruction 14 uses a3, the value of a3 it uses is established by II. A three

THE IT ARCHITECTURE 124

operand instruction is also possible, in which a memory write occurs.

*rlO - a3 - a 3 + (*r9++)*(*r8++);

The memory location specified by rlO, however, is not updated until four

instructions later. The programmer therefore must be aware of the scatter in

time of the instruction execution due to pipelining. In addition, certain instruc

tion sequences are prohibited, with no-ops required in between, because of

conflicting demands on processor resources. Once the small set of programming

rules is learned, the essentials of the pipelining is evident, and the programmer

can often use this knowledge to optimize the code.

The instructions of the DSP32 are data stationary, meaning that each

instruction fully specifies the operations on a set of operands, and the instruc

tion execution is scattered in time. An alternative approach, time stationary pro

gramming, used in the earlier DSP20, makes pipelining even more explicit.

An example of an FIR filter implemented with time stationary code is given

in the following table.

i=-l

rx=coef_Jocation_end

ry=<lata_location_end

rd=data location end

p=*rx++i * *ry++i
*rd++i«=y a=p p=*rx++i * *ry++i
*rd++i=y a-p+a p=*rx++i * *ry++i

•••

*rd++i«y a=p+a p=*rx++i * *ry++i

a=p+a

w=a

*rd=w

THE TT ARCHITECTURE 125

The first four instructions simply set up some registers. Indirect address regis

ters rx, ry, and rd are used, and the notation *rx++i means "get data from the

memory address in rx, and then increment rx by the amount in register i." The

accumulator is designated "a" and the product register "p". Most arithmetic

instructions have four columns. The action specified in each row is executed

simultaneously, but the programmer can understand the instruction as if it

were executed from left to right. The rightmost column specifiesthe multiplica

tion to be performed, and the operands on which it will be performed. The

operand specification is actually moved up two instruction {skewed) by the

assembler, and the programmer must be aware of this, particularly when imple

menting branches. The second column from the right specifies the ALU action,

accumulation in the case of an FIR filter. The third column from the right

seems to specify only a register transfer, but actually specifies a quantization

operation. It is only used once in table 4 because only the result of the inner

product is quantized. Finally, the leftmost column specifies a memory write

operation.

Although programming the DSP32 is less cumbersome than the DSP20,

both are more difficult than programming the TI TMS320 family. From the

point of view of the programmer, programming the TMS32010 is both data and

time stationary because each instruction appears to complete before the next

instruction is initiated. The pipelining is not evident to the programmer. This

is clearly desirable, but it has its price. As mentioned earlier, the TMS32010

requires a multiplier and ALU twice as fast as that of the DSP20 to achieve the

same performance on inner product benchmarks. However, on the second most

basic DSP benchmark, an infinite impulse response (IIR) filter, the DSP20

THE IT ARCHITECTURE 126

outperforms the TMS32010 in spite of its slower arithmetic hardware. This

improvement is a consequence of the more cumbersome programming, which

enables the programmer to work around data conflicts.

4.33. Recursive Filters

It is particularly easy to get good performance with a pipelined processor

computing an inner product because there is no recursion. Surprisingly, the

more pipelined processor outperforms the less pipelined processor on the second

most basic signal processing benchmark, the second order recursive digital filter,

or biquad.

For the five coefficient biquad of figure 4-3, the TMS32010 requires 20%

more time than the DSP20. For a four coefficient biquad, the figure is 25%.

Memory allocation:

s3 c5

s2 c4

s1 c3

c2

d

Figure 4-3. A five coefficient biquad.

THE 7T ARCHITECTURE 127

Code segments for five coefficient biquads are given in the following tables.

These code segments are written to cascade with similar code segments, getting

cascaded second order sections. Recall that the instruction cycle time of the

TMS32010 is half that of the DSP20. First, here is the code for the five

coefficient biquad of figure 4-3 on the TI TMS320. The address register ARO

points to the data, si through s3, and AR1 points to the coefficients, cl through

c5. Memory is allocated as shown in the figure.

LTA *-,ARl ; load si AR0-+S2

MPY *-,ARO ; mult sl*cl AR1 -»c2

LTA *+,ARl ;load s2 ARO-•si

MPY *-,ARO ; mult s2*c2 AR1 ->c3

LTA *-,ARl , load si AR0-»s2

SACH s3,0 • store to s3

ZAC zero accumulator

MPY *-,ARO ;,multsl*c3 AR1 ->c4

LTD *-,ARl ; load s2, move s2 to si AR0->s3

MPY *-,ARO ; mult s2*c4 AR1 ->c5

LTD *-ARl ; load s3, move s3 to s2 ARO -*sl (next biquad)
MPY *-,ARO ; mult s3*c5 AR1 —»cl (next biquad)

We have assumed that multiple biquads are cascaded using in-line code, and the

data and coefficient memory spaces for each biquad are adjacent. The first

instruction performs the last addition of the previous biquad, after which the

input to the current biquad is in the accumulator. The last column indicates

where the auxiliary registers point after execution of the instruction. The

current auxiliary register is ARO on entry, and the auxiliary registers are

assumed to point to data as follows:

ARO-»sl

AR1 -»cl.

THE 7T ARCHITECTURE 128

The memory is allocated so that after executing the above instructions, the two

auxiliary registers point to the appropriate data of the following biquad section.

Next we have the code for the same filter implemented on the Bell Labs

DSP20. The address register ry points to the data, and the coefficients are

immediate (stored in program memory along with the program). Only two

memory locations (si and s2) are required for the data in this code.

a=p+a p*=cl**ry++j; ry-*s2

a=p+a p=c2**ry++i; ry ^sl

a=p+a p=c3**ry++j; ry-*s2

*rd++j=y w«a a=p p=c4**ry++j; ry —>sl (next biquad), rd —>s2
*rd++j=w a=p+a p=c5*w; rd—»sl (next biquad)

The first instruction again performs the last addition of the previous biquad,

after which the input to the current biquad is in the accumulator. The com

ments indicate where the auxiliary registers point after execution of the instruc

tion. The auxiliary registers are assumed to point to data on entry as follows:

ry -*sl

rd -»sl.

The index registers have the values j=-l and i=+l. The memory is allocated so

that after executing the above instructions, the auxiliary registers point to the

appropriate data of the following biquad.

The DSP20 implements cascaded biquads with five instructions per section,

while the TMS32010 requires 12. The TMS32010 has twice the instruction

rate, so it requires 20% more time per section.

THE V ARCHITECTURE 129

4.3^. Avoiding Pipeline Bubbles with Hand-Optimized Code

In contrast to the 66% percent wasted cycles cited by Kogge[Kogg81a], in

one production program for the the Bell Labs DSP-1 examined by the author (a

proprietary program implementing a V22.bis voiceband data modem), only 10%

of the instructions did not make use of the arithmetic unit because of pipeline

bubbles. This program was painstakingly hand optimizedto minimize the pipe

lining bubbles; for example, algorithms were chosen that did not require

branching. Dividing this program into functional blocks yields a low of 2.3%

idle cycles for an adaptive equalizer and a high of 29% for a phase locked loop

with a polynomial approximation to a sine and cosine. Not surprisingly, the

pipelining penalty is lowest for the application (an adaptive equalizer) in the

class for which the architecture is optimized (FIR filters).

Although pipeline bubbles can be minimized, in principle, if the program

mer is given the control implied by explicit knowledge of the pipelining, this is

not a desirable solution. First, the optimization of the code is extremely tedi

ous. Second, the amount of practical pipelining is still bounded at a rather low

number. If the architecture is modified so that the number of pipeline stages is

doubled, then the percentage of idle cycles due to bubbles will double. An

architecture with four times as much pipelining, therefore, will have 40% of its

capability wasted due to pipeline bubbles, even for the best, hand optimized

code, rather than 10%.

THE W ARCHITECTURE 130

4.4. PIPELINING AND INTERLEAVING

In this section, a modification to standard pipelined architectures is pro

posed. The modified processors, designated v processors, have the key feature

that increasing the amount of pipelining does not aggravate the programming.

To mitigate the problems associated with deep pipelining, we use interleav

ing multiple programs in a single pipeline. The basic idea of pipelined inter

leaved execution (shortened to PI or w) is quite simple. In the pipeline of figure

4-2, an instruction and its associated data pass through N=7 pipeline stages

before completion. A tr processor differs only in that the instructions going

through the pipeline correspond to TV different processes (N independent pro

grams) rather than one. In figure 4-4, seven programs are interleaved so that

two successive instructions from the same program are separated by N—1

instructions from other programs. The consequence is that when the second

instruction of a program is issued, the first instruction has been completed. The

figure shows seven program counters (PCs) stored in a delay line, or FIFO queue.

After PCn addresses the instruction memory to fetch the next instruction of the

nth program, it is usually incremented by one and put back at the end of the

queue. When PCn appears again to' fetch another instruction, the previous

instruction of the same program has completely cleared the pipeline. Therefore,

no pipelining is visible to the programmer writing program n . This v processor

appears to the user as seven parallel processors (each with no pipelining) that

share memory without contention. These virtual parallel processors are called

v slices, since they are really just slices of the original processor.

131

PC

I
hstruction Fetch

y////////////////////^^^^^

Decode
t

T
y//////////////////////////^^^^

Figure 4-4: A v processor based on the DSP in figure 4-2.

THE IT ARCHITECTURE 132

4.4.1. History

Interleaving multiple processes on a single pipelined processor dates backat

least to the peripheral processors in the CDC 6600[Thor64a, Thor70a] designed

in the 1960s. The peripheral processor manages I/O devices that are much

slower than the processor itself, and interleaving provides a convenient way to

better use the resources of the processor. More recently, it was used in the

HEP-1, a multiprocessor supercomputer[Smit78a, Dene81a] to overcome

difficulties due to pipelined function units and random delays in memory

accesses. Interleaved processes have also received considerable attention at

Columbia University[Cohn83a] where the technique is being applied to general

purpose computing. The architecture at Columbia, like the HEP, compensates

for delays in memory accesses. It is discussed in considerable detail in section

4.7 because the programming methodology is related to synchronous data flow,

and the contrast is interesting. What we wish to investigate is a much simpler

device than the HEP or the Columbia architectures, a single chip microcomputer

specialized to signal processing.

Pipelined interleaving has been used in telecommunications applications

where a function needs to be applied to a large set of separate, independent sig

nals. For example, eight ADPCM encoders can share the same pipelined

hardware and independently encode or decode eight separate speech channels.

Similarly, in the No. 4 ESS made by AT&T, 120 echo suppressors share the

same hardware. In both of these cases, it is easier to share fast hardware than

to try to design slow hardware that is proportionally smaller. However, unlike

our proposal, these applications require all slices of the machine to perform the

THE IT ARCHITECTURE 133

same operation, which greatly restricts the applicability of the technique.

IT processors are "shared resource" machines as defined by

Flynn[Flyn72a, Flyn70a] in which processors compete for shared resources in

either space or time. However, the architecture proposed here is different from

many shared resource processors in an important and fundamental way; the

entire processor is a shared resource, with the only private resource being the

registers required to store the processor state. Jordan[Jord84a] calls the tech

nique "Pipelined Multiple Instruction Streams" or PMIS, but this name does not

suggest that the instruction streams are interleaved, so we prefer the designation

"ir". Shar and Davidson[Shar74a] are early advocates of the technique.

Shar and Davidson[Shar74a] critically examine the use of interleaved

processes comparing the performance to an unpipelined microprogrammed

machine taking several microorders to complete an instruction. They conclude

that interleaving processes provides great advantages. However, many of the

advantages they cite are a result of pipelining, not of interleaving. For example,

they conclude that less control is required for an interleaved processor. They

assume that each micro-order in the unpipelined machine is big enough to do

anything in the machine, that there is no restriction on the order in which

operations must be performed, as there is in a pipeline. With pipelining, each

micro-order specifies real work Tor each pipeline stage, whereas without pipelin

ing many fields of the micro-order specify no operation. This is an argument

for pipelining, not for interleaving. Shar and Davidson make the technology

dependent assumption that the memory cycle time is the same as an assembly

instruction time, which corresponds to several microorders. They predict that

THE IT ARCHITECTURE 134

the interleaving technique would be less useful if faster memories are developed,

but they neglect that more functionality per memory fetch may be demanded

(for example, hardware multiphcation/accumulation). In fact, our conclusion is

that for DSPs the it technique becomes more useful if memories get faster rela

tive to other circuits, because memory cycle times are a principle obstacle to

extensive pipelining.

4.4.2. The Number of tt Slices

It is not clear that a DSP requires as many pipeline stages as shown in

figure 4-2. No other manufacturer, for example, has implemented separate

hardware in the data pipeline to perform rounding and other quantization func

tions. Other manufacturers also have not added an extra pipeline stage at the

end to write the result of a computation, relying instead on an additional

instruction. Depending on the memory technology used, it may also be possible

to decode the instruction in the same cycle with the instruction fetch or the

operand fetch. The pipeline stages of figure 4-2, however, do make programs

run faster, for a given memory technology. Since our interest is extensive pipe

lining for high performance, and figure 4-2 illustrates the most extensive pipe

lining in today's devices, we use it as our reference.

In practice, fewer than seven ir slices are needed to overcome all pipelining

difficulties in the architecture of figure 4-2. To determine the minimum number

required to ensure the sequential nature of instructions, we observe that every

loop in figure 4-4 must have the same number of latches. The two loops shown,

one for the PC and one for the accumulator, each have seven latches. An impor

tant implicit loop is made explicit in figure 4-5. A memory location where a

I
hstruction Fetch

T
vfzzxfzzxzmzzzzxzzz

Decode

T

T
y///////////////////////^^^^

Fetch Operands

X ^ 7\ Multiplier X

>

y///////////////////////^^^^

1
ALU

1

Y/////////////////////////^^^^

\
Accumulator

*SZ00Z^

Quantize

Write result

135

gaaagaggaaaaggfigaagaaaaaa^^a^fei

Memory location
acting as a latch

Figure 4-5: An illustration that data conflicts do not occur with a five slice,
seven stage w processor. All loops have five latches.

THE V ARCHITECTURE 136

result is written can be viewed as a latch, and the fetch operand block may take

one of its operands from this latch. This is the case whenever an instruction is

using the result of the previous instruction. The added loop has only five

latches, so we can reduce the number of it slices to five, as shown in the figure,

and the resulting interleaved architecture is still free of data conflicts. The

number of it slices can be reduced one more by observing that if an instruction

uses the result of the previous instruction, the result can be taken directly from

the quantization hardware prior to the memory write. This is an example of a

short czrcmr[Kogg81a]. However, in order to avoid branching conflicts we

require at least five v slices with this architecture, as we will see, so there is no

need for the short circuit.

Consider an unconditional branch first. The branch address is assumed to

be part of the instruction, although this is not a critical constraint. Under this

assumption, the branch address is available after the second stage of the pipe

line, and therefore should be inserted into the PC delay line as shown in figure

4-6, in order to maintain a constant number of latches in every loop. The con

trol path is shown with a dashed line from the decode hardware to the multi

plexer.

Conditional branches based on condition codes generated by the ALU are

also illustrated in figure 4-6. A conditional branch is decoded in the second

stage, which sends a control signal to the branch control hardware. The control

signal is delayed so that it arrives in the same cycle as the appropriate condition

codes resulting from the previous instruction of the same v slice. A branch

decision then determines which input is selected by the multiplexer. It is

Y////////////////////////////^^^^

Accumulator

y/////////////////////////^^^^

l
Quantize

y//y/////y/////////////////////////^

Write result

Branch

address

137

Figure 4-6: An illustration that branching conflicts do not occur with a five
slice, seven stage ir processor. All loops have five latches.

THE IT ARCHITECTURE 138

assumed that one instruction cycle is sufficient for generation of the condition

codes, branch decision, and multiplexing. If not, one or more of these operations

should share a cycle with the instruction fetch. If this is not possible either,

then a sixth tr slice is required, and all the loops have to be augmented to con

tain six latches.

4.43. Increasing the Pipelining

The principal hardware advantage of a ir processor is the ability to do

much more pipelining without suffering the detrimental effects usually associ

ated with such pipelining. For example, if we were to add one pipeline stage

within each stage of figure 4-6, we would double the number of ir slices and

nearly double the clock rate, thus nearly doubling the total computation power.

It is particularly profitable, for example, to use more pipelining in the arith

metic hardware, as mentioned earlier[Capp84a]. Some of the pipeline stages,

however, are difficult to divide, as discussed in the next section.

4.4^4. Memory

Memory accesses, particularly if the memory is dynamic, may be quite

difficult, if not impossible to pipeline. However, if we wish to double the clock

rate, the real objective is not to double the amount of pipelining, but to double

the throughput of each pipeline stage. Figure 4-7 illustrates two ways of

accomplishing this; the stage may be pipelined, or it may be interleaved. Such

interleaving would normally require double the hardware, but a memory can

simply be split into two smaller memories. If interleaved memory is used, the

v slices no longer all share memory. With two-way interleaving, half of them

(a)

A/2
2

(b)

L •M
(C)

A/2 1

n
uf

Figure 4-7: Techniques for increasing the throughput ofa pipeline stage.
(a) A pipeline stage.

(b) Finer pipelining.

(c) Interleaving.

139

THE IT ARCHITECTURE 140

(called a n cluster) share one memory, and the other half share another. If

communication among v slices is done through memory, then a special mechan

ism must be provided to communicate between ir clusters. The two methods of

figure 4-7 may be combined so that, in principle, any troublesome piece of

hardware that resists further pipelining can be interleaved.

It is worth examining the current state of memory technology. Although

rapid evolution is likely to make the numbers given here obsolete very quickly,

the tradeoffs are best discussed in terms of existing technology. The number of

v clusters can be written

no. enters =| "»em°ry qrcle time x flw }
1 pipeline clock time

where BW is the memory bandwidth per instruction, or the number of accesses

cycles per instruction per memory. The objective is to minimize the pipeline

clock time while keeping the number of clusters acceptably low.

The most obvious way to do this is to minimize BW. The Bell Labs DSPs

all have BW = 2. The TI DSPs have BW =1, but they do half as much work

per instruction. We can normalize BW by defining it to be the number of

memory access cycles per multiply and accumulate per memory. Then BW = 2

for TI and Bell Labs. The Motorola DSP56000[Moto86a] uses three independent

memories, one for programs and two for data, getting therefore BW = 1. This

is the solution adopted in the architecture described in the following section.

Obviously, faster memories will minimize the number of v clusters. How

ever, faster memories tend to be larger (in VLSI area), implying that less

memory can be put on-chip. Static RAMs (SRAMs) reported at the 1985 ISSCC

conference, mainly CMOS devices, had memory cell sizes below 100 square

THE IT ARCHITECTURE 141

microns and layout efficiencies of about 50% to 60%. The layout efficiency is the

ratio of the area consumed by memory cells to the total die area of the chip.

Address access times were around 45ns, but got as low as 17ns for a less dense

RAM (cell size of about 270 square microns). Using three static RAM

memories, therefore, the pipeline clock could drop as low as 17ns without any

clustering at all. The cell sizes for Dynamic RAMs (DRAMs) reported at the

same conference were about 36 square microns, and got as low as 20 square

microns. The layout efficiency is about the same as for SRAMs. This implies

that using static RAMs may imply about 5 to 14 times less memory will fit on

the chip. This may not be a problem if all the memory is off chip, but putting

all the memory off-chip may imply excessive bandwidth in off-chip communi

cation. Furthermore, on-chip memory is effectively faster. The Bell Labs

DSP32 is made using the same technology used for the 256K RAM, and the on-

chip memory is made of the same one transistor memory cells as in the 256K

RAM. This device has 32 K bits of memory on board, and the access cycle time

is 100ns. Using this dense memory technology and three memories, a pipeline

clock time of 50ns requires two clusters, for example.

An attractive alternative is pipelined memories. Unfortunately, there does

not appear to be much precedent. References to pipelined memories usually

refer to systems where a complex memory system, supporting virtual memory

or shared memory, for example, is pipelined. The memory itself is rarely, if

ever, pipelined. For dynamic RAMs, the critical path is the precharging of the

sense latches followed by the settling of these same latches. Such operations

appear to be difficult to pipeline. The worst propagation and access delays occur

concurrently with the precharging and sensing. It seems, therefore, that to

THE IT ARCHITECTURE 142

pipeline memory accesses, the sense latches would have to be duplicated for each

new pipeline stage added. This technique is effectively equivalent to building a

dual-port memory, and the area penalty for doing this is quite severe[Sher84a].

The approach greatly complicates the packing of circuitry. The NTT

DSP[Yama85a], for example, uses dual ports to get two accesses from each

memory in 140ns. Pipelining is easier in static memories, but since these

memories are faster to begin with, the need is not as critical.

The safest conclusion is that interleaved memories are required for a fast

pipeline clock. This implies that w slices in different clusters will not share

memory, and a separate mechanism is required for them to communicate. This

requires further investigation.

4.4^. The Cost of State Replication

The principal hardware cost of interleaving is the need to keep around as

many versions of each register as there are ir slices, just as five program counters

and accumulators are kept in figure 4-6. That is, the processor state must be

replicated. However, these versions can be stored in FIFO queues implemented

as delay lines with fixed length. These take little area in most VLSI semicon

ductor processes, and the benefit of being able to increase the amount of pipelin

ing will offset this cost.

To put this issue in perspective, we note that the size of the processor state

of the TI TMS32010 is 181 bits. The number of practical ir slices is small (on

the order of four through twenty, for architectures we have considered) so the

total amount of memory dedicated to replicating the processor state is modest.

The second generation TMS32020 uses 395 bits for the processor state, 104 of

THE V ARCHITECTURE 143

which are I/O registers, timer registers, interrupt control, and system

configuration registers, none of which would require replicating. So the proces

sor state that would have to replicated to convert this architecture to a w pro

cessor is 291 bits, resulting in a still modest amount of memory. Most other

DSPs exhibit similarly small processor states. The principal reason for this is

that DSPs do not usually have general purpose registers, relying instead on the

small and relatively simple memory.

A notable exception is the Bell Labs DSP32, which has four 40 bit accumu

lators and 21 16 bit registers. However, we must examine the reason for such a

large processor state. Because of extensive pipelining in the DSP32, the potential

for resources lost to pipeline bubbles is severe. The four accumulators and large

register set, however, permit the programmer to interleave independent tasks so

that otherwise wasted cycles can be put to productive use. That is, the pro

grammer can often find unrelated tasks that need to be done, and can be done

during the otherwise idle cycles. But so as not to interfere with the main task, a

disjoint set of registers must be used. The large register set, and particularly the

multiple accumulators, make this easy. The NTT DSP[Yama85a] also has four

accumulators that can be used for interleaving. The IBM DSP[Unge85a] has

two. This form of interleaving, although clearly a trend in DSP programming,

is not as flexible as what we propose, because a single program counter directs

all tasks and the interleaving must be done manually by the programmer.

THE IT ARCHITECTURE 144

4.4£. Variations on the ir

There are several alternative organizations of a ir processor. One example is

a processor with a variable number of ir slices. Some algorithms may partition

better into 10 slices, say than 7, making more effective use of the machine. Each

v processor has the minimum number of slices, however, that ensures hazard-

free operation. The number depends on the particular hardware resources put

into the processor, and on the amount of pipelining. The only hardware cost

associated with more slices than this minimum is the additional memory (longer

dynamic delay lines) required to store the state of the additional slices. Further

research is required to determine whether this flexibility is required often

enough in real applications to be worth the cost.

Sometimes applications cannot be effectively divided for even modest

parallel execution. Recursive algorithms, for example, are troublesome, because

without altering the algorithm the recursion implies a fundamental limit on the

amount of parallelism. This limit was discussed in detail in chapter 3. In the

face of such applications, it may be advantageous to reduce the number of ir

slices below the minimum required for conflict-free operation. In this case, a

mechanism is required to ensure that the integrity of the program is indepen

dent of the number of slices, since the program is written assuming no conflicts.

One way to ensure this is to use hardware hazard detection and interlocking, as

done in the IBM 360/9l[Kogg8la]. This approach may be too expensive for

implementation in a monolithic DSP. An alternative is to rely on the assembler

to detect conflicts and insert nops. Instruction permutation could also be used

to optimize the code. This approach is likely to work better if the number of

THE 7T ARCHITECTURE 145

slices is only slightly below the minimum required for hazard-free execution.

If, for example, only a single slice is being used, then the problem is not

different from that of constructing an efficient assembler for an extensively

pipelined machine programmed as if there were no pipelining. This problem is

known to be difficult for deep pipelines[Kogg81a, Sher84a].

Another interesting variation on the ir architecture runs the program from

a given slice until a conflict is detected. We call such a processor a self adaptive

v, illustrated in figure 4-8. This idea is due to Mintzer[Mint83a] who proposed

switching contexts in a pipelined processor whenever a hazard is detected. The

target machine obviously requires rapid context switching, which can be accom

plished by clocking the ir dynamic delay lines only when a conflict is detected.

Mintzer proposed using PROCEEDS, an attribute appended to an instruction if

the following instruction cannot be executed right away or is a nop. In other

words, a single bit in each instruction, set by the assembler, indicates whether

the following instruction can be executed right away. If not, the process (pro

gram counter and all registers) is put at the end of the process queue (the

dynamic delay lines) and the next process is injected into the pipeline. This can

be done without any overhead instructions, assuming that the assembler can

always identify the instructions that can proceed. The main difficulty with this

approach is that the a-priori performance of a given program will be difficult to

determine. Essentially, each process becomes dependent on other processes. It is

possible, for example, for a single process to hog the CPU indefinitely, if precau

tions are not taken to prevent this. Nonetheless, it is an interesting idea deserv

ing further consideration.

146

y////////////////////^^^^

Write result

Figure 4-8: A self-adaptive ir processor based on the DSP in figure 4-2. Any
instruction with a PROCEED causes a context switch on the next instruction.

THE 7T ARCHITECTURE 147

4.5. A SAMPLE ARCHITECTURE

So far, the v architecture has been discussed in the abstract. To begin test

ing the ideas we designed a specific architecture, designated the LM-ir. The

design philosophy is to deviate as little as possible from features generally

available on existing DSPs, adding only features particularly useful for synchro

nous data flow programming. Major hardware differences are the pipelined

interleaving, addressing modes supporting circular buffers, semaphores in

memory supporting asynchronous data transfers between ir slices, and an I/O

mechanism that interfaces especially well with synchronous data flow program

ming. These are not trivial additions to the hardware, but they afford a consid

erably more efficient implementation of SDF programming, which itself affords

considerably easier programming.

The LM-w has been implemented only as a functional software simulator.

Committing the design to hardware may require design changes as the real cost

of design choices becomes evident. Our philosophy in this architecture definition

is to minimize the complexity consistent with our objectives. The 20 bit word

size, therefore, is selected because it is the minimum to efficiently support circu

lar buffers in this architecture. Similarly, the number of address registers is the

minimum deemed necessary for SDF programming. A floating point architecture

would probably enjoy wider application. With these caveats, and making no

claim of completeness, we outline the architecture.

The overall block diagram is illustrated in figure 4-9. Its specific features

are described in the following subsections. In the description below, we assume

for clarity only rudimentary pipelining, but the architecture is designed

<

d

40

X
d d

e

i

e

I
i

a a

y y

| Update |

/\
Y Bus 20

/

X Bus 20
/

/

| MUX | | MUX|

^—V—7X Multiplier f

-4-40

I MUX I w////////Ami^^
Product register

\ ^ /

Accumulator

Shifter

20

Figure 4-9: Block diagram of the LM-ir.

148

THE IT ARCHITECTURE 149

specifically to permit additional pipelining using either of the techniques in

figure 4-7. The reservation table, showing how the hardware resources are used

by an instruction, is shown below.

RESERVATION TABLE FOR THE LM-7T

Cycle 1 2 3 4 5 6 7 8 9

P-Mem 0 X

Decode 0 X

X-Mem 0 X

Y-Mem 0 X

Mult 0 X

ALU O X

Shifter 0 X

Two instructions in the same ir slice are illustrated, one labeled with an"0"

and the other with an "X". There are three vacant cycles between the two

instructions shown, implying a total of four ir slices for totally invisible pipe

lining. The amount of pipelining can be doubled or tripled to get 8 or 12 ir

slices, for example. Details of the reservation table will become evident in the

following subsections.

4.5.1. Memory Organization

As shown in figure 4-9, the LM-ir has three separate memories, one for

instructions and two for data; each memory is accessed once per instruction

cycle. Arithmetic instructions, therefore, can have two operands, and instruc

tions will be executed at top speed if the operands are fetched from each of the

two memories. A multiply and accumulate instruction, therefore, may be writ

ten

a «= a + xop * yop

THE IT ARCHITECTURE 150

where "a" is the accumulator, xop is an X memory operand and yop is a Y

memory operand.

Without additional pipelining or memory interleaving, the instruction cycle

time is a single access time (read or write) of the memories. Contrast this with

the TMS32010 and TMS32020, which have a read/write cycle in the data

memory per instruction cycle, and the DSP 1, DSP 20, and DSP 32 which have

two accesses per memory per instruction cycle. For most applications, the per

formance per instruction will be similar to that of the Bell Labs device despite

the reduction in the number of memory accesses because of the hardware sup

port for circular buffers, discussed below.

The three memory, single access per instruction configuration has the

advantage that higher throughput can be achieved for a given memory

bandwidth. Also, strict separation of data memories from program memories

means that the word size of the instructions need not match the word size of

the data. This permits much more flexibility in the instruction set design.

The address space is assumed to be 64K for the X and Y memories and 16K

for the program memory. These figures are somewhat arbitrary, and are easily

modified, with consequent hardware cost or benefit.

4.S2. Registers

The LM-ir register set is listed in the following table.

THE IT ARCHITECTURE

LM-7T REGISTER SET

Name Length Description

rxl 16 X memory address register
rx2 16 X memory address register
ryl 20 Y memory address register
ry2 20 Y memory address register
ry3 20 Y memory address register
ry4 20 Y memory address register

PC 14 program counter

retl 14 return from subroutine address

ret2 14 return from subroutine address

i 5 auto increment/decrement index

b 7 base register for Y memory
lc 8 loop counter
a 40 accumulator

cc 2 condition codes

151

The total state of an LM-ir slice is 216 bits, which is multiplied by the number

of v slices to determine the total amount of memory dedicated to storing the

processor state.

The two rx registers are used to address the X memory, and the four ry

registers are used to address the Y memory. There are more ry registers because

the Y memory supports circular buffers, and will be used more because of the

SDF programming. The registers are used as in the following example

a = a + (*rxl++)*(*ryl++);

where the notation "*rxl++" means that the "rxl" register provides the operand

address and is auto-incremented by one after the operand is fetched. This style

of instruction description is borrowed from the Bell Labs DSP 32[Kers85a]. In

figure 4-9, a box labeled "delay" accomplishes the interleaving. The delay can

be implemented simply as a clocked delay line, although depending on the VLSI

process and the size of the register set, it may be more compact as a RAM.

THE IT ARCHITECTURE 152

The pc register is the program counter. The two registers retl and ret2

store the return addresses of subroutines, which can be nested two deep. The

implementation of SDF proposed in the* following chapter uses one level of sub

routine calls for control flow, and the second level is available to the user. The

restriction of the user to one level is not severe because the structure of the pro

gram is not oriented around subroutines, but rather around data flow blocks

which can be nested arbitrarily.

The index register i allows the user to auto increment or decrement by

some number other than one using expressions like "(*rxl++i)". The base regis

ter b is used to support circular buffers, discussed below. The loop counter lc

simply provides convenient loop control; such registers are popular in DSP

architectures. The choice of a 40 bit accumulator assumes fixed point arithmetic

with 20 bit precision. Floating point arithmetic can be implemented, as done in

the DSP32[Kers85a] for example, with perhaps additional pipeline stages

required to support the more complicated arithmetic. We assume fixed point

arithmetic only to simplify the discussion.

4.53. Arithmetic Unit

The data path of the device is simple. Every arithmetic instruction uses

both the multiplier and the ALU. If no multiplication is required, a multiplica

tion by unity is performed; this is the reason for the multiplexers at the inputs

to the multiplier in figure 4-9. Similarly, if no ALU operation is required, the

product is added to zero. With this in mind, the following arithmetic instruc

tions are supported.

THE IT ARCHITECTURE

a - a + xop * yop Mult, and ALU operation
a =» xop + yop ALU only
a « a + op ALU only, with a as one operand
a = a + di ALU only, with direct address
a - ALU(a) Negate, complement, absolute value, etc.
op Operand only, to do auto-incr. or deer.

153

In this table, the symbol "+" designates any ALU operation, which could be

addition, subtraction, or bitwise logical operations. The symbol xop is an X

memory operand, "(*rxl++i)" for example, yop is a Y memory operand, and op

is either. The symbol di represents a direct memory address for either the X

memory or the Y memory. An instruction consisting of only an operand simply

performs the auto-increment or decrement specified by the operand.

4.5.4. Data Transfer

*An instruction set is not complete without data transfer instructions. The

following instructions are supported.

op = reg register to memory
di = reg register to memory
reg = op memory to register
reg = di memory to register
reg = reg register to register
reg = data immediate data to register

To be able to transfer immediate data from instruction memory to a register in

one cycle, we must assume that the instruction word is significantly wider than

the data word. We have made this assumption, but in a hardware implementa

tion this may be undesirable, in which case a direct memory address should be

used to load immediate data. Instructions that would be useful but cannot be

supported in a single instruction cycle without augmenting the pipeline include

THE IT ARCHITECTURE 154

memory to memory transfers. In this architecture, such transfers must go

through a register.

A barrel shifter is provided for transferring any portion of the 40 bit accu

mulator onto the 20 bit busses. Let the symbol sha denote an operand such as

"a « 2", which represents the accumulator shifted to the left two bits, or "a

» 5", which represents the accumulator shifted right five bits. Then instruc

tions using the barrel shifter are listed below.

op = sha shifted a to memory
di = sha shifted a to memory
reg = sha shifted a to register
a « a + sha * yop shifted a to multiplier
a = a + xop * sha shifted a to multiplier
a = sha + yop shifted a to ALU

a « xop + sha shifted a to ALU

a = a + sha shifted a to ALU

The reservation table shows that an instruction uses the barrel shifter in its

second cycle, at the same time it is being decoded. This permits instructions like

mop - a « T because the shift operation is complete before memory cycles

become available to the w slice. This arrangement implies that the barrel shift

operation must begin before the instruction is decoded. This is not a problem,

because a shift operation can be started and if decoding determines that no bar

rel shift operation is required, the result is discarded.

4.53. Control Flow

The only control flow instructions we use in our examples below are sub

routine call instructions and unconditional branches, but a full complement of

conditional and unconditional branch instructions are easily supported. Note

THE IT ARCHITECTURE 155

from the reservation table that the decode hardware has the condition codes

available from the previous ALU operation in the same v slice, so conditional

branches are no more difficult than unconditional branches. Hardware for low

overhead branching, like that in the Motorola DSP56000[Moto86a] is becoming

increasingly popular, and should probably also be supported.

4.5.6. Addressing Modes

We have mentioned direct addressing, designated by the symbol di, and

indirect addressing, designated by the symbols xop yop and op. Indirect

addresses use either the X registers or the Y registers with four types of auto-

increment/decrement, listed in the following table, which uses the register rxl

as an example.

rxl no increment/decrement
rxl++ increment by one
rxl- decrement by one
rxl++i increment by the contents of the i register

To support synchronous data flow programming, however, it is also neces

sary to efficiently support circular buffers. Circular buffers require an address

ing mode where the auto-increment/decrement is modulo the length of the

buffer. For subtle reasons that become clear in the next chapter, it is advanta

geous that all the information about a circular buffer be contained in one word

in memory or one register. Unfortunately, this was not done in the Motorola

DSP56000. This device easily supports large circular buffers, as long as there

are not many. We need to support many small circular buffers. The mechan

ism we describe supports only small buffers, but a practical architecture would

THE IT ARCHITECTURE 156

probably require some support (perhaps less efficient support) for larger buffers.

In the LM-ir, modulo-mode addressing is supported in the Y registers, thus

confining the circular buffers to the Y memory. Using circular buffers should

not slow a program at all. One bit (the high order bit) in the Y address regis

ters is reserved to indicate whether the register is used to access a circular buffer.

If not, then the low order 16 bits are used directly as a memory address. Oth

erwise, the bits of the register are divided into four fields, shown in the follow

ing table.

Symbol Field Name Field Length Description

c circular 1 bit When set, address circular buffer
s start 9 bits Start position of buffer (with b reg.)
f offset 5 bits Current position in buffer

m mod 5 bits Length of buffer

All fields are unsigned. The total length of the registers is 20 bits. The registers

can be initialized using the assembler mnemonic circ, as shown in the following

example,

ryl = ciTcistart,offsetjnodulo);

The right hand side is converted into a 20 bit constant by the assembler with

the high order bit set.

Suppose that register ryl has a one in the c bit position. Then an operand

like "(*ryl++)" results in the address

High order 8 bits Low order 8 bits

b s + f mod 256

where b is the base register. The offset field is then incremented by one, modulo

the contents of the mod field,

THE IT ARCHITECTURE 157

f„+i = f„ +1 mod m.

One possible hardware configuration to support this is shown in figure 4-10.

The divider is a nontrivial circuit, but is small because of the small number of

bits in its inputs. Suitable divider circuits are discussed in[Hwan79a]. Existing

signal processors that implement modulo-mode addressing restrict the mod to

be a power of two, obviating the need for a divider[Mint83a, Shiv82a, Qiire84a].

However, to support synchronous data flow programming without squandering

memory, it is deemed important to support more general modulo-mode address

ing.

Circular buffers of length greater than 32 are not supported in the LM-ir.

If longer buffers are desired, they must be implemented by the user or made by

cascading shorter buffers. Details of how these circular buffers are used are

given in the following chapter.

4.5.7. Asynchronous Protocols

In chapter 2 it is argued that most communication between ir slices will be

completely synchronous; a compiler determines when data from one slice will

be ready to be used in another slice and ensures that the slice programs are

appropriately synchronized. Sometimes, however, a program in a slice may have

a data dependent execution time, or may put a data dependent number of sam

ples into a circular buffer. To support this, the LM-xr architecture has a sema

phore mechanism in the Y memory. An extra bit indicates whether a memory

location is full or empty. The bit is set with every write to a location, and is

only reset by one of the following instructions:

start

T__^
mod

612
adder

offsett

tr
Effects Address

16

mod

"X
d

o

I

a

y

6T

[p g g op

denominator

MUX

<b
mod

32
adder

numerator

divider

remainder

5

Figure 4-10: Hardware support for modulo-mode auto-increment/decrement.

158

THE IT ARCHITECTURE 159

empty(di);

empty(yop);

To conditionally access a memory location, the expressions

waitf(yo/0

waitf(di)

can be used instead of yop in arithmetic or data transfer instructions. The ir

slice will repeat the memory access until it reads a full memory location. Obvi

ously, this should only be used if another ir slice or I/O circuit is expected to fill

the memory location. To wait until a memory location is empty before proceed

ing, the following instructions are used

waite(yo/>);

waite(4z);

The next instruction presumably writes into this memory location.

Often the entire ir processor should be synchronized to the inputs or out

puts. If instruction count is used to synchronize ir slices, then uncertainty in

the timing of I/O operations can be fatal. To prevent this, the expressions

synf(yo/0

synf(tfz)

can be used to halt the whole machine (except I/O hardware) until a location is

full, or the instructions

syneiyop);

syneidi);

THE W ARCHITECTURE 160

can be used to halt the whole machine (except I/O hardware) until a location is

empty. These instructions can only be used in connection with I/O, discussed in

the next subsection.

4.5& Input and Output

The I/O mechanism for the LM-ir must match the requirements of the SDF

programming. Furthermore, a single set of I/O ports should be accessible to all

v slices. Also, it must be easy to interconnect multiple ir processors.

The LM-ir has two serial ports, one for input and one for output. For now

we assume that samples are clocked into an input buffer ibuf by external circui

try, and outputs are shifted out whenever the internal output buffer obuf is

written. The mnemonic ibuf may be used in place of any Y operand, and the

mnemonic obuf in place of any destination. To synchronize to external inputs,

use the expression synftibuf), which causes the machine to halt until the input

buffer is written. The expression emptyGbuf) then marks the input buffer

empty. The following two instructions write an input sample to the location

pointed to by ryl,

♦ryl = synftibuf);

empty(ibuf);

The full or empty status of the input buffer is available to outside circuitry,

thus completing the synchronization. Synchronizing to outputs is accomplished

with instructions like

syne(obuf);

obuf = *ryl;

THE IT ARCHITECTURE 161

This mechanism is adequate for many synchronous applications, but often

some form of asynchronous I/O is required. In particular, synchronous data

flow programming is considerably simplified if an autonomous I/O mechanism

writes to and reads from buffers in memory without interfering with the execu

tion of the program. Two mechanisms are under investigation. The first is

interrupt driven I/O in which the interrupt service routine writes input data

into a circular buffer or collects output data from a circular buffer. The user

interface to I/O is through these buffers. Synchronization is accomplished using

semaphores in the Y memory. It is not obvious, however, how to implement

interrupts in a ir processor. Fivemethods for interrupting non-interleaved pipe

lined processors are given by Smith[Smit85a]. A method suitable for the v uses

an extra v slice that is created when an interrupt occurs. Its state (all the regis

ters) simply get inserted into the interleaved instruction stream when it gets

activated, and get put aside otherwise. It runs only to serve interrupt requests.

Execution in all ir slices is slightly slower when the interrupt slice is active, but

they remain synchronized to one another.

A second I/O alternative is a DMA circuit that steals unused cycles in the Y

memory to write input data into a circular buffer or read output data from a

circular buffer. This method is probably more complicated, but it has the

advantage that the ir slices are not slowed at all by I/O operations. A more

common DMA mechanism requires the CPU to steal unused cycles from the

DMA circuit, giving I/O priority, but with such an approach, the ir slices will be

slowed somewhat by I/O. The difficulty with our approach is the need to be

sure for each program that unused cycles occur with sufficient frequency to reli

ably manage the I/O. This is guaranteed to be the case if a program is

THE IT ARCHITECTURE 162

synchronized to the I/O and must wait for each new sample to be written into

the memory before proceeding. The user interface is identical to that in the

interrupt approach.

One possible DMA mechanism for bit serial I/O in the LM-ir is shown in

figure 4-11. Two address registers (which are not replicated for each ir slice),

designated ri and ro, specify where the next input or output sample, respec

tively, should be read or written in the Y memory. The read or write occurs

whenever a cycle of the Y memory is not used by any one of the slices. Nor

mally, these registers address circular buffers, so they take the same format as Y

registers addressing circular buffers. A base register designated iob is used

instead of the slice dependent base registers used when Y registers address circu

lar buffers. The program simply accesses a designated buffer for input data and

writes to a designated buffer for output data. Double buffering and synchroni

zation become particularly simple. Other details of the I/O mechanism are not

important to this thesis.

4.5.9. Exceptions

Interestingly, in the current generation of monolithic DSP architectures,

automatic exception handling is almost entirely absent. There is no mechanism

for automatically managing arithmetic overflows or pointer limit overflows, for

example. The programmer may insert code to test for such conditions, of

course, if the condition can cause a critical error. The main reason for this is

probably that monolithic DSPs usually operate without a human user, so that it

is not clear what an exception handling routine would be able to do that would

be useful.

E
L

A

Y

DELAY |h

163

Y REGISTERS

U3 CtU
^20 ^2020

MUX] [

EFFECTIVE ADDRESS

16

Y MEMORY

y bus

DMA

CONTROLER

Figure 4-11: One possible DMA I/O scheme.

MUX

full/empty

1 | DEMUX ""J

UPDATE

Oi_>

-| obuf "|-

dock

data

full/empty

enable

data

dock

THE IT ARCHTTECTURE 164

4.6. PROGRAMMING EXAMPLES

In this section two important examples, FIR filters and IIR filters, illustrate

the programming of the LM-ir. These programs are a straightforward use of

the architecture, without SDF programming. The synchronization of v slices

and passing of data between them is much simpler when synchronous data flow

programming is used because a compiler takes care of the details.

4.6.1. FIR filters

As an programming example, consider a 16-tap FIR filter implemented on a

four slice LM-ir processor as shown in figure 4-12. Each slice will implement

four of the taps. A single 16-tap delay line is implemented with a circular

buffer initialized as shown in figure 4-13. So slice 1 is responsible for the

newest samples and slice 4 for the oldest. Logically, the first slice is responsible

for collecting input and the fourth slice is responsible for disposing of the out

put. The program for each slice is divided into an initialization phase and a

main loop. The program for the first slice is shown in the following table.

165

Figure 4-12: A 16-tap FIR filter implemented in four slices. The delay line is a
single circular buffer shared by the slices.

I ryl ^ «yi,

Figure 4-13: The delay line for the 16-tap FIR filter example is implemented as
a single, shared circular buffer initialized as shown. The shaded cell is empty
and will be the one written to. The subscripts indicate which slice the registers
belong to.

THE 7T ARCHITECTURE

16-Tap FIR filter (slice 1)

label instruction

1 start: ryl -circ(c?etoyj[ine,13,16);
2 ry2 «tkrbufl;
3 rxl » circ(coe/7,0,4);
4 i=-2;

5 loop: a = (*rxl++)*(*ryl++);
6 a = a + (*rxl++)*(*ryl++);
7 a = a + (*rxl++)*(*ryl++);
8 ♦ryl = waitfCibuf);
9 empty(ibuf);

10 a = a + (*rxl++)*(*ryl++i);
11 *ry2 = a;
12 goto loop;

166

The initialization phase is the first four instructions. The first instruction

sets up the pointer to the delay line. The second instruction sets ry2 to point to

rbufl, the result buffer for the first slice. The third instruction sets rxl to point

to a circular list with four filter coefficients. Instructions 5-7 multiply three

data samples by filter coefficients. Instructions 8 and 9 collect an input, halting

this slice only until an input appears, and instruction 10 multiplies that input

by a filter coefficient. Instruction 11 writes the accumulated result to the rbufl

buffer, and instruction 12 restarts the loop. Notice that after one pass through

the loop, rxl points to beginning of the coefficient list and ryl points to the

location one higher in the delay line than before.

The second and third ir slices have similar programs.

THE IT ARCHITECTURE

16-Tap FIR filter (slice 2)

label instruction

1 start: ryl - circ(ctetoy_Zi7ie,9,16);
2 ry2 = &rbuf2;
3 ry3 = &rbufl;
4 rxl = circ(coe/2,0,4);
5 1—2;

6 loop: a = (*rxl++)*(*ryl++);
7 a = a + (*rxl++)*(*ryl++);
8 a = a + (*rxl++)*(*ryl++);
9 a - a + (*rxl++)*(*ryl-H-i);

10 a = a + waitf(*ry3);
11 empty(*ry3);
12 *ry2 = a;
13 goto loop;

167

On the first pass through the loop, instruction 10 will cause this slice only to

wait until memory location rbufl is written into by the first slice. Thereafter,

no wait occurs because the loop has the same number of instructions (8) as the

loop in the first slice. Synchronization could also have been done by padding

the code with nops, but in this case it is essential that the first slice use

synf(ibuf) instead of waitfGbuf) so that all slices are halted when the first

slice has to wait for an input. The example in the next subsection is synchron

ized this way, to illustrate the technique of instruction-count synchronization.

The third tr slice is virtually identical, so its code is not shown.

The fourth w slice writes to an output buffer, but we assume that the

machine is synchronized to the input, and outputs are simply written when

ready. The program is

THE IT ARCHITECTURE

16-Tap FIR filter (slice 4)

label instruction

1

2

3

4

start: ryl = circ(rfetay_Zz>ie,l,16);
ry3 - 8irbuf3;
rxl = circ(coe/4,0,4);
1—2;

5

6

7

8

9

10

11

12

loop: a ~ (*rxi++)*(*ryl-H-);
a - a + (*rxl++)*(*ryl++);
a = a + (*rxl++)*(*ryl++);
a = a + (*rxl-H-)*(*ryl++i);
a = a + waitf(*ry3);
empty(*ry3);
obuf = a;
goto loop;

168

If the filter order is greatly increased, the percentage of time spent on overhead

decreases, of course.

4.63. HR Filters

As a second programming example, consider putting four cascaded IIR

biquad filters into each of four LM-w slices. In this case, we will use instruc

tion count synchronization. That is, the whole machine is synchronized to the

input, but relative to one another, the it slices are running open loop. The cas

cade of four biquads is illustrated in figure 4-14(a) with the buffers used to

pass data between them named. A detail of a biquad is shown in figure 4-14(b)

with the coefficients labeled cl c5 and the state variables labeled si s3.

The variable s3 is actually a temporary, not a state variable. The coefficients

and state variables are implemented using circular buffers, initialized for the

first it slice as shown in figure 4-14(c). The code for the first ir slice is

ryl

ibuf bufl buf2 buf3 obuf

(a) Four cascaded biquads

(b) One of the biquads

Y MEMORY

s1

s2

S3

X MEMORY

rxl

ry2 bufl

d

c2

c3

c4

c5

(c) Memory allocation and initial pointer locations.

Figure 4-14.

169

THE TT ARCHITECTURE 170

Biquad in the first slice

label instruction comment

1 start: ryl -circCs/,1,3); buffer starting at si
2 ry2 - 8dmfl; output buffer
3 rxl - circ(c7,0,5); coefficient list

4 loop: a = (*rxl++)*(*ryl++); cl*sl

5 a = a + (*rxl++)*(*ryl++); c2*s2

6 a = a + synf(ibuf); synchronize to the input
7 emptytibuf); mark ibuf empty
8 *ryl++ = a; write to s3

9 a = (*rxl++)*(*ryl++); c3*sl

10 a - a + (*rxl++)*(*ryl++); c4*s2

11 a » a + (*rxl++)*(*ryl—); c5*s3
12 ♦ry2 = a; write the output
13 goto loop;

Note that after one pass through the loop, rxl points to cl and ryl points to s2.

This effectively accomplishes the sample shift in the delay line.

The second slice contains similar coda For clarity, we have identified the

state variables and coefficients using the same names as in the first slice.

THE IT ARCHITECTURE 171

Biquad in the second slice

label instruction comment

1 start: ryl »circ(s/,l,3); buffer starting at si
2 * ry2 = 8dmf2; output buffer
2 ry3 - &Jmfl; input buffer
4 rxl = circ(c/,0,5); coefficient list

5 nop;

6 nop;

7 nop;

8 nop;

9 nop;

10 nop;

11 loop: a = (*rxl++)*(*ryl++); cl*sl

12 a = a + (*rxl++)*(*ryl++); c2*s2

13 a = a + *ry3; collect the input
14 *ryl++ = a; write to s3

15 a = (*rxl++)*(*ryl++); c3*sl

16 a = a + (*rxl++)*(*ryl++); c4*s2

17 a = a + (*rxl++)*(*ryl—); c5*s3

18 *ry2 =a; write the output
19 nop;

20 goto loop;

The nops in the initialization are required because the input to the biquad is

read in the seventh working (non-nop) instruction that the second ir slice exe

cutes, but is written by the first ir slice in the 12£/l instruction. Thus, six nops

are required to ensure that the input isn't read until the 13/;i instruction. An

alternative approach would be to allow the second ir slice to read garbage (or a

zero sample) from the input buffer on the first time through the loop. This is

equivalent to pipelining the biquads. Note that the sequence of nops can be

made more compact with a repeat (rpt) instruction like that used in the TMS-

32020. Unlike in the TMS-32020 architecture, however, there is no other

advantage to a repeat instruction. (The TMS-32020 architecture saves memory

cycles by using the repeat instruction, and actually puts those memory cycles to

work). The extra nop in the loop is to make the loop the same length as the

THE IT ARCHITECTURE 172

loop in the first v slice, to ensure that the v slices remain synchronized.

The third v slice has code very similar to the second. The fourth is only

slightly different.

Biquad in the fourth slice

label instruction comment

1 start: ryl =circ(s/,l,3); buffer starting at si
2 ry3 - Sdmfl; input buffer
3 rxl «= circ(ci,0,5); coefficient list

4 nop;

22 nop; 19 nops total

23 loop: a «= (*rxl++)*(*ryl++); cl*sl
24 a = a + (*rxl++)*(*ryl++); c2*s2

25 a «= a + *ry3; collect the input
26 *ryl++ • a; write to s3

27 a = (*rxl++)*(*ryl++); c3*sl
28 a «= a + (*rxl++)*(*ryl++); c4*s2
29 a = a + (*rxl++)*(*ryl—); c5*s3
30 obuf = a; write the output
31 nop;

32 goto loop;

If we compare the performance of the four slice LM-7T to an unpipelined

processor with otherwise the same architecture, we get nearly four times the

throughput. If we compare it with an equivalent pipelined processor with no

interleaving, we benefit from being able to write code that does not suffer

because of the pipelining. An important advantage is that the code we have

illustrated for four ir slices will work unmodified if there are eight, where the

other four can be dedicated to other tasks or to increasing the order of the filter

implemented. However, as this example illustrates, dividing a task into parallel

programs to run on the ir slices is not as easy as we would like. Synchroniza

tion must be carefully controlled. It is for this reason that SDF programming is

THE IT ARCHITECTURE 173

so important in this application.

4.7. THE COLUMBIA ARCHITECTURE

The architecture proposed by Cohn[Cohn83a] at Columbia in his PhD thesis

is particularly interesting. Conn also uses pipelining and interleaving, and con

siders the programmability of the machine, but because of the general purpose

nature of the proposed machine, the techniques he proposes are quite different.

He describes a Generalized Machine (GEM) that can allegedly do what any other

SPIN (Sequential Processors & Interconnection Network) machine can do, and is

apparently incarnate in the CHoPP (Columbia Homogeneous Parallel Processor).

It is a shared memory system with an omega network interconnection between

the processors and the memories. There are several important aspects to the

GEM architecture. It is programmed using a large grain data flow paradigm

with dynamic control, but each block in the data flow graph is actually a pro

cess. Corresponding to each block is a full set of registers, the entire state of a

processor slice. This has significant advantages for dynamic data flow control

because a block can be suspended at any time due to insufficient data on its

input buffers, and when it is restored, the entire processor state is restored.

Furthermore, each processor is interleaved, so data flow blocks are scheduled

onto slices of processors. The important details of the architecture are outlined

below. (Note that most of the acronyms below, VP, PS, & OS are mine, not

Conn's).

THE 7T ARCHITECTURE 174

4.7.1. Conflict-Free Memory System.

This is a pipelined omega network in which each node recognizes simultane

ous accesses to identical memory locations and combines the accesses into one, so

no delay occurs. Simultaneous accesses to different memory locations in the

same memory module still cause delays, but a hashing of memory addresses

reduces the frequency of such conflicts. This is a rather complex and expensive

patented memory scheme. But it is not clear that it is worth the cost.

4.7.2. Virtual Processors (VP).

This is Conn's term for processes with interdependencies (data flow

blocks). Each VP has a register set stored in main memory (or cache) called a

state vector. Cohn assumes there are an infinite number of VPs available, that

each one runs until it gets blocked (needs a result from another VP that has not

been computed), and that a list is maintained of runnable but not running VPs.

The naive scheduling, Cohn argues, never costs more than a factor of two in

efficiency[Grah69a], rarely costs that much in an actual application[II83a], and

doesn't actually cost anything in a general purpose computing environment

where user's jobs can be intermingled, the supply of jobs can be deemed infinite,

and the efficiency is measured over months, not milliseconds. Finally, each VP

can run on any PS (see below).

4.73. Processor Slices (PS)

These are interleaved processes like those in the ir processor used to com

pensate for latency in the pipelined memory accesses. One VP that can be run is

an Operating System (OS) VP associated with each processor slice to handle I/O

THE IT ARCHITECTURE 175

requests or the management of blocked VPs. Thus, the OS VP in each slice does

the dynamic scheduling. Each processor slice has three hardware registers asso

ciated with it: a register pointing to the current VP state vector in memory,, a

one bit register to specify whether the current VP is running or the operating

system VP is running, and a register through which a VP can send messages to

the OS VP. The state vector of the OS VP resides at a prespecified memory loca

tion. One way of handling the scheduling is to let the OS VP select the next VP

from a list of runnable VPs when the current one gets blocked. The list of

runnable VPs is maintained by separate hardware associated with each processor

(processing element with a set of PSs) to run in the background maintaining the

scheduling lists. It will ideally always have on hand a state-vector address for

the next VP to run when the current one gets blocked. Each PS has its own

cache to reduce traffic on the network. However, each PS can access the cache of

each other PS on the same PE.

4.7.4. VP Synchronization

The synchronization and communication between VPs is done via "black

boards" of which there are two types. The first type is a list of runnable but

not running VPs. If VP1 produces data that it knows is needed by VP2, then it

can put VP2 on the list. If VP2 actually also needs data from another process,

it can run until it gets blocked again by trying to access that data. This black

board is easily fractured into many smaller blackboards; the OS VP selects a

blackboard at random, until it finds one unlocked, and locks it while it accesses

it. The fracturing reduces conflicts. The second kind of blackboard gets associ

ated with a particular event that can block other VPs. A list of VPs blocked by

THE 7T ARCHITECTURE 176

this event is stored here. Any VP depending on this event checks this black

board to see if the event has occurred, and if not, blocks, and adds its own state

vector address to the blackboard. Cohn says a waiting queue is needed for this

blackboard in the event of simultaneous accesses.

4.7.5. Comments on Relationship with the v Processor

The blackboard method of synchronization would, in principle, work with

the v processor, but it requires relatively expensive run-time support. In a gen

eral purpose computing environment this is appropriate, because the distinction

between run-time and program development is not as drastic as in the v proces

sor context, where every effort is made to eliminate all run time overhead due to

the interleaving. The synchronous nature of most signal processing programs

makes such overhead unnecessary, as shown in the previous chapters, and their

computational demands makes it imperative.

Conn's interleaving requires less memory to replicate the state because each

slice only has three hardware registers. These registers point to the processor

state in memory. However, the disadvantage of this approach is that the

memory used to store the processor state for all the VPs could easily become the

speed bottleneck in the system. A final disadvantage to Conn's approach makes

it ill suited for hard real-time applications. The use of caches and conflict-free

memories afford only probabilistic speedup, and hard real-time applications

require performance in the worst case.

THE IT ARCHITECTURE 177

4.8. CONCLUSIONS

We have proposed a pipelined and interleaved (w) approach for the design

of high performance programmable DSPs. Deep pipelining is used to gain max

imum hardware advantage, but the problems generally associated with such

pipelining are avoided by making the pipelining invisible to the programmer.

Instead, the programmer sees a set of parallel processors {ir slices) that share

memory. An implementation of synchronous data flow (SDF) programming is

described in the next chapter.

The main hardware cost of interleaving is the additional registers required

to replicate the processor state. However, these registers can be implemented as

dynamic shift registers, which require considerably less VLSI area than ran

domly placed registers implemented as sets of flip-flops. The main hardware

advantage is the ability to increase the amount of pipelining without exacerbat

ing the programming. Additional hardware features that have been identified as

helpful to support SDF programming are

• modulo auto-increment/auto-decrement addressing modes (for circular buffers);
• data independent execution times for all instructions; and
• memory semaphores with a full/empty discipline (for asynchronous systems).

A specific architecture has been outlined that contains these features.

PROGRAMMING A 3T PROCESSOR USING SDF GRAPHS

In the last chapter we use a pipelined and interleaved (ir) approach for the

design of high performance programmable DSPs. Deep pipelining is used to gain

maximum hardware advantage, and the problems generally associated with such

pipelining are avoided by making the pipelining invisible to the programmer.

Instead, the programmer sees a set of parallel processors {ir slices) that share

memory. A specific architecture, designated the LM-7T, is outlined in that

chapter. In this chapter, programming of the LM-ir using the synchronous data

flow paradigm is discussed. Thus, this chapter should serve to weld the theoret

ical results of chapters 2 and 3 with the architecture of chapter 4.

The implementation of synchronous data flow requires

(1) a way to specify the topology of an application (the SDF graph);

(2) a way to specify the functions associated with each block;

PROGRAMMING A 7T PROCESSOR USING SDF GRAPHS 179

(3) a systematic method for mapping these specifications onto ir slices or other

parallel processor architectures.

The SDF graph can be generated using a graphical interface[Hait85a], making

prototyping DSP systems that use only standard blocks particularly easy. In

this chapter we assume that the code defining the function of a block is written

in the assembly language of the ir processor. In section 5.1, the mechanics of

buffering data between SDF blocks is considered. The design of a suitable high

level language and graphical interface is briefly considered in section 5.2. In sec

tion 5.3, a voiceband data modem example is considered in detail.

Implementing the signal processing system described by a SDF graph

requires buffering the data samples passed between blocks and scheduling blocks

so that they are executed when data is available. Our goal is a compiler that

translates block definitions and a SDF graph into efficient sequential code for a

parallel processor. Note that our compiler is not translating a high level

language into machine code, although this could ultimately be part of its func

tion.

It begins by scheduling using the techniques in chapter 2 and proceeds with

code generation. Criteria for the correctness of a SDF graph are given in chapter

2. In particular, for a graph to be correct, it must have a periodic admissible

schedule. A periodic schedule is said to be admissible if the amount of data in

the buffers remains bounded and non-negative with infinite repetition of the

schedule. A graph does not have a periodic admissible schedule if it has incon

sistent sample rates or directed loops with insufficient delays. Necessary and

sufficient conditions for correctness of a SDF graph are given. A broad class of

PROGRAMMING A 7T PROCESSOR USING SDF GRAPHS 180

algorithms designated class S (for sequential) algorithms will find a periodic

admissible schedule if one exists, solving the single processor scheduling prob

lem. The ir processor is a multiprocessor, however. For the multiprocessor case,

a class S algorithm is given in chapter 2 for translating a SDF graph into an acy

clic precedence graph for one or more periods of a periodic schedule. Such a

graph can be used to construct blocked schedules for multiple processors.

Indeed, given such an acyclic precedence graph, the block scheduling problem

reduces to the well studied assembly line problem. General schedule length

minimization algorithms are NP-complete, but a large family of critical path

methods offer simple heuristics that can be shown to perform extremely well.

These methods give preference to the path through the precedence graph with

the most computation.

Mainly by means of examples, the practical aspects of code generation are

considered in this chapter. The performance of the scheduling algorithm of

chapter 2 is evaluated by considering in detail a complicated real-world exam

ple, a voiceband data modem. A program (written in Lisp) called Gabriel is

used to build the examples and implement the scheduling algorithms.

5.1. BUFFERS AND DELAYS

Each arc in the SDF graph corresponds to a buffer that can be implemented

as a circular list. Circular lists are easily supported using the modulo address

ing described in chapter 4. The size of each buffer depends on the schedule. To

see this, consider the trivial system shown in figure 5-1. Assume for simplicity

that we are to schedule this system onto a single ir slice; the buffering problem

is the same in the multiprocessor case. If the schedule is a periodic repetition of

in
bufl1^fir4>1

*^B
Figure5-1:Atrivialsynchronousdataflowgraph
describingafourtapFIRfilterwithinputandoutput.

Readpointer

Writepointer

i
i
i

V^

Initialemptyoldestnewest

\
\

\
\

After"in"newestoldest

V\ After"fir4"newestemptyoldest

\

\

\
\

>

After"in"newestoldest

\x After"fir4"newestemptyoldest

\
\

\

r

After"in"newestoldest

j-——\
After"fir4"oldestnewestempty

Figure5-2:AbuffercanserveasthedelaylineofanFIRfilter.
Thisfigureshowshowthereadandwritepointerschangeas
the"in"and"fir4"blocksinFig.5-1arerepeatedlyexecuted.

181

PROGRAMMING A IT PROCESSOR USING SDF GRAPHS 182

the sequence {in, nr4, out|, then the buffers need only store one new sample at

a time, and can therefore be of length one. If the schedule is a periodic repeti

tion of {in, in, fir4, fir4, out, out), then buffers of length two are required.

It is desirable to be able to access not just the new samples in a buffer, but

also past samples[Mess84a]. The buffer "bufl" can then be used to implement

the delay line of the four tap FIR filter. The programmer therefore does not

need to implement data structures that can easily be provided by the circular

buffering mechanism.

Each buffer is a set of contiguous memory locations plus two pointers.

Both pointers are set up by the scheduler for modulo-mode auto-

increment/decrement, as described in chapter 4. The write pointer is used by the

block that puts data into the buffer. Before this block is invoked, the write

pointer should point to the next location to be written (an empty location in the

buffer). The read pointer is used by the block taking data from the buffer.

Before that block is invoked, the read pointer by convention points to the oldest

sample of interest in the buffer. Thus, in figure 5-1, before invoking fir4, the

read pointer of "bufr points to the last sample in the delay line of the FIR

filter. The code within a block must increment all read or write pointers that it

uses to indicate consumption or production of data samples.

This use of the buffer is illustrated in figure 5-2. A buffer of length four

and the schedule {in, fir4, out) are assumed. The first buffer state, labeled ini

tial, shows the write pointer pointing to the first location in the buffer and the

read pointer to the second. We assume the buffer is initially full of zero sam

ples, so the FIR filter delay line is initialized to contain zeros. Invoking the in

PROGRAMMING A IT PROCESSOR USING SDF GRAPHS 183

block causes a new sample to be written into the first location. The pointer is

incremented by one, indicating that one sample has been produced, as shown in

the figure. Now we can run fir4. The fir4 block accesses the four samples in

the buffer, incrementing the read pointer (modulo four) until it accesses the

newest sample. After accessing the newest sample, it decrements the pointer by

two so that the net update of the pointer is one, as shown in the third buffer

configuration. This procedure can be repeated indefinitely; the periodic schedule

ensures the integrity of the data.

Having illustrated the buffering operation, we illustrate the code for the

LM-ir architecture described in section 4.5 implementing the block fir4. The

block subroutine expects the buffer pointers to be in pre-agreed registers, and

updates the registers before returning. This convention implies that all blocks

must have implicit self-loops, because if two successive invocations of a block

were to run simultaneously, only one of the blocks will successfully modify the

buffer pointers. This limitation is discussed further in the final chapter. The

main part of the code is the following subroutine.

fir4: a - (*rxl++)*(*ryl++); coefficient times oldest data
a = a + (*rxl++)*(*ryl++); coefficient times second oldest data
a = a + (*rxl++)*C*ryl++); coefficient times third oldest data
i=-2; So that we can auto-decrement by 2.
a = a + (*rxl)*(*ry l++i); coefficient times newest data
*ry2++ = a; write to output buffer
return;

This is all the code written by the user defining the block. It assumes that on

entry to the subroutine,

PROGRAMMING A IT PROCESSOR USING SDF GRAPHS 184

(1) the address register ryl contains the read pointer for the input buffer and

ry2 contains the write pointer for the output buffer;

(2) ryl points to the sample in the input buffer four iterationsold;

(3) ry2 points to the next empty location in the output buffer;

(4) rxl points to the coefficient for the oldest sample.

These assumptions are part of the definition of the block. Hence, in addition to

the subroutine above, declarations like the following are required as part of the

definition of the block:

input namejyi;
output name,Ty2;
param coefficients,rxl,4;

The names can be used to distinguish inputs and outputs when there are more

than one of each. Notice that the definition of the block is not affected by the

length of the buffers, and therefore is independent of the schedule. This same

block can be used in the SDF graph shown in figure 5-3, where because of the

interpolator, a buffer of length four at the input to fir4 will not work. If the

schedule is {in, interp, fir4, fir4, out, out}, then a buffer of length five is

required.

To initialize the system, the buffers must be defined by allocating memory

and setting the read and write pointer to their initial values. Our compiler,

after scheduling to determine the length of the buffers, generates code to initial

ize the buffers "bufl" and "buf2" in figure 5-1. Suppose that the schedule is

{in, fir4, out}. Then the following LM-ir code will set up the buffers:

(a)

(b)

1 1 f \ 2 1 /^\1 1
in) ninterpi h fir4 i *4 out

Figure5-3: A simple multiple sample rate system.

Read pointer

Write pointer

i f V

0 empty oldest newest

Read pointer

Write pointer

oldest

Figure 5-4: Two possible ways of initializing a length four
bufferwhen the corresponding arc has a unit delay:

(a) the source block will run first, or
(b) the destination block will run first.

185

PROGRAMMING A IT PROCESSOR USING SDF GRAPHS 186

bufl:

bufl_write:
bufljread:
buf2:

buf2_write:
buf2 read:

ram(4)
ram(l)
ram(l)
ram(l)
ram(l)
ram(l)

a = circ(buf1, 0, 4)
bufl_write - a;
a = circ(buf1, 1, 4)
bufl_read = a;
a - circ(buf2, 0, 1)
buf2_write = a;
a - circ(buf2, 0, 1)
buf2 read = a;

Pseudo-op to allocate four memory locations.
Pseudo-op to allocate one memory location.
Pseudo-op to allocate one memory location.
Pseudo-op to allocate one memory location.
Pseudo-op to allocate one memory location.
Pseudo-op to allocate one memory location.

Point to first location of length 4 buf.
Write to buffer write pointer location.
Point to second location of length 4 buf.
Write to buffer read pointer location.
Point to length 1 buf.
Write to buffer write pointer location.
Point to length 1 buf.
Write to buffer read pointer location.

This code is generated by the compiler, and executed only once. Notice that this

code can be trimmed down by observing that the read/write pointers to a length

one buffer are always tjhe same. We will ignore such obvious optimizations for

now.

When the program is running and collecting input samples, to invoke the

block fir4, the registers rxl, ryl, and ry2 must be set. Each invocation of fir4

therefore proceeds as follows (this code is also generated by the compiler):

ryl = bufljread;
ry2 = buf2_write;
rxl == circ(coefficients,0,4);
call fir4;

bufl_read- ryl;
buf2_write = ry2;

Set read pointer.
Set write pointer.
Set parameter pointer.
Call the subroutine.

Update the read pointer.
Update the write pointer.

The two memory writes at the end are required to record the number of sam

ples consumed or produced. Actually, because "bufT has unity length, the last

write is not required, but we will assume the compiler blindly ignores such

optimizations; we therefore get a worst-case bound on the overhead introduced

PROGRAMMING A W PROCESSOR USING SDF GRAPHS 187

by the programming method.

Each invocation of the block fir4 requires the six instructions above gen

erated by the scheduler plus the seven instructions of the fir4 subroutine, for a

total of 13 instruction cycles. This is considerably more than the seven instruc

tion loop in the four tap FIR filter example described in chapter 4, but, as with

virtually all high level programming methodologies, the advantages of the

method only become evident when the system gets relatively complicated. We

describe the voiceband data modem example in the next section.

In chapter 2, it is observed that delays are managed quite simply in SDF.

A delay is a property of the arc connecting two blocks. That is, if there is a

unit delay on the arc connecting block A to block B, then the nth sample con

sumed by B will be the {n —1)/A sample produced by A. The first sample con

sumed by B is therefore not produced by A at all, but is rather part of the ini

tial state of the buffer. A delay on an arc is exactly equivalent to an initial sam

ple on the arc, implying that delays are simply introduced in the initialization of

the buffer.

Consider again the example in figure 5-1. A unit delay on the arc from in

to fir4 implies that fir4 can be invoked before in. Indeed, on a single processor,

we now have three possible schedules with unit blocking factor, {in, fir4, out},

{fir4, in, out}, and {fir4, out, in}. Depending on whether the scheduler selects

to run fir4 before in, the buffer will be initialized in one of the two states

shown in figure 5-4, where the zero indicates the initial sample put there by the

compiler.

PROGRAMMING A IT PROCESSOR USING SDF GRAPHS 188

Having illustrated the mechanics of buffering, we consider the interface by

which a system designer specifies an implementation.

5.2. LANGUAGE DESIGN

To retain the appeal of a block diagram specification of a DSP application,

the granularity of the SDF description must be flexible. For this reason, we

divide the language problem into three parts, topology definition, block definition,

and function definition.

5.2.1. Topology Definition

The is the outermost layer of the user interface, and therefore must be the

easiest to use and the simplest. The graphical nature of the block diagrams sug

gests a graphical interface. A prototype graphics interface running on Sun

workstations for the large grain data flow simulator called BLOSIM is under

development[Hait85a]. A similar interface is suitable for SDF. Standard blocks

in a library are represented by icons which are interconnected using a mouse. A

system that can be constructed only with standard blocks can therefore be

rapidly prototyped. Furthermore, the time required to learn to use the system

at this level should be negligible, allowing users to immediately construct useful

programs. Most programming will be done at this level, so the topology

definition level must be carefully and aesthetically designed, with extensive use

' of menus and help screens.

A voiceband data modem block diagram is illustrated in figure 5-5(a). The

sample rates are shown explicitly, and complex signal paths are illustrated with

bold lines. The equivalent SDF graph is shown in figure 5-5(b). Complex

9600 Hz 1200 Hz ^ 600 Hz

Hil)—* Eq

-* Real samples
-• Complex samples

In:

Rlt:

Hil:

Input routine
Bandsplitting filters
Hilbertfilters

Eq:
PII:

Deci:

Adaptive equalizer
Phase locked loop
Decision

Deco: Decoder

Out:

Mul:

Output
Complex multiplier

Figure 5-5: (a) A block diagram of a 2400 bit per second, 600 baud modem.
Three sample rates are evident The first, 9600 Hz, is Nyquist rate samples
ofthe data bearing signal, the second is twice baud rate samples feeding
a fractionally spaced equalizer, and the third, 600 Hz, is the baud rate,
(b) A SDF graph description of the same modem.

189

PROGRAMMING A 7T PROCESSOR USING SDF GRAPHS 190

numbers are communicated between blocks as two successive samples, so many

of the blocks produce and consume two samples on each input and output. A

suitable graphical interface would permit the user to begin with the construc

tion of this graph, initially defining each node to have a null function, so that

the application can be built top-down. A block may then be selected and

specified in greater detail. For example, the PLL block is expanded in figure 5-6,

where icons are used to represent blocks that are likely to be part of a standard

library. The biquads, adder, multiplier, and complex conjugate are easily recog

nized from the icon. Two two-way forks are shown; they simply replicate each

input sample on each output path. The sin&cos block computes a polynomial

approximation to the sin and cosine (a table lookup could be used instead). The

next level of detail is the block definition.

5.2.2. Block Definition

Inevitably, even a rich set collection of standard blocks will not adequately

meet the needs of all applications. Serious users will have to define their own.

A block has the following features:

• inputs and outputs;

• parameters, which are constants that may be different in distinct instances
of a block (for example, the coefficients of a second order section are param
eters);

• state variables (variables local to each instance of the block);

• a run-time routine, or a program segment that takes samples from the
inputs and produces samples on the outputs; and

• an initialization routine, if one is required.

Each input and output definition gives the input or output signal a symbolic

name, so that it can be referenced in the code by name, and specifies the number

of samples produced or consumed in each invocation of the block. Also specified

angular
error

input
signal

to equalizer
error

remodulator

2 demodulated
output

Figure 5-6: Detail of the PLL block inthe voiceband datamodem.
The next level of detail is assumed to be assembly language.

191

PROGRAMMING A 7T PROCESSOR USING SDF GRAPHS 192

is the number of past samples required so that input and output buffers can be

used as tapped delay lines. For example, an FIR filter requires the current input

sample plus N past samples, where N is the order of the filter. Finally, for

efficient scheduling, the scheduler needs to know the run time of each block. It

may be possible to obtain much information automatically from the function

definition.

One possible syntax for specifying this information is based on LISP and

has been implemented in an experimental synchronous version of BLOSIM

called Gabriel. A second order section is given by

(def_block biquad
(input in)
(output out)
(param coefs [default values])
(state fred 3)

)

(function biquadsub)
(runtime runtime')

Give the block a name.

Define the input with name "in*.
Define the output with name "out".
Filter coefficients.

The state "fred" is a length 3 ...
circular buffer.

Name of run time subroutine.

Execution time of run time subroutine

Gabriel keywords are shown in bold type, names in roman type, and values to

be supplied in italics. Information that is lacking, such as the number of sam

ples consumed on the input named "in" defaults to the most common value,

unity. The only part of the block definition remaining is the definition of the

subroutine called " biquadsub". This is deliberately considered a separate issue

to maintain independence at the block level from the language used to program

the target processor. Definition of the subroutine is function definition.

PROGRAMMING A W PROCESSOR USING SDF GRAPHS 193

5.2.3. Function Definition

We assume throughout this chapter that the run-time subroutine

corresponding to a block is defined in the assembly language of the LM-ir. An

obvious alternative is a high level language, preferably one specialized to signal

processing. An interesting possibility is an applicative language called

SILAGElHilf84a]. The applicative language paradigm shares some features with

data flow; in particular, much of the inherent concurrency in an algorithm is

evident, so it may be practical to exploit concurrency inside blocks defined this

way. Inherent in the SDF paradigm, of course, is the ability to have mixed mode

implementations, where different blocks in the same SDF graph are defined in

different languages. For greatest efficiency, the most commonly used blocks

could be written in assembly language. When the program structure of a block

is dependent on a parameter of the block, a code generator may be desirable.

For example, and FIR filter with a parameter specifying the order of the filter

may be best implemented using in-line code for small filters and a loop for large

filters. A code generator could make this decision. A fixed order FIR filter block

has been illustrated already for the LM-ar.

5.3. A VOICEBAND DATA MODEM EXAMPLE

Just as pipeline bubbles degrade the performance of a pipelined processor,

scheduling imperfections will degrade the performance of a synchronous data

flow program on a ir processor. The amount of degradation depends on the

amount of concurrency in the graph. Smaller granularity will generally lead to

enhanced concurrency, but smaller granularity may also require more overhead.

The optimal tradeoff is application dependent. Algorithms with feedback loops

PROGRAMMING A IT PROCESSOR USING SDF GRAPHS 194

can also limit the amount of concurrency available, as shown in chapter 3.

To verify the efficacy of the programming methodology, we examine here a

real application, a voiceband data modem, rather than relying on standard DSP

benchmarks. The standard benchmarks, IIR and FIR filters and FFTs, are not a

good test of the programming method. Its benefits are most evident in compli

cated, relatively unstructured applications. We selected the modem application

because we have previously implemented and fully tested such a modem using

the Bell Labs DSP-20. By using essentially the same algorithms, we avoid the

need for real-time testing to verify the validity of the implementation. Since

the LM-ir has not been implemented in hardware, real-time testing is not possi

ble.

Figure 5-5 illustrates the SDF graph describing a 2400 BPS voiceband data

modem. The full detail is shown in figure 5-7. Although the programmer is

unlikely to ever wish to see the whole modem at this level of detail, for the

purposes of exposition, it is instructive to depict the complete complexity of the

application. An inventory of the blocks is given in figure 5-8, with the second

column indicating which blocks are likely to be part of a standard library. The

run time, measured in instructions, for each block includes the setup time, the

subroutine call, and the subsequent writes. The run time for a four tap FIR

filter would therefore be 13. The run times represent only one of many possible

implementations and can undoubtedly be improved, but the specific numbers are

not as important as the knowledge that we are testing a real (as opposed to con

trived) practical example. The numbers are computed by translating the DSP20

code for the modem into code for the LM-7T. We expect similar performance for

e

195

Flgure5-7: A detailed synchronous data flowgraph
formevolc«banddatamotjemappllcabon. Delays
thatdo not affect the algorithms have been inserted
onal feedforward cutsets.

Figure5 - 8: An inventory of blocks used in the voiceband
data modem. The second column indicates whether the
blockislikely to be standard ina programming system.

196

PROGRAMMING A IT PROCESSOR USING SDF GRAPHS 197

different implementations.

The total amount of computation is 2062 instructions in one period.

Notice that one period processes 16 input samples and produces one output sam

ple (which in this case contains four bits of interest). Using the methods

described in chapter 2 we constructed the acyclic precedence graph, and a

schedule for various numbers of processors. With no additional delays, beyond

those in the feedback loops in figure 5-5, the length of the critical path in the

acyclic precedence graph is 642 instructions for unity blocking factor. Hence,

the minimal schedule period is 642. The periods achieved for various numbers

of processors are listed in the following table. Also listed is the percent of

available processing resources used by the schedule.

Scheduling Results
No feedforward cutset delays, and no extra loop delays

Minima! period is 642 instruction cycles
No. Processors Period % Utilization

2 1105 93%

3 817 84%

4 716 72%

5 669 62%

6 643 53%

The utilization figure should be interpreted cautiously. It is the utilization of

the processors during one period of a periodic schedule, and does not reflect any

idle time that may occur between periods. Such idle time occurs because the

throughput of the modem is determined not by the speed of the processors, but

rather by the real time constraints of the modem. Nonetheless, the utilization

figure is an indication of how many processors can be usefully used, which in

turn tells us that the modem algorithms can be run at a higher rate or slower

PROGRAMMING A IT PROCESSOR USING SDF GRAPHS 198

processors can be used.

For five or more processors, the period is within 5% of the minimal

schedule period. For five processors, however, the processor utilization is a

mediocre 62%.

The processor utilization and/or the iteration period for a fixed number of

processors can be improved by using a blocking factor greater than unity. A

more effective method is to put delays in the feedforward cutsets, as discussed

in chapter 3. Figure 5-7 shows such delays. With these delays, the performance

of the scheduler is dramatically improved. The periods achieved for various

numbers of processors are listed in the following table. Also listed is the per

cent of available processing resources used by the schedule.

Scheduling Results

Some feedforward cutset delays, and no extra loop delays
Minimal period is 277 instruction cycles

No. Processors Period % Utilization

1 2062 100%

2 1031 100%

4 520 99%

6 348 99%

7 303 97%

8 282 91%

10 280 74%

12 277 62%

14 277 53%

The minimum schedule period is reduced from 642 to 277, for unity blocking

factor. For seven or more processors, the achieved period is within 5%"of this

minimum period. In figure 5-9 we show the schedule for eight processors.

CYCLES

100 150

Figure 5- 9: An8 processor schedule for avoiceband data modem.
The shaded areas are idle, the unlabled boxes are biquads, the
boxes labled "i" are inputs, and the boxes labled "o" are outputs.
All other symbols are those used before. The total period is282
cycles and the utilization is 91%.

199

PROGRAMMING A V PROCESSOR USING SDF GRAPHS 200

In figure 5-10, the processor utilization as a function of the number of ir

slices is shown. Again, the utilization figure should be interpreted cautiously.

Essentially full utilization is maintained with up to seven w slices. Recall from

chapter 4 that the computation per unit time of the ir processor increases some

what less than linearly with the number of ir slices, suggesting that the max

imum throughput is achieved for some number of slices greater than seven.

It is not obvious how much delay to put on each feedforward cutset. In

figure 5-7, only enough delay is added to be able to run each block once at the

beginning of the schedule. To decouple a block completely from its predecessor,

however, more delay than this may be required. Each biquad in the front end

bandpass filter is invoked 16 times in one period. Thus to completely decouple

the second biquad from the first, a delay of 16 samples is required between

them. This is costly in memory, however, because it amounts to double

buffering the data between successive blocks. We found that with this maximal

delay on feedforward cutsets, the schedule performs no better than with the

delays in figure 5-7. This follows because the with the delays of figure 5-7, the

iteration bound is quickly reached.

The iteration bound, found using the techniques of chapter 3, is 277. The

critical loop is the tap update loop, shown in bold in figure 5-7. For more than

.seven processors, this bound is closely approximated with unity blocking factor

and only the feedforward cutset delays of figure 5-7. Larger blocking factors

will not improve the schedule period. Furthermore, there is no benefit from

retiming, a technique discussed in chapter 3 of moving the delays around to try

to reduce the length of the critical path for a fixed block size.

Utilization (%)

100

90--

80-

70-

60-

50-

6' 8' W

Number of processors

12

Rgure5-10: Processor utilization vs.the numberof processors for
thevoiceband data modem.

Rgure5-11: Partial run timesarethe numberof processorcycles
afterconsuming an inputbeforeanode produces an output'
The example shown here has partial run times 5 and 15. The
Hu level schedulingalgorithm can use this information to improve
the schedule.

201

PROGRAMMING A XT PROCESSOR USING SDF GRAPHS 202

An obvious way to reduce the iteration bound would be to increase the

delay in the critical loop. This alters the algorithm, but it has been observed

that up to about three samples of delay can be inserted in the tap update loop

of such an equalizer without measurably affecting the performance of the

modem[Falc82a]. In this case, the position of any extra delays is important, if

unity blocking factor is to be used. Putting simply a two sample delay on each

arc out of the adaptive filter blocks, we were able to reduce the critical path to

256 instruction cycles. The critical loop becomes the 16 iterations of each

biquad, which has a computation time of 16. More delays will not help. To get

the iteration bound lower, we need to relax the implicit self loops of the

biquads, requiring much more elaborate techniques. Such techniques would

lower the iteration bound to 241, determined by the demodulation loop. The

demodulation loop is not likely to tolerate additional delays without perfor

mance degradation of the modem. Even a heroic effort to bring the iteration

bound down, therefore, will only lower it 13%, from 277 to 241. Of course,

the 241 figure can be reduced by using a table lookup instead instead of a poly

nomial approximation for the sine and cosine, assuming enough memory is

available.

The iteration bound could be further lowered by introducing partial run

time dependencies, illustrated in figure 5-11. In that figure, a node with one

input and two outputs computes one of the outputs significantly earlier than

the other, implying that any node waiting for the earlier output can be started

earlier than implied by the model with only one run time. In the figure, a run

time of five is associated with the upper output and a run time of 15 with the

lower. Such a generalization is easily managed by the Hu level scheduling

PROGRAMMING A IT PROCESSOR USING SDF GRAPHS 203

algorithm. The only difficulty is in the human interface; the more information

required about a block, the more tedious defining a block will be, and specifying

a set of run times may be more trouble than it is worth. This objection, of

course, becomes invalid if the information can be extracted automatically by a

compiler.

5.4. CONCLUSIONS

The programming of the architecture of chapter 4 under the synchronous

data flow paradigm has been described, with one elaborate example used to

illustrate the efficacy of the technique. A voiceband data modem is shown to be

naturally described using SDF, and an SDF description exhibits enough con

currency to keep seven ir slices completely busy, assuming the modem sample

rate is the maximum that the implementation can handle. The Hu level

scheduling algorithm of chapter 2 is shown to construct schedules that closely

approximate the theoretical iteration bound imposed by the structure of the

algorithm.

Some aspects of the human interface for SDF programming have been dis

cussed. The advantages of SDF are

• it is natural for digital signal processing;
• it is modular and hierarchical;
• mixed-mode description is easily supported;
• the same description can used for simulation and implementation;
• concurrency is explicit;
• concurrency can be automatically enhanced; and
• multiple sample rates can be supported.

In addition, extensions to support limited asynchrony are possible.

PROGRAMMING A TT PROCESSOR USING SDF GRAPHS 204

The main disadvantage of a synchronous data flow programming paradigm

is that processing resources may be lost due to scheduling inefficiencies. This is a

fundamental problem with parallel implementations. The amount of the loss is

dependent on the granularity and structure of the application.

Hardware features that have been included in the LM-?r to support this

type of programming are

• modulo auto-increment/auto-decrement addressing modes (for circular buffers);
• data independent execution times for all instructions; and
• memory semaphores with a full/empty discipline (for asynchronous systems).

It should be noted that the implementation of these features described in

chapter 4 is well suited to the voiceband modem application, but may not be as

well suited to other applications. For example, only circular buffers of length

less that or equal to 32 are supported efficiently. Of course, it can be argued

that short buffers are by far the most common, so some inefficiency can be

tolerated in implementations requiring longer buffers. Also, the limit to 32 is a

consequence of the 20 bit wordsize. An additional limitation is imposed by the

convention that buffer pointers are passed to the SDF block subroutines in regis

ters. The number of registers is necessarily small because of the requirement

that every register be replicated for each v slice. Therefore, blocks with many

input or output paths will require extra overhead to fetch and store buffer

-pointers. This scenario does not arise in the voiceband modem example, because

no block has more than a total of four inputs and outputs.

FURTHER WORK

Synchronous data flow is a natural and appealing paradigm for the specification

of DSP algorithms for implementation. Algorithms are described as block

diagrams and can be efficiently mapped onto single or parallel hardware. The

programmer need not be concerned with synchronization of the parallel proces

sors, communication, scheduling, or deadlock avoidance. Given such a program

ming paradigm, parallel architectures become much less formidable. The ir pro

cessor architecture takes advantage of this using a pipelined interleaved struc

ture. Extensive pipelining is used for efficiency, and multiple programs are

interleaved in the pipeline so that instead of programming a single deeply pipe

lined processor, the user programs a set of virtual parallel processors. An SDF

compiler takes care of the more difficult details of such programming.

Although much theory and design has been developed, the work in this

thesis probably suggests more new problems than it solves. This section is dedi

cated to cataloguing these problems for the benefit of those who wish to explore

FURTHER WORK 206

further. Some of the further work suggested centers around implementation of

the ideas described in the rest of the thesis, and some is almost entirely new

ground. Frequently, in this work we avoided the temptation to pursue optimal-

ity questions and chose instead to propose a practical system solution, so several

of the open questions center on optimization.

The large number of open questions is a consequence of limited time. We

divide the open questions into four categories, fundamentals, hardware, software,

and applications. A section is dedicated to each. The final section is an admis

sion that the most challenging task remains undone: implementation of the ir

processor in hardware, and a practical, usable SDF programming system.

6.1. FUNDAMENTALS

The theory of synchronous data flow developed in this thesis can probably

be expanded considerably, increasing the range of applications. Four fundamen

tally new areas are mentioned in this section, asynchrony, real-time constraints,

non-homogeneous parallel processors, and silicon compilation.

6.1.1. Asynchrony

The solid theoretical framework of synchronous data flow suggests that

certain types of asynchronous systems can perhaps be handled efficiently. Put

another way, a middle ground may exist between the generality of data flow

and the determinism of SDF. The basic mechanism we propose is to divide a

data flow graph into synchronous subgraphs. Synchronous subgraphs are either

disconnected or connected by cutsets where all arcs in the cutset represent an

asynchronous link. Disconnected SDF graphs are a trivial form of asynchrony

FURTHER WORK 207

that is handled easily by scheduling the pieces of the graph onto disjoint sets of

processors. This may not always be possible, however.

Synchronous subgraphs connected by asynchronous links are also easily

handled if the synchronous subgraphs can be scheduled onto disjoint sets of

processors. Asynchronous communication between processors is required. In

chapter 4, a full-empty discipline in memory is proposed for the LM-w pre

cisely so that such cases can be easily managed. This solution suggests that

asynchronous systems are more easily implemented on a ir processor than on a

conventional single-process DSP chip. The most obvious approach is to con

struct maximal throughput schedules for each synchronous subgraph, taking as

many processors as required, but this solution is not likely to be efficient. It is

unlikely that all synchronous subgraphs can run at top speed without waiting

for data from other synchronous subgraphs. Furthermore, if the number of

processors is limited, deciding on the number of processors devoted to each syn

chronous subgraph is difficult. Without information about the relative timing

of synchronous subgraphs, we cannot do anything systematic

In many applications, however, an asynchronous arc may not be com

pletely general. A signal processing system with asynchrony may arise when

separate subsystems are controled by different clocks, but the clock rates may

match within a close tolerance, so the asynchrony may not be completely gen

eral. While we cannot specify the exact number of samples consumed or pro

duced on an asynchronous arc, it may be possible to specify a range. For exam

ple, a block may consume one, two, or three input samples, making the range

one to three. Given a range, bounds on the relative sample rates of synchronous

FURTHER WORK 208

subgraphs can be computed, and schedules that are well matched can be con

structed, in principle.

A more difficult problem arises if the synchronous subgraphs have to be

scheduled onto the same processors. One approach is to construct static

schedules for each of the synchronous subgraphs and dynamically schedule the

subgraphs. Again, it is not clear how many processors each synchronous

schedule should use. A synchronous subgraph can be invoked only when it has

input data and processors are available to run it. Minimizing the makespan of

the synchronous subgraph by using multiple processors results in complicated

processor requirements each time the subgraph is invoked, making dynamic

scheduling more difficult. Some work has been done on scheduling tasks that

require more than one processor[Blaz86a], but more needs to be done in the SDF

context.

6.1.2. Real-Time Constraints

The scheduling method described in chapter 2 concentrates on maximizing

the throughput subject to a constraint on the number of processors. This cri

terion makes some sense for fixed hardware topologies, such as the v processor,

where the entire system is to be dedicated to one signal processing task. A more

generally useful criterion, however, is to satisfy a real-time constraint while

minimizing the amount of hardware dedicated to the task. Optimal throughput

is not usually necessary, albeit theoretically interesting. This new criterion

changes the scheduling problem. The new problem can be solved by iteratively

increasing the number of processors until the real-time constraint is satisfied.

The Hu level scheduling algorithm is sufficiently simple that for modest

FURTHER WORK 209

numbers of processors this solution is satisfactory, but more direct methods

would be appealing.

6.13. Non-Homogeneous Parallel Processors

The ir processor has the advantage that each ir slice is identical to other ir

slices. Such a parallel architecture is said to be homogeneous. For some applica

tions, more cost effective implementations may use several types of processors.

Not all parts of an algorithm require a hardware multiplier, for example, so a

realization using a DSP and a microprocessor may be more cost effective than a

realization using two (or more) DSPs.

One way to deal with this problem is to specify a set of run times, one for

each processor type, for each node in an SDF graph. Unfortunately, the Hu level

scheduling algorithm breaks down because the level is not well defined for each

node in the acyclic precedence graph until its descendants have been scheduled.

This problem is related to problems in flexible manufacturing systems, where a

shop with robots is to be used in a manufacturing sequence. Each robot can per

form each stage of the assembly with varying degrees of efficiency, and the

problem is to schedule the steps in the assembly onto the robots.

6.1.4. Silicon Compilation

Consider a VLSI design system with large parametrized macrocells that can

be combined on a chip. An example is Lager[Pope84a] in which each macrocell

is a simple programmable processor with variable wordsize. Given a SDF graph

with each node specified in a language that can be translated into machine

language for the programmable processor, we wish to decide how many

FURTHER WORK 210

processors we need to meet some throughput, what the processors' wordsizes

should be, and what the interconnection topology needs to be. We also need a

schedule, of course. The problem can be generalized so that a set of non-

homogeneous processor types are available; for example, one processor type

may have a hardware multiplier and one may have bit serial arithmetic The

fundamental task is to select the processors and construct a schedule such that

some throughput constraint is met and the cost (VLSI area) is minimized. This

is also related to the flexible manufacturing systems problem mentioned in the

previous section, except that we have not yet bought the robots.

6.2. HARDWARE

The only completely reliable proof of the v architecture is probably a

hardware prototype. This suggests substantial further work to realize a ir pro

cessor as a chip. Unfortunately, such a project is large enough that an academic

environment may not be the right setting for it. A breadboard made with com

mercial parts, however, may be adequate proof, or a fast simulation made with

dedicated processors. Aside from the obvious need to prove the architecture

with hardware, several architectural questions remain unanswered.

6.2.1. Indivisible Buffer Increments

In many applications, the implicit self-loop for some node is the critical

loop. If the self-loop can be eliminated, faster implementations may be-possi

ble.

If the node has no state variables, the self-loop is an artifact of the buffer

implementation. In the scheme described in chapter 5, buffer pointers are loaded

FURTHER WORK 211

into registers (or a pre-agreed memory location) before the node is invoked, the

node alters the registers to indicate that samples are consumed or produced, and

the registers are stored after the node terminates, becoming the new buffer

pointers. This procedure precludes simultaneously running more than one invo

cation of the same node because if two nodes run simultaneously, only the

second one to finish will affect the buffer pointers. An alternative scheme uses

indivisible buffer access operations. A node directly fetches a sample from a

buffer and the buffer pointer is incremented in a single, indivisible operation.

No other node (or other invocation of the same node) can access the buffer while

this operation occurs. Such a scheme is worth exploring for its impact on

hardware complexity and flexibility.

6.2.2. Number of ir Slices

In this thesis we have carefully avoided speculation about the optimum

number of ir slices for maximum throughput. This issue is highly technology

dependent, but important. Cappello, LaPaugh, and Steiglitz have studied the

problem for certain classes of circuits, and perhaps their conclusions are

applicable[Capp84a].

It has been suggested that variable numbers of slices may be advantageous.

Not all applications will be able to make maximal use of the number of slices

provided. Reducing the number of slices below the minimum required to

prevent pipelining conflicts means that interlocking or some other mechanism to

prevent pipeline hazards must be implemented. Increasing the number of slices

implies a small hardware cost to store additional processor states, but may

improve the efficiency of a given application, particularly one with considerable

FURTHER WORK 212

asynchrony.

6.23. Memory

It is anticipated that for existing VLSI technology the limitation on the

amount of pipelining in a v processor, and hence the limitation on the

throughput, will be imposed by the memory. Fast memory is costly, suggesting

that methods should be found to pipeline slow memories. An alternative to

pipelined memories is interleaved memories, but interleaved memories divide the

v slices into clusters, and communication between clusters may be more awk

ward than communication within clusters. This suggests that if memory cannot

be pipelined, and fast memory is too costly, then effective methods for com

municating between clusters must be found.

6.3. SOFTWARE

Further work in the software arena divides into three categories, optimiza

tion, user interface, and application to other architectures.

6.3.1. Optimization

The scheduling algorithm given in chapter 2 is a heuristic that approxi

mately minimizes the makespan of a single period of a periodic schedule. This is

related to, but not identical with, maximizing the throughput. Maximizing the

throughput would generally require schedules that are not blocked, such,as the

cyclo-static schedules of Schwartz[Schw85a]. Such methods should be assessed

for complexity and benefit in the context of synchronous data flow.

FURTHER WORK 213

Many methods remain unstudied for increasing the throughput of an

implementation. Perhaps the most promising uses partial computation times to

overlap execution of nodes with dependencies. This method is discussed in

chapter 5 and is illustrated in figure 5-11. Retiming, a technique used by

Leiserson[Leis83a] to increase the throughput of digital circuits, can be applied

to increase the throughput of blocked schedules with a fixed blocking factor.

For blocked schedules, an adequate systematic method for finding the optimal

blocking factor has not been found. Finally, a systematic method for determin

ing the best amount of delay on feedforward cutsets would be useful.

Most applications, however, do not require maximal throughput. Instead, a

real-time constraint must be met for minimum cost. Algorithms performing

this optimization should be investigated.

6.3.2. User Interface

This problem is described at some length in chapter 5. Perhaps the most

interesting aspect is the design of the graphical interface for topology definition.

Workstation technology has reached the point that high resolution bit-mapped

graphical displays are accessible to many more designers than before. Another

interesting problem is the design of a language for defining the nodes. The BLO-

S1M and Gabriel systems are a first attempt. Closely related to this is the

design of a language for specifying the functions of the nodes. Ideally, such a

language would offer portability among a wide variety of programmable archi

tectures.

FURTHER WORK 214

6.33. Application to Other Architectures

Synchronous data flow is such an appealing paradigm for the description of

signal processing processing algorithms that it may be useful for programming

general multiprocessor systems. The main challenge is to incorporate in the

scheduling algorithms information about the interconnection topology and com

munication delays. The ir processor is a shared memory machine without con

tention, which is the most desirable interconnection topology. Such a topology

is not usually practical for machines built with multiple physically separate

processors.

6.4. APPLICATIONS

In chapter 5 we describe one promising application for the ir processor and

SDF programming. One application, however, does not demonstrate much ver

satility. The methodology should be investigated in the context of image pro

cessing, numerical simulation (e.g. circuit simulation), speech recognition,

bandwidth compression, coding, robotics, seismic signal processing, and com

munication protocol design and implementation. Such investigation, however,

requires hardware for implementation; software simulations of the ir processor

are far too slow for realistic testing of application algorithms. This suggests

that the most important immediate challenge we face is bringing the ideas

expressed in this thesis to fruition as usable hardware and software techniques.

6.5. THE COUNCIL HELD BY THE RATS

Old Rodilard, a certain cat,
Such havoc of the rats had made,
With nature's debt unpaid.

FURTHER WORK 215

Moral

The few that did remain,
To leave their holes afraid,

From usual food abstain,
Not eating half their fill;
No wonder no one will.

That one who made of rats his revel,
With rats pass'd not for cat, but devil.
Now on a day, this dread rat-eater,
Who had a wife, went out to meet her;
And while he held his caterwauling,
The unkill'd rats, their chapter telling,
Discuss'd the point, in grave debate,
How they might shun impending fate.

Their dean, a prudent rat,
Thought best, and better soon than late,

To bell the fatal cat;
That, when he took his hunting round,
The rats, well caution'd by the sound.
Might hide in safety underground;

Indeed he knew no other means.
And all the rest
At once confess'd

Their minds were with the dean's.
No better plan, they all believed,
Could possibly have been conceived;
No doubt the thing would work right well,
If anyone could hang the bell.

But one by one, said every rat,
"I'm not so big a fool as that."

The plan, knock'd up in their respect,
The council closed without effect.

And many a council I have seen,
Or reverend chapter with its dean,

That thus resolving wisely,
Fell through like this precisely.

To argue or refute
Wise counsellors abound;

The man to execute
Is harder to be found.

- Aesop c. 550 B.C.

216

SDF GLOSSARY

data flow graph: A graph where each node represents a function,

each arc represents the path of data samples. A

node is invoked whenever it has a sufficient

number of input data samples to perform its

function.

synchronous data flow (SDF) graph:

A data flow graph which statically specifies the

number of samples produced or consumed on

each output or input path of each node each

time the node is invoked.

homogeneous SDF graph: A SDF graph where the number of samples pro

duced or consumed on each arc is unity.

sequential schedule (<t>): A list of nodes. The order indicates in which

order the nodes should be invoked on a single

processor.

parallel schedule (<t> «• {t/r£ I): A set of sequential schedules \lrt for a set of

parallel processors.

admissible schedule:

blocked schedule:

A sequential or parallel schedule that does not

deadlock and keeps buffer sizes bounded.

An infinite periodic schedule where each cycle

must be finished before the next cycle can begin.

PASS (<t>):

PAPS (<t> = {xlft I):

acyclic precedence graph:

critical path:

blocking factor (J):

schedule period Sj {<t>):

iteration period (Tj (<t>)):

GLOSSARY 217

A periodic admissible sequential schedule. The

list 0 represents one cycle.

A periodic admissible parallel schedule. The

lists ty represent one cycle in each parallel pro

cessor.

The precedence graph for one cycle of a periodic

schedule.

The path through the precedence graph with the

greatest total computation time.

Admissible periodic schedules have a minimum

number of invocations of each node in a cycle.

Any periodic admissible schedule invokes each

node an integer multiple J of this minimum

number in one cycle. The integer multiple J is

the blocking factor.

The computation time required for one cycle of

a blocked schedule 4> with blocking factor J.

The schedule period divided by the blocking fac

tor.

computation rate (1/ Tj{<t>)): The reciprocal of the iteration period.

minimum iteration period (Tj): The smallest iteration period over all periodic

admissible blocked schedules with blocking fac

tor J.

GLOSSARY 218

iteration bound (T^): The minimum (over all blocking factors J in

the extended positive integers) of Tj. This is

the reciprocal of the maximum achievable com

putation rate.

Renfors and Neuvo bound (T0): The maximum (over all directed loops) of the

total computation time in the loop divided by

the number of delays in the loop. It is equal to

the iteration bound.

critical loop:

sample period (T):

logical delay (D):

shimming delay:

reachable graphs:

A loop achieving the above maximum.

For an implementation of a homogeneous data

flow graph, the average amount of time between

the production of samples on any arc

A property of an arc in a SDF graph specifying

an offset in the samples produced and consumed

on that arc. A logical delay of ND on an arc

means that the Mth sample consumed from that

arc is the M—Nth produced on that arc. The

buffer associated with the arc must be initialized

with TV initial samples. A logical delay is

identical to a z~l operator in signal processing.

The actual time delay for each logical delay in

an implementation of a SDF graph.

Non-standard term used in [Schw85] to refer to

SDF graphs with directed paths from a unique

GLOSSARY 219

starting node to all other nodes.

equivalent graphs: Two graphs with the same nodes (but possibly

different arcs) such that any schedule that is

admissible for one is admissible for the other.

220

REFERENCES

Acke82a.

Ackerman, William B., "Data Flow Languages," Computer 15(2)(Feb.,

1982).

Adam74a.

Adam, T. L., Chandy, K. M., and Dickson, J. R., "A Comparison of List

Schedules for Parallel Processing Systems," Comm. ACM 17(12) pp. 685-

690 (Dec., 1974).

Ager79a.

Agerwala, Tilak, "Putting Petri Nets to Work," Computer, p. 85

(December, 1979).

Ahme82a.

Ahmed, Hassan M., Delosme, Jean-Marc, and Morf, Martin, "Highly Con

current Computing Structures for Matrix Arithmetic and Signal Process

ing," IEEEComputer 15(l)(Jan. 1982).

Alle75a.

Allen, J., "Computer Architecture for Signal Processing," Proceedings of the

7£EE63(4)(April, 1975).

AMI,a.

AMI, Inc.,, Signal Processing Peripheral, Data Sheet for the S28211

REFERENCES 221

Babb84a.

Babb, Robert G., "Parallel Processing with Large Grain Data Flow Tech

niques," Computer 17(7)(July, 1984).

Barn82a.

Barnwell, Thomas P., Hodges, C. J. M., and Randolf, Mark, "Optimum

Implementation of Single Time Index Signal Flow Graphs on Synchronous

Multiprocessor Machines," Proceedings of the Int. Conf. on Acoustics,

Speech, and Signal Processing, (May 3-5, 1982).

Barn83a.

Barnwell, Thomas P. and Schwartz, D. A., "Optimal Implementation of

Flow Graphs on Synchronous Multiprocessors," Proc. 1983 Asilomar Conf.

on Circuits and Systems, (Nov., 1983).

Blah85a.

Blahut, Richard E., Fast Algorithms for Digital Signal Processing,

Addison-Wesley Publishing Co., Reading, MA (1985).

Blaz86a.

Blazewicz, J., Drobowski, M., and Weglarz, J., "Scheduling Multiprocessor

Tasks to Minimize Schedule Length," IEEE Trans, on Computers C-

35(5)(May 1986).

Braf78a.

Brafman, J. P., Szczupak, J., and Mitra, S. K., "An Approach to the Imple

mentation of Digital Filters using Microprocessors," IEEE Trans, on Acous

tics, Speech, and Signal Processing ASSP-26(5) pp. 442-446 (Oct. 1978).

REFERENCES 222

Capp83a.

Cappello, Peter R. and Steiglitz, Kenneth, "Completely Pipelined Architec

tures for Digital Signal Processing," IEEE Transactions on ASSP ASSP-31,

No.4(August, 1983).

Capp84a.

Cappello, Peter R., LaPaugh, Andrea, and Steiglitz, Kenneth, "Optimal

Choice of Intermediate Latching to Maximize Throughput in VLSI Cir

cuits," IEEETrans, on ASSP 32 p. 28 (February, 1984).

Chap81a.

Chapman, R. C, Editor, "Digital Signal Processor," BeU System Technical

Journal 60(7)(September, 1981). Special Issue, Part 2

Chas84a.

Chase, M., "A Pipelined Data Flow Architecture for Signal Processing: the

NEC uPD7281," in VLSI Signal Processing, IEEE Press, New York (1984).

[NEC Electronics, Inc.]

Cohn83a.

Cohn, Leonard Allen, A Conceptual Approach to General Purpose Parallel

Computer Architecture, Columbia University, New York (1983). PhD

Thesis

Comm71a.

Commoner, F. and Holt, A. W., "Marked Directed Graphs," Journal of Com

puter and System Sciences 5 pp. 511-523 (1971).

Croc75a.

Crochiere, R. E. and Oppenheim, A. V., "Analysis of Linear Digital

REFERENCES 223

Networks," Proceedings of the IEEE 63{4) pp. 581-595 (April, 1975).

Crys74a.

Crystal, T. and Kulsrud, L., Circus, Institute for Defense Analysis, Prince

ton, NJ (Dec., 1974). CRD Working Paper

Davi73a.

Davidson, E. S. and Larson, A. G., "Pipelining and Parallelism in Cost-

Effective Processor Design," Res. Rep., Digital Systems Lab., Stanford

University, (1973).

Davi78a.

Davis, A. L., "The Architecture and System Method of DDM1: A Recur

sively Structured Data Driven Machine," Proc. Fifth Ann. Symp. Computer

Architecture, pp. 210-215 (April, 1978).

Dene81a.

Denelcor, Inc.,, Heterogeneous Element Processor, Pub. 9 000 001 1981.

Denn80a.

Dennis, J. B., "Data Flow Supercomputers," Computer 13(ll)(Nov., 1980).

Dert69a.

Dertouzous, M., Kaliske, M., and Polzen, K., "On line simulation of block-

diagram systems," IEEE Trans, on Computers C-18(4)(April, 1969).

Dipaa.

Dipartimento di Elettronica, Politecnico di Torino,, TOPSIM III - Simula

tion Package for Communication Systems - User's Manual.

REFERENCES 224

Falc76a.

Falconer, D. D., "Jointly Adaptive Equalization and Carrier Recovery in

Two-Dimensional Digital Communication Systems," Bell System Technical

Journal 55(3XMarch 1976).

Falc82a.

Falconer, D. D., "Adaptive Reference Echo Cancellation," IEEE Transactions

on Communications COM-30(9)(Sept. 1982).

Fett76a.

Fettweis, A., "Realizability of Digital Filter Networks," Arch. Elek. Uber-

trangung 30 pp. 90-% (Feb. 1976).

Fish84a.

Fisher, Joseph A., "The VLIW Machine: A Multiprocessor for Compiling

Scientific Code," Computer 17(7)(July, 1984).

Flyn70a.

Flynn, M. J. and et., al„ "A Multiple Instruction Stream Processor with

Shared Resources," Proceedings of the Conference on Parallel Processing,

pp. 251-286 Spartan Press, (1970).

Flyn72a.

Flynn, M. J., "Some Computer Organizations and their Effectiveness,"

IEEE-C21, (Sept. 1972).

Gitl81a.

Gitlin, R. D. and Weinstein, S. B., "Fractionally-Spaced Equalization: An

Improved Digital Transversal Equalizer," Bell System Technical Journal

60(2)(February, 1981).

REFERENCES 225

Gitl82a.

Gitlin, R. D„ Meadors, H. C. Jr., and Weinstein, S. B., "The Tap-Leakage

Algorithm: An Algorithm for the Stable Operation of a Digitally Imple

mented, Fractionally Spaced Adaptive Equalizer," BeU System Technical

Journal 61(8)(October, 1982).

Gold69a.

Gold, B. and Rader, C, Digital Processing of Signals, McGraw-Hill (1969).

Golu80a.

Golumbic, Martin C, Algorithmic Graph Theory and Perfect Graphs,

Academic Press, New York (1980).

Grah69a.

Graham, R. L., "Bounds on Multiprocessing Time Anomalies," SIAM J. on

Applied Mathematics 17(2) pp. 416-429 (March, 1969).

Hait85a.

Halt, David J., "The BLOSIM Simulation Program," Master's Report, (Nov.

11, 1985). U.C.Berkeley

Henk75a.

Henke, W., "MTTSYN - An Interactive Dialogue Language for Time Signal

Processing," MIT Research Laboratory of Electronics memo. no. RLE-TM-1,

(Feb. 1975).

Hilf84a.

Hilfinger, Paul, "SILAGE: A Language for Signal Processing," Private Com

munication, (October, 1984).

REFERENCES 226

Hu61a.

Hu, T. C, "Parallel Sequencing and Assembly Line Problems," Operations

Research 9(6) pp. 841-848 (1961).

Hwan79a.

Hwang, Kai, Computer Arithmetic, John Wiley & Sons, Inc. (1979).

II83a.

II, L. F. Horney, Job Scheduling in a Distributed System, Columbia Univer

sity, New York (1983). PhD Thesis

Jhon85a.

Jhon, C. S., Sobelman, G. E., and Krekelberg, D. E., "Silicon Compilation

Based on a Data-Flow Paradigm," IEEE Circuits and Devices Magazine

l(3)(May 1985).

John84a.

Johnson, O. G., "Three-Dimensional Wave Computations on Vector Com

puters," Proceedings of the IEEE 72(1XJanuary, 1984). In a Special Issue

on Supercomputers

Jord84a.

Jordan, H. F., "Experience with Pipelined Multiple Instruction Streams,"

Proceedings of the IEEE12{\){ January, 1984). In a Special Issue on Super

computers

Jump78a.

Jump, J. Robert and Ahuja, Sudhir R., "Effective Pipelining of Digital Sys

tems," IEEE Trans, onComputers C-27(9)(Sept., 1978).

REFERENCES 227

Kahr84a.

Kahrs, M., "Silicon Compilation of a Very High Level Signal Processing

Language," in VLSI Signal Processing, IEEE'Press, New York (1984).

[University of Rochester]

Kara65a.

Karafin, B., "The new block diagram compiler for simulation of sampled-

data systems," AFIPS Conference Proceedings 27 pp. 55-61 (1965). Spar

tan Books

Karp66a.

Karp, R. M. and Miller, R. E., "Properties of a Model for Parallel Computa

tions: Determinacy, Termination, Queueing," SIAM Journal 14 pp. 1390-

1411 (November, 1966).

Karp67a.

Karp, R. M., Miller, R. E., and Winograd, S., "The Organization of Compu

tations for Uniform Recurrence Equations," Journal of the ACM 14 pp.

563-590(1967).

Karp69a.

Karp, Richard M. and Miller, Raymond E., "Parallel Program Schemata,"

Journal of Computer and System Sciences 3 pp. 147-195 (1969).

Kell61a.

Kelly,, Lochbaum,, and Vyssotsky,, "A Block Diagram Compiler," BSTJ

40(3)(May, 1961).

Kers85a.

Kershaw, R. N., Bays, L. E., Freyman, R. L., Klinikowski, J. J., Miller, C.

REFERENCES 228

R., Mondal, K., Moscovitz, H. S., Stocker, W. A., and Tran, L. V., "A Pro

grammable Digital Signal Processor with 32b Floating Point Arithmetic,"

ISSCC 85 Digest of Technical Papers, (Feb. 13, 1985). AT&T Bell Ubs WE

DSP32 First Announcement

Kogg81a.

Kogge, Peter M., The Architecture of Pipelined Computers, Hemisphere Pub

lishing Co., McGraw Hill Book Co., New York (1981).

Kohl75a.

Kohler, W. H., "A Preliminary Evaluation of the Critical Path Method for

Scheduling Tasks on Multiprocessor Systems," IEEE Trans, on Computers,

pp. 1235-1238 (Dec, 1975).

Kope80a.

Kopec, G., The Representation of Discrete-Time Signals and Systems in Pro

grams, MIT PhD Thesis (May, 1980).

Kope84a.

Kopec, Gary E., "The Integrated Signal Processing System ISP," IEEE Trans,

on ASSP 32{4){August, 1984).

Kope85a.

Kopec, Gary E., "The Signal Representation Language," IEEE Trans, on

ASSP ASSP-33(4)(August 1985).

Korn77a.

Korn, G., "High-speed block-diagram languages for microprocessors and

minicomputers in instrumentation, control, and simulation," Computers in

Electrical Engineering 4 pp. 143-159 (1977).

REFERENCES 229

Kung80a.

Kung, H. T. and Leiserson, Charles E., "Algorithms for VLSI Processor

Arrays," in Mead and Conway, Introduction to VLSI Systems, Wesley Pub

lishing Co., Reading, MA (October, 1980).

Kung83a.

Kung, S. Y. and Hu, Yu Hen, "A Highly Concurrent Algorithm and Pipe

lined Architecture for Solving Toeplitz Systems," IEEE Transations on

ASSP ASSP-31, No. KFebruary, 1983). Looks Good.

Kung84a.

Kung, S. Y., "On Supercomputing with Systolic/Wavefront Array Proces

sors," Proceedings of the J£EE72(7)(July 1984).

Leis83a.

Leiserson, Charles E. and Rose, Flavio M., "Optimizing Synchronous Circui

try by Retiming," Third Caltech Conference on VLSI, (March, 1983).

Lu85a.

Lu, Hui-Hung, Lee, Edward A., and Messerschmitt, David G., "Fast Recur

sive Filtering with Multiple Slow Processing Elements," IEEE Transactions

on Circuits and Systems, (November, 1985).

Maga85a.

Magar, Surendar, Essig, Daniel, Caudel, Edward, Marshall, Steve, and

Peters, Roger, "An NMOS Digital Signal Processor with Multiprocessing

Capability," ISSCC 85 Digest of Technical Papers, (Feb. 13, 1985). Texas

Instruments TMS32020 First Announcement

REFERENCES 230

Maga82a.

Magar, S., Caudel, E., and Leigh, A., "A Microcomputer with Digital Signal

Processing Capability," International Solid-State Circuits Digest of Technical

Papers, pp. 32-33 (Feb., 1982).

Mess84a.

Messerschmitt, David G., "Structured Interconnection of Signal Processing

Programs," Proceedings ofGlobecom 84, (Dec., 1984).

Mess84b.

Messerschmitt, David G., "A Tool for Structured Functional Simulation,"

IEEE Journal on Selected Areas in Communications SAC-2(1)(January,

1984).

Mint83a.

Mintzer, F„ Davies, K., Peled, A., and Ris, F. N., "The Real-Time Signal

Processor," IEEE Trans, on Acoustics, Speech, and Signal Processing ASSP-

31(1) p. 83 (Feb. 1983).

Moto86a.

Motorola,, DSP56000 Digital Signal Processor User's Manual. 1986.

NEC

NEC Electronics U.S.A. Inc.,, Digital Signal Processor, Data sheet for the

UPD7720 Signal Processor Interface (SPI)

Padu80a.

Padua, D. A., Kuck, D. J., and Lawrie, D. H., "High-Speed Multiprocessors

and Compilation Techniques," IEEE Trans, on Computers C-29(9) pp. 763-

776 (Sept. 1980).

REFERENCES 231

Patt81a.

Patterson, D. A. and Sequin, C. H., "RISC I: A Reduced Instruction VLSI

Computer," Proceedings of the 8th Symposium on Computer Architecture,

pp. 443-457 (May 1981). ACM SIGARCH CAN

Paul80a.

Paul, D. B., Feldman, J. A., and Sferrino, V. J., "A design study for an

easily programmable, high-speed processor with a general purpose architec

ture," MIT Lincoln Lab. Tech. Note 1980-50, (1980).

Pete77a.

Peterson, James L., "Petri Nets," Computing Surveys 9(3)(September, 1977).

Pete81a.

Peterson, James L., Petri Net Theory and the Modeling of Systems, Prentice-

Hall Inc., Englewood Cliffs, NJ (1981).

Pope84a.

Pope, S., Rabaey, J., and Brodersen, R. W„ "Automated Design of Signal

Processors Using Macrocells," in VLSI Signal Processing, IEEE Press, New

York (1984). [U.C.Berkeley]

Qure84a.

Qureshi, S. U. H. and Ahmed, H. M., "A Custom Chip Set for Digital Signal

Processing," in VLSI Signal Processing, IEEE Press, New York (1984).

[Codex Corp.]

Rao85a.

Rao, Sailesh K., Regular Iterative Algorithms and their Implementations on

Processor Arrays, Information Systems Laboratory, Stanford University

REFERENCES 232

(October, 1985). PhD Dissertation

Reit67a.

Reiter, Raymond, A Study of a model for Parallel Computations, University

of Michigan (1967). Doctoral Dissertation

Reit68a.

Reiter, Raymond, "Scheduling Parallel Computations," JACM, (14) pp.

590-599(1968).

Renf81a.

Renfors, Markku and Neuvo, Yrjo, "The Maximum Sampling Rate of Digi

tal Filters Under Hardware Speed Constraints," IEEE Trans, on Circuits

and Systems CAS-28(3)(March 1981).

Rumb77a.

Rumbaugh, J., "A Data Flow Multiprocessor," IEEE Trans, on Computers

C-26(2) p. 138 (Feb. 1977).

Schw85a.

Schwartz, David A., "Synchronous Multiprocessor Realizations of Shift-

Invariant Flow Graphs," Georgia Institute of Technology Technical Report

DSPL-85-2, (July 1985). PhD Dissertation

Shar74a.

Shar, Leonard E. and Davidson, Edward S., "A Multiminiprocessor System

Implemented Through Pipelining," Computer 7(2)(Feb., 1974).

Sher84a.

Sherburne, Robert Warren Jr., Processor Design Tradeoffs in VLSI, PhD

Dissertation, U.C. Berkeley, Berkeley, CA (1984).

REFERENCES 233

Shiv82a.

Shively, Richard R., "Architecture of a Programmable Digital Signal Proces

sor," IEEE Trans, on Computers c-31(1XJan., 1982).

Sing85a.

Singer, Elliot, "Comparative Architectures for a Multiple Function Speech

Processor," MIT Lincoln Labs Report TR-112, (1985). In publication.

Smit78a.

Smith, Burton J., "A Pipelined, Shared Resource MIMD Computer," Proc. of

the 1978 Int. Conf. on Parallel Processing, pp. 6-8 (1978).

Smit85a.

Smith, James E., "Implementation of Precise Interrupts in Pipelined Proces

sors," SIGARCH Newsletter 13(3XJune 1985). Conference Procedings for

the 12th Annual International Symposium on Computer Architecture

Snyd84a.

Snyder, Lawrence, "Parallel Programming and the Poker Programming

Environment," Computer 17(7)(July, 1984).

Texa83a.

Texas Instruments, Inc.,, TMS32010 User's Guide. 1983.

Thom77a.

Thompson, C. D. and Kung, H. T., "Sorting on a Mesh-Connected Parallel

Computer," Comm. ACM 20(4) pp. 263-271 (april, 1977).

Thor64a.

Thornton, J. E., "Parallel Operation in the Control Data 6600," Proc. FJCC

26, part 2 p. 33(1964).

REFERENCES 234

Thor70a.

Thornton, J. E., The Design of a Computer, Scott Foreman & Co. (1970).

Trel81a.

Treleaven, P. C, Brownbridge, D. R., and Hopkins, R. P., Data Driven and

Demand Driven Computer Architecture, University of Newcastle upon

Tyne, Newcastle upon Tyne, England (1981). Technical Report

Tsud83a.

Tsuda, T., Mochida, Y., Murano, K., Unagami, S., Gambe, H., Ikezawa, T.,

Kikuchi, H., and Fujii, S., "A High performance LSI Digital Signal Processor

for Communication," Proceedings of IEEE International Conference on

Communications, (June 19, 1983). Fujitsu Labs, Ltd.

Unge76a.

Ungerboeck, Gottfried, "Fractional Tap-Spacing and Consequences for

Clock Recovery in Data Modems," IEEE Transactions on Communications,

(August, 1976).

Unge85a.

Ungerboeck, G., Maiwald, D., Kaeser, H. P., Chevillat, P. R., and Beraud, J.

P., "Architecture of a digital signal processor," IBM Journal of Research

and Development 29(2)(March 1985).

Wats82a.

Watson, I. and Gurd, J., "A Practical Data Flow Computer," Computer

15(2)(Feb. 1982).

Yama85a.

Yamauchi, Horonori and et. al.„ "An 18-bit Floating-point Signal Processor

REFERENCES 235

VLSI with on-chip 512W Dual-port RAM," Proceedings of ICASSP 85, p.

204 (March, 1985). Tampa, Fla.

Zema83a.

Zeman, J. and Moschytz, G. S., "Systematic Design and Programming of

Signal Processors, Using Project Managment Techniques," IEEE Trans, on

Acoustics Speech and Signal Processing ASSP-31(6)(December 1983).

	Copyright notice1986
	ERL-86-54 (1 of 3)
	ERL-86-54 (2 of 3)
	ERL-86-54 (3 of 3)

