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Results are presented from hybrid 2-d quasineutral Darwin simulations of the
interchange instability in the presence of a large RF wave in the ion-cyclotron fre
quency range. The simulation models the plane perpendicular to the background
magnetic field using cold, particle ions and a cold E x B electron fluid. Related
theory is also discussed. Fluid equations appropriate to our simulation model are
derived and their properties demonstrated and compared to simulation. A method
for solving for the RF-modified growth rates from the fluid equations is described.
It is generally expected that the current component associatedwith the mean, RF-
induced ion drift is capable of influencing the stability of the interchange mode;
however, no modification of the mean ion drift is observed in simulations in which
RF is present. Instead, in both the theory and simulation, an electron RF-field
oscillation current dominates the modification to the gravitational current. As
a result, even in the presence of large RF fields, (Brf/Bo = 15%) only modest
corrections to the interchange growth rates are observed. The effect is stabilizing
for kLn < 0.8-0.9, apparently for both signs of the square-electric-field gradient,
and is destabilizing for larger values of kLnt although the credibility of the sim
ulation begins to become suspect here. Fractional reduction of the interchange
growth rate isobserved to be quadratically dependent on the RF wave amplitude,
independent of ion-cyclotron resonant effects, and proportional to ^BRF/VBQi
consistent with an eikonal theory developed for the study of stabilizing effects on
perpendicularly-propagating fast Alfven waves. The results also suggest that ad
ditional gradient-independent stabilizing effects may be operative when kLn ~ 1.
Finally, it is also observed that, while the RF wave has little effect on the inter
change instability, the interchange mode strongly affects the RF wave, damping
it significantly as the mode saturates.

* Present address: Courant Institute of Mathematical Sciences, New York University,
New York, New York 10012.
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I. INTRODUCTION

Recent results from the Phaedrus tandem mirror experiment at Wisconsin [1] have
stimulated much interest in the possibility of stabilizing the interchange modes in axisym-
metric mirror devices by means of an applied RF field in the ion-cyclotron frequency range.
It was observed in the Phaedrus experiment that a small decrease (~ 0.4%) in the static
mirror magnetic field strength produced a dramatic change in measured plasma density
fluctuations. Since the fixed frequency of the RF field, w0, was very close to the ion-
cyclotron frequency, wcj, when these measurements were taken, it was concluded that the
stabilizing effect indicated by the reduction in the density fluctuations was occurring when
the frequency of the RF field was greater than, but not when the frequency was less than,
the ion-cyclotron frequency. Further, it was suggested that the stabilizing agent was a
ponderomotive force associated with the radial gradient in the applied RF field. One could
then speculate that such a force would counter the effective radial gravity driving the inter
change instability. The abrupt onset of stability is also then explained since, in its simplest
form, the force may be expressed as [2]

r - «* W (1)

which changes sign and is largest as the ion-cyclotron resonance is crossed. Here m is the
ion mass and E\ is the magnitude of the RF wave electric field.

Unfortunately, this intuitively appealing physical picture has not been borne out either
by other experiments or by theoretical studies. Earlier measurements taken on the HX-II
at Kyoto [3] provide evidence that the stabilizingeffect of RF on a related £ x B rotation-
induced instability is strongest near the ion cyclotron frequency, but stability is observed
on both sides of the resonance. Suppression of flute oscillations has also been observed in
the HEEI machine at Kyoto [4] in the presence of RF, at frequencies above the second ion
cyclotron harmonic.

On the theoretical front, it seems likely that the ponderomotive force does play a role
in the stabilization process. It seems equally likely however that the process cannot be
explained in terms of a simple balance between the ponderomotive force and an effective
gravity. Instead, a number of effects probably contribute.

Just as the behavior of a magnetized plasma as a whole is at least in theory completely
described by the motion of its magnetized particles, so might one expect that the modifi
cation of particle orbits by a strong RF wave would lead to a fundamental understanding
of plasma stability properties in the presence of RF. At first sight, the analysis seems al
most trivial: for an electrostatic wave, the ponderomotive force term appears as a square
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first-order term ((xi-VEi)) when the ion Newton-Lorentz equation is expanded to second
order in the RF wave amplitude and averaged over the u^-timescale:

Substitution of linear expressions obtained from the first order Newton-Lorentz equation
for the first-order quantities in this term leads immediately to Eq. (1).

There are, however, other complicating effects. In early stability treatments by Kishi-
moto [5] and Yamamoto [6], the RF wave was allowed to be electromagnetic, and modi
fications to stability due to the nonlinear term vx x Bi were considered. In Yamamoto's
study, the presence of RF was stabilizing for o>0 above wc» and destabilizing for u>o below
(jjei, as was observed in Phaedrus. Neither treatment is likely to be applicable to Phaedrus
however, since the electrostatic component of the RF wave was ignored, so the longitudinal
ponderomotive force term of the form (x\dEx\/dx) was not included.

Another single particle effect of importance has been studied by Dimonte, Lamb, and
Morales [2,7,8] in a series of papers concerned with the removal of the u>o = ue* singularity in
Eq. (1). It was demonstrated both experimentally and theoretically that the finite length of
time a particle spends in the RF field due to the field's finite axial extent and the particle's
nonzero axial velocity leads to a resolution of the singularity. The ponderomotive force is
found to be finite for all values of the RF frequency in the vicinity of wct, and in fact the
peak ponderomotive force is found to occur when u;0 is somewhat removed from wc».

Further complications are encountered when a fluid modelof the stabilizingmechanism
is examined. As noted by several researchers, expressions obtained for the ponderomotive
force from fluid theory differ in form and seemingly in essence from those obtained from
single particle theory. When the ponderomotive (ui«Vui) term of the fast-timescale-
averaged fluid ion momentum equation,

(^)=" (Ul'Vu,> +™<ttJ> xBo'' (3)
is evaluated, the ponderomotive force is found to be

-*(•,.*.,>--£Rd5pV|*|«1 (4)
which is not only different from Eq. (1), but also does notchange sign across the resonance.
As pointed out by J. Cary [9], Eq. (1) governs the motion of the particle oscillation center
in the wave, whereas the fluid treatment is concerned only with the local particle velocity.
The discrepancy is thus resolved by considering the fluid velocity flow shear between a
particle's actual position and its oscillation center.

A third ponderomotive quantity, the ponderomotive force density, may be obtained by
considering the momentum density fluid equation [10,11,12]. This quantity has been shown
equivalent in effect to the fluid ponderomotive force [10], which indeed must be the case,
since the two approaches contain the same physics. Expressions for the ponderomotive
force in a magnetized plasma have also been derived by Statham and ter Haar [13], Cary
and Kaufman [14], and others.
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Some of the difficulties with the intuitive physical model now become clear. With at
least three, and possibly more, forms of the ponderomotive force to choose from, the prob
lem becomes one of which, if any, of these forces is the one actually counter-balancing the
effectivegravity. A seemingly reasonable criterion for distinguishing amongthese forces may
be found by considering the physical mechanism usually associated with the interchange
instability. The effective gravity driving the instability acts by inducing gravitationaldrifts
which differ between electrons and ions. The resulting charge separation in the presence
of an azimuthal density perturbation produces an E x B drift which reinforces the pertur
bation. We might then ask which of these ponderomotive forces influences by its induced
drifts the charge separation obtained in the presence of a perturbation. There are again
complications however, this time because the meaning of charge separation is unclear in the
quasineutral formulations often used, and because RF-induced density as well as velocity
perturbations can also lead to modifications in the gravitational current.

The wide variety of difficulties associated with the RF stabilization problem have led
to a number of different theoretical approaches and therefore different viewpoints of the
stabilizing mechanism.

D'Ippolito and Myra [11] have made a careful study of the stabilizing effects produced
by applying the quasilinear approximation to the Vlasov-Maxwell equations to yield an
effective ponderomotive force density. Kinetic effects such as wave energy absorption and
resonant particle effects are therefore included in their version of the force. For the case
of a left- (ion-) circularly polarized RF wave, without kinetic effects, it was again found
that stabilizing effects occur only above wCj, while inclusion of the kinetic effects provided
additional detail of the stabilizing influence of the RF wave when uo was close to u;c».

Cohen and Rognlien [10] have developed a two-fluidmodel in which the stabilizing char
acteristics of both ponderomotive and sideband effects are included. When ponderomotive
effects are considered, the model produces stability criteria identical to those obtained by
D'Ippolito and Myra in the fluid limit. Sideband effects, or effects generated as the result
of the beating of the RF wave with high-frequency, RF-induced components of the inter
change eigenmode, constitute yet another complication to the RF stabilization picture. In
Cohen and Rognlien's analysis, these effects are found to produce an added stabilizing effect
on both sides of u>Ci which is strongest against short-wavelength interchange modes and is
dominant over ponderomotive stabilization when u/0 is close enough to wct.

A set of calculations due to McBride and co-workers has also considered sideband

effects [15,16]. In these studies, a general formulation [17] requiring only the linear electron
and ion susceptibilities and certain characteristics of the RF wave is implemented to find
RF-induced modifications to the linear interchange dispersion relation. When non-resonant
sidebands are assumed, it is found that stability occurs only when u;0 < wct, just the
opposite result obtained from the ponderomotive calculations. Stabilization is, however,
obtained for u>o > ojCi when resonant sidebands are assumed. In another study conducted
recently by Myra and D'Ippolito, the effects of sidebands were found to partially cancel
previously calculated ponderomotive effects [18].

A different approach was taken by Similon and Kaufman [19] in their study of the
problem. In their analysis, generalized ponderomotive forces were derived from functional
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derivatives of a ponderomotive potential obtained from a two-timescale decomposition of
the problem. Expressions for the electron and ion susceptibilities were evaluated assuming
cold, uniform fluids for each species. These forces did not exhibit resonant behavior at the
ion cyclotron frequency. Instead, the observed stability in Phaedrus when ojq > wc» was
attributed to the fact that slow wave resonances calculated for these forces for different

propagation RF wavenumbers k0 always occurred at frequencies less than wc». It was also
found from an energy principle that the action of the interchange wave back on the RF wave
is important in the stability analysis, yet another complicating feature of this problem.

With all the difficulties and complications associated with the theory of RF stabiliza
tion of interchange modes, there is much to be anticipated from the method of computer
simulation. The problems associated with the importance of various effects and the rele
vance of various forms of the ponderomotive force are circumvented entirely, since all effects
are calculated essentially from first principles and are thus followed to all orders in many of
the usual expansion parameters. Interaction of sideband effects with ponderomotive effects
are automatically treated, as is the self-consistent reaction of the interchange mode on the
RF wave. Also, as is typical of the simulation method, diagnostics of most of the interesting
dynamical quantities are readily available for analysis.

The simulation method applied here is unfortunately not without its own shortcom
ings. As currently run, only cold ions and electrons are employed, ruling out kinetic ion
effects and electron-mediated electrostatic effects (e.g., ion sound waves). Periodic bound
ary conditions are used by the simulation, which leads to a somewhat unrealistic equilibrium
model. The RF wave is loaded as an eigenmode of the system, rather than excited through
the use of an antenna. The simulation magnetic field, which includes both the equilib
rium and perturbed fields, is oriented perpendicular to the simulation plane. Both the RF
wave and the interchange mode are thus constrained to perpendicular propagation. Direct
comparison with most of the theories therefore cannot be made as the latter require ap
preciable parallel RF wave structure. Quantitative comparison with theories assuming the
local approximation, kLn » 1, k being the interchange wavenumber, is also infeasible, since
kLn ~ 1 or kLn <C 1 holds for all the simulation runs reported here. We find however that
qualitative comparison to a theory of this type is reasonable, as will be demonstrated. It is
also an unfortunate coincidence that cold plasma in the plane perpendicular to the back
ground magnetic field does not support any ion-cyclotron-resonant RF waves. The only
high-frequency wave present in this system is the fast compressional Alfven wave, which is
100% electron-cyclotron polarized at the ion-cyclotron frequency. This rules out compari
son with the results of the theories of D'Ippolito and Myra [11], Cohen and Rognlien [10],
and McBride [15], each ofwhich assumes either an ion-cyclotron- (left-) polarized RF wave,
or cyclotron-resonant response of the ions to the RF wave. More recent analytical work
by McBride and Stefan [20] considers the possible stabilizing influence of a perpendicularly
propagating magnetosonic pump wave on interchange stability. Their calculation addresses
only the effects of sideband coupling in the eikonal limit. Comparison of their results to
our simulations is therefore not straightforward.

Despite all these deficiencies, a simulation of this type is still of considerable value. It
is, after all, a clear working example of the interaction between a finite-amplitude RF wave



-5-

and the interchange mode. For example, the modification of the destabilizing gravitational
current in the presence of RF can be and has been studied. Also, while the simulation
model as presently implemented cannot be compared with current theories, neither have
these theories as yet explored systemscharacterizedby the parameters used here: (kLn -4C 1,
kLn ~ 1, and (&[|)af = 0). The case kLn ~ 1 in particular is usually a difficult regime
to study theoretically. Finally, it should be noted that none of the deficiencies mentioned
here is inherent to the simulation method; some or all may be removed at some point in
the future.

The balance of the paper is organized as follows. Model equations for the simulation
and the related analysis are presented in the next section. We present some properties of
these equations in Sec. III. The structure of the linear RF eigenmodes in our simulation
model model is calculated in Sec. IV, wherein perturbations at second order in the RF
amplitude are derived. We analytically address the linear stability of interchange modes
in Sec. V, which is followed in Sec. VI by an eikonal theory of interchange stability in
the presence of the RF wave. This theory suggests that the sum of electron and ion
ponderomotive effects dominate sideband coupling in the eikonal limit for our model. We
describe the initialization technique used in our simulations in Sec. VII and the simulation
results in Sec. VIII. We observe a weak, partially stabilizing influence of the RF wave on
the interchange modes. Some of the low-mode number simulation results are in remarkable
agreement with the eikonal theory; this is discussed in Sec. IX. Simulation results and
theory suggest that sideband coupling effects are more competitive with ponderomotive
modifications for low mode number interchange modes. Future directions and a summary
are given in Sees. X and XI, respectively.

n. THE MODEL EQUATIONS

We begin by studying some of the properties of the simulation equations. Some of these
properties are derived to illustrate the nature of the simulation system we are using, while
others are directly concerned with the stabilization process and will be checked against
actual simulation results.

A number of features are required of a model suitable for the study of RF stabilization
of interchange modes. The model must follow at least two spatial dimensions: one for the
interchange propagation direction, and one for the inhomogeneity in the density gradient
and RF field strength. Enough physics must be included to model both the low-frequency
interchange mode and an RF wave in the ion-cyclotron frequency range. Neither the
MHD formalism nor equations involving the guiding center approximation for the ions
may therefore be used.

At the same time, as a matter of practicality, a workable model should also exclude
certain features. Inclusion of electron or speed-of-light timescales would require unaccept-
ably small simulation timesteps. The electron timescale may be eliminated by representing
the electrons as a cold E x B fluid and assuming quasineutrality, while the speed of light
timescale may be avoided by ignoring the displacement current relative to the plasma cur
rent (the Darwin approximation). It is also desirable as a first attempt to use only cold ions.
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FIG. 1. Schematic of the simulation model. The time-independent equilibrium
consists of the double-peaked density profile n0(x), the static gravitational accel
eration field g(x) = 0(x)x, the time-independent magnetic field Bo(x) = Bo(x)z,
and the g x B ion gravitational drift, -mcg/eB0y. The "modified" equilibrium
is composed of the time-independent equilibrium plus the standing RF wave with
propagation vector k0(x) = k0{x)St. The interchange mode, excited by a small
perturbation at the beginning of the simulation, typically propagates in the y-
direction.

Warm ions are essential in our problem only through their role in producing the effective
centrifugal force via parallel streaming along curved field lines in mirror geometry. This
effect may be modeled with an external gravity, eliminating the need for warm ions. Use
of cold ions greatly reduces the number of ion particles that would otherwise be required
to fill the velocity dimensions of ion phase space.

The simulation code, ZEN [21], a 2-d modification of the 2 1/2-d quasineutral Darwin
code PEPSI described in a previous report [22], fits these specifications. A schematic of
the simulation model is shown in Fig. 1. Simulations take place in the x-y plane perpen
dicular to the magnetic field B(x>y,t)z, which is dynamically followed in time. The RF
wave propagation vector ko(s)i tne equilibrium density gradient Vno(s), an<^ an external
gravitational field g(x) are all initialized to point in the indirection, while a small inter-
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change perturbation is initialized with a sinusoidal dependence in the y-direction. Full ion
dynamics are included in the code, and ne = n* and ue = cE x B/B2 are assumed for the
electron density and fluid velocity respectively.

The algorithm used by our simulations may be represented by the fluid equations :

— + u-Vu=— E + + g, (5a)
at m \ c J

g.= -V.(nu), (5b)

— = -cV XE, (5c)

E=(^-H)xB, (5d)
\ 4;ren cj

where u is the ion fluid velocity, n = nt- = ne is the density, and again, m is the ton mass.
Equation (5d) comes from the zero-pressure, inertialess electron momentum equation

0=E+Hiiil, (6)
C

where for ue, Ampere's Law has been substituted neglecting the displacement current.
Periodic boundary conditions are enforced in both the z- and y-directions.

The particle ions of this simulation model actually obey

dv e /_ v xB\ ,_x
— = - E + +g, 7
at m\ c )

where v is the particle velocity; however, the fluid ion momentum equation (5a) is appro
priate since the simulations reported here are initialized with cold ions which remain cold
through the usable portion of the simulation.

Since the simulation takes place in the x-y plane, the magnetic field need only have
a 2-component: B = B(x,y,t)z. Noting also that E only appears in the combination
E + u x B/c, Eqs. (5) may be simplified to

du „ BVB to x
^ +U'Vu=-i^+g' (8a)

g =-V.(nu), (8b)

f -V.(5.)+gi.v(I)xVB, (8c)
where u = (ux,utf,0). Equations (8) form the basis for all subsequent analysis in this
report.
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m. PROPERTIES OF THE EQUATIONS

Several properties may be derived for the system described by Eqs. (8). A number of
these properties are particularly appealing because they have a simple physical interpreta
tion.

From Ampere's Law, the electron fluid velocity may be expressed as

ue = u - ——VB x z, (9)
Airen

from which immediately follows J •VS = 0 and V • J = 0, as is also true in MHD theory.
The total current thus flows along constant-B contours and is divergence-free.

Substituting Eq. (9) into Eq. (8b) yields

g =-V.(nue), (10)
the electron continuity equation, while substitution into Eq. (8c) produces

^ =-V.(Bue), (11)
demonstrating conservation of the magnetic flux $ Bdxdy. Equations (8a), (9), (10), and
(11) are an alternative and equivalent set of equations to Eqs. (8). The similarity of Eqs.
(10) and (11) may be exploited to yield

(i+--v)(!)-°- (12)
i.e., the ratio B/n is constant in the electron fluid frame. Thus, the magnetic field may be
thought of as being frozen into the electrons.

An energy conservation theorem also exists for this system. Taking the dot product of
both sides of Eq. (8a) with mnu produces

-mn-z- + -mnu •Vu2 = -—uB •V£ + mnu •g. (13)
2 dt 2 4jt

Ampere's Law (Eq. (9)) may be used to show

uB-VB = ueB.VB. (14)

Multiplying both sides of Eq. (11) by B yields

ueB.V£=^(B2)+V.(u8£2). (15)
Using ion continuity on the left side of Eq. (13) and substituting Eqs. (14) and (15), we
obtain

d (\ B2 \ /l B2 \—( -nmu2 + — + nm<f>g ) + V • -nmu2u + — ue + nm^u ) = 0,
dt\2 8jt V \2 4tt J

(16)

where g= -V<j>9. Thus the local total energy density defined as nmu2/2 +£2/87r +nm<f>g
will be conserved in any region on the x-y plane up to a flux on the region boundary.
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IV. THE RF WAVE

Estimates of the magnitudes of various quantities associated with the RF wave will be
required for the stability analysis of the interchange mode when the RF wave is present.
Since effects up to second order in the RF amplitude are expected to contribute to the
main stabilizing influence, calculations to that order are performed. We use the equations

dux dux B dB , _ ,_*
at ax 4irmn.ax

(17b)

(17c)

(17d)

since the RF wave has been assumed to depend only on x.
Zero order. The equilibrium is assumed to be time-independent (d/dt = 0) with

ux = ux0 = 0. Equation (17a) then implies a depression must exist in the magnetic field
structure due to the gravity-induced current:

s(3)—-• (18)
while Eq. (17b) allows uy0(x) to be arbitrary. If we also require the electric field E0 to
be zero in equilibrium, Eq. (5a) forces uyo = -mcg/eBo, the gravitational drift velocity.
Equations (17c) and (17d) yield no further information.

First order. Equations (17a) through (17c) may be linearized about the equilibrium
to yield a modified wave equation:

dux

"*-dx-
B dB

4irmn.dx

dt -if-0-
dn

~dt~
9, \

dB

dt " -£<**>•

^(ualBo) =v2(x)[-(--z-J+^ («,iBo), (19)

where uxi is the first order component ofux, v\ = Bo/(4ffmn0), L&1 = (l/Bo)(dBo/dx)i
and L~l = {l/no)(dno/dx). Equation (17d) may be linearized to yield an equation for uyi
which evidently plays no role in the wave mechanics.

The lowest eigenmode (i.e., the mode with no spatial nodes) of Eq. (19) has a purely
imaginary frequency when gravity is present and is probably more accurately described as a
gravitational mode. This may be demonstrated using Sturm-Liouville theory [23] modified
for periodic boundary conditions. When applied to Eq. (19), the condition

/[|a»/ax|» - l-b\l-b1 - L?)M*\dx
f(M*/v\)dx

is obtained for the lowest eigenvalue u20) for any trial function Vexpressible as a linear
combination of the eigenmodes of Eq. (19), as demonstrated in Appendix A. By choosing

W(0) ^ f/l./.l?/..2\ j, 1 \zu)
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rp(x) = constant corresponding to an incompressible trial function, and assuming Bo is a
weak function of x (i.e., Lb > Ln), we find

, [{gdno/dx)dx
W<°> ~ fn0dx ' (21)

which is always negative in our gravitationally unstable system. Thus there always exists
at least one unstable mode, and typically, it is unique.

The remaining eigenmodes of Eq. (19) are the compressional Alfven modes which serve
as RF waves in our simulations. For these modes, a uniform equilibrium (L^1 = L~l = 0)
will be assumed, because as stated earlier, only estimates of the wave quantities will be
required. Assuming a standing wave of a given frequency ujq (this is. the type of wave
initially excited in the simulation), we find the following relative amplitudes and spatial
and temporal phases among the wave components:

B\ =B sinkoxcos<jj0t, (22a)

5

fti =no—sinfcozcoswo*> (22b)
Bo

B , x
uxl = - v&— cos k0x sin wo*, (22c)

Bo

Uyl =0, (22d)

k B B
EX\ = coskoxzosuot, (22e)

4?reno

Evi = - ~B cosk0xsinw0t, (22f)
c

where k0 = ujq/va. is the wavenumber of the RF eigenmode.
Second order. When Eqs. (17a) and (17d) are expanded to second order and the

uniform equilibrium assumption is again made, the result is

£(£)=*&(£) -HI)'0032*0**1 -3cos2wot)' (23)
where expressions from Eqs. (22) have been used. This equation has a particular secular
solution

^ =-l(J- J cos2iboa:(l - 3wotsin2u;o0» (24)
Bo 8 \ Bo /

which has been observed in simulation as described in Sec. VIII. The d.c. portion of this
solution is _

(B2) =-iBo(-|^ cos2Ar0x. (25)
The equation corresponding to Eq. (23) may be derived for ux2\ it has a secular solution
whose d.c. part is

(ux2> = 0. (26)
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The expression for (B2) in Eq. (25) provides some insight into the nature of the second
order current. Since (uy0) = (feyo) = ("yi) = °, we have

_^> =te =4^ _ >_^£(nittevi>. (27)
ox c c c

The last term in Eq. (27) may be evaluated using Eqs. (22):

——(n^eyi) =--k0B0( p~) sin2A:ox, (28)
which we observe from Eq. (25) is equal to -d{B2)/dx. Thus

(uy2 - uey2> = 0, (29)
which is somewhat of a surprise. We might have expected the second order current would
be provided by a ponderomotive ion drift of the form

<-*>-%T' • (30)
where Fp is the ponderomotive force due to the RF wave; however if this is the case, it is
canceled by the second order electron drift, and instead (niueyi) must be considered as the
important second-order current term. This type ofelectron current comes from the motion
of electrons around a oscillation center. It is not clear whether this kind of second-order
current will be of the type necessary to reverse the destabilizing gravitational current.

V. STABILITY OF THE INTERCHANGE WAVE

By considering the system containing the RF wave to be a modified equilibrium, it is
possible to investigate the stability properties of the interchange modein the presence of the
wave. Assuming the interchange perturbation to be of the form 8n(x, y, t) = 6n(x,t)e% y
(similarly for 5u and SB), we obtain to first order

(d ., dux\e „8B „6n d8ux v\d8B , .

(| +,K)K=-^f-^x-ux^ (31b)
- ^i + *fcutf + -r— )6n = —-z-8ux -xkSuy - — (31c)
n\dt v dx ) ndx y dx n dx

\(d ., dux ikv2ldn\eo ikG8n Gc ... d8ux uxd8B(„„-(—+t*u,+—i+ ±--- SB = T8ux-tk6uy-—-—-=-r— (31d)
B\dt dx uei ndx J ujc% n va ox B ox

All equilibrium quantities in Eqs. (31) contain the RF wave and therefore have both space
and time dependence. Here ujei = eB/mc and G = g —dux/dt —uxdux/dx.

In the case of a vanishingly small RF wave, the assumptions k2v\ -C w2^ and w «; wei
in the local approximation yield the usual interchange dispersion relation

_2 , kg _ g dn0 u>„ , .
uci n0 dx uei
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as expected, where Q = w - ku0y, u> is the interchange mode frequency, and wei = wct- +
duoy/dx is an effective ion cyclotron frequency.

When an RF wave is present, the eigenmode formalism may generalized by assuming
the interchange perturbation quantities vary with time as

oo

(5u,$n,£B)= Yl {fcm,6nm,8Bm)exp(-i(uj + muo)t). (33)
m=—oo

By again applying the local approximation, we find Eqs. (31) take the form

£<2m'*qm<=0, (34)

where £q = (<Su, £n, 8B) and Q is an algebraic matrix quantity in both the four compo
nents of 6q and in the index m, and depends only on the state of the modified equilibrium.
The elements of Q, fi™', determine the strength of the RF-induced coupling between inter
change sidebands m and m'. An eikonal theory of the RF modifications to the interchange
dispersion relation is presented in the next section.

VI. EIKONAL STABILITY THEORY IN THE PRESENCE OF THE RF WAVE

The calculation formally presented by Eq. (34) may, for example, be performed for the
case kLn :» k0Ln » 1. As indicated earlier, in the simulations performed for this study,
kLn ~ k0Ln~ 1, so the simulation results cannot be expected to agree quantitatively with
predictions from this calculation. We should expect qualitative agreement, however, since
the simulation model and the calculation share much of the same physics. In particular,
in both cases, the RF wave is a perpendicularly-propagating compressional Alfven wave,
and in both cases, there is no resonant enhancement at the ion-cyclotron frequency. The
analysis should also be relevant to other particle simulations [24,25].

Figure 2 displays the slab configuration used for the calculation. Consider a compres
sional Alfven pump wave with its spatial variation in the x direction perpendicular to the
equilibrium magnetic field B0 = B0z. There are time-varying electric fields E and fluxes
for each species T = nu (n is the number density and u is the fluid velocity) in the x-y
plane. An equilibrium density gradient and a gravitational acceleration g to model mag
netic field curvature are oriented in the x direction. The interchange mode varies only in
the y direction in the eikonal limit.

We adopt the following assumptions and orderings:

B •V = 0, (35a)

l*y| » |*.| » |Vn<07n<°>|, |VB0/Bo|, (35b)
rriig » meg ~ 0, (35c)

|u;/a,o|, KK< - "o)| « |Vi^/VnWr1 « i, (35d)

kyg/Wci < M < W«,U>o < |Wee|, (35e)
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£,krf vfiw,l

B B-« B^Ho'—rf'—±

FIG. 2. Schematic of a cold-plasma slab with gravity. The wavenumber k shown
indicates an interchange mode. There are time-varying electric fields, Ijrf for the
pump wave and E± for the sidebands, in the x-y plane. There is a ponderomotive
force fp directed opposite to the gravity to help stabilize the interchange mode.

where k = (kx,ky) are the wave vectors in the calculation, or is the complex angular
frequency of the interchange mode, u;0 is the pump-wave frequency, and ojcx and ujet are
the ion and electron cyclotron frequencies. Equation (35b) indicates that all waves are
calculated in the eikonal limit.

The fluid analysis presented here is much like that used in Ref. 10. However, there are
a number of important differences in the calculation undertaken and the assumptions made.
The pump wave considered here is a compressional Alfven wave, which is described fully self-
consistently by Maxwell's equations and two-fluid equations in the Darwin quasi-neutral
limit. No assumption is made regarding the polarization of the ion cyclotron sidebands
coupled by the pump to the interchange wave beyond that implied by Fig. 2 and Eq. (35a).
This is consistent with our simulation model and those of others [24,25]. Reference 10
did not consider compressional Alfven pump waves and made very restrictive and artificial
assumptions on the polarization and structure of the sidebands. The calculation presented
is fully self-consistent and completely analytic, and treats ponderomotive and sideband
coupling effects on an equal footing. The calculation and its results are new and not
contained in previously reported research. Sideband coupling effects on interchange stability
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in the presence of a compressional Alfven wave have been addressed independently by
McBride and Stefan with different ordering assumptions than those in Eq. (35).

The basic field equations in the quasi-neutral Darwin limit are

VxE =--|-B, (36a)
c at

V x B = —J, (36b)
c

V • J = 0, (36c)

V •B = 0, (36d)

where E and B are the total electric and magnetic fields and J is the current density. The
cold fluid equations are

^ +V.ra =0, *=«>, (37a)

*Ti =-m,V •f^llA +emE +^-^ +n^g, (37b)
dt \ «» / c

_e(neE+E^B)=0, (37c)

J = e(I\-re), . (37d)

where n, are the species number densities, Ta are the flux densities, and e is the ion charge
(singly charged). These equations are equivalent to Eqs. (5). All the dependent variables
are decomposed into a superposition of modes at the different frequencies:

t. =ri0) +r,(u/0) +r.H +ra(w+«o) +Ta(w - w0) +Ta2\ (38)
where the (0) and (2) superscripts indicate time-independent equilibrium and second order
(in the pump-wave amplitude) quantities and the remaining components are linear in the
pump wave, sideband, and interchange amplitudes.

We again find the equilibrium force-balance condition in the absence of the RF source

_i-fo+„«»mi!, =0, (39)
dx 8jt

and, hence, the equilibrium ion flux

If) =_!^y. (40)
Wei

An equation for low frequency interchange modes can then be obtained by linearizing and
summing Eqs. (37b) and (37c), by taking the cross product with cB0/B?, and by calculating
the divergence of the equation using V •J = 0:

v•{if x ~m<^Ti(-w)+ni^miS+st"+Sf* }=0- (41)
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where <5fp and 8f0t, are the low frequency linearized ponderomotive and sideband force den
sities whose calculation follows. At this point, the equilibrium quantities formally contain
small perturbative shifts arising from the time-averaged second-order ponderomotive RF
effects calculated in Ref. 10. As argued in Ref. 10, these shifts have a negligible effect
on Eq. (41) compared to 6fp and 8f0O. We now introduce the linear incompressible fluid
displacement vector £ and use continuity (37a) to obtain

I\H = -twn(0)£, (42a)

and

With the orderings given in (35), Eq. (41) leads to

(42b)

c_d_(
Bo dy V

dnW

dx

(o)m.w2_^_:m.^^+v cB<

B2
x(8fp + 8fab) = 0. (43)

We next derive 6f9 and 6f90i and follow this with a calculation of the compressional
Alfven pump-wave fields for use in evaluating 8fp and 8f„b in Eq. (43). Calculating 8fp and
6f3b is somewhat simplified by the fact that all nonlinearities are contained in Eqs. (37b)
and (37c). Equation (37a) trivially relates n9 and Ta, and (37d) determines J from T0.
The linearly perturbed ponderomotive force density comes from the combination of kinetic
stress and Lorentz force terms [5,6,10,18,26],

^^E[-^'(^)i^.(r,M:BW)]. («)
where 8 = n(uj)(d/dn^) at low plasma pressure and ( ) indicates a time average. With
the use of Eqs. (36b), (37d), and (42b), Eq. (44) becomes

- &» (dn{0)\ /(VxBM)xBM\
n(°) \ dx J \ 4* /'

for pump-wave electric fields polarized perpendicular to Bo and me/mi —*• 0.
The linearized low frequency force density due to sideband coupling is deduced from

the use of Eqs. (37b) and (37c) and the quasineutrality condition,

*fa6=X^"m*V
Ti{u>o)Ti(u>±wo) Ti{u±wo)Ti{w0)

n(°) + n(°)

(45)

, (VxB(a;o))xB(a;±a;o) (VxB(w±w0))xB(w0) /Aa.
+ 4i + 4^ * (46)
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Algebraicreduction of Eq. (45) requires calculation of ra(u/±wo) from Eqs. (37b) and (37c).
We obtain

g.ra(W±)=<r,.{E(a;±)-^-V r,(u;)r,(u;o) TJuoJTJw)
n (0) n(0)

+ jjjj. M**)E(c*) +n.(c*)E(*;)] +̂ J^j, (47)
with B(u>) = 0 for electrostatic interchange modes and

'•lW±J 4*(W?a - <4) V ««• -tw±/ ' (48)

where o/± = w ± w0 and wea = q9Bo/m9c. With the use of (35a) and (42b), Eq. (47)
simplifies to

?.r,(«±) = »,(w±)
n(°> dx

(49)

in agreement with Refs. 18 and 26. The sideband electric fields are determined by the
eikonal wave equation derived from Eqs. (36a), (36b), and (49),

D(w±).E(w±)s k2c2xx - i4iru± 22 ff9(uj±) E(«±)

The sideband magnetic field is given by

B(w±) = -r^-V x E(w±).
t(jj±

(50)

(51)

The pump-wave electromagnetic fields satisfy the linearized wave equation with no
antenna structure present,

Do-E(wo) = c2 TT^y +,4jrw° H *«(wo)dx2
E(w0) = 0, (52)

where

.4^0£ *.M =;^—y {iojQ/uJei ! J, (53)

E(w0) = |E(x)exp(-to;ot) + c.c, and B(w0) is similarly defined. We assume that the
RF pump wave has no y variation to be consistent with the simulation model and that
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its variation in x is more rapid than the plasma equilibrium variation. The pump-wave
dispersion relation resulting from Eq. (52) is

detDo =J^(fcy-^)=o, (54)

i.e., ujq = k2v\, where d2/dx2 = -A:2 and u^ = cujd/upi is the Alfven velocity.

As a result of Eqs. (53) and (54), Ex(wo)/Ey(wo) = tw0/<*>«, which gives a right
circularly polarized wave at ion cyclotron resonance. The ion flux density components of
the pump wave are

u
p*x.fi(w0) = -

87rewct

and the pump-wave magnetic field amplitude follows from

Ey(uQ), y-f,M = 0;

i*(wo) =i-k^M.
Use of Eqs. (48) to (56) yields

y I\(«±) - ±—^ , _ . ^ ^-J £„(±"o),

and

x-fj(w±)= 0,

(55)

(56)

(57a)

(57b)

where Ey(—ujq) = Ev((jJqY and w±= ±ujq for |w| «; |w0 —<*><•«!• The sideband electric-field
polarizations are determined by Eq. (50) and are right circular for u>o = uci • Because
<*>o = k2v\ «: k2v\, the sideband perturbations are notnormal modes.

We can now explicitly evaluate 8fp and 6f90i Eqs. (44) and (45), and subsequently
V •[cBo x (Sfp + 6fab)/Bl]. We note that there is some dependence on the waveform of the
pump wave (plane wave or standing wave) and that cancellation of leading order terms in
the eikonal expansion tends to occur. Here we consider standing-wave pumps and calculate
6fp and 5f0b through zero and first order in \kx/ky\ <§: 1. The perturbed ponderomotive
force density 8fp has only a finite x component, and its calculation is straightforward.
However, in our configuration the derivation of the sideband coupling is more subtle: 8fgb
becomes

Sfsb =X] "m»V
T<(a;o)r<(a;±) Tifa)Ti(uo)

n (0) l(0)
-V

Bz(mq)Bz(u±)
4ic

(58)

The second set of terms on the right side of (58) involving magnetic perturbations con
tributes negligibly to Eq. (43) compared to ponderomotive terms as a result of Vj_ • (z x
VjJ = 0 and Eq. (35). Furthermore, as a consequence of Eqs. (55) and (57), the contri
butions to Eq. (43) from the kinetic stress terms in 8fab are also negligible in the eikonal
limit.
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Thus, we obtain a negligible contribution to interchange stability from 6f90 and

sr -*m d \ *• (dni0)\ /Ei-Mr^MX 1 . . U (dnW\ d /fl.M8\
dt>-Xmidx[nV»\~oT)\ nlo) / J+X#j \~blT) Tx \Sr~/

.«£ i* /an(°)\ a |£yM|'
a;c2. n(°)V dz /a* 16*

for a standing-wave pump. The linearly perturbed ponderomotive force density is directed
opposite to the perturbed gravitational force and is stabilizing in its effect on the interchange
mode if the RF electric field amplitude gradient is positive in Eq. (59). The resulting
interchange stability condition obtained from Eqs. (43) and (59) can be written in the form

hm>~~-my • «
We have made use of the equilibrium force-balance relation Eq. (38) on the right side of
Eq. (60) to emphasize the relative magnitude of the RF force required for stabilization. We
note the complete absence of cyclotron resonances in our final expressions, and there is no
dependence on the sign of u>o —u>ci • Furthermore, the results obtained depend crucially on
the self-consistent calculation of the RF pump-wave field pattern through the amplitude
gradients appearing in the results and the use of the pump-wave dispersion relation and
polarization characteristics at several steps in the derivation.

We thus conclude from our eikonal theory that compressional Alfven waves with vari
ation exactly perpendicular to the equilibrium magnetic field alter interchange stability
through the ponderomotive force exerted on the plasma. There is no resonant enhance
ment found when the frequency of the applied RF is near the ion cyclotron frequency.
Because there is no resonant dielectric enhancement of the nonlinear effects, stabilization
of interchange modes by a compressional Alfven wave is not efficient, a result that confirms
the philosophy ofand the experience in a number ofexperiments [1,3,4].

VII. INITIALIZATION OF THE SIMULATION

With the basic characteristics and expected behavior of the model equations estab
lished, we next turn to anexamination ofthesimulation model itself. As already indicated,
the computer code used for simulations in this study is a modification of the PEPSI code,
described elsewhere [22]. The main timestep-loop algorithm used here differs only by the
inclusion of the static gravitational acceleration field g(x). Apart from this addition and
the extensive alterations made to the diagnostics routines, the principal difference between
the present code ZEN and PEPSI lies in the algorithm used to initialize the simulations.

The process of initializing the simulations follows in three stages the three natural
divisions in the model suggested by the analysis. First, the time-independent equilibrium
is established. The force due to the gradient in the gravitational field is exactly canceled
by the Lorentz force acting on the ion gravitational drift. Second, the RF wave in the
form of a linear compressional Alfven eigenmode is calculated and incorporated to form
the "modified" equilibrium. Finally, a small interchange perturbation is excited.

s,*^^ ^- f», (59)
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A typical time-independent equilibrium is illustrated schematically in Fig. 1. The
initial unperturbed ion particle positions are chosen to lie in a rectangular grid pattern
non-uniformly spaced in the x-direction to form two peaks in the density profile. The fixed
gravity is defined at each point on a regularly-spaced permanent rectangular grid (not to
be confused with the grid on which the particles are loaded, which is temporary) to point
antiparallel to the initial density gradient. This guarantees the system will be initially
interchange-unstable. Specifically, we have taken

n0(x) = n0 - (n0 - nj) cos -j—, (61)

and

g(x) = -0o sin—, (62)

where no, nj, and go are user-adjustable parameters. The equilibrium thus depends on x
only. The equilibrium magnetic field may then be calculated on the (permanent) grid from

B„(x) =|s|(0)+imnosoi. [4 (cos ^ -l) - (l -£) (cos ^ -l) j ,
(63)

which is a consequence of the force balanceequation (18). The ion particlesare loadednext
according to the inverse-cumulative distribution function corresponding to Eq. (61). The
magnetic field and gravity are calculated at the position of each particle by applying the
same linear weighting scheme used in the main timestep loop. We define the electric fields
Ex and Ey and the particle x-velocities to be zero initially, allowing the particle drifts in
the y-direction to be chosen so that the resulting Lorentz force cancels the gravitational
force.

Each of the density peaks represents the essential features of an interchange-unstable
mirror plasma equilibrium. The z-axis represents the axial direction in mirror geometry;
the x- and y-axes then correspond to the radial and azimuthal directions respectively. The
external gravity g(x) plays the role of the destabilizing centrifugal force generated by bad
field-line curvature in mirror geometry.

The periodic boundary conditions prevent us from drawing direct geometric analogies
between features of our simulation equilibrium and those of a mirror system. These bound
ary conditions are the natural choice for the (azimuthal) y-direction, but they are somewhat
awkward when applied to the (radial) x-direction. If a single density peak were present
in the system, the simulation could be considered to be a slab-geometry representation of
the mirror system. However, for reasons involving the RF wave described below, we are
required to load two density peaks in the system and then the analogy between the mirror
system and the simulation system becomes less clear. We might regard each of the two
density peaks as separate slab systems if the two systems do not interact, although even
then the presence of periodic boundary conditions in the (radial) x-direction are grounds
for suspicion. The simulations thus do not attempt to model mirror geometry directly and
should instead be considered generic to the study of the RF stabilization mechanism.



-21-

After the equilibrium is loaded, the RF wave is installed in the form of a compressional
Alfven eigenmode of the system. Earlier versions of the code incorporated antennas as
sources of the RF wave; however, difficulties were encountered in establishing a steady
state since compressional Alfven waves propagate undamped in this system. Problems
were also created by the strong field gradients in the vicinity of the antennas.

The spatial structure of the eigenmode is found by solving numerically the finite-
difference version of the eigenvalue wave equation

« . . d B\ o r* (64)

where v\0(x) = Bo(x)/43rmn0(x). Thus at present, the RF eigenmode also depends on
x only. Technically, Eq. (19) should be solved to obtain the linear RF eigenmodes of the

c
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Envelope of the RF wave
electric field in the x-direction

• X

FIG. 3. Expected fast-timescale-averaged plasma density profile n0(x), gravita
tional potential profile <f>g(x), (g(x) = - V^(x)), and x-directed RF wave electric
field envelope in the presence of RF waves (i.e., in the modified equilibrium). Note
that the negative gradient of the mean square electric field isdirected antiparallel
to —V<f>g everywhere in the system.
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system; however, Eq. (64) is more easily coded and is found to yield reasonably stationary
small amplitude eigenmodes since Lq1 «; L~x.

The presence of RF eigenmodes in our periodic system necessitates the use of two
peaksin the density profile. When the longest-wavelength compressional Alfven eigenmode
is loaded in the system, the time-averaged gradient (V£|) takes the form depicted in Fig.3.
Study of the stabilizing properties of such square-field gradients requires the density profile
and gravitational field to be initialized so that the interchange-unstable regions of the
plasma (Vn antiparallel to g) fall consistently in the regions where the magnitude of these
gradients is maximum. The quantity VEl goes through two complete cycles in x; thus,
as illustrated in Fig. 3, this condition is only satisfied when two density peaks are present,
accompanied by two cycles of the gravity profile.

To complete the initialization procedure, a small perturbation is added to the particle
positions and/or velocities. The perturbation parameters are chosen with the intention of
exciting the interchange mode. The spatial dependence of the perturbation for most of our
runs takes the form sin2irmxx/Lxcos2nmyy/Ly where Lx and Ly are x- and y-lengths of
the simulation system. In our simulations, the value of my is generally taken to be 1, with
the interchange wavelength adjusted by varying Ly.

Vm. SIMULATION RESULTS

Results of the simulations fall naturally into three categories analogous to those de
scribed earlier. That is, we first verify properties of the time-independent equilibrium and
next show the modified equilibrium (i.e., the equilibrium in the presence of the RF wave)
behaves as expected. Properties of the low-frequency gravitational mode are also examined.
Finally, the interactions between the RF wave and the interchange mode are discussed.

The most important characteristic of the time-independent equilibrium to verify is
that it is indeed time-independent. When no RF eigenmode or interchange perturbation
is loaded, we find this condition is well-satisfied. The criterion used in determining the
equilibrium particle velocities (Sec. VII) guarantees that the particles feel no force initially.
Small time-dependent disturbances appear in the electric field and x-directed current due to
differencing errors in the finite-difference version of Eq. (5d), but these errors are found to
be stable. No significant change is observed in the density, magnetic field, or gravitational
current profiles through u>cit = 240, the length of a typical run. It is of course also important
that the density profile, velocity field, etc. vary with x as desired. This is also easily verified.

Behavior of the system in the presence of the RF eigenmode without the interchange
mode is displayed in Figs. 4 and 5. The eigenmode excited is the lowest frequency eigen
mode allowed in the system with antisymmetric wave magnetic field structure. Figure 4
shows plots versus time of various spatial Fourier components of the RF magnetic field
and RF-induced ion current density in the x-direction. The modes of both plots exhibit
near-sinusoidal time dependence as required. The observed presence of the shorter wave
length components is expected, since they appear also in the numerical calculation of the
eigenmode as a consequence of the dependence of the time-independent equilibrium on x.
The temporal behavior of Ey is also nearly sinusoidal; that of Ex is a bit messier (Fig. 5)
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and becomes more so at larger wave amplitudes. We anticipate this to be acceptable, how
ever, since the expected 90° phase shift between the two components is clearly present,
and, more importantly, the required gradient (V2?J) is observed (Fig.5(b)) and persists in
larger-amplitude waves.

The presence of the zero-frequency unstable gravitational mode described by Eqs. (19)-
(21) has also been verified. When the entire ion particle population is initialized with a
spatially-independent velocity perturbation in the x-direction, the density profile is ob
served to shift rigidly in the direction of the initial displacement. In effect, the density
profile rolls down one side of the gravitational hill and back up the other side, as illustrated
in Fig. 6. This instability has not caused problems in our simulations, since its growth rate
is only of order the growth rate of the interchange instability. It is therefore not observed
when not initialized in simulations started with a small but finite interchange perturbation.

Certain of the nonlinear characteristics of the RF mode have also been verified. The
RF mode is initialized as an eigenmode only to linear order in wave field amplitudes in
our simulations; thus, we expect the secular behavior outlined in Sec. IV to be operative

O02

O02

(BwF)m»j \ f~\ w»)mc.o
en0vA

-O02
-OjQ2

240

FIG. 4. (a) Spatial sin 2nmx/Lx Fourier modes of the simulation magnetic field
versus time for m = 1 through 8 during a portion of a typical simulation run
with initial parameters BRF/B0 = 0.0375, ni/n0 = 0.5, iVt = 512, Lx = 32Ax,
ujeiAt = 0.03, vAAt/Ax = 0.219, and goLx/v2A = 0.045, where Ni is the number
of ion simulation particles and Ax is the grid spacing in the x-direction. The
expected eigenfrequency of the excited RF mode, 1.15wci, agrees well with that
observed in the simulation. The quantities <*/«.< and vA are evaluated at x = 0.
(b) Spatial cos27rmx/Lx Fourier modes of the x-directed ion current for m = 1
through 4 for the same run.

240
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FIG. 5. (a) The x- and y-directed electric field components at x-grid-point 4
(i.e., at x = 4Ax) versus time for the run described in Fig. 4. (b) The x-directed
electric field versus time at x-grid-points 1 through 8. The successive decrease in
the wave amplitude at each grid-point implies the existence of the desired square
electric field gradient.

at higher order. Figure 7 illustrates an example. The mode depicted (the mx = 2, cosine
component of the wave magnetic field) exhibits both the initial secular growth and d.c.
offset predicted by Eq. (24). The d.c. offset is barely visible in the Figure, but is found
to have the value -1.24 x 10~5, in agreement with Eq. (25), when analyzed with the data
post-processor ZED [28]. The initial secular growth is observed to be the linear portion of
a relatively large sinusoidal wave envelope. The frequency (« 2a/o) also agrees well with
the expected value (Eq. (24)).

Results consistent with theoretical expectations for the second-order current (Eqs. (27)
through (29)) have also been obtained. Two simulations, one initiated with a strong RF
wave (Bi/Bo = 15%) and one started without a wave were analyzed for changes to the
destabilizing gravitational current. Diagnostics in the code allow the current to be studied
when decomposed as

({Jy)u) =2fc0c(B2c)
enoVji 4irenoVA.

en0vA

c

2Bonova
{(nuEu) + (nl9Elc))

{(EuBu) + (EUBU)),+ (E2s) ~BQvA *—' 2B$vA

where the subscripts c and s refer to the cos(27rnx/Lx) and sin(2?rnx/Z/x) components of the

(65a)

(65b)
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FIG. 6. (a) Snapshots of the density profile n0(x) at four times during a sim
ulation initialized with a small spatially-independent velocity perturbation 8ux
in the x-direction. The entire profile is observed to move to the right (indicated
by the arrows) with little change in shape. At time t = 210a;"1, the profile has
moved almost exactly half a system length to the right to lie in coincidence with
its initial configuration, (b) History of the x-component of the ion current shows
the increase in the plasma velocity until the "bottom of the hill" is reached at
time t = 108a/"1. The velocity then decreases as the plasma rolls up the other
side. In this run, BRF = 0, nt/n0 = 0.5, Lx/Ly = 0.167, N{ = 8192, Lx = 32Ax,
Ly = 32Ay, uiciAt = 0.03, vAAt/Ax = 0.219, and g0Lx/vA = 0.045. The pertur
bation was initialized with mx = 0 and Wd6ux/go = 0.05.

subscripted quantity where n is the numerical subscript. Since both g and Vno depend on
x as sin[2*r(2)x/Lx], the a2s" component of the y-directed current is the relevant current.
The relation Eq. (65a) is required to approximate Ampere's Law as J is not computed
directly by the code. In Eq. (65b), the first term represents the ion current, while the
second and last two terms represent the {niticyi) and no(uey2) components of the electron
current, respectively.

Comparison of the twosimulations reveals that the ion current is little changed (< 5%)
by the RF wave from its gravitational drift value noeg/u)d (Fig. 8), and there is no change
to the mean drift velocity of individual ion particles. We also find the electron current is
dominated by the (niueyi) component, as expected. We obtain (n1ueyi)/noVA = —4.40 x
10~3, while (uey2)/vA = 6.89 x 10"4.

Since the presumably important components (u^) and (uey2) of the gravitational
current are only weakly affected by the RF wave, it is not surprising that the stabilizing
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FIG. 7. Simulation example of the nonlinear secular behavior of the RF wave
predicted by theory. Plotted is the cos 4irx/Lx Fourier component of the simula
tion magnetic field in a run initialized with BrF/Bo = 0.01, nj = no, iV» —512,
Lx = 32Ax, WdAt = 0.03, vAAt/Ax = 0.155, and <70 = 0. The initial secular
growth rate, defined by the slope of the slanted line, is found to agree with the
ory. The secular behavior at the beginning of the simulation is a portion of what
appears to be a two-frequency beating phenomenon.

properties exhibited by the wave are modest at best when the interchange mode is excited.
Figures 9(a)-(c) show the motion typical of selected ion-particles as the instability evolves
in the absence of the RF wave. The displacement of the ions parallel to the ±y-axis is due
to the gravitational drift and occurs most strongly in regions of maximum |Vn0| and |g|,
as expected. Displacement in the ±x-direction is due to the interchange instability. As
is the case in most of the runs, the longest wavelength (kLy = 2jt) was the one initially
excited. This allows fewer grids to be used in the y-direction, fewer particles are then
needed, and less computer time is thus required. Figures 9(d)-(f) show the effect of a
large RF wave in an otherwise identical run. The compression and rarefaction of the ions
due to the RF wave is clearly seen in some of the snapshots, and, as indicated earlier, the
mean gravitational drift of the ions appears to be unaffected. Additional short-wavelength
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FIG. 8. The sin4irx/Lx Fourier component of the y-directed ion current versus
time for a portion of four simulation runs initialized with nj/no = 0.5, N* = 512,
Lx = 32Ax, UdAt = 0.03, and vAAt/Ax = 0.219. This component of the ion
current includes the ion gravitational current and corresponding RF modifications
when gravity and RF, respectively, are present. In the runs in which gravity is
present, goLx/v\ = 0.045; in the runs with RF is present, BRF/B0 = 0.15. The
ion current observed for the y-present, no-RF case is found to agree with the
theoretically expected value. Only small shifts in the time-averaged ion currents
(< 5%) are observed when RF is present.

structure in the x-direction is also visible, due probably to a different instability which
becomes worse as Lx/Ly is increased, as described below. Also, the amplitude of the
interchange perturbation is observed to be smaller owing to the slightly reduced growth
rate (Fig. 10) produced by the presence of the RF wave. This example is in fact the case in
which the most stabilization is obtained, and is shown to illustrate the extreme case. Other
simulations exhibited significantly less change. In simulations in which Lx/Ly was small,
except for the compressional motion ofthe plasma due to the RF wave, no effect whatever
is observed.

There is, on the other hand, a substantial effect of the interchange mode on the RF
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FIG. 9. Snapshots of selected ion simulation particles at various times for two
simulations initialized with an interchange-like perturbation. Each "box" outlined
by particles is actually filled with simulation particles initially arranged on the
rectangular lattice suggested by the placement of the illustrated particles on the
box edges. Plots (a) through (c) are snapshots from a run initialized without
RF. The RF field was initialized with amplitude BrF/Bq = 0.15 in the run from
which snapshots (d) through (f) were taken. Initially in both runs, ni/n0 = 0.5,
Lx/Ly = 0.533, Ni = 4096, Lx = 32Ax, Ly = 16Ay, wciAt = 0.03, vAA*/Ax =
0.182, and g0Lx/vA = 0.054. The interchange perturbation was excited with

= 1 and 0Jci6ux/g0 = 0.05.m
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FIG. 10. The mx = 1 component of the x-directed ion current versus time for
the two simulations illustrated in Fig. 9. Both runs show clean linear growth with
a slight reduction in the rate of growth observed in the simulation in which RF is
present.

wave, as suggested by Similon and Kaufman [19]. Figure 11 illustrates the evidence. When
the interchange is not excited, the RF wave amplitude is observed to maintain a constant
amplitude as a function of time (Fig. 11(a)). In contrast, when the same system is initial
ized with an interchange perturbation, the RF field strength decreases dramatically as the
interchange mode saturates (Fig. 11(b)).

The negligible-to-modest stabilizing effectof the RF wave on the interchange mode was
the general rule over the parameter space we searched by means of a number of computer
runs. The results of the parameter search are diagrammed in Figs. 12 and 13. In Fig. 12,
the wavelength of the interchange mode was kept fixed by fixing the system length in its
propagation direction Ly while allowing the equilibrium density scale length to change by
varying Lx. The RF eigenmode frequency also varied from run to run, as indicated, since
it depends on the system length in its propagation direction. Similarly, the growth rates in
the absence of RF scale well with the theoretically expected Lx ' ~ Ln • The largest
stabilizing effect occurred for kLn ~ Lx/Ly = 0.533 when the growth rate was reduced by
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FIG. 11. Comparison of the wave magnetic field sin2irx/Lx component in sim
ulations in which the interchange mode (a) was not excited, and (b) was excited
with saturationoccurring at t = \58oj~1. In these runs, initially, Brf/Bq = 0.15,
nj/n0 = 0.5, Lx = 32Ax, wciA* = 0.03, vAAt/Ax = 0.219, and goLx/v\ = 0.045.
The run in which the interchange mode was not excited was run in one dimension
with N{ = 512. When the interchange mode was present, two dimensions were
required with Lx/Ly = 0.167, JV< = 8192, and Ly = 32Ay. The interchange mode-
was excited with perturbation 6ux(x) = 0.05meg(x)/eBo(x).

only 17%when BrF/Bo = 15%,which would correspond to a tremendous field in an actual
device. A slight destabilizing effect is observed for Lx/Ly > 0.8.

When the density scale length, RF eigenfrequency, and theoretical natural growth rate
are held constant by fixing Lx, while the interchange wavelength is allowed to vary, we
observe the growth rates plotted in Fig. 13. The RF frequency was purposely chosen close
to the ion-cyclotron frequency (u>0 = 0.96o/c<), since this is where the most dramatic effects
would be expected if the cyclotron resonance plays a significant role. No such effect is
observed however; instead, we again find only relatively weak stabilizing (Lx/Ly < 0.9)
or weak destabilizing effects (Lx/Ly > 0.9) considering the magnitude of the RF field
employed {BRF/B0 = 0.15).

Three additional runs {BrF/B0 = 0.0375,0.0750, and 0.1125) were made to determine
the dependence of the stabilizing effect on the RF wave field strength for the case Lx/Ly =
0.533 illustrated in Fig. 13. The reduction in the interchange growth rate is seen to depend
quadratically on the RF wave amplitude (Fig. 14) with the largest percentage reduction,
(-A7/7 = 23%), occurring for BrF = 0.15. The quadratic dependence would be expected
if the effective gravity driving the instability is reduced by a force scaling as the square of
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FIG. 12. Interchange mode growth rates for several simulations for which the
system length in the y-direction is held fixed at Ly = 13.2t>A/u;c;. Simulations
are run in both the presence and absence of RF. The observed frequencies of
the excited RF eigenmodes, indicated in units of u>ci next to appropriate data
points, were- found to be within 0.01wcj of their expected values. The initial
parameters, nt/no = 0.5, JV< = 4096, Lx/Ax = 32, Iy/Ay = 16, wctA* = 0.03,
and goLx/vA = 0.054 are common to all runs. The interchange mode was excited
with perturbation wct£ux/yo = 0.05 for my = 1.

the RF wave amplitude.

A small set of runs with these parameters was also conducted for an RF standing wave
initialized so that VE\ was directed antiparailel rather than parallel to g(x) everywhere
in the system. From the relative spatial phases described in Eqs. (22a) and (22e), it
is clear that this requires VBRF to be pointing parallel to g. A different eigenmode with
somewhat lower theoretical frequency ujrF »0.74 is required to produce this field structure.
With BrF/Bo = 0.15, the effect is again found to be stabilizing, producing a growth rate
reduction of 15%, suggesting either that the sign of the electric field gradient, or even the
gradient itself isnot important in the stabilizing process, or that the magnetic field gradient
VBRF also plays a role. The system length in the x-direction Lx was shortened somewhat
(Lx/Ly = 0.415) for additional tests, raising the eigenfrequency of the RF mode back to
urf = 0.96a;cj. The interchange growth rate was reduced by approximately 11% in the
presence of RF (BrF/Bo = 15%) for this case, and rough quadratic dependence of the
reduction on the RF field amplitude was again observed.
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FIG. 13. Interchange mode growth rates in both the presence and absence of RF
for several simulations in which the system length in the x-direction is held fixed
at Lx = 5.27vA/ojd- The initial parameters and interchange mode excitation are
the same as described in Fig. 12. The two data points at Lx/Ly = 0.4 arecommon
to this figure and Fig. 12. Detail of the simulations yielding the data points at
Lx/Ly = 0.533 are illustrated in Figs. 9 and 10; growth rates for intermediate
RF-field strengths for this set of parameters are shown in Fig. 14.

Finally, attempts to examine the stabilizing effects of RF on short-wavelength inter
change modes [Lx/Ly > 2) have been frustrated by the appearance of additional short-
wavelength modes. These modes are apparently nonlinearly generated, since they only
appear when the RF wave is present or when the interchange mode has saturated. Neither
the identity of these modes nor the method by which they are generated is understood at
present. It is also not clear whether these modes are physical or numerical in nature. They
are not easily studied either by theoretical means, since they are nonlinearly generated,
or by simulation, since they tend to congregate at the shortest available wavelengths of
the system and are therefore poorly resolved. The presence of these modes also makes
impossible our study of the interchange instability in this regime. As shown in Fig. 15, the
short-wavelength modes appear before the interchange instability can be seen. The effect
of the modes is to scatter ions from their regular pattern after which the ion fiuid can no
longer be regarded as cold. The simulation often terminates abnormally shortly after the
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FIG. 14. Reduction in interchange growth rate (-A7) for five runswith differing
RF wave field strengths. The data points at BRF/B0 = 0% and 15% also appear
in Fig. 13 (Lx/Ly = 0.533). The data obtained are consistent with a square
scaling law; the function -A"i/ud = 0.52(Brf/Bq)2 is plotted for comparison.

regular pattern is lost as regions oflow- or zero-density are generated.

DC. COMPARISON OF SIMULATIONS WITH EIKONAL THEORY

Direct comparison of the theory of Sec. VI to the simulation data is problematic.
The simulations address low mode-number nonlocal interchange stability, and the RF and
equilibrium gradients are comparable. Extension of analytical theory to low-mode number
nonlocal theory for the interchange mode and the RF pump wave is nontrivial (see Refs. 18
and 26). In the low mode number limit, there is no reason to expect 6fab to contribute
negligibly to interchange stability. Furthermore, ifwe allow k •B0 7* 0 for the pump wave
and the sidebands, the sideband coupling might be substantially enhanced [15,18-20,26,27],
particularly if the sidebands are normal modes for which det D(/s||, k±,w±) -* 0 [15,20,27].

Nevertheless, some qualitative statement bearing on the simulation results can be made
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FIG. 15. Snapshots of selected particles in an run in which an unidentified non
linear instability occurs. The instability typically appears at larger values of
Lx/Ly and is characterized by short-wavelengthstructure in the y-directed parti
cle drifts (b), followed by a breakup of the regular particle grid pattern (c). The
breakup usually occurs first in the low-density regions and generally exhibits short-
wavelength structure in both the x- and y-directions. This run was initialized with
Brf/Bq = 0.15, nt/n0 = 0.5, iV» = 4096, Lx = 32Ax, Ly = 16Ay, wei,At = 0.016,
vAAt/Ax = 0.146, goLx/vA = 0.022. Displayed spatial dimensions are in units of
VA/Wci-
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based on Eqs. (43) and (60). For \Bz(u/Q)/B0\2 <§: 1 there must be substantial steepening
of the RF amplitude gradient if the compressional Alfven wave is to have a significant
influence on interchange stability, at which point the RF ponderomotive force will have
a large effect on the plasma equilibrium. In our simulations, the RF amplitudes satisfied
\Bs{vo)/Bo\ < 0.15 and the ratio of the RF magnetic field gradient to the equilibrium
magnetic field gradient was approximately 25. With these parameters, Eqs. (43) and (60)
suggest a reduction in growth rate approximately equal to 30% for the maximum RF
amplitude used, which is in surprisingly good agreement with the 25% reduction observed
in the simulations. Furthermore, in the simulations stabilization increased with increasing
RF gradient, was proportional to |Bz(wo)|2, and was independent of the sign of u>o - <*>«•
All of these observations agree with our analytical findings.

The good quantitative agreement of the theory with the simulations is perhaps fortu
itous. When the gradient of the RF electric-field amplitude was directed parallel to the
density gradient in the simulations so that the ponderomotive force was directed parallel to
the gravity, the RF should have further destabilized the interchange modes according to the
eikonal theory. Instead, the simulations indicated a 10-15% reduction in the interchange
growth rate for |B»(w0)/B0| = 0.15, i.e., approximately half ofthe reduction obtained when
the ponderomotive force was directed opposite to the gravity. We suspect that these simu
lation observations may have been the result of finite contributions from 6f9b proportional
to (dnW/dx)2\Ey(u0)\2 that were independent of the RF gradient, always stabilizing, and
comparable to or greater than those from 8fp in the limit that |k|, VIn |E(o;0)|, and VIn n<0)
were all comparable. A concurring estimate of 8f9b can be inferred from the eikonal cal
culation of sideband coupling of magnetosonic waves and interchange modes presented in
[15,20,27].

X. FUTURE DIRECTIONS

We have attempted in this study to examine some of the more interesting parameter
regimes in order to obtain a preliminary understanding of the influence of RF waves on
interchange modes. It was not our intention at this point in the study to make a complete
search of all potentially stabilizing situations possible within the current version of the
simulation model. Thus several other interesting possiblities still remain to be explored.

Traveling instead of standing waves may be expected to affect interchange stability
because of gradients in the wave amplitude caused by the variation of the plasma density
with x. This is especially true for short-wavelength RF waves (kLn » 1), which in general
have not been examined in simulations performed for this study. This regime involves finer
resolution in the x-direction and therefore requires more computer time.

RF waves propagating partially orentirely in the y-direction may have some stabilizing
effect. It may also be possible to include artificially characteristics of a finite-fey RF wave
in the field equations [29]. Both of these cases require improvements to the simulation
algorithm.

The electrostatic ion-cyclotron wave could be used as the RF wave. This type of wave
requires a finite electron temperature, a feature which exists in the code, but was not used
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in this study. Ion-Bernstein modes are also a possibility, but would require many more
ion-particles than is feasible at present.

Finally, the parameter search could be broadened. In this study, we examined modifi
cations to the interchange growth rate produced directly by changes in the RF field strength
and indirectly by changes to w0A*>c» and kLn through changes in Lx and Ly. The effects
caused by variations to other parameters such as yo and Ln (through the ratio nj/no)
remains to be investigated.

XI. SUMMARY

The stabilization properties of a finite-amplitude compressional Alfven eigenmode on
the interchange mode have been studied by means of a 2-d quasineutral hybrid simulation
code. The Alfven eigenmode plays the role of an antenna-generated RF wave in a real
mirror plasma. It is excited so as to propagate perpendicular to Bo with frequency of order
the ion-cyclotron frequency and wavenumber ko of order the inverse density scale length.

Stabilizing effects in this system have also been studied theoretically. Fluid equations
descriptive of the simulation system have been shown to conserve energy and magnetic flux.
It is also demonstrated that the magnetic field is carried along with the electron fluid in
this model.

Several properties of the excited RF wave have been derived from these equations. We
find that the linear RF wave equation supports an unstable zero-frequency gravitational
mode in addition to the expected compressional Alfven modes. Both type of modes have
been observed in simulation with properties agreeing with theory. A nonlinear analysis
of the RF wave leads to the conclusion that the destabilizing mean relative drift between
the electrons and ions is not affected by the RF wave. Instead, an electron RF-oscillation
current appears whose impact on interchange stability is unclear. Similar effects on these
currents and drifts are observed in simulation.

Theoretical methods are also applied to the system equations when an interchange
mode is present. The usual interchange mode dispersion relation is recovered in the absence
of an RF wave. For the considerably more complicated finite-RF-wave case, we present an
eikonal theory of the effects of RF on interchange stability. Our analytical calculation con
cludes that the ponderomotive forces summed over species dominate sideband coupling in
the high mode number limit. In the presence of the perpendicularly-propagating compres
sional Alfven RF wave in the eikonal limit, it is found that the reduction in the interchange
growth rate is proportional to the ratio VBrf/VBq. The growth rate reduction thus scales
quadratically with RF wave amplitude and is devoid of any ion-cyclotron resonance effects.

Simulations of the interchange mode in the presence of an RF wavechosen so that VE2
is oriented parallel, VBRF antiparallel, to g(x) show only small stabilizing effects for the
RF amplitudes employed (BRF/Bo = 15%). The reduction in the interchange growth rate
is seen to scale as the square of the RF field amplitude and shows no change in behavior as
the RF frequency crosses the ion-cyclotron resonance, consistent with the eikonal theory.
Additionally, the modest degree of stabilization observed is of the same order predicted by
the theory. Good quantitative agreement is in fact obtained, but is probably fortuitous,
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as is illustrated by simulations with directions of VE\ and VB|F reversed. We find the
effect is still stabilizing for this case, but is somewhat reduced. This is not consistent with
the eikonal theory, which predicts a destabilizing influence. The percentage change in the
growth rate is comparable however, and its observed magnitude suggests the presence of
an additional gradient-independent stabilizing effect negligible in the eikonal limit.

We note that the ponderomotive and sideband coupling effects evidently do not exactly
cancel one another in influencing interchange stability in our slab simulations at low mode
number. This does not necessarily contradict recent calculations by D'Ippolito and Myra
who find an exact cancellation of nonlinear effects in the volume of a cylindrical plasma
(only surface terms are left) for m = 1 modes that are exactly rigid.

Slight destabilizing effects are observed for kLn > 0.9 with unidentified instabilities
occurring for kLn > 2-3. We suspect that all the simulations with kLn > 0(1) may be
spoiled to some degree by numerical problems, as yet not understood by us. Finally, while
the presence of RF only mildly affects the interchange growth rate, the reverse interaction,
the effectof the interchange mode on the RF waveamplitude, is observed to be substantial,
damping the RF wave significantly as the interchange mode saturates.
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APPENDIX A. EXISTENCE OF AN UNSTABLE GRAVITATIONAL MODE

The 1-d wave equation Eq. (19) may beconverted to anordinary differential eigenvalue
equation by assuming solutions oftheform uxi(x, t)B0(x) = tp(x) exp(-twt)- The equation
obtained,

dx2 + [lb \Lb Ln) v\ if = o, (Al)

is of the Sturm-Liouville form

£(fJ)+(1+̂ -0. (A2)
where p= 1, q= Lg1 (L^1 - ^n1), r= l/vA, and the eigenvalue A= ui2.

Sturm-Liouville theory must be modified in our case to accomodate periodic boundary
conditions. A number of properties are easily derived:
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(a) The operator L= (d/dx){pd/dx) +q is Hermitian if p(0) = p(Lx)\ i.e.,

f dz^Lil) =(Vp^j -#^T +/<*x (WW
= fdx(Lif>-)tl> if p(0)=p(Lx).

(b) The eigenvalues {An} are then real, since

-An Jdx rnnl>n =jdx lj,nLlpn =Jdx {Ltl>'n) *n ='K Jdx ^n, (A4)
implies An = An.

(c) The eigenfunctions {t/>n} may be chosen to be real:

L(*n +K\ = r\„4,n _r\-nr„ =_rK (4>n +K\

(d) These real eigenfunctions are orthonormal in the sense:

/ dxii>nrtt>m = 8nrni (A6)

if the eigenfunctions {t/>n} are normalized so that / dxrip2 = 1, since

-Am / dxiltnripm = / dx ii>nLtl>m = / dxi>mLil>n =-Xn I dx if>nril>rn, (A6)

implies the integral is zero unless Am = An. When Am = An for m^n, there normally exists
a degenerate subspace of eigenfunctions for which an orthonormal basis may be chosen.

With these properties, consider the integral,

Assuming V is decomposable in terms of the eigenfunctions of L as

oo

n=0

we find, using the orthogonality properties, that

J n

and

-«l*l!

(A3)

(A5)

(A7)

(A8)

(A9)

(A10)
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for the lowest eigenvalue A0 of Eq. (A2). Thus the lowest eigenvalue must satisfy

dx ( p/
A0 <

dx

2

2

-L. (All)
Sdxr\1>\2

for all periodic functions t/> decomposable as indicated by Eq. (A8). For our equation (Al),
the condition translates to

j
iw= W2 *«<0). (A12)

dx —2~

where w?0» is the lowest eigenvalue of Eq. (Al).
This condition holds in particular for the presumably decomposable trial function

V>(x) = 0, independent of x. Since 0 = u*iBo and Bo is typically weak function of x, this
function corresponds to a nearly incompressible, nearly rigid perturbation displacement in
the x-direction. By continuing to assume Bo is a weak function of x, we find

Bq dBo dno

Sdxh{rB-TySdxm m_i »b\»b- ""/ „ I 4>m»0 dx dx (A13)
1 J j ax J ax no

J «'a
i.e., from Eq. (18),

^ fdxg(dn0/dx)
Jdxn0

The numerator of this last quantity is always negative in our interchange-unstable equilibria,
so the lowest eigenvalue, w?0>, must be negative. There is therefore at least one unstable
solution to Eq. (Al); furthermore, its growth rate 7 may be expected to satisfy

2_ 2 ^ fdxg{dno/dx) . .7 =~^o)> JdxnQ ' (A15)
Thus 7 scales as (^/Ln)1/2, the growth rate of the short-wavelength interchange instability.
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