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ABSTRACT

In this paper, a simple discrete adaptive control scheme is proposed for

stabilizing minimum phase continuous time systems under fast sampling.

Even though the sampled system is not necessarily minimum phase, infor

mation about the pole-zero locations of the sampled system can be incor

porated to complete the proof of stability.
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1 Problem Statement

In this paper, a simple discrete adaptive control scheme is proposed for fast sampling

of minimum phase continuous time systems. The subject is directly motivated by a paper

of Astrom, Hagander and Sternby [l], where authors have shown that all continuous time

systems with relative degree large than 1 will give rise to sampled systems with unstable

zeros when the sampling period is sufficient small, i.e. the corresponding discrete time sys

tem is no longer minimum phase. In a recent paper [4], Praly. Hung and Rhode have

presented a technique for the adaptive control of such rapidly sampled systems. In their

approach, however the unstable zeros of the sampled system are assumed to be known

exactly. It seems that the stability needs to be further analyed for the control of sampled

systems, since the unstable zeros are known only approximately.

Here we propose an indirect adaptive scheme for the control of sampled systems.

The principal difficulty associated with the indirect approach arises from the fact that the

estimated system may have unstable pole-zero cancellations. Thus in the literature(for

example see [3].[6]). more or less stringent conditions on the plant have to be imposed: for

instance that the external signal be persistently exciting or the parameters of the system

lie in a known convex set in which no unstable pole-zero cancellation may occur. For

tunately, a great deal of prior information is available about pole zero locations of the

sampled system with fast sampling and such information can be used in the design of our

indirect adaptive controller.
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We now summarize the problem as follows: Given a minimum phase continuous time

system

GU) = «7 r, p—t r m <n U.i;
U -p 1X5 -/>2)..-U -/>„)

where m and n are known, k ,qi,pi unknown but constant with following assumption

Al) There exists some constants €. M > 0 such that

-M ^Refc <-€

In particular, the plant (1.1) is minimum phase.

The goal is to design a discrete time controller such that the closed loop consisting of the

sampled system (1.1) together with controller is exponentially stable with all signals

bounded.

2 Adaptive Scheme and Convergence Analysis

With fast sampling, the sampled system of (1.1) can be approximated (in the sense

of closeness of poles and zeros, see [l]) as

i^U) = *7 rr -r-r-r (2.1;
in —m)! A (z )

In (2.1). h is sampling period and

-* (2 ) = (z-e?1* )...(*-<>A) (2.2)

A(z) = (z -ePlh )...(z -€** ) (2.3)

Further Bu(z) is a known polynomial of order (n-m-1) which depends only on the rela

tive degree (n-m) of the system (1.1). All unstable zeros of Bu(z) lie in the interval

(—00,—l]. For a few values of n. the polynomials Btt(z) and their unstable zeros are

listed below (from [l]).
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n-m Btt(z) unstable zeros

1 1

2 z+1 -1

3 z2+4z +1 -3.732

4 z3+llz2+llz+l -1.-9.899

5 z4+26z3+66z2+26z+l -2.322. -23.20

Thus, the locations of zeros and poles of H(z) are as indicated in Fig.l
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poles of H(z) (zeros of A(z)).

stable zeros of H(z) (zeros of B(z)).

stable zeros of H(z) (zeros of B(z)) and
poles of H(z) (zeros of A(z)), possible
cancellation mag occur in this area.

possible unstable zeros of H(z)
(unstable zeros of Bu (z)).

Fig. 1

All poles of H(z) lie inside the small disk centered at (1.0). all zeros of B(z) lie in the

fan-like set and all unstable zeros of Bu (z ) are in the interval (-co .—1]. By observation,

then there exists 1 >y >e~*A , such that all possible pole-zero cancellations are stable and

inside a disk with radius y.

The above discussion leads us to state that the sampled system of (l.l) can be

described as
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„>f ^ u> B'(z)Btt'(z) _ b1'z^i+...-rbn'
H (z; = k 1-?—* = —- r—r—i 1- (2.4;

AU) zn+alzn^1+...+an

where B* (z ). Btt *(z ) and A*(z ) are close to B (z ). Bu (z ) and A(z) respectively in the

same sense as before, namely their zeros are close. Thus we may make following assump

tion on the sampled system (2.4)

A2) Two convex sets Ca in £n and Cb in Rn are known such that

(1) the vectors (Jbi . • • Jbn* Y and (a/, • • • xtn ' Y belong to Cb and Ca respectively.

(2) for any (bx, . . . ,bn Y €Q and (a i, . . . ,an Y €Ca all the possible pole-zero cancella

tions of equation (2.4) are stable and inside the disk with radius y < 1.

Remark: The assumption above is somewhat restrictive, since it is generally difficult to get

Ca and Cb from prior information about the zeros of the polynomials A(z). B(z) and

Bu (z ). This is so. because the relation between the zeros and the coefficients of a polyno

mial is nonlinear. Consequently though zeros of a polynomial lie inside a convex set. it is

not necessarily true that the coefficients lie inside some convex set. For low order prob

lems, however, it is easy to obtain Ca and Cb. Examples are the first order case, namely

A i(z )=z +a

and the second order case

i42(^)=z2+a1z+a2

A2(z) is guaranteed stable provided that.a! and a2 are constrained to lie in the following

convex region (see [2]).
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zeros of A2(z)

Izl«1

coefficients of A?(z)

Fiq.2

By direct calculation, the system (2.4) can be realized by the following state space

representation. It might be non-minimal, if there are (stable) pole-zero cancellations.

x(k+l)= (F+9/c) x(k)+9b'u(k) (2.5a)

y(*)«cx(*) (2.5b)

where

F =

~/i 1 0 . 0
-. 1 . .

-/« 0 0 . 0

is an arbitrary stable matrix.

eF- = »,+«„• =(/,..../„ 7 +(t»,\

9»'=(*i* VF

and

c = (1.0 0)

June 11. 1986
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Also using the techniques of [3], we have, by Fact 1 of the Appendix, another non-

minimal realization of (2.4) via equation (2.5) as follows

v jGfc +1) = FTvl(k )+cry (k ) (2.6a)

v2(* +1) = FTv2(k )+cru (* ) (2.6b)

y(k)=v1r(k)9/+v2nk)9b' (2.6c)

A controller is chosen to satisfy the equations

xc (k +i)=*0(8 a ))xc a )+k !(§(* ))ya )+k2(i a )>a) (2.7a)

uU )=* 3(8 (* ))*c (k )+* 4(8 (* ))y Ok )+*5(8 (*)> (*) (2.7b)

where xc(fc) is the state vector of the controller. r{k) is the external input.

8r(*) = (0aT(k).9br(k)) is the estimate of (9a'T,9b'T) at time k. fc,(8) are vectors of

appropriate dimension and they depends on the specific control law. choose.for instances,

pole placement type, model reference etc. It is assumed that

A3) kt (8) s arebounded for all 9a €Ca .9b €Q.

A4) For all 9a €Ca .9b €Q,. we have the following: equation (2.5) (or (2.6)) with 9a*, 9b*

replaced by 9a. 9b. together with controller (2.7). results in a stable closed loop system

with all poles inside the disk with radius y < 1.

Remark: Assumptions (A3) and (A4) are valid for most control laws, since all uncon

trollable modes of equation (2.5) are stable and inside the disk with radius y <1. by

assumption A2).

Define the signal vectors w and z by

wr(*) = (v1rU).v2rU))

zr(*)=(Wr(* ).*/(*)) (2.8)

Further the output error e is given by

• C*) = y(*M8/-r(*)vI(*H8*rtt)v2(*))

= -(v/(*).v/tt)) 9a(*) (2.9)
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where 9a(k) = (0a(*)—9a*) and 9b{k) = (9b(k)-9b') denote the parameter errors.

Choose the parameter update law as

8(k +1) =P(8 (k)+ 4J^^fr) ) (2.io)
l+z1 (k )z(k)

A A

where P is the projection of 9a\k ) onto Ca and 06(k ) onto C6. It is at this point that we

need the assumption (A2). This is almost a standard projection type algorithm with the

difference that z rather than w is used in the denominator of (2.10). However since

I \z(k)\ I2 >l \w(k )l I2, the following properties of the standard projection type algo

rithm (see [2]) are readily inherited.

iiea)ii<ii8(*-i)ii (2.11)

lim- r?}*\ ^lv, =0 (2.12)
*-~(l+zr(*)z(*))1/2

lim I 18 (* )-8 (k -1) I I = 0 (2.13)

Before analyzing the stability of the overall system, we need the following lemma

due to Desoer [5].

Lemma 1. Consider the following discrete time system

x(k+l) = A(k)x(k) (2.14)

satisfying the following assumptions

A (k ) is bounded. (2.15)

The eigenvalues of A(k) are uniformly stable i.e.

\ki(A (* )) I^y< 1 for any k. i (2.16)

llmW A(k +1)-A (Jfc ) I I =0 (2.17)

Then the system (2.14) is exponentially stable.

Proof: Can be found in [5].

We now have the following theorem.
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Theorem 1 Consider the system (2.4) with controller of (2.7) and the parameter update

law of (2.10). Then if the input r(k) is bounded, the overall system is exponentially stable

and all signals are bounded.

Proof: By combining equations (2.6) and (2.7). the overall system can be written as

Fr+cT9F'r, S&b 0

z(*+l) = cTk4{9{k))9F'T. Fr+crk4(9(k))9b'r. crk3(9(k)) z(k)+
ktfikM/ *!(ett))0 k0(9(k))

where

Fr+cT9Fr(k).

cr*4(80k))|e0k)+
*,(8(*))

cr0/Ok).
cTkA{9(k))9FT\ FT+cTk4(9(k ))§/(* ). cTk3(9(k ))
ki(8a ))8f r(* )). k^Uk ))8/(* ). *0(8 Ok ))

crk5(j9(k»
ifc2(60k))

Ok)

= A (00k)) zOk HflGk >Gk )+M0Ok )> Ok)

0

Tk5(9(k))
*2(6(*))

zOk)

r(*)

(2.18)

A(9(k)) =
Fr+cr9Fr(k). c'6/Ok). o
cTk4{9{k))9FT. Fr+crk4(9(k»9bT(k).crk3(9(k»

*i(8(*))§#-rGk)). *,(§(* ))86rGk). /ko(80k))

Now write Q(k)e(k) as

G(*) = cr*4(8(ik))
*!(8(ik))

6(8a))= |cr*5(8a))
*2(8(*))

GU>u; i+z'oozU) + l+x'Gk^u) rU)

Hence, the equation (2.18) can be rewritten as

z(*+l)=j4(ik)z0k)+ '^ffiV^+Me(*)>(*)
l+z' (fc;zOk;

with

June 11. 1986

(2.19)

(2.20)

(2.21)



-10-

A(k )=A(8 a ))+ - '<*> <y, Q?)zT{k\,, (2.22)
(i+zrok)zGk))i/z d+zra)za))i/2 J

From the properties of the identifier (2.12). we have that the second term in (2.22) tends

to zero as k —col By the assumption (A4). we have that

IXiU(60k)))l^y for any k.i

Thus the exponential stability of A Ok ) follows from (2.13) and lemma 1. Furthermore,

the boundedness of r(k) and Q(k) implies that all signals are bounded. This completes the

proof.

3 Concluding Remarks

In this paper, we have presented a simple discrete adaptive scheme for stabilizing a

minimum phase continuous system with fast sampling. The chief assumption was that the

parameters needed to lie in a convex set. this is only for the sake of the projection.
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5 Appendix

Fact 1. Consider the transfer function of the system of equation (2.5). It has a non-

minimal realization given by

vl(k-rl)=FTv1(k)+cry(k) (Al)

v20k+l)=Frv20k )+cruOk ) (A2)

y(k)=v1r(k)9/+v2T(k)9b' (A3)

Proof: Notice that

Then

xOk+l)=CF+0/c)*Ok)+06*uOk)

=FxOk)+0/yOk)+0/«Ok) (A4)

yOk )=cF*x(0)+( £l(Fr)*-|-Icrya )M/
i=0

+(*Z1CFr )* -i-1cTu(0)% b' (A5)
i=0

Define

vjOk +l)=FrVl0k )+cry Ok ) (A6)

v20k+l)=Frv20k )+cru Ok ) (A7)

Now it follows that

y Ok )=cF*x (0)+(v JJc )-(Fr )* v^O))7"© / +(v20k )-(Fr )* v2{Q)Y9b'

=v!r (Jc )0 /• *+v2rOk )06*^-exponentially decaying terms (A8)

This completes the proof.
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