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ABSTRACT.

Numerical simulations of the weak beam-plasma instability were done in
the turbulent regime where small-scale trapping is a dominant feature of the
instability, a regime with behaviornot predictedby quasilineartheory. It occurs
when the trapping frequency v = (fc2!?)1'8 is larger than the growth rate 74
of the instabilily. The results of the simulations were compared with those of
a specific model of the turbulence, the so-called "turbulent trapping" model,
which gives precise formulas for the particle correlation functions, and predicts
a growth rate well enhanced over the quasilinear value. It was found that
the model gives accurate predictions for the correlation functions, and thus
provides a good description of the turbulent structure of phase space. On
the other hand, while growthrates were enhanced over the quasilinear values,
the enhancements observed are smaller than expected from the quantitative
predictions of the model. Furtherwork is necessary to determine whether this
discrepancy is a failing of the turbulent trapping model, or the result of the
numerical limitations of our computational scheme.



-3-

I. INTRODUCTION.

Since its creation over 20 years ago (1), quasilinear theory has been ac
cepted as the valid description of weakly turbulent plasmas where wave-particle
interactions dominate, with as central paradigm the weak, warm-beam-plasma
instability. It is only relatively recently that the rigor of its derivation and
its range of validity in the one-dimensional case have been questioned by J.C.
Adam, G. Laval and D. Pesme (ALP(,2,3,4,6)). Their work demonstrates the
existence of a new regime existing within the accepted limits of quasilinear the
ory, in which both the growth-rate and the velocity-space diffusion should be
enhanced over their quasilinear values.

This conclusion is based on the existence of strong mode-coupling effects
between resonant waves, due to the self-consistency of the electric field, ef
fects which occur when the resonance broadening frequency, i/* = (fc2D,i)1'3,
is larger than the quasilinear growth-rate if. In this regime, a set of mode
coupling-terms, arranged in an infinite series, becomes of the same order as
the quasilinear term. This arises because of the partial trapping of the beam
particles by the waves on a time scale v^x < (7J )_1, a process which gen
erates a harmonic series of sidebands or "quasimodes", that is non-resonant
perturbations of the beam distribution function, at the harmonic frequencies
u) = nwk and at the wave numbers nk. These quasimodes do not satisfy Pois-
son's equation, but perturb particles for which the resonance condition of the
fundamental, u>* = few, continues to be satisfied. Because of this invariance of
the resonance condition, the mode-couplingcoefficientsare large, even though
the couplingtakes placevia small,non-resonant sidebands. Thus, the cascade of
the quasimodes beating back into the fundamental leads, over a few e-foldings,
to effects of the same order as the usual wave-particle interaction. In particular,
under this regime the statistical properties of the electric field strongly deviate
from Gaussian statistics and this results in turn in an enhancement of the dif
fusion coefficient over its quasilinear prediction. Through energy conservation,
a concommitant increase in the growth rate must result as well.

In a preceding paper(6), two of the authorspresented model equationsthat
were proposed in an attempt to take into account the mode-coupling terms
which originatein the self-consistency of the electric field, and which invalidate
the quasilinear theory in one dimension. This model has received the name of
the "turbulent trapping model", sinceit is devoted to describing those physical
effects associated with the partial trapping of the particles in the wave packets.

In the present paper, we numerically study the interaction of a very weak
warm beam with a cold and massive bulk plasma, with the aim of detecting
the new effects predicted by the turbulent trapping model. Our numerical
experimentsaresimplified asmuch as possible, but hopefullyretain allthe basic
physics of the process. The most fundamental simplification lies in modelling
the bulk plasma as a cold, linear fluid. In effect, it provides nothing more
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than the linear dielectric which sustains the electron plasma waves. Apart
from a small numerical effect, these are waves with zero group velocity, that is
oscillationswith stationary envelopes, growing on the energy of the circulating
beam particles.

The paper is organized as follows. Section (2) contains a general discus
sion of the turbulent trapping model, and Section (3) a brief review of previous
numerical work. Sections (4-5) are analytic in nature and provide the basic
formulation of the problem. In sections (6-8) we continue the analytic work,
and review the quantitative predictions of the turbulent trapping model in some
detail. It is in sections (9-12) that we embark on the numerical simulations,
and present our results for comparison with the analytic work. The discussion
of these results is centered on the main predictions of the turbulent-trapping
model, concerning the structure of the correlation functions, and the enhance
ments of the growth rates.

We shall summarize our main conclusions. (1) As regards the correlation
functions and the consequent structure of turbulent phase space, the turbulent
trapping model provides a surprisingly accurate prediction, especially in view
of its semi-qualitative nature. (2) While there is evidence for an enhancement
of the growth rates above the quasilinear values, we have not obtained a quan
titative verification of the predictions of the turbulent trapping model. In the
regime where the model is expected to be strictly valid, the enhancements ob
served are considerably smaller than predicted; and when the enhancements are
closer to what would be expected from the turbulent trapping model, they are
observed in a regime where the model is no longer strictly valid. We believe
however that these results for the growth rates are not final, and this because
our simulations operated under numerical limitations which might be removed
in future work.

n. GENERAL DISCUSSION OF THE THEORY.

The non-validity of the quasilinear theory in a regime where the latter was
thought to be correct can be understood on a formal basis, starting from the
fact that the Vlasov-Poisson equations forma quadratically nonlinear set for the
distribution function. Thus the standard techniques, applicable to any quadrat
ically nonlinear equations, can be applied to the Vlasov-Poisson equations as
well. These techniques are mainly, the BBGKY hierarchy, the iterative meth
ods used in the Soviet literature in order to derive the Wave Kinetic Equation
(with the Random Phase Approximation), and lastly, the Direct Interaction
Approximation (DIA). The DIA equations were shown by D. Dubois and M.
Espedal(7), and by others(8), to add new self-consistency terms (or polariza
tion terms) not presentin other renormalized turbulence theories, theories that
were based on the simplifying assumption of quasi-Gaussian electric field fluc
tuations. In fact, such self-consistency terms are easily found to be inherent
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in the BBGKY hierarchy and in the iterative methods as well. Moreover, the
mode-coupling terms identified by ALP to give a contribution of the same order
as quasilinear may be shown to belong to this class of self-consistency terms.
The non-validity of the quasilinear theory in the regime i/* > 74 is a direct
consequence of the self-consistency of the electric field: namely, the statistical
properties of the electric field are self-consistently related to the partide mo
tions through the Poisson equation, this self-consistency makes the electric field
deviate from Gaussian statistics, and this in turn leads to a modification of the
diffusion coefficient in the regime vu > 7*. This result has to be contrasted
with the so-called stochastic acceleration problem in which the electric field is
externally given. In this case the statistical properties of the electric field may
be assumed Gaussian, and the quasilinear predictions follow.

A "bootstrap" argument can help to provide a qualitative description of
these effects. Let us assume that we start off with a rather particular organiza
tion of the turbulent fields, one that partitions them into a.set of wave packets
of different phase velocities and finite amplitudes, which, for a given phase ve
locity, have small overlap in real space, and, when considered in velocity space,
have barely overlapping trapping widths. In this picture, the envelopes of the
wave packets are almost stationary, as the group velocity of the electron-plasma
waves is very small. The beam partides stream through these almost immobile
packets, to be momentarily trapped and scattered on their way.

If one attempts to partition a turbulent electric field of given total en
ergy and given total spectral width into such a configuration of wave pack
ets, one finds that the characteristic spectral width of each packet is of order
6k « k(i/jb/u/p), where vu = (ft2!^1)1'8 is the "classical" resonance broaden
ing frequency(9) and D*1 is the quasilinear diffusion coefficient, proportional to
\Eh\2. Each wave packet has a trapping width oforder (D*1/*)1'3* h*8 a length
in real space of order l/6k, and is such that a partide-will reside in it for just
about onetrapping time, u^1. One can show that such a configuration leads
to non-Gaussian statistics of the electric fields.

The fact that the separatrices of the wave packets just barely overlap is
essential to our argument. Under such a circumstance, though in most of the
phase space near the wave packets partide motion is stochastic, diffusion in a
regime so dose to the stochastidty threshold need not be quasilinear. Thus,
the local diffusion coefficient may differ from the quasilinear one by a factor of
order1(10). If one then links, throughPoisson's equation, the energylossof the
partides to the equal energy gain of the wave packets, one must condude that
at least initially, starting from this particular configuration of wave packets,
the dectric field energy will grow at a rate 74 different from the quasilinear. In
other words, the motion of an individual partide is sufficiently stochastic to be
diffusive over long times, yet is sufficientlycoherentover a singletrapping time
for a modification of the partide's wave emission rate to occur.

Now, two cases can obtain. If the growth rate is larger than the trapping
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frequency, 7* > i/*, the wave packet structure will be destroyed by overlap of
neighbors before the modified diffusion and wave emission can occur. In this
case', we can condude that the initial configuration of "barely overlapping"
wave packets is irrelevant, because it subsists for a time much shorter than the
diffusive time-step. The second case, 74 < i/*, is the one of interest to us. In
this limit, partides are trapped and detrapped many times in one e-folding,
and the wave packets can be thought of feeding quasistatically on the nonlinear
dynamics of the partides, at a rate different from quasilinear.

The "bootstrap" argument is valid only if we can answer two questions,
which apply in the regime 7* < i/&: (1) how does the wave-packet configuration
we have chosen to discuss arise in the first place, and (2) how does it sub
sist through many e-foldings, when individual wave packets must necessarily
disappear, to be replaced by others?

To answer question (1), we can argue that if the modified growth rate
regime results in an enhancement of the growth rate, 7k > 7j >then the wave
packet structure will eventually dominate any other. This argument, which
is valid in the case of a linear instability dominating all other linear waves,
is harder to justify in this case because the phenomenon is nonlinear on a
microscopic scale. We shall however keep to this qualitative answer.

Question (2) is intimatdy linkedto the self-consistency of the dectric field.
We have no definite qualitative answer, but can try to rephrase the question in
terms of a local energy exchange mechanism. We note that as the wave energy
grows, the trapping width of the average wave packet increases. Fora constant
spectral width, this means that at a given point in space the number of wave
packets will HimiTiiaH with time. This suggests a local mechanism, by which one
wave packet can dominate overits neighbors, by diverting the partides on whose
energy they would have grown, to the extent of completely depleting some of
these neighborsand extending its trapping width to their regionof phase space.
Assuming this mechanism exists, we have a picture of a configuration slowly
transforming itself over a time scale comparable to the growth rate, through a
processof competition between neighboring wave packets. Now, such a process
is a coupling of modes, between waves differing by 6k « k(vi,/u>p) and thus,
the presence of mode coupling terms in the analytic theory, imposed by self-
consistency, is consistent with this picture of a self-sustaining turbulence of
wave packets.

Our picture is analogous to the self-sustaining dump turbulence described
by Dupree(n), but with the important difference that in our case the plasma
waves display a well-defined dispersion relationw = u;*, imposed by the linear
bulk plasma, and which is absent in the formulation of dump turbulence. We
shall see that this results in correlation functions of the distribution function
which extend over many wave periods, in sharp contrast to the dump correla
tion function, whose coherence length is limited at most to one wave period.
Notwithstanding these differences, and extending the notion of "dump" to the
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correlation function in the beam-plasma instability, one might reformulate the
wave-packet picture of the preceding paragraphs by saying that the modifica
tion of the growth rate, in the dump picture, results from enhanced Cerenkov
emission by the dumps, which radiate into a background of adiabatic beam
partides (see also Ref.(,12,13)).

m. PREVIOUS NUMERICAL WORK.

Whilesimulations of the beam-plasma instabilityare nothing new (,14,16),
performing such simulations under conditions where quasilinear theory can be
verified without ambiguity is demanding, both in computational resources and
in the care with which the parameters of the simulation must be chosen. This is
because behind its apparent simplidty, the weak beam-plasma instability hides
several time scales, which must be correctly resolved for quasilinear theory to
be applicable (,16,17). The sameapplies to the turbulent trapping modd which
assumes constraints similar to those of quasilinear theory.

To our knowledge, the first numerical experiments testing quasilinear the
ory in its full regime of validity are due to J.C. Adam(18). These simula
tions exhibited the formation of discontinuous dectric field spectra, ascribed
to mode-coupling effects, and showed an enhancement of growth rates over the
quasilinear values, but unfortunatdy were not sufficiently detailed for quanti
tative condusions about the turbulent trapping regime to be reached. A set of
older and somewhat complementary numerical experiments are those due to A.
Bakaiand Yu. Sigov (I0), whoemphasized in their study the qualitative obser
vation of phase space structure, without however providing more quantitative
descriptions of the phenomena.

In the present work, we have tried to proceed well beyond the results of
these previous simulations, by a more systematic measurement of growth rates,
by the quantitative description of phase space through the use of correlation
functions, and finally, by the direct comparison of numerical results with the
analytic predictions of the turbulent trapping modd.

IV. PHYSICAL PROBLEM AND APPROXIMATIONS.

The plasma is one-dimensional and consists of one spedes, dectrons moving
against an immobile neutralizing background of ions. A sketch of the initial,
unperturbed distribution function is shown in Fig.(l).

In our simplified modd, the bulk plasma is completdy cold and is rep
resented by linear fluid equations for the perturbed bulk vdodty and density.
The beam plasma on the other hand, is described by the exact Vlasov equation,
with no other approximation in the numerical simulations, than those imposed
by the finite differencing method we have chosen. This numerical approach,



-8-

in which the bulk is "streamlined" so as to simply support linear plasma os
cillations, is valid for problems where the detailed beam dynamics are most
important. Modelling the bulk as cold and linear then results in a considerable
or even vital economy of mesh size.

Let the total, averaged spatial density of the electrons be no, with this
density split between the bulk, nop, and the beam, noa, nop + tiob = "o> The
beam is a small perturbation to the bulk, t»ob *C nop. We modd the bulk
evolution by the coupled continuity and momentum equations:

—hP =-nop^ttp, (1)

|«P=££(*,*) (2)
where hp and up are the linearized fluid variables. The beam is described
by a distribution function, fB{x,v,t) which evolves according to the Vlasov
equation:

s*+-ea+£s*-* (3)
with the normalization of the unperturbed distribution function:

/dv fB(v) = no*, (4)

The dectric Add E(x, t) is determinedself-consistently from Poisson'sequation:

^E(x1t) =^Lop +np{xyt) +JdvfB(x,vit)-no\J (5)
where we have subtracted from the dectron-charge source terms the neutralizing
charge of the immobile background ions, gno*

We proceedto normalizeeqs.(l- 5). We alreadyhave a characteristic time-
scale, determined by the plasma frequency:

<4 =£* (6)
m€o

but, because the bulk is cold, we cannot choose its thermal vdodty as a refer
ence vdodty, nor the Debye length Aj> s vr/wp as a referencelength, as both
are zero. Rather, we introduce a reference vdodty vr which is of the order of
the beam vdodties (Fig.(l)). The reference length is then Xr = vjt/up, and
we define the normalized variables as:
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t'=u>Pt, x'-x/Xr, v' = v/vr> (7)

gE
Ef = , up = tip/vjt, n'p = hP/nopt (8)

mutpVR

f =£-h, 0)
noa

Dropping the primes, eqs.(l- 5) then become:

~«p =-^«p, (10)

Mup =K (u)

^ =JRpnp +flB (ffdv-l\. (13)
with the normalization:

fdx fdvf(x,v,t) =L (14)

where X is the system length, and where we have denned the parameters,

RB = m, Bp= =2£ =l-flB, (15)
no no

which gauge the relative bulk and beam densities, with Rb -C 1. If Rb = 0 ex
actly, Eqs.(10,ll,13) predict linear plasmaoscillations, with a plasma frequency
wp = 1. For convenience, we shall drop all primes in referring to the normalized
equations.

For eqs.(10- 13), we can define the normalized energies of the dectric field,
of the bulk plasma and of the beam plasma partides. These are, respectivdy:

"B =\f&(*,*) dx, (16)
wp =^RPjup{x,t)dx, (17)
wB =\Rb fji?f(x,v,t) ax dv. (18)
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and with these definitions, conservation ofthe total energy of the system follows:

^«tot =# (WB +«>p +wB) —0, (19)

V. LINEAR GROWTH RATES AND QUASILINEAR THEORY.

For a very weak beam, Rb <£ 1, eqs.(10-13) have the dispersion relation:

w = ±ta>fc, u/fc = sgn(fc), |wfc| = l, (20)

so that the phase vdodties are v* = a/*/* = ±1/\k\. With this particular
definition, the waves on the "+" branch all propagate to the right, and those
on the "-" branch all to the left. The linear growth rate of the waves is given
by:

7* =Rb^vI </>*)>-> (21)
where < f(v) >a is the space-averaged distribution function of the beam (see
Appendix A for a discussion of ensemble and spatialaverages). For the finite-
length system of the numerical simulations, the mode structure is discrete,
with wave numbers k = 2irn/L, n = 1,2,.... The dectric field has the modal
expansion:

*(*.*) =^EiityJU*—"* + 5^We*ta*,*l\ (22)
h h

where we made explidt right and left-propagating waves. With the beam dis
tribution function confined to positive vdodties, only the right-propagating
modes E£(t) are resonantly driven by thebeam partides, andtheir amplitudes
eventually dominate over the left-going waves E£(t).

The correlation time of the dectric fields, defined as the width of the two-
point correlation function, is given roughly by:

^A^-fa,)*^' (23>
where Afes refers to the total width of the turbulent spectrum exdted by the
beam. In the usual formulation of quasilinear theory, it is understood that the
correlation time is very short, and that we have the ordering:

Te<7iT1, r</>, (24)



-11-

where t</> is the characteristic time for the evolution of < f(v) >,. An
equivalent way of stating Eq.(24) is through the so-called O'Neil-Malmberg
parameterrj (20), which can be written, with our choice of normalizations:

ri = RB{vB/*uB)z, (25)

In this expression, t/j? is the mean phase vdodty of the unstable waves. With
this definition, the condition ij<1 can be shown to be equivalent to Eq.(24).

If we use the standard formula for the quasilinear diffusion coeffident in
the resonant vdodty region (see for instance^1)), we find:

""w=Jwii". • w
where k* = 1/v and where L is the total length of the system. The overbar
average is defined in Eq.(51) of Appendix A: it is meant to reconcile the sta
tistical properties of a single, long system with those of an ensemble of such
systems.

VI. THE EQUATION FOR THE CORRELATION FUNCTION.

The starting point for the turbulent trapping modd is the 2-point, 1-time
correlation function, which is a measure of the phase-space "graininess" of the
beam distribution function. It is defined by:

C(x_,t/_,v+,t) = < 6f(xuv1,t) */(*2,«2,*) >, (27)

where x_ = xi —X2, «_ = vi —«2, v+ = (v\ + U2)/2, and where 6f is the
fluctuation of the distribution function about the averaged distribution, 6f =
/-</>. Implidt in Eq.(27) is the assumptionthat the turbulenceis spatially
homogeneous, so that C does not depend on x+ = (xi + X2)/2. Furthermore,
C is a dowly-varying function of v+ (with variation on the scale of the total
beam width), so that we shall keep this variable a tadt parameterby writing
C —C(x_,v_,t) in most places.

On the basis of a number of simplifying assumptions done in the spirit of
the turbulent trapping modd, one can derive(6) a Fokker-Planck equation for
C(x_,v_,t) which has the form:

(dt +t/_dB_ - 2(1 - cosfc+x_)D(v+,t)c£_) C(x-,t/_,t) =
2cosfe+x. D(t/+, t) (dv+ < f >)2, (28)
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where k+ = l/v+ is the wavenumber resonant with the average vdodty v+. An
important feature of Eq.(28) is that the diffusion term D(v+,t) is left undeter
mined. It is defined as the one-partidediffusion coefficient, for an ensembleof
partides startingat v(t) = v+and executing a diffusive motion in the turbulent
Adds until a later time if = t + T. That is:

D(V+,t)=<(^)>, (29)
where Av —v(t + T) - v(t). Provided the time scales are well separated, there
will exist a diffusive regime tc^.T^7J71, such that Eq.(29) provides a value
ofD independent ofT. Now, if quasilinear theory isvalid, then from Eq.(29) we
must necessarily obtain D(v+,t) = D*1^,*), where D*1 is given by Eq.(26).
However, Eq.(28) allows for amore general type ofdiffusive motion. In fact, the
only assumption we retain is that D(v+y t) grows as the square of the resonant
wave amplitude, so that D(i/+,i) « exp(27*+*). Because 7^ £ t</>, this
means that the entire right handside ofEq.(28) hasthisexponential dependence
aswell, to within the dow modulation by (dv+ < f >)2, which occurs on the
r</> time scale. Thus thetime derivative on theleft hand side ofEq.(28) isof
order dt «27*+.

Let us "freeze" the value of D at a given time, and define an instantaneous
trapping frequency and an instantaneoustrapping vdodty:

„„ = (k%D(v+))1/3, At* =(D(v+)/k+)1/s, (30)
If we then normalize variables in terms of these trapping parameters:

ust/.^Avu, £sfc+x-, r = 21/s»/«t (31)

C(x-,t/_) = 22>sAt£ (dv+ < f >)2 Hfru) (32)

we obtain the normalized equation:

( 6T +udt - (1 - cosOaJ )H(t,u) =cos£, (33)

where 6T = 0(n,+/vtt) symbolizes the importance ofthe time derivative: Eq.(33)
is in fact rigorous onlyprovided the time-derivative term 6r can be neglected,
which requires 7*+ <C utt.

Eqs.(28) or (33) incorporate two basic features of the turbulent motion
of the beam partides. The first is that as x_ -* 0 and v_ -* 0, C(x_,v_)
becomes large, reflecting the fact that partides initially verydosein phase space
remain correlated for a long time, and do not random-walk independently in
vdodty space(u). Thesecond feature ofEq.(28) isthatthediffusion coefficients
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are periodic in x_, with a period equal to that of the wave with which the
mean vdodty of the partides is resonant. Again, this is linked to the fact
that partides initially an integral number of wavdengths apart will undergo
strongly correlated motion. This second property is only approximate; it will
be discussed in more detail in the next section.

VH. SOLUTION IN THE TURBULENT TRAPPING REGIME.

The regime of turbulence is determined by the relative importance, in
Eq.(33), of the time-derivative term 6r = 0(jk+/^tt)' This distinguishes two
regimes. In the first, the growth-rate dominates the trapping frequendes,
yl » i/tt, and in this case we can neglect the fij_ term in Eq.(28). In effect,
the fast growth rate washes out any harmonic strucuture linked to the dectric
field turbulence (apart from the overall amplitude). G. Laval and D. Pesme(6)
have shown that in this regime one recovers the quasilinear growth-rate.

The "turbulent trapping" regime exists in the opposite limit:

7*,««'«, (34)

In this limit, we neglect 6T in eq.(33), and we can say that the modes grow
"quasistatically" when their dow growth is measured on the now relativdy
short time-scale of the turbulent trapping, i/«l. With 6T ignorable, Eq.(33) is
rigorousand has an exact seriessolution(6), givenby:

ff(£,«)= £ *«M«p(*»K-*•©). (»)
ns-eo

where the sum exdudes the term n = 0, and with:

«.(•)"^? i^« »J»1/*) (36)
with N = |n|, <rn = sgn(n), and with the Airy-related function:

P(z) =- f0 exp (-TV3 - izT) dT (37)
* Jo

Graphs of #(£,u), obtained from the analytic series (35), are shown in
figs. (2). A salient property of this approximate solution is that H(£yu) has a
logarithmic divergence as £,u —• 0, with the asymptotic expression:

1 3

*«»«> * 2V3 1<>g (£2-22/^U +2V3tt2)' (W>



-14-

This divergence reflects the property required of Eq.(28), that points of phase
space initially very dose remain correlated for long times. A similar struc
ture arises in the solution of T.H.Dupree's equations for turbulence in a bulk
plasma(u).

The seriessolution, Eq.(35), diverges as£,u —• 0 becausewe have neglected
the 6T term in Eq.(33), a term reflectingthe importance ofthe time derivative in
Eq.(28) forsmall separations x_ and v_. Indeed, we expect (35) to break down
when the terms ud( and (1 - cos£)<9^ in Eq.(33) are comparable to 6T. If we
assume that djg « du « 1, in the normalized, approximate solution £T(£, u), then
the 6r term becomes important when u < 6r and £ < 6T . In physical units,
the conditions for the validity of (35) are then |v_| > 7*+/fc+ and |fc+x_| >
(7*+M«)1/2.

While an analytic solution with fie ^ 0 has not been found, we can obtain
the specialvalueof C(0,0) very simply,by letting x_, t/_ -• 0 in Eq.(28), which
eliminates all but the first term on the left. We have, with dt —27*+:

C(0,0) =< (6f)2 >= — &+ </>)', (39)
7*+

an expression which assumes that 7^ <C t</>.
We should also stress that the strict periodidty of C(x_,v_) as a function

of x_ is an approximation which results from assuming that partides at v = t/+
fed the single wave number k = k+ = l/v+. To be consistent with the spirit
of the turbulent trapping model, we must in fact assume that the partides see
an entire wave packet, still centered about fc+, but of width 6ktt = k+uu. The
maximum correlation length, £««, will be of the order of the length of this wave
packet:

i^l/^i/^l/*''3!?1'8, (40)

Qualitativdy, we expect the series solution (35) to be modified by an enve
lope function of width J«, such that successive peaks of C(x_, v_) diminish in
amplitude, tending to zero for |x_| ^ /«• As we shall see, this behavior is
numerically confirmed.

By inspection of Fig.(2a), we can seethat the total width of the profile of
H(u,0) is about 3. This width in v_ is then approximately 3 X 21/3 AvH «
4Av*t> Now, for Eq.(28) to be valid, the width in v_ of the correlation function
must be small compared to the beam width. This imposes the reasonable
trapping width constraint:

4Av« < Avb, (41)
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where Avb is the beam width over which waves are exdted. In other words, any
turbulent structure must remain small, and it is in this sense that the turbulent
trapping modd remains within weak turbulence theory.

Vm. ANALYTIC GROWTH RATES IN THE TURBULENT TRAP

PING REGIME.

By using Poisson's equation, we can express the growth rate 7* in terms of
a vdodty integral of the correlationfunction. G. Laval and D. Pesme(6) have
used this expression to find the growth rate in the turbulent trapping regime,
by what might be termed a "bootstrap" method. First, C(x_,v_) is derived
from the series solution in Eq.(35). With Poisson's equation, this results in an
expression where 74 is an explidt function of D, the undetermined diffusion
coefficient. It is then found that by choosing a particular form for 74 and D,
global energy conservation is satisfied while the functional relation between 7*
and D remains true. The expressions for 7* and D are simply:

7* = 2.2 7?, (42)
D{v) = 2.2 D*(v), (43)

where 7j' and £H'(v) are given by eqs.(21) and (26). The numerical factor of
2.2 comes from the summing of a series of harmonics in Eq.(35), in the form
of a series of Bessd functions. The striking feature of eqs.(42,43) is that the
enhancement of the growth rate and diffusion ooeffident is this simple numerical
factor, independent of k and of the levd of turbulence, provided vtt ^>7*.

Analytic work(4), done in the complementary regime i/« < 7*, suggestsa
refined threshold for turbulent trapping, with the strong inequality replaced by
the condition:

v* > 5 7*, (44)

The work of Ref.(4) also suggests that, starting from initial conditions, the
enhancement of the growth rate in the turbulent trapping regime will occur
only after a substantial time lapse, that is after at least a few e-foldings of the
dectric fidd. This is because for eqs.(42,43) to be valid, the non-resonant har
monics of the Fourier components of the dectric field must be in a quasistatic
equilibrium with the fundamental, resonant harmonics. At t = 0, the nonreso-
nant components are rigoroudy zero, and thus a finite time must elapse, before
the mode-coupling mechanisms can build-up the hierarchy of modes, mutually
scattering into each other, which contribute to the enhancement of the growth
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of the fundamental. If JV is the number of e-foldings undergone by the dectric
field, we shall require:

JV « 3 - 5, (45)

for a regime of enhanced growth rates to manifest itself.

EX. THE NUMERICAL SCHEME.

The Vlasov solver for Eq.(lO) usesa finitedifference scheme devdopped by
J.P. Borisand D.L. Bookf22), the so-called "flux-corrected transport" method,
which exhibits a particularly lowdiffusivity, while maintaining good numerical
stability even with very sharp density profiles in phase space. This scheme is
combined with a split-step method devised by C.Z. Cheng and G. Knorr^),
in which transport of the distribution function alternativdy proceeds in x and
in v.

The distribution function for the beam partides, /(x,v), is denned on a
mesh with Nm points in the spatial dimension x and Nv points in velodty v,
with spacings Ax and Av respectivdy. The total system length is L = iV.Ax,
with boundaries in x at xmin = 0, Xmam —L. The boundaries in vdodty are at
v = vmin and v = Vma*' The spatial boundary conditions are periodic, whileat
v = vmin,vmoe we impose / = 0, a good approximation provided / is already
very small some distance from the vdodty boundaries. We advance the system
in time with a time-step At, usually chosen so that utpAt = 0.2.

The bulkequationsare solved independently on the one-dimensional spatial
mesh, using fast Fourier transforms in a leapfrog scheme. Beam and bulk
equations are then coupled through Poisson's equation, also solvedwith Fourier
transforms.

Because our simulations are aimed at exploring the initial turbulence cre
ated in the beam-plasma instability, we think of the beam distribution function
as a tunable source of free energy, and we define its shape to obtain a con
stant initial growth rate(10) over a large band of phase velodties(figs.(3a,b)).
This is done by piecing together simple functions of velodty (see Appendix
C). Our choice of an initial distribution function is somewhat artificial, but it
has the great advantageof avoiding trapping effects which arise from the early
dominance of a single mode.

In Table I, welist the prindpal parametersof the twosimulationsto which
we shall refer in the following sections. In die table, we indicate how well the
validityconditions, summarized by eqs.(54-58) of appendix B, are satisfied.

We initially perturbed the beam distribution function and the bulk plasma
density with a purely spatial modulation, so as to obtain an initial dectric field:
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*3

E(xt 0) = £ ek sin(*x +<fc), (46)
fc=fcx

where the phases <fo are chosen randomly from one mode to the next, and
where the coefficients e* are defined so as to provide an dectric field with a
given, smooth amplitude spectrum. The modes in ki < k < k^ are restricted
to lie in the unstable part of the spectrum. ( Fig.(3a) ).

The initial standing wave of Eq.(46) splits into right-propagatingand left-
propagating waves, with only the former amplified by the beam-plasma inter
action. Neglecting ballistic effects, from Eq.(22) we have the linear behavior:

1 *»£(*»*) = £ ^e* [sm(te-t +^)e™'+sm(te+*+&)], (47)

XI. THE NUMERICAL CORRELATION FUNCTION.

In this section, we consider the numericalresults obtained in Simulation 1
(Table I), for the correlation functions of the beamdistribution function. The
initial distribution function used in the simulation, the resulting linear growth
rates and the phasevdodties ofthe modes initially exdted are shown in figs.(3).
The initial growth rate was jl = 2.19 x 10~3 (obtained with a relative beam
density Rb = ns/no = 2 x 10~3), and the modes were excited in the range of
phasevdodties 1.15 <vh< 2.55 (79modes in 0.392 < k < 0.871). Forthe form
of the initial exdtation, wechosea nonuniformdistribution ofmode amplitudes,
with the dependence on wave numbere* « 1/Jfe8. This choice insured that the
same amount of resonance overlap obtained for all modes of the spectrum.
The additional advantage of this uneven distribution of amplitudes is that it
permitted us, at any one instant in time, to measure the correlationfunctionfor
an entire range of trapping widths Av«, by scanning v = t/+ across the width
of the beam.

If we considera mode in the center of the spectrum, say with vu = 1*75 (
k = 0.564), we find that initially vullL « 4.5, andat the endofthe simulation
vuhh *** 9. Thus according to Eq.(44) the center of the spectrum was in the
turbulent trapping regime from the veryonsetofthe instability. However, Sim
ulation 1 proceededfor only about one e-folding, to t = 500,an evolutiontime
which is probably insufficient for the manifestation of enhanced growth rates
(Eq.(45)). The discussion of the latter effects is deferred to the next sections,
where we discuss them in relation to a longersimulation (3.2 e-foldings).

The evolution of the total Add energy wE{t) is shown in Fig.(4). The
oscillating characterof v>E(t) comes from the interference of the growing right-
propagating waves with the left-propagating waves of constant amplitude.
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The final space-averaged distribution function,< f(v) >«, is shown in
Fig. (5), where it is compared on the same graph to the initial distribution
function. It can be seen from this figure that little modification of < f(v) >,
has occured, indicating that at this point r</> > 7""1. By looking at a cross
section of / at fixed x, as is done in fig(6), we can also see that the amplitude
of fluctuations in the non-averaged distribution function has remained small.

So that we may obtain a more generalview of the phase space organization
of the beam, in Fig.(7) we showthe contour lines of the final distribution func
tion, /(x, v) at t = 500, for the entire length of the simulation, 0 < x < 1024.
We shall now interpret this figure. We first note that at t = 500, the wave
spectrum has remained almost entirely confined to the initial range of phase
vdodties, 1.15 < vh < 2.55. Thus we expect trapping to occur within this
vdodty range, and the motion of partides to be adiabatic beyond it, with how
ever some extension of the trapping region above and below the range ofexdted
phase vdodties, due to the finite trapping widths of the waves. This is indeed
suggested by the contours of Fig.(7). For v > 2.8, the distribution function is
only slightly perturbed by the wave turbulence, while in the resonant or near-
resonant range 2.8 > v > 1.1 the contours display a "graininess", consisting
of dosed or almost dosed patterns or "grains'', suggestive of the formation of
small plateaus in the distribution function. When they are examined individ
ually, these patterns have dimensions in x and v which qualitativdy scale as
expected. At largevdodties (say v = 2.3), wherethe resonantwaveamplitudes
are large (4Av« = 0.24), the circles or semicircles of the contours are wide in
vdodty. At lowvdodties (sayv = 1.3),the resonant waveamplitudesaresmall
(4Av*t = 0.15) and so is the size of the "grains". The spatial arrangement of
the "grains" also reflects the properties of the resonant wave: one can verify
that they have a spacing roughly equal to the wavdength of the wave, which is

To further clarify these observations, we show in Fig.(8) a perspective plot
of a small portion of the distribution function, extracted from the region which
is labelled "Area 1" in Fig.(7). This picture displays the plateaus, which were
suggested by the contour plot in Fig.(7), in a more convincingmanner, and it
is from these plateaus that we infer the existence of locally trapped partides.
A striking feature of the figure is that phase space appears very regular when
it is seen on this small scale,a central predictionof Eq.(28). As noted above in
Section 5, this regularity is only approximate, and should break down beyond
the length of a resonant wave packet, a length which we estimated to be oforder
lu = l/k+va( Eq.(40)). For the "reference" vdodty v+ = 1.75, this length is
la « 90 at the end of the simulation. In Fig.(9) we blow up the longer region
which is labelled"Area 2" in Fig.(7), and display it in perspective. This picture
extends over a length in x of 160units, almost three times the length of Area 1.
The figure shows that when seen over this larger space scale, the alignement of
successive plateaus loses its regularity, indeed over a length which is comparable
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to Ut « 90.

The discussion given above is qualitative and visual in nature. To probe the
structure of Fig.(7) in a quantitative manner, we need a more exact numerical
tool, and such a tool is predsdy the correlation function of Eq.(27). In the
simulation, we evaluated C(x_,v_) by performing a spatial average over the
length of the system. Thus, for given values of x_ = t-Ax, v_ = j-Av and
v+ = vmin+ (j+ —1)At;, we calculated the sum:

1 NmC(x_,t/_,t/+) =— 5^/ij+ •/,-+i_j++i_, (48)

where fij is the distribution function at the mesh point (i, j).
To make the link with the analytic solution given by Eq.(35), we needed to

know the value of the diffusion coefficient in eqs.(30). Hie simplest approach
was to assume that D = D*1 and obtain LP1 from Eq.(26). In so doing, we
ignore any possible increase in diffusion, aswould be indicated by Eq.(42). This
is justified to the extent that, as mentioned above,we do not expect the system
to have had the time develop enhanced diffusivity within a single e-folding.
Furthermore, should D be enhanced by the amount suggested by Eq.(42), this
enhancement will lead to a quite modest broadening of the trapping width, with
Avtt = (D/k)1/3 = 1.3Avjf. From the discussion that follows, it will be seen
that the observation of such a moderate broadening is difficult to obtain from
the inspection of the numerical correlation function. Thus, a less ambiguous
detection of enhancement is to be obtained from the direct measurements of
the growth rates, to be presented in the next section.

We first consider the structure of the correlation function in vdodty space,
by plotting £7(0, v_), for a fixed value ofthe mean vdodty v+. Thusin Fig.(10),
we comparethe numericalresults forC(0, v_) with the predictionsof the series
solution, Eq.(35), for the mean vdodty v+ = 1.745(Av« = 0.034). We noted
above that the series solution blowsup at v_ = 0, and is not valid for |t/_| <$C
Avtt. However, in the region where the analytic solution is valid, that is for
|v_| > 7&+/fc+ « 0.0035, the numerical and analytic curves are in qualitative
agreement, in that their central peaks have almost the same width, and that
both correlation functions are small when |v_| 2§> 2Av«. This confirms the
importance of the quantity Av« as the basic turbulent vdodty scale. We have
further analysed the agreement between the two curves of Fig.(10) by plotting
in Fig. (11) the width 6vu of the central peakof the correlation functions, now
as a function of the parameter t/+, with v+ varying across almost the entire
range of phase vdodties. The width of the central peak is defined as the
separation between the two zeros at the base, andis given analytically by 6v« =
4.32Avtt. The agreement remains rough, but reflects the correct dependence
on the resonant field amplitudes.



-20-

While the analytic £7(0, v_) strictly falls to zero for |v_| > Avtt, the
numerical correlation function in Fig.(lO) retains sizeable fluctuations. We
suspect that this results from the finite length of the simulation (L = 1024),
which limits the number of uncorrelated regions contributing to the spatial
average which defines the correlation function. For t/+ = 1.745, the correlation
length is roughly Ut « 90, and thus in the neighborhood of this vdodty only
about L/ltt « 10 statistically independent regions exist in the system. The
fluctuations in Fig.(10) are then the noise which results from doing statistics
with only about 10 samples. We suspect that this noise could be reduced by
additionalnumerical processing, in whichthe correlation function, obtainedas a
"snapshot" from Eq.(48), would be further averaged in time,over a period ofat
least a few trapping times i/^1. However, wehave not attempted to implement
such a scheme.

While we do not have an analytic solution for £7(0, v.) in any finite range
of |v_| < Avtt about t/_ = 0, we did find an expression for the single peak
value £7(0,0), Eq.(39). In Fig.(12), we plot as a function of v+ the numerical
and analytical values obtained for C(0,0). This graph indicates that Eq.(39)
is indeed qualitatively correct, but that a sizeable quantitative difference exists
between the analytic prediction of £7(0,0) andthe numerical result. We should
note that the numerical value of £7(0,0) is relativdy insensitive to changes in
grid size (a 20% change results upon halving Ax or At/), a result which gives
us confidence that the differences observed in Fig.(39) are not due to spurious
numerical effects. We suspect that the finite rate of change of the average
distribution function, which is not muchsmaller than the growth rate (with the
estimate r</> « 2000 « 4 x 7*l), might beresponsible for reducing the value
of£7(0,0) to under what would beexpected from theuncorrelating effect of7*+
alone.

We next consider the spatial structure of the correlation function, by plot
ting£7(x«,0), once again for fixed v+. In Fig.(13) this is done for v+= 1.745,
over the range -50 < x_ < 50. The curve of £7(x_,0) displays the twomain
features predicted by the analytic theory. The first feature is a relatively fast
and almost periodic dependence on x_, with a period we label Lpp ("peak to
peak"). The second feature is a broad envdope, of width we label Lm, which
modulates the fast dependence of the correlation function. In what follows,
Lm is defined graphically, as the length over which the envdope decays to 1/e
of its peak value, and is estimated by linear extrapolation from the first three
central peaks of the correlation function. According to the analytic results, we
should have Lpp = 2ir/k+ and Lm « Ut (eqs.(40)). The agreement is shown in
figs.(14,15). It is very good for Lpp and at least qualitatively correct for Lm.
We should stress however that the result Lm « Ut was derived from very qual
itative considerations; thus the intersection of some partsof Fig.(15) should be
regarded as a coinddence.

InFig.(16), weplot thenumerical £7(x_,0) for asmaller range ofx- thanin
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Fig.(13), —12 < x_ < 12, and make a direct comparison with the series solution,
Eq.(35). We note once again that the analytic solution unfortunatdy artificially
blows up at x_ = 0 (and at multiples of the period 2n/k+). Notwithstanding
this, qualitative agreement for values of x_ not too dose to these points is good.

XH. THE NUMERICAL GROWTH RATES.

In this section we consider the numerical results for the growth rates which
were obtained in Simulation 2 (Table I) by the direct measurement of the fidd
amplitudes. This simulation was run with the hope of observing a significant
enhancement of the growth rates over the quasilinear values, and in this it differs
from Simulation 1 in two important respects: the initial amplitude spectrum
\Ek\ was chosen uniform in fc, as opposed to |£*| « 1/fc3 previously, so as to
minimize nonuniformity in trapping widths, and the system was left to evolve
over a significantly longer time, that is for about 3.2 e-foldings of the dectric
fidd amplitudes. As noted above (Eq.(45)), several e-foldings should be neces
sary for the equilibration of the nonresonant harmonics to occur, and hence for
the regime of enhanced growth rates to set in. The initial linear growth rate was
7L = 1.2 10~3 ( obtained with a beam density ofRb = na/no = 7.4 10"4) and
the waveswere initially exdted in the range of phase velodties 0.668 < v* < 1.81
( 77 modes excited in 0.552< k < 1.497). For the waves near the central value
of phase vdodty v* = 1.0, we initially had Utt/lfh = 5.8, and at the end of
the run, vu'/yt, = 150, so that as in the previous simulation, the evolution of
these waves was in the turbulent trapping regime from the very outset of the
instability.

We ran Simulation 2 for u>pT = 2875 time units (about 450 plasma peri
ods), during which the total dectric fidd energy increased about 210-fold. In
Fig.(17) we show the amplitude spectrum ofthe forward waves, \Ef\ at t = 0
and at the final time t = 2875, that is after about 3.2 e-foldings of the fidd am
plitudes. The spectrum at t = 2875 displays two distinctive features. The first
is that the average spectrum, which started out as rigorously flat, has under
gone nonuniformamplification, with a peak toward the lower values of fc, near
k = 0.8. The Fourier amplitudes for k > 0.8 have not grown as much, and there
has been little growth at the very edges of the spectrum. This nonuniformity
can be ascribed to the concurrent flattening of the average distribution func
tion (Fig.(18)), which is becoming severe towards the end of the simulation.
This flattening, when weighted with the factor of vJ in Eq.(21), has a more
pronounced effect on the growth rate of the waves with lower phase vdodties
(and hence for the waveswith larger k).

The seconddistinctive feature of Fig.(17) is the jagged aspect of the small-
scale structure of the spectrum. There are large and irregular amplitude vari
ations from one mode to the next, and this results in the spikes which can
be seen in Fig.(17). We beheve that this irregular spectrum, which was also



observed by J.C.Adam (18), is due to the evolution of the system into a set of
uncorrelated subsystems, each of characteristic length Ut- Each Fourier mode
can then be written as a sum of independent random variables^), with, as a
consequence, the statistical independence of ndghboring modes.

To give statistical meaning, in terms of ensemble averages, to the mode
amplitudes obtained in Simulation 2, we used the convolution average defined
inEq.(51) tocalculate \Eh |2. We then numerically computed theaverage growth
rate according to:

7* =5^1ogK(«)|. W
which is a definition of 7* equivalent to the one assumed in Eq.(42). We com
pared this to the growth-rate predicted by quasilinear theory, Eq.(21), using
the numerical, spaceaveraged distribution function which is obtained from the
simulation:

72'se Jkj«j</W)>„ (50)

As a function of vdodty, the numericalquantity < f'(v) >t displays short-scale
fluctuations which are probably the result of the relativdy short length of the
simulation, as compared to the correlation length {L/ltt « 10). To reduce these
fluctuations, we resorted to additional smoothing of < f'(v) >,, by averagingits
valueoverneighboring points in vdodty, throughconvolution with a triangular
window W(v) of the same form as the oneused in Eq.(51). While we used the
same averaging function W for < f(v) >, and \Ek\ , we should note that the
statistical operations involved are essentially independent.

In Fig.(19), we show the evolution of7j'(t), for k = 1.0, vh = 1.0. The
considerable variation of7^ over thetime scale 0< t < 2875 isconsistent with
the large modification of < f(v) >, whichcanbe observed in Fig.(18), wherewe
compared the initial and the final average distribution functions. It is apparent
from this latter picture that we are running into a regime where r</> < 7* .
This is a result of the longrunningtime of the simulation, and indirectlyof the
constraints placedon the initial fidd amplitudes, which cannot be infinitesimal,
but have to be sufficiently large for the condition vtt/lk > 5 to be satisfied at
t = 0.

Thus, inspection of Fig.(19) indicates that for t > 1000 the characteristic
time t</> for a change of order unity to occur in < f'(v,t) >, is of order
r</> « 1300, comparable to or smaller than the e-folding time of the dectric
fidd, which is initially 7^1(0) = 830, and which decreases to 7* * « 2000
towards the end ofthe simulation. We may condude that the present simulation
is not an ideal verification of behavior in the turbulent-trapping regime, which
assumes 7JJ"1 &t</>.
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The evolution in time ofthe ratio ijlu for fc = 1 is plotted in Fig.(20).
The distinctive feature ofFig.(20) is that 74/7^ >1throughout the evolution
of the system. A further observation is that the ratio 7*/7? » not constant,
but undergoes adow increase, reaching avalue ofabout 1.2 after 2.6 e-foldings
of the dectric fidd, at t = 2000. In the final time interval, 2000 < t < 2875,
7kli£ undergoes asharper rise reaching amaximum value of1.6.

It is tempting to explain the enhancement oiikh$ to values greater than 1
by the effects predicted by ALP and described by the turbulent-trapping modd.
However, we must note that the enhancement ofthe growth rate remains modest
during most ofthe simulation, with 74/7? <1.2 during the first 2.6 e-foldings
ofthedectric fields. This enhancement iswell short ofthevalueof 2.2 predicted
by the turbulent trapping model, Eq.(42). Furthermore, when 7fc/7fc increases
to amore sizeable value (from 1.2 to 1.6, in the time interval 2000 <t < 2875),
it does so predsdy in aregime where the trapping widths have become quite
large, that is where neither quasilinear theory nor the turbulent trapping modd
are expected to be strictly valid in the first place.

The correlation of large trapping widths with strong enhancement ôf the
growth rates is made dearer ifwe look at "snapshots" of the ratio 74/7* , plot
ted now as a function of k. This is done in figs.(21,22), for the fixed times
t = 2000 and t = 2875. In the figures, we have indicated the interval in k
corresponding to the turbulent trapping width 4At>«, for waves resonant with
vh = 1.0. Thus, at the end ofthe simulation (Fig.(22)), the large enhance
ment of the growth rate occurs when the trapping width is itself large, with
AAvu/AvB « 0.3. Furthermore, this enhancement is accompanied by strong
edge effects, so that ihhf is more strongly nonuniform in k as well (similar
nonuniform profiles were observed by J.C. Adam(18) ). This strong nonuni
formity can be ascribed to the fact that in this regime, the waves derive their
energy from large populations of trapped partides, which are trapped in only
a few wave packets within the entire beam. The local dope <f(v) >., which
defines the quasilinear growth rate, is no longer the salient physical parameter
responsible for the growth rate of the resonant waves. In this extreme regime, it
is not surprising that the growth rates are uneven, on account ofthe few wave
packets gvrWging energy with the partides, and that they are quite different
from the quasilinear growth rates.

However, Figs.(20- 22), have a striking characteristic which moves us to
interpret the increase of growth rates as resulting from effects in the spirit of
those predicted by ALP. While the nonuniformity in the growth rate observed
in Fig.(22) can be ascribed to the large trapping widths of the wave packets,
this dtuation does notby itself account for the fact that the growth rates are
greater than quasilinear, everywhere across the spectrum.

Furthermore, the finite resolution of the grid severely limits the number
of nonresonant harmonics which can be generated by the partiaUy trapped
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partides. Thus, the mari*""*" physical wave number k allowed on the mesh
is of order ir/2Ax « 3, so that the waves with k « 1 may interact at most
with 3 harmonics. The result of this truncation may be a significantly smaller
enhancement of the growth ratethan predicted by Eq.(42), which assumes that
an infinite cascade of harmonics contibutes to the enhancement. Thus, we
suspect that this may explain the low enhancements observed in Fig.(21).

XIV. CONCLUSION.

We performed numerical simulations to verify the existence of a new tur
bulent regime in the devdopment of the weak beam-plasma instability, and
more specifically, to validate the predictions of the "turbulent-trapping" modd
concerning correlation functions and enhanced growth rates.

Our most definitive condusions regard the predictions of the turbulent
trapping modd for structure in phase-space. Both qualitatively and quanti
tatively, this modd provides good predictions for the correlation functions of
the beam distribution function. This important result supports the qualitative
picture in which the turbulence is composed of wave packets whose trapping
domains barely overlap in phase space, with a characteristic width in vdodty
Avtt = (D/k)1'3, and a correlation length in space of lH = l/ft5'3!?1'3, with
D&D*1.

Less definitive are our condusions regarding the predictionof an enhance
mentof the growth rates, an enhancement which might otherwise be expected
on the basis of the success of the modd in predictingthe correlation functions.
The enhancements which are observed are modest (enhancements of 1.2-1.6,
compared to a prediction of 2.2), with upper values occuring in a regime of
marginal validity for the quantitative predictions of the model. However, we
suspect that the nonideal aspects of the simulations areresponsible for somere
duction of the numerical growth rates which were observed. Thus, wecondude
that there is nonethdess qualitative evidence for enhanced growth rates.

Future work might bear on more ambitious simulations, which can over
comethe numerical limitationsof the present ones,which suffered from a rela-
tivdy coarse numerical mesh. Another approach in the study of the effects of
trapping onthe growth rates would be to shift the emphasis from weak turbu
lence, to the study of whatmightbe called "moderate" turbulence (a few wave
packets in the width of the beam), a regime in which the choice of numerical
parameters is less delicate. The insights gained from studying this regime of
more vigorous trubulence mightthenbeextrapolated back to the weaker regime
assumed by the ALP modd.
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APPENDIX A: ENSEMBLE AVERAGES VS. SPATIAL AVER

AGES.

Statistical theories of turbulence usually are stated in terms of the ensem
ble averages of spectral quantities. Thus one might condude that the proper
numerical study of turbulence would require performing a large number of nu
merical simulations, each with different initial conditions, and averaging the
final results. In fact, if the turbulence studied is homogeneous in space, in
prindple all the relevant information about ensemble averages can be extracted
from any one realization in the ensemble, that is from a single numerical sim
ulation, provided that the system is long enough. The criterion for sufficient
length is that the length L of the system be.muchlonger than the correlation
length le of the quantity investigated(see (2S) for equivalent discussions of data
processing, for powerspectra in the time and frequency domain).

For instance consider the squared Fourier amplitude of the dectric fidd,
which will be the main spectral quantity of interest. The problem is to approx
imate its ensembleaverage, whichwe denote by < \Ek\ >, from the results of
a single simulation. The prescription is as follows: we first obtain the "raw"
squared Fourier spectrum \Ekf, directly from the numerical E(x) resulting
from a single computer run. In general, this quantity will be a rather chaotic
function of k. We then perform a convolution to define the smoothed average:

\Ek?sJ2w(K-*)rBK?, (51)
K

where W(K) is a window function such that £* W(K) = 1- In what follows,
we choose W{K) to betriangular inshape, with W{K) = (Ak/kJHl-W/ky,)
and W(K) = 0 for \K\ > ky,. Provided that the width of W{K) is small
compared to the total spectral width (that is, the inverse correlation length),
but large compared to the mode spacing (&«, > Ak = 2it/L), Eq.(51) will
provide an approximation to the ensemble average, \Eu\ «< \Eh\ >•

In dealingwith spatial quantities, such as the spatial correlationfunctions
or the average distribution function, it is legitimate to replace the ensemble
average by a sliding spatial average over the entire length of the system, pro
videdonce againthat the system is long compared to the correlation length. In
what follows we adopt the following conventions: the unadorned angle brackets
< ... > refer to ensemble averages, the addition of a subscript "s" denotes a
spatial average, < ... >«, and the overbar notation will be reserved for the
spectral quantities, to denote the filtering operation of Eq.(51).
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APPENDEX B: CONDITIONS OF VALIDITY.

In this Appendix we summarize the several conditions which define the
turbulent trapping regime. In addition to those stated in the main text, a
condition on the validity of the derivation of (42,43) is that disperdon within a
turbulent wave packet is small over a time scale of 1/7*. This is expressed by
the condition(4):

w| \K^S) <7" (52)
where Vk is the phase vdodty and t/0* the group vdodty of the waves. The
cold bulk plasma is theoretically disperrionless, but in fact has the numerical
disperdon relation u>* = 1 —f^Aa^/S valid for kAx <& 1. With v* « 1/fc,
\vgh\ = \du>h/dk\ < vjk, Eq.(52) reduces to:

4 7*

This constraint is necessary, in addition to those'already outlined, for a valid
test of the turbulent trapping theory.

To summarize all constraints, we have (eqs.(24),(41),(44) and (53), and the
paragraph following Eq.(44)):

re« «'«1<7i"1 £r</>, (54)

AAvtt < At/a, (55)

vtt > 5 7*, (56)

fo.P = T -<1, (57)
4 7*

JV«3-5, (58)

where iV is the number of e-foldings during the evolution of the instability.
Eqs.(54,55) are general conditions for weak turbulence, and are required for
quasilinear theory as well. Only eqs.(56,57,58) specifically definethe turbulent
trapping regime.

Eqs.(55), (56) and (58) are the most stringent conditions imposed on the
simulations. For instance, suppose that we want to follow the evolution of the
system through N e-foldings of the fidd amplitudes, while remaining in the

Sdi*p = t T—" < x» I53)
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turbulent trapping regime throughout the computer run. For a fixed beam
width, Eq.(55) limits the amplitudeof the final dectric fidd. This impliesthat
the initial fidd amplitudes have to bescaled-down bya factor oforder e~N from
a rigid, fixed upper limit. Thus the initial value ofuu « |i?|2/3 « e~2N^3 is
small. In turn, Eq.(56) implies that the initial growth rate must be sufficiently
small as well, with the same scaling 7 « p<t/5 « e~2N^3. Thus the total run
time T of the simulation, which,according to Eq.(58), has to undergo at least N
e-foldings, will scale as T « JVe2^3. We condude that the computation time
increases very rapidly with the number of e-foldings we wish to observe. The
value N = 4 represented a practical limit to our computing resources.

APPENDIX C: INITIALIZATIONS.

The initial beam distribution function was designed for a constant linear
growth rate over almost all of the unstable, positive-slope vdodty range, by
piecing together the simple functions(10):

A{v- vi)2+ B(v - vi)8, «! < v < va,

/o(v)= Cx+CaU-Va/v), va<v<vbi (59)
D(v- V2)2 + E(v-1*)3, vi, < v < V2

In Eq.(59), the expressions in the vdodty ranges (vi, va) and (v», V3) are transi
tion functions, with the coefficients chosenso that /0(v) and /0(v) are continu
ous everywhere. The coeffidentsare further chosen to satisfy the normalization
J fo(v)dv = 1. The form (59) insures that in the interval va < v < vby the
growth rate, given by Eq.(21), is constant.

A concern in choosing the coefficients e* in Eq.(46) is to insure that the
resonance overlap betweenadjacent modesis satisfied within the entireexdted
spectrum, andthis from the verybeginning of the simulation. Condderations of
trappingwidths areimportantbecause in the absence of resonance overlap there
is no diffusion. In other words, the effect of the discreteness of the spectrum
is attenuated only provided the modes overlap. In fact resonance overlap was
satisfied in all of our simulations.
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TABLE 1; Simulation Parameters.

Simulation 1 2

JV«x Nv 2048 x 200 1024 x 250

Ax Av At 0.5 0.0232 0.2 0.5 0.00723 0.25

Initial Modes 79 77

Rb = **b/*>o 2.0 10"8 7.4 10~4

Avb 1.4 1.1

wprmox 500 2875

rc 7.5 6.5

"«'(« = o)
\Tfnav

100(t>fc= 1.75)
45 •

140(vfc= 1.0)
17

(•* mat)

450(»* s 1.75)
400 *

830(t>fc= 1.0)
2500

r<MTmal 2000(»fc= 1.75) 1300(vfc= 1.0)

ftthi.it = 0)
\*mojy

4.5(v*= 1.75)
9

5.8(t»*= 1.0)
150

AT 1 3.25

4Avu/AvB(t- 0) 0.044(»*= 1.75)
0.097 "

0.027(v* = 1.0)
0.24 •

vdi«f(imaj 4.0 lO"8 3.0 10"*
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FIG. 1. Sketch of the bulk and beam distribution functions.
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FIG. 2. (a) Plot of H(0,u) showing the velocity dependence of the analytic correlation
function; u = w_/21/3A«tt. (b) Plot of H{t,Q) showing the spatial dependence of the
analytic correlation function; £ = k+x-.
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FIG. 2.(c) Contour plots of the analytic correlation function H(£>u]
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FIG. 4. Evolution of the total electric field energy in Simulation 1.
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FIG. 5. Final space-averaged distribution function for Simulation 1; the dashed line is
the initial space-averaged distribution function, fo{v).

FIG. 6. A cross-section of the final distribution function in simulation 1, taken at x = 512,

showing fluctuations in /; the dashed line is the final space-averaged distribution function.
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FIG. 8. Perspective view of the beam distribution function in Area 1of Fig.(7). Note
the plateaus which have formed in the distribution function.
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FIG. 9. Perspective view of the beam distribution function in Area 2of Fig. (7).
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FIG. 11. Comparison of the width in u_ of the function C(0a w_) (the separation of zeros
at the base), plotted as a function of the mean velocity, for Simulation 1, t = 500. The
analytic results are obtained with 6vtt = 4.32Au«.
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FIG. 12. Peak values C(0,0) obtained in Simulation 1, t = 500.
FIG. 13. Plot of C(i_,0) for i>+ = 1.745, Simulation 1, t = 500.
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FIG. 18. The initial and final average distribution function, as obtained in Simulation 2.
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FIG. 19. Evolution of the quasilinear growth rate of the Fourier component
k = 1.0, a* = 1.0, in Simulation 2, as calculated from eq.(50).
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