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ABSTRACT

This paper discusses the problem of optimal grasping of an object by a

multifingered robot hand. We axiomatize using screw theory and elementary

differential geometry the concept of a grasp and characterize its stability. Three quality

measures that can be used to evaluate a grasp are then proposed. The last quality

measure is task oriented and needs the development of a procedure for modeling tasks

as ellipsoids in wrench space of the object. Numerical computation of these quality

measures and the selection of an optimal grasp are addressed in detail. Several exam

ples are given using these quality measures to show that they are consistent with

human grasping experience.

This research is supported by NSF PYI Grant #DMC 8451129. The authors would like to thank Drs.
Robyn Owens, Brad Paden and Mr. John Hauser, Paul Jacobs and Greg Heinzinger for their critical and useful
comments.
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Task Oriented Optimal Grasping by Multifingered Robot

Zexiang Li* and Shankar Sastry*

Electronics Research Laboratory and

Department of Electrical Engineering & Computer Sciences

University of California. Berkeley. CA. 94720

1. Introduction

There has long been an interest in understanding dextrous multifingered robot

hands. The interest arises not only from the desire to increase the flexibility of the

current generation industrial robot systems but also from the hope of improving

prosthetic devices for humans that have either partially or completely lost their limb

control (seefor example Jacobsen etal [23]). In most industry applications, the advan

tage of multifingered. dextrous robot hand over the existing two fingered parallel-jaw

grippers is apparent. Stacking an array of special purpose grippers as proposed in [6] is

not only cumbersome but also costly. The versatility of the human hand demonstrates

a good example of using a multifingered dextrous hand in stead of the simple two

fingered hand, even though it is still not an ideal hand as pointed out by Cutkosky [6].

1.1 The Problem of Grasping

Once a multifingered robot hand has been built, one of the most basic questions to

be answered is the determination of grasps. Namely, given an object together with a

task to perform, what is the appropriate grasp of the object so that the task can be

executed efficiently? During the process of selecting grasps, will the task or shapeand

size of the object dictate the grasp, or will stable grasps always tell the full story and

in such situations how does one find the stable grasps? While the question is

This research is supported by NSF PYI Grant #DMC 8451129. The authors would like to thank Dts.
Robyn Owens, Brad Paden and Mr. John Hauser, Paul Jacobs and Greg Heinzinger for their critical and useful
comments.



answered by many authors ([3], [5], [10], [20] & [21]) using stability as the unique

measure, no satisfactory answer to the former question is available yet. It is our goal

in this paper to aim at these problems.

1.2 Previous Work

Here we summarize previous work in the field.

In [10], Lozano Perez studied grasping based on three principal considerations:

safety, reachability, and stability. While stability of a grasp is understood from its

own context, by safety it is meant that the robot must be safe at the initial and final

grasp configuration, and by reachability it is meant that the robot must be able to

reach the initial grasp configuration, and with the object in hand, to find a collision-

free path to the final grasp configuration.

In Hanafusa and Asada [3]. a potential function approach was used to study

stable prehension by a robot hand with elastic fingers. It was concluded that a grasp

was stable if and only the potential function was at its minimum at the grasp

configuration.

In Salisbury [5], screw theory was used to construct the grasp matrix of a grasp.

The author reasoned that algebraically a grasp would be stable if and only if the grasp

matrix had full row rank. Unisense forces were handled in [5] by requiring a sufficient

number of internal forces. The work of [5] does not generalize readily to the finite fric

tional force case.

Kerr in [7] extended the work of [5] to include finite frictional forces in the study

of grasp stability. The role of internal grasp forces was carefully studied in [7] and an

optimality condition of applying internal forces to grasped objects was presented.

Quasi-static analysis was used in Jameson [9] to predict grasp stability. A goal

grasping function was developed, which was used as an optimization criterion for

selecting a set of grasping points.

In [6] Cutkosky extensively examined human grasping and concluded that the

choice of grasp was dictated less by the size and shape of the object than by the tasks

to be performed with the object. In other words, an optimal grasp needed to be task

oriented. Various classes of human grasps were carefully illustrated in [6] to inspire



the study and design of a robot hand.

The authors of [19] and [21] have studied automatic generation of gripping posi

tions for a simple two-fingered parallel-jaw gripper. Several grasping quality measures

were proposed in [19] and a single measure that combined these measures was used to

evaluate a grasp. The optimal grasp according to [19] was the one that achieves the

highest rating. Peshkin and Sanderson [21] describe an algorithm that generates a set

of grasping points on a polygonal object for a two fingered hand.

13 Unsolved Problems and Our Contribution

Most of the previous work ([3], [5], [7], [8], [9], [19] & [21]) has concentrated on

stability aspects of a grasp, and optimal stable grasps. They do not however take into

account individual task requirement.

Cutkosky in [6] first included task requirements in selecting grasps. But he did

not give the technical details as to how to incorporate task requirements into this

selection process, and the question of how to determine the optimal task oriented grasp

under certain constraints was not answered.

Undoubtedly, the ability to determine a grasp which is optimal with respect to

the task to be performed facilitates the understanding and designing of a dextrous and

versatile robot hand. While the human hand can select the optimal task oriented grasp

without any difficulty, it is an extremely complicated process for the robot hand. To

complete this mission, it is necessary that we understand well the following sub-

problems:

(1). Modeling of the hand: how many contacts are allowed per finger and

where should the contacts occur, at the finger links or at the fingertips?

(2). What contact structures and what extra assumptions are made on the

hand?

(3). How does one systematically characterize grasping stability ( such as the

approaches taken by [5] & [7])?

(4). How does one model a taskand the robot working environment?

(5). How does one incorporate this task modeling into a grasping quality

measure? With this quality measure how does one determine the optimal grasp



subject to various constraints?

In this paper, we present an approach for solving these subproblems: A brief out
line of this paper is as follows:

In Section 2 we axiomatize and formalize using screw theory and some elemen

tary differential geometry the concept of a grasp by a multifingered robot hand. The

definitions are broad enough to cover both unisense and finite friction force contacts

for a large number of commonly encountered contacts. Using this formalism we study
and characterize the stability of a grasp.

In Section 3. we give three different quality measures for grasping: a minmax. or

worst case quality measure 8, a volumetric measure v and finally our task oriented

measure /*. The development of the task oriented measure fi requires the modeling of

tasks. We also discuss numerical computation of the quality measures. We have

developed software to perform these calculations and a few sample applications of this

software are presented in the text of the paper. Further, we discuss the calculation of

optimal grasping ( optimal in the sense of optimizing fi. v. or 8). Finally, we make

some comments on grasping constraints imposed by oddly shaped objects, fine manipu

lation and dynamic questions on grasping.

In Section 4 we collect some suggestion for future work.

2. Rigid Body Dynamics and Grasping Structures

2.1. Rigid Body Dynamics

Consider a rigid body B in R2. Let X-Y-Z be an arbitrarily chosen inertial frame

and x-y-z be a coordinate frame attached to the body.

Z

X



Figure 1. Rigid body in R3 space.

The instantaneous configuration of the rigid body can be described by the orientation
and the position of the body frame x-y-z in terms of the inertial frame X-Y-Z. We

define the configuration space ( or manifold) of the rigid body to be the space ( or
manifold) where apoint of which corresponds to aunique configuration of the rigid
body. This space is denoted by M. Since three parameters are needed to specify an
orientation and three more parameters are needed to specify a position, the
configuration space ( or configuration manifold) Mhas dimension six. As in [24]. we
will let the first three coordinates of Mspecify orientations of the body frame and the
last three coordinates of Mspecify positions of the body frame. Let m €Mbe anomi
nal configuration of the rigid body and Um be aneighborhood of min M. We assume
that at configuration m the body frame x-y-r coincides with the inertial frame
X~Y-Z •Then, there exists anatural coordination map

ifr: Um CM - R*

given by

*(m) =(0. •••<»: (21.1}
and

^) =(ei,e2.03.x1.x2.x3). for all/> €Um

where 9,'s are the Euler angles and *,', the coordinates of the body frame origin oat
configuration p.

If g(t) is aC1 curve in Mrepresenting the trajectory of arigid body, then the
generalized velocity of the rigid body is given by -*-*(,) €Tg(t)M. where TmM istbe
tangent space of Mat configuration m ([17]). The trajectory of g(t) in local coordi
nates ( namely, those given by (2.1-1)) can be written

g{t) =*.g{t) =(Bl(t).92(t).e3(tUl(tU2(tU3(t))

Assume that g(t0) =m. the generalized velocity at {t =r0) in local coordinates is
given by ( using the chain rule)



= (a>1,fi>2.a>3.vi.V2.v3) = (o.v) (2.1-2)

where a> = (a>1# a>2, a>3 ) and v = (vlt v2. v3) are respectively the angular and the

linear velocity of the rigid body relative to the axes of the inertial reference frame. In

terms of the Euler angles (0 lt 02. B3) the angular velocity o> can beexpressed as

wi = 0 3 ~ Bisin0 2

<t2 = B2cos0 3 + 0 !cos02sin03

o>3 = 0 jcos0 2COS0 3 —0 2sin03

the linear velocity v is given by

V = (V!. V2. V3) = (Xl X2X3)

The linear map

*l>.: TmM - R6 (2.1-3)

defined by

OP

is called the tangent map of ^ . The vector ( o>. v ) is also called the coordinate expres

sion of a generalized velocity £ € TmM.

Remark: (1). The coordination map $ defined in (2.1-1) is only local. Unfortunately,

there exists no global coordination map for the configuration manifold M and M

does not support a natural positive definite metric. Consequently, the space

TmM is geometrically different from R6 [22].

Denote the set of generalized forces that can be exerted on the rigid body at

configuration m by T*mM. It is also called the cotangent space of M at m and consists

of all linear functionals defined on TmM. An element f) € T*mM is a combination of a

linear force with a linear moment about the origin O in the inertial frame ( Recall that

both frames coincide at configuration m ). The coordinate expression of 7) 6 T*mM is



given by the dual linear map of (2.1-3) which is defined as follows [17],

tf.R* ->T*mM

and

< £. 7) > = <£. tf (cr) >= < <Jr. (£). <r > (2.1-4a)

where the pairing on the left of (2.1-4a) gives precisely the work done perunit time of

a generalized force 7) on a generalized velocity £ when viewed asa generalized displace

ment per unit time. The pairing on the right of (2.1-4a) is given by the inner product
of two vectors in R6

<<M£). <r> = <(o).v), (/ ,m) >=Q)'m + v< f (2.1-4b)

The vector <r= (iff* )_1(t)) =(/ .m) is called the coordinate expression of ageneralized
force 7) € T*mM. with the vectors / = (/1./2./3) and m = (m1^i2^3) identified as
the linear force and the angular moment about the inertial frame respectively applied
to the rigid body. From now on we will write, for notational convenience, that a gen
eralized velocity £ as £ = (a>.iO € TmM and a generalized force 7) as 7) = (/ . m) €
TmM. The work done per unit time of 7) with respect to £ isgiven by(2.1-4b).

Remarks: (2). Let E(3) denote the Euclidean group of R3, i.e. it consists ofelements of

the form (A. b). where A 6 SO(3). the space of 3 by 3 unitary matrices over the
reals, and b € R3. with group multiplication defined by <A\.bi) (A2,b2) =
(A1A2.A1b2 +bx). The identity element e of E(3) is (I. 0) with I being the 3
by3 identity matrix. The group E(3) acts on R3 according to

(A . b )x = Ax + b. for all x 6 R3

and it is also referred to as the group of rigid motions in R3. By identifying the
nominal configuration m with the identity element e of E(3). and a given
configuration p of Mwith the element of E(3) that translates the body from
m to p. we obtain a natural isomorphism ( given by (2.1-1) ) between M and
E(3) ([18]).

(3). The pairing in (2.1-4b) is induced by a hyperbolic metric on M. For the



purpose of simplicity we will not distinquish the space T*mM from Re in the

following studies although they are geometrically different (see remark (1)).

The result we obtain however will still be valid when this distinction called for.

(4). In the literature ([ll], [7], & [12]) a generalized velocity £ is often

called a twist, whereas a generalized force 7) a wrench.

If we use the standard basis («1# • • •e6) for R6. a wrench 7) applied to a rigid

body can always be expressed as a linear combination of these basis wrenches (or

screws) ([7], [ll], [5]).

Suppose now that two rigid bodies A and B are in contact and assume that no

energy is either stored or dissipated. We let C* CT*mM denote the set of contact

wrenches that can be applied to B (by A) through the contact. The Principle of Virtual

Work states that the set of allowable twists £ € TmM of rigid body B relative to rigid

body A must satisfy

<£. 7) > = 0. for all 7) € C* (2.1-5)

where the inner product is defined in (2.1-4). in order to keep A and B in contact.

Figure 2. Two rigid bodies in contact

Contacts can always be thought of as constraints on the motion of a rigid body.

For a given set C* <ZT*mM. we define a set C CTmM by

C = { £ € TmM . such that <£. t) > = 0. for all t) € C*} (2.1-6)

C is called the annihilator of C* in TmM. With these definitions, we state the Principle



of Virtual Work as a theorem.

Theorem 2-1: When a rigid body B is constrained such that the set of contact

wrenches can be exerted on B is C* CT^M, the set of allowable twist motions of

B is precisely the annihilator C of C* in TmM.

22, Grasping Structures

We shall be concerned in this paper mainly with three basic contact types: (1). a

point contact without friction. (2). a point contact with friction and (3) a soft finger

contact. These contact types along with others are studied extensively in the literature

([5], [6], [7], & [9]). Define by nc the number of independent contact wrenches that can

be exerted on a rigid body at the contact. We have nc equal to 1 for point contact

without friction and 3 for point contact with friction. While for a soft finger contact

nc equals to 4. and for more general contacts such as contact of a line with a plane,

etc. the value of nc may be found in Table 2-3 of [5]

Before we givea formal definition of a contact, let us look at the following exam

ple, which we will use repeatedly in the paper.

Example 2-2: Consider a three fingered robot hand contacting a cube as shown. Assume

that finger I can be modeled as a point contact without friction, finger II as a point con

tact with friction, and finger III as a soft finger contact. With the body coordinate x-

y-z as shown in the figure, let us obtain a matrix representation of each contact map

represented as maps from the applied independent contact forces to the wrench space

of the object as follows.

I A J*, sp=(Pjp;pf)>-3.p, =(pJpJp!)
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Figure 3. Three fingered hand contacting a cube

Finger/: \(fcl is a map taking the normal finger force applied at finger I to the body

wrenches ( Torques are measured relative to o).

tltd'.R1 -> T*mM (2.2-la)

*ci(*) " ^*k\-o)f ~
0
0
1

A1
0

[x]

Finger II: $c2 is a map taking the three applied finger forces at finger II: namely the

normal force and two orthogonal friction forces into the body wrench.

*c2: R3 - T*mM

$c lixi-x 2^3) =
fl f 2

/ 2 fl
fiX(p2-o) f?x(p2-o) f£X(p2-o)

1 0 0
0 1 0
0 0 1
0

-A8
Pi

0

-p?
Px
0

Xl

x2

x3

(2.2-lb)

x2

x3

Finger III: \ffc 3 is a map taking the three finger forces and one normal torque applied at

finger III into the body wrench.

*c3: R4 - T'mM (2.2-lc)



^c3^XiJC2'Xi-X4) -
fl fi fi o

/lX(/>3-0) /23X(/>3-0) /33X(i>3-o) ™l

0 1 0 0 1 1

1 0 0 0 X\

0 0 1 0 x2

A3 0

-A3
Px3

-*3? *3

0

-A3
Px I
0 °

x4

11

Xl

X2

*3
x4

Notice that / i and ml, in the above equations are the unit normals to the contact sur

face (i.e., surfaces of the rigid body) at the ith contact point. / 2 and / 3 are the unit

tangent vectors to the contact surface and they determine along with / i an orthonor-

mal basis at the ith contact point.

Motivated by this and similar examples, we define a contact as following:

Definition 2-3: (of contact) A contact upon a rigidbody at configuration mis a map

1>c:Rn< ->T'mM (2.2-2)

for some nc defined as the number of independent contact wrenches that can be exerted

on the rigid bodyat the contact and depends on the structure of the contact only.

Similarly, we define a grasp of a rigid body by a robot hand as a group of con

tacts. For this we assume the hand has k fingers, each finger contacts the object at one

point ( at the fingertip only ) and defines a contact map *fici:Rni -^T^M. for i = {l....

k}.

Definition 2-4: A grasp of a rigid body at configuration m by a robot hand with k

fingers is a map

G:Rn -> T*mM. n = £nj.

given by
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i=k

G(xxjc2, •••xn) = 2^ci(^ttj_l+i. ••* **,) (2.2-3)
i=l

Remark (5): Given a grasping configuration, we outline here a procedure to obtain a

matrix representation of the grasp map: (1). specify a body coordinate and

obtain the coordinates of each contacting point. (2). determine the unit normal

and the two orthonormal tangent vectors to the contacting surface at the contact

point.(3). pick a torque origin in the body coordinate and construct for each con

tact map the contact matrix as in Example 2-2. and (4). concatenate these con

tact matrices side by side into a big matrix, this is our grasp matrix for the par

ticular choice of body coordinate and particular choice of torque origin.

For example, the grasp map of Figure 3 is obtained by adding the contact maps (2.2-la.

b & c). i.e..

G =
/ 1 7 1 7 2 7 3

/ 1 X(/>! - 0) / ? xip2 - o) fi XQ>2 - o) / i xip2 - o)
f2 /2 f2

fi fi fi o
/ 3x(/>3 -o) fi X(p3 - o) / ixip3 -o)m4

0 10
0 0 1
10 0

0 0
0 1
1 0

10 0
0 0 0
0 10

Pz2~Py2Pz3 ° -P/0
Pxl~P* o p? o -p? p} J
0 Px "Px 0 -Px Px 0

(2.2-4)

23 Wrench Transformation Matrices

In obtaining a matrix representation of a grasp map, it is often convenient to first

get the finger contact wrenches relative to coordinate systems at the contacting points

and then transform these contacting wrenches to the body coordinate. This is done

using a wrench transformation matrix (Kerr [7]) and we discuss a procedure of obtain

ing such a matrix with example 2-2. The idea of using wrench transformation

matrices will become clear after the following example.

As shown in Figure 3, we attach finger coordinate system x1—y'—z1 at each
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contact point, where the zl axis is always normal to the contact surface ( assuming the

rigid body have well defined normals almost everywhere). Let the coordinate system

x'—y'—z' be related to the body coordinate x-y-z by (Aitpi) € E(3). where At €

SO(3) is the orientation of xl—y'—zl relative to x-y-z and pt is the translation of the

origin o'. A point q in xl—y'—zl is transformed to a point q in- x-y-z according to

q=Aiq+Pi (2.3-1)

In the body coordinate let pt —o - (pi. p}. />z') and define the cross product operator

constructed from (/>,- —o ) by

S(Pi -o) =
0 -A1 #
Pi 0 -Px

\-p> Px 0
(2.3-2)

It is easy to see that S(/>, —o)f - (/>,- - o)xf for any / € R3. Any linear force /,

in the ith finger coordinate is transformed to a linear force /,- in the body coordinate

as follows

fi =Atft (2.3-3a)

and the corresponding torque about "o" is

fix(pi-o) = S(o-pi)Aifi (2.3-3b)

More generally, a contact wrench ~et in the finger coordinate is transformed to a contact

wrench et in the body coordinate by

«i =
A-t o

S(o -pi)Ai At ~e-i = Tffc (2.3-4)

Note that (2.3-3a & b) are special cases of (2.3-4) with et being only a linear force.

The matrix Tfl is called the wrench transformation matrix of finger i, it transforms

contact wrenches at the ith finger coordinate to contact wrenches in the body coordi

nate. On the other hand, any contact wrench c, in the ith finger coordinate can be

expressed as a linear combination of the basis wrenches («[,••• e^ ) determined by



the contact types of the ith contact, i.e..

— i „» „»
«ii = «i-«2. ' •* %

*1 *i

*2 *2

.

= *,
.

**' *"'
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(2.3-5)

The matrix Bt is called the ith constraint matrix and contains ith contact constraint

information.

Consequently, the wrench transformation matrix Tf and the constraint matrix B

of the hand in Figure 3 are formed from theseTfi and Bt as

and

Tf -
At 0 A2 o A3 o

S(o—pi)Ai Ax S(o—p2)A2 A2 S(o—p3)A3 A3

B — I B\ Bo B-x —

0 0 0 1 0 0 10
0 0 10 0 10 0
1 10 0 10 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

(2.3-6)

(2.3-7)

Direct computation shows that the grasp matrix G of (2.2-4) is the product of the

wrench transformation matrix Tf and the constraint matrix B, i.e., G =Tf B.

Thus, we see that a grasp matrix G can always be factored as a product of two

matrices Tf and B ( Kerr [7]). The wrench transformation matrixTf transforms con

tact wrenches from finger coordinates into the body coordinate. It contains contact

configuration information, while the constraint matrix B contains contact constraint

information. While varying contact types only B changes, when contact configuration

vary Tf alone changes.

2.4 Grasping under Unisense and Finite Frictional Forces

In definition (2-3) ( or (2-4) ) we have implicitly assumed bi-directional and
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infinite frictional forces by allowing the force domain of the contact map ( or the

grasp map ) to range over the entire space R"e (or Rn ). But, this does not happen in

reality when two objects in contact can not pull on each other (without glue or field

force attraction) and sliding phenomena are frequently observed even between very

rough contacting surfaces. To handle unisense and finite frictional forces, we will

need to restrict the (force) domain of a contact map ( or grasp map ) to an appropriate

subset of R e (or RR). Consider again the example of Figure 3. assuming Coulomb

frictional models for each contact, we obtain force domain of the contact map $ci:

<ki: JSTx = {jc € Rl, such that x >0 }

<Jrc2: K2 = \x € R3.such that xj >0.x22 + x32 ^fifx2} (2.4-1)

\lfe2: K3 = [x € £4such that*! ^O.x| + x| <At|x2.lx4l </*,*!}

where fit's are the Coulomb friction coefficients of the respective contacting surface

pairs, and fit the torsional friction coefficient ([7]). In [9] a different model of the soft

finger contact is used giving a different set K3in R4. The force domain K of a grasp

map (2.2-4) is thus the product of each contact force domain Kv K2 and K3 in the

product space R1® R3 $ R4 - R*.

The force domain of a contact map modeled by Coulomb frictional law has a

very nice property: convexity.

Proposition 2-5: The set Kt for i = {1,... 3} in (2^*-l) is a convex cone.

Proof.

It suffices to show that K3 is a convex cone. Let x and y € K3. Then for a ^0

we have

ax = (ax j, ax2. ax3, ax4)

obviously, ax i ^0 and.

(ax2)2 + (ax3)2 = a2(x22 + x32 ) <M2(«Xi)2.

also lox4l =alx4l ^/jl,(ax x). Therefore, ax € K3.

Let x2 = fix xcosfl i, x3 = fix isinB i
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and y2 = fty1cosd2. y3 = fiy isinB2

then

(x 2+y 2)2 + (x3+y 3)2 = V2(x I +y I +2x!ylCos(0 2-d i))

VGci+yi)2

and lx4+y4l ^lx4l + ly4l ^Mr(*i+yi)

thus. (x+y)€iSr3. Q.E.D.

Corollary 2-6: The product of convex cones is again a convex cone in the product

space. Consequently the force domain K of the grasp map (2.2-4) is a convex

cone.

2.5 Stability of a Grasp and Body Coordinate Transformations

In robot hand applications, we are interested in characterizing the stability of a

grasp. We say that a grasp is stable (or statically stable ) if and only if it can balance

disturbance forces in all directions.

Proposition 2-7: A grasp G defined in (2.2-3) is statically stable if and only if the

associated grasp map is surjective.

Proof.

Suppose that G is surjective. then for any disturbance wrench (Dd € T*mM, there

exists a finger force x €1?" such that

G(x) = o>rf (2.5-1)

i.e.. the disturbance wrench is exactly balanced out by the contact wrench. The con

verse part follows from the definition. Q.E.D.

Corollary 2-8: A grasp G with associated force domain K C Rn is (statically)

stable if and only the associated grasp map G restricted to K is surjective.

In the following discussion, the set K CRn always refers to the force domain of

a grasp map G. It is a convex cone in Rn and may be the entire space. When the set K

equals to Rn . the stability condition for a grasp G requires that the grasp matrix be

full row rank. For a proper subset K of Rn . we define
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B\ = {x€Rn.\ Ix ll| <1} (2.5-2)

to be the unit ball of Rn and let 0€ denotes an € open ball at the origin of Re (=

T^M ). With these notations, we have

Proposition 2-9: A grasp G with force domain K is stable if and only if there

exists an e > 0, such that

0€ CGiKHBlX (2^-3)

Proof.

Suppose (2.5-3) is true, then for any y € T„M. there exists a > 0 . such that

—^ <€. Let y = —. then y € Oe and (2.5-3) implies existence of x 6(KD5J)
a a

such that

G(x) = y =2.
a

-* G(ax) = y

But the set K is a convex cone, therefore x = ax € K. and G IK Is surjective. Q.E.D.

Proposition (2-9) alleviates the burden of checking the stability of a grasp with a

restricted force domain. Modified algorithms of [15] can be used to perform the test

(2.5-3) and further details on this issue are discussed in Section 3.4.

From previous examples, we see that the matrix representation of a grasp map

depends not only on finger contacting locations but also on the choice of the body coor

dinate system. For fixed contacting locations and fixed contacting structures we may

obtain different grasp matrices as we vary the body coordinate system, assuming

torque origin of the grasp matrix coincideswith the origin of each body coordinate sys

tem. From Remark (2), any change of body coordinate system may be described by an

element of E(3) - the Euclidean group of R3. Thus, let T € E(3) represents a body

coordinate change from x—y —z to an new body coordinate x' —y' —z'. Then a point x

in the old body coordinate system is transformed to a point x in the new body coordi

nate system according to
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x = T(x ) = Ax +b (2.5-4)

where A € S0(3). and b €R3. Suppose that the matrix represenution of a contact map

with respect to x-y-z is given in (2.2-lc). then it is easy to verify that under body

coordinate change by T the matrix representation of the contact map is transformed to

* -I AflV'*- fif}xA(p3-o)

= 7>c3

Af>

t* f3

Af*

2 7 3 0

x(p3-o )/ 23 x(p3-o )/ 33 x(p3-o )mi

2 «n 0

AfixA(.p3-o) AfixA(.p3-o~) Ami

(2.5-5)

where T is the diagonal matrix with A's on the diagonal. Hence, it follows that the

matrix representation of any grasp map under body coordinate transformation by T

can be expressed as

G = TG - (2.5-6)

We may also obtain, for fixed grasping locations and a fixed body coordinate sys

tem, different grasping matrices by changing the torque origin o to a new point b about

which the grasp matrix is constructed. To get the new matrix, let (b —o) =

(blt b2tb3) and define A to be the skew symmetric matrix constructed from (Jb—o)

according to (2.3-2). i.e..

A =
0 — *3 b2
b3 0 —bx

-b2 bx 0

we have for any / €i?3.

Af =(b -o)xf = / x(o -b)

and

(2.5-7)
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m4

-\
fl fi •• o

}xiPl-o)-r f}x{o-b) fix(px-o) + fixio-b) •••mj

.[/Oil fl fi
~ |4 /] |f f xfri-o) fixipx-o)

= 77,G

0

m4
(2.5-8)

i.e.. change of torque origin corresponds to multiply the original grasp matrix on the

left by a nonsingular matrix Tb.

Remark: (6) T is unitary. i.e.. TT —I while Tb is not. This is important since uni

tary matrices preserve norm.

Theorem 2-10: Stability properties of a grasp map G are invariant under body

coordinate transformation and under change of torque origin.

Proof.

From (2.5-6) or (2.5-8). T or Tb is nonsingular and surjectivity of G is thus

preserved. Q.E.D.

Example 2-11: Consider again the grasp of Figure 3. whose matrix representation is

given in (2.2-4). Using a modification of the algorithms of [15] it may be shown that,

with all friction coefficients set to 1. G(K f\B\ ) contains an open ball at the origin of

radius 0.2. Therefore, the grasp G by Proposition (2-9) is stable.

3. Optimal Grasping Theory

We have studied static stability of a grasp, and defined a stable grasp in terms

of its ability to reject disturbance forces. A deeper question to ask ourselves now is:

Which grasp should one choose when given a set of stable grasps ? To answer this
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question we introduce the concept of optimal grasping. We will propose several alter

native "grasp quality" measures which can be used to evaluate a grasp.

The idea of optimal grasping was inspired by a study of linear control theory,

where the term controllability grammian is often used to characterize the quality of a

system's controllability. In grasping theory we say that a grasp Gi is "better" ( ^ )

than a grasp G2 if Gi achieves a better figure of merit in terms of a certain quality

measure.

3.1 Quality Measure 8: Smallest Singular Value of G

Consider a grasp G defined in (2.2-3). We define the quality 8(G ) of a grasp G as

8(G) =0-^(0 (3.1-la)

where <rmin(G ) stands for the smallest singular value of the matrix G. We say that G1

>G2 if and only if 8(Gi) >8{G2).

(3.1-la) gives a worst case analysis of a grasp. It should be noticed that a grasp G

is stable if and only 8{G ) >0. Hence, the quality measure 8(.) captures the stability

property of a grasp. Using the quality measure (3.1-la). we could then answer the

question posed before, namely we would chose among a set of stable grasps one which

maximizes its minimum singular value. This grasp is called the "optimal grasp" with

respect to the quality measure (3.1-la). Technical details of finding such an optimal

grasp for a rigid body are provided in Section 3.5.

In (3.1-la). we have implicitly assumed the set K to be the entire space RR. For a

general set K. we modify (3.1-la) to

8(G ) = Inf {I Iy I I such that y £G (S? fW )} (3.1-lb)
y€Rn

i.e., the measure 8{G) is the minimum distance of the complement of the set

G(Bx ClK) to the origin of R6. (3.1-lb) would give the smallest singular value of G

when the set K is Rn itself. We notice from remark (6) that, while the measure 8(.)

in (3.1-la) and (3.1-lb) is invariant under body coordinate transformations it is not

invariant under change of torque origin. Thus, one should be very careful in selecting
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the torque origin of the grasp matrix in using this quality measure.

3.2 Quality Measure v. Volume in Wrench Space

While the quality measure (3.1-1) has the obvious advantage of geometric and

computational simplicity, it is not invariant under change of torque origin. Also, since

it gives only a worst case analysis it does not reflect uniformity of the grasp. To avoid

these problems we introduce a quality measure which is invariant under both change

of body coordinate and change of torque origin. We call such a measure a bi-invariant

volume measure (see Theorem 3-2). The volume measure v(G ) of a grasp G is defined-

as

"(G)= / dV (3.2-1)

i.e.. it is the volume in T*mM of the set G(B\ HK"). When the set K constitutes the

entire space Rtt. computation of (3.2-1) is especially simple, as given by

Proposition 3-1: Let a\ f o* — cr6 denote the set of giwgniai* values of a grasp

matrix G. Then there exists a 0 > 0 such that for the case K = Rn,

*(G )=0(010-2 •• <r6) (3>22)

Proof.

it follows from the definition of singular values of a matrix. Q.E.D.

The volume measure v(.) is uniform in all directions. Furthermore, it is bi-

invariant. i.e.. we have

Theorem 3-2: The volume measure p(.) of (3.2-1) is invariant under both body

coordinate transformation and change of torque origin.

Proof.

The proof for the general case of (3.2-1) follows from the Change of Variable

Theorem in integration theory, see Boothby [17]. We give a direct proof in the special

case K « Rn. Let T € E(3) be a body coordinate transformation. We know from (2.5-

6) that the transformed matrix representation G is related to G by G = TG. By
(3.2-2) there exists 0 > 0 such that
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v(G) = 0{det(G 6')}* = 0{det(7 G G' 7")}*

= 0{det(r) det(G G') det(7" )}% = 0{detU )2 det(G G' ) detU )2}*

= 0{det(GG,)}* = i'(G)

since A € 50(3) its determinant is 1. The proof for change of torque origin follows

similarly. Q.E.D.

Remark: (7). For a bi-invariant quality measure such as vt), we can first construct

the grasp matrix with respect to any coordinate frame and any torque origin

and then perform the evaluation. The result we would obtain by doing so is not

altered if we evaluate another grasp map with respect to a different coordinate

frame and a different torque origin.

One problem associated with volume measure (3.2-1) is that it does not reflect

the stability properties of a grasp G when the set K is a proper subset of Rn. The

image set of {B\ C\K) may be a half space in T*mM but have nonzero volume measure.

Therefore, to compare the qualities of two given grasps, we have to first check the sta

bility requirement and then use (3.2-1). Section 3.4 presents numerical considerations

regarding computation of p(.) under its general case.

Example 3-3: Consider the following two grasps of a three fingered hand of a hexagon,

with all finger contacts modeled as point contacts with friction and all friction

coefficients set to 1.
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Figure 4. Two set of different grasp configurations to an hexagon.

The geometry of the hexagon and details of each grasping configuration are shown in

the figure. Along the line of discussions from the previous chapter, we constructed

grasp matrices Gx and G2 ( with "o" being the torque origin) for grasp configuration

(a) and (b). The force domain of each grasp map is defined from given assumptions,

and the quality measures 8(.) & i>(.) of G! & G2 are computed as ( see Section 3.4 ):

8(Gx) = 0.768. 8{G2) = 0.357

v(Gx) = 26.7 v(G2) = 7.85

Hence, grasp (a) is better than grasp (b): and this is consistent with practical experi

ence as the reader can readily verify.

3.3 Task Oriented Quality Measure ft

We have introduced two quality measures that can be used to evaluate a grasp.

These quality measures all reflect one key concept, namely the " absolute degree" of

stability. In many applications, it suffices to find a grasp which is optimal with respect

to these quality measures. i.e. (3.1-1) and (3.2-1). Typical examples in this category

include pick-and-place operations under uncertain environment and disposing waste in

a container. Tasks involved in this category are usually simple and knowledge of

working environment is either not available or of less concern. However, in cases such

as handling a tea cup. grasping a pencil and writing, and manipulating a workpiece in a

known environment, it appears that the characterizations of (3.1-1) or (3.2-1) are not

adequate. Consider the example of grasping a tea cup for the task of drinking. Obvi

ously a human would not grasp the tea cup with his full hand encompassing the cup.

even though it achieves a high quality measure by (3.1-1) or (3.2-1). Instead, she

grasps the tea cup at the handle to achieve better manipulability, and in the pencil

exampleshe grasps near either end of a pencil to achieve better dexterity - a necessary

requirement in writing. There are also other examples in our daily lives where a grasp

is dictated more by task requirement than by a neat stability requirement. Humans use

as much information about the task and the working environment as possible in deter

mining the grasp, forces irrelevant to the task are weighted less than forces which are
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closely associated with the task. Also, under a known working environment a grasp is

chosen according to the probability of occurrence of disturbances. In other words, we

speak of task requirement - with stability requirement as a subset - in evaluating a

grasp. A task oriented quality measure is then the basic ingredient in the study of

optimal grasping theory. The questions to be answered then are: (1). how does one

model a task and the robot working environment?'and (2). how does one incor

porate the model into a quality measure?

The first question has been widely addressed in the literature ([10]) but a clear

and analytic solution is not provided. Consequently, we present an approach to model

ing a task and the robot's working environment by an ellipsoid in the space T*mM.

We call such an ellipsoid the task ellipsoid. We will show that modeling the task and

working environment by an ellipsoid is very natural and consistent with our grasping

experience. We can. of course, in a more general setting model tasks by. arbitrary

convex sets in T*mM ( an ellipsoid is a special convex set ) but the approach is com

pletely similar. Hence, we will restrict ourselves to modeling tasks by ellipsoids. An

example with tasks modeled by an arbitrary convex set will however be given at the

end of the section.

33.1 Task Ellipsoids

The following examples illustrate the procedure of modeling tasks and working

environment by task ellipsoids.

Example 3-4: Consider the peg insertion problem depicted in Figure 5. The task require

ment amounts to grasping the workpiece and inserting it into the hole.

In order to execute the task, a nominal trajectory is planned before the grasping

action. The working environment ( description of the hole ) and geometry of the work-

piece is assumed known. Suppose that the workpiece is grasped at some grasp

configuration and the hand follows the planned trajectory until some misalignment of

the peg or the hole causes the hand to deviate from the nominal trajectory and the

workpiece or the hand to collide with the environment.



25

Figure 5. Peg-in-Hole Task

Choosing the body coordinate frame as shown, a study of the environment reveals that

the likehood of collision in each force direction in the decreasing order should be —fy.

±Jz • ±Jx *±fz>±fx> ±Jy. +/* • Let fy also denote the magnitude of collision force in

that direction and so on for other force components. To model this task, we look at a

set A fi in the wrench space T*mM, parameterized by 0. coefficients rt. i = 1. .. 6 and

constants ct . i« 1. 2. as

Afl= (/:
x a (/y+Ci)2 t/ T* (/,-C2)2 f} T} „ ,

rf r2z r{ rf rj rg
(3.3-1)

The set A p is an ellipsoid in T*mM centered at (0, —cj. c2. 0, 0, 0) with principal axis

length given by (r,/ 0. i=l. ..6 ). The shape of the ellipsoid is determined by the ratio

of coefficient (r,)/sf and location of the ellipsoid is given by the constants (c,)/=2.

Therefore, varying the coefficients {r-t . i» 1... 6 ) and the constants (c, . i = 1. 2 ). one

can obtain various ellipsoids in the wrench space. The parameter 0 rescales the ellip

soid and in reality it corresponds to a choice of force unit.

By appropriately assigning a set of ratios to the coefficients ( r,-. i =1 ... 6 ) and

values to the constants (c, i = 1.2 ) we can in principle use the ellipsoid Ap to

represent the task force requirement of the peg-insertion task. It is apparent from the
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figure that the task requirement amounts to have (,rt ^r>) if (y >£)• The constants

cx reflects the offset of collisions in +/y and —fy directions. When it is unlikely to

have collisions in +fy direction cx is set to a very large value. The constant c2 reflects

gravitational force on the workpiece. How to arrive at an exact set of values for rf. i =

1. .. 6 ( parameterized by 0) and constants c, , i » 1. 2, that meet the peg-insertion

task requirement depends heavily on one's experiences with task modeling.

Example 3-5: Consider the problem of grasping a pencil for the task of writing. Our

experience tells us that, in order to execute the task (writing), the grasping

configuration should. (1). provide as much dexterity in the lead as possible and. (2).

provide sufficient normal forces at the pencil lead. With the pencil configuration shown

in Figure 6. the task specifications are translated into. (1). high torque requirement in

±jz and ±ry directions. (2). large normal force in +/x direction. If we could

somehow obtain a set of ratios (r, )/ff between the disturbance forces required by the

task.

(e)

Figure 6. Two grasping configurations to a pencil

we get a task ellipsoid

(b)

ri (/,-c)2 . /* f? r2
A,= (/X.---T2)€2?6.

ri r2

parameterized by 0. and the constant c representing the offset of the required task

Tf
+UL-+"+-± <02

ri ri ri
(3.3-2)
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force in +/x direction with respect to —f x direction.

In pencil grasping, the process of accurately modeling the task requirement by an

ellipsoid, i.e.. finding the constants r, and c in (3.3-2) that best describe the task, is

quite complicated. Observe the human action in learning pencil grasping: initially, a

child ( with no previous experience) would probably grasp a pencil as shown in Figure

6 (b). to provide strong stability. But. such a grasp does not provide much dexterity

at the pencil lead. So as the child grows up he learns from his experience or is taught

by adults to modify his task ellipsoid and eventually grasp the pencil at the right

configuration (a). This process is also manifested by the process of an adult in per

forming a unfamiliar task. After a few errors and trials, he could grasp the target

object in the proper configuration so as to execute the task efficiently. It does take a

great deal of modeling effort to specify a task ellipsoid for a specific task. Neverthe

less, the difficulties can be reduced significantly because we could store our "experi

ence" in computers and do task modeling once and for all.

Another example is the task of parts assembly, where a robot grasps a part and

maneuvers it through a prescribed path in a cluttered environment. Suppose we can

predict disturbance forces from the environment by some probability ratios, then with

a fixed coordinate system, we can model the disturbance forces by an ellipsoid in

TmM. The direction of the disturbance forces correspond to the principal axes of the

ellipsoid and lengths of principal axes are given by the probability ratios. Such a dis

turbance ellipsoid is also called a task ellipsoid for notational convenience. The grasp

should then reject disturbance forces according to the ellipsoid.

Inspired by these examples, we will assume that our task is modeled by an ellip

soid given as in (3.3-3) below with Q a 6x6 positive definite symmetric matrix, and

a€R6 reflecting the asymmetry in the task. Our goal then is to construct a quality

measure that optimizes the grasp with respect to (3.3-3).

Ap= iy €R6 .<y.Qy >+ <a.y ><02 } (3.3-3)

33.2 Task Oriented Quality Measure fi
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Given a task (3.3-3). we now introduce a new quality measure which reflects the

task. In the outset, we will assume a = 0. i.e.. the ellipsoid is centered at the origin.

Definition 3-6: Given the set A pin (33-3), the task oriented quality measure fi(G )ofa

grasp G is defined as:

ft(G ) = Sup{fi >0. such that Ap CG(5? OK)} (3.3-4a)

ije., it is the radius of the largest task ellipsoidembedded inG(B1 OK ).

Remark (8): (3.3-4a) applies only to the case when the task ellipsoid is centeredat the

origin. In the general case the above definition will be modified by offscaling the

ellipsoid appropriately.

It is not hard to show that the necessary and sufficient condition for a grasp G to

be stable is fi(G ) >0. Unlike the volume measure v. we do not have unstable grasps

with fiiG ) > 0.

Let F(B) denote the set of grasps ( recall that a grasp consists of k fingers each

with only one contact per finger) of a rigid body B. Then, fi is a function

/*:F(B)->*+ (3.3-5)

and has the following properties:

(1). It is positively homogeneous:

fi(XG ) = \fi(G ). for all X> 0 (3.3-6)

(2). It is bi-invariant.

M(G ) = fiiTG ). f defined in(2.5-6) and T €E(3) (3.3-7a)

and

fiiG ) = ft(XbG ) for any b € R3 (3.3-7b)

Proof.

(1):

fiiXG ) = Sup{ 0 such that Ap C(XG ) (B1 0K) }
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=Sup{ 0 such that A p CGCB? OJST)}
(X}

=5fc/> {X0* such that Ap CG(5? fW )}

= XMO.

(2). The proof follows from the definition since both the sets Ap and

G(B\ OK) are transformed by the same transformation matrices. Q.E.D.

In the general case of (3.3-3) when the center of the ellipsoid is located arbitrary

in R6 a similar quality measure /*(.) is defined below:

Jt(G ) = Sup {a such that Ap CG(5?/ „ fl K )} (3.3-4b)

where A p is oneof the sets defined in (3.3-3) with the origin in its interior.

We observe that while the quality measure (3.3-4a) is the largest task ellipsoid

can be embedded in the image of (Bl OJT) under the grasp G. the quality measure

(3.3-4b) is the inverse of the imageof the largest ball intersected with K in the domain

space that can cover an appropriate task ellipsoid. In the latter definition we let the

task ellipsoid contain the origin in its interior so as to guarantee only stable grasps giv

ing nonzero quality measure. Definition (3.3-4a) is both geometrically and computa

tionally simpler, but is not as widely applicable as definition (3.3-4b) because most

tasks are not centered at the origin. However, when a task ellipsoid is centered at the

origin, it is easy to show that the measures fi and ft are equivalent, i.e.. there exist

KX.K2 >0 such that

Kx m(G ) <fi(G ) <K2 ~fi(G ) for any G € F{B ) (3.3-8)

The following example illustrates how one can adapt the definition (3.3-4b) to

the case where the task is modeled by an arbitraryconvex set in T*mM.

Example 3-7: Consider again the problem of pencil grasping. Let the task model be
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given by an open convex set C centered at a point b in T*mM. The set C =C —b =>

[y —b.y € C }contains the origin in its interior, and ( b + XC ). for X > 0. rescales

the set C. Let X0 > 0 be such that b + X0 C contains the origin in its interior and

define the quality measure of a grasp G by

Mi(G) = 5u/>{ a. such that ( b + X0C) C G(B\,a C\K)\ (3.3-9)

We see that the measure /*i(.) also reflects the stability of the grasp G. Furthermore, it

satisfies properties (3.3-6) and (3.3-7).

We have introduced three basic quality measures to guide the optimal selection of

a grasp. The quality measures 8 and v introduced in sections 3.1 and 3.2 are adequate

for either simple tasks or tasks under unknown working environment. These quality

measures are easy to compute and are geometrically intuitive. The volume measure v

in some sense may better suit the designer's interest because it is invariant under both

body coordinate transformations and change of torque origin. In many applications

this property is especially desirable since there is no natural way to specify a body

coordinate and a torque origin. Both measures 8 and v do not reflect the task require

ment unlike the quality measure fi introduced in this section. The use of the quality

measure ft in selecting the optimal grasp will be appreciated better when the task is a

sophisticated one and the working environment is partially or completely known. One

can then improve one's grasp using the quality measure fi in the selection process.

3.4 Numerical Computation of Quality Measures

In this section, we use some elementary convex analysis to implement the numer

ical computation of the quality measures defined in (3.1-1). (3.2-1) and (3.3-4).

Proofs of some of the standard results studied here may be found in [13]. We first

introduce the concept of a support function of a convex set H € Rn .

Definition 3-8: Let H CRn ,the support function 0(. IH ): Rn ->R of His defined as

<ftx\H) = Sup[<x.x >. x €H) (3.4-1)

Several properties of the support function of a convex set H in Rn are studied in [13].

We quote the following results.
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Theorem 3-9: For any two closed convex sets H1 and H2 in Rn, Hx C.H2 if and

only if <f>(x \Hx) <0(jc \H2) for all x € Rn.

Proof.

Seep.113. [13]. Q.E.D.

It follows that a closed convex set H can be expressed as the set of solutions to a

system of inequalities given by its support function.

H = {x ,<x. x >^<t&x\H\ for all x 6^} (3.4-2)

Therefore, H is completely determined by its support function, and we have a one-to-

one correspondence between closed convex sets in Rn and certain (support) functions

in*".

The support function of a convex set. specified by a set of linear and quadratic

inequality constraints, can be computed numerically by algorithms in [15].[14]& [16].

Using the idea of support functions, we are now ready to compute the quality measure

Mof (3.3-4): By theorem 3-9.Ap CG (Bl fW ) if and only if

<ftx \Ap) <#x IGCB? OK) for all x € RR (3.4-3)

But the support function of an ellipsoidal convex set Apis given (see [13], pg. 120) by

l

<ftx\Ap)= <-Q~la.x >+[2o-<x.fi-1x >]T (3-4"4)

whereo-= ^<a.Q~la >+02.

On the other hand, the support function of G iB" OK) is.

0(y \G(B\lnK)) = Sup{<y.y >. y €G(5?niT)}

= Sup{<y.Gx >.x € {B\ flK )}

= Supi<G'y,x >. x SB1 DK) (3.4-5)

= <f>(G'y \B1DK)

Since the support function of the set 5" ClK is readily computable using existing
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algorithms [15], the calculation of /*(.) is straight forward by step wise incrementing

of 0.

In [14], the author described an algorithm that found the nearest distance to a

point of a polytope. The polytope may be specified by the convex hull of k points

0>i' ' ' ' Pi.) hi a n-dimensional space or by its support function. This algorithm is

implemented in [15]. By repeatedly calling this subroutine, one could in principle com

pute the quality measures 8 and v. We outline a procedure here for calculation of 8

(G) for a grasp matrix G together with a force domain K in Rn. Of course, this might

not be the most efficient method but it gives the reader an idea on how the computa

tion of these quality measures can actually be performed. First, one computes all (n-

l)-dimensional faces of the set G(£" OAT), and denotes them by GC(B\ C\K) ( See

[25] also ). Then, one computes for each face the distance of the face to the origin, and

denotes it by dt. The minimum of these d, 's is then the quality measure 8 of the grasp

G. The calculation of the volume measure v can be done from its definition and the

definition of volume in a general n-dimensional space.

3.5 Optimal Grasp Selection

In this section, we address the problem of maximizing the function fi{.) over

.F(B) subject to certain geometric and reachability constraints. For this purpose, we

assume that we have: (1). a full geometric description of the rigid body in (3.5-1).

&j(x.y.z.Cj) = 0. fori={l. •••/} (3.5-1)

and (2). a complete model of the task and the working environment by a task ellipsoid

of the form (3.3-3).

We also assume that the rigid body described by (3.5-1) has a well defined normal

almost everywhere.- i.e.. the set where normals are not defined has an area of measure

zero ( such as the edges of a cube). Let contact point pt of ith fingertip (i€{l....k})

belong to contact surfacehi for some ij € {l.... 1}. i.e.. hi (pi ,c, ) =0. Notice that the

index i stands for the ith finger while the index ij stands for the ij th surface. At a

point pi where the normal is well defined let the unit normal to the contacting surface
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be denoted by / i (/>,-). namely

Vhi(pi)

Also, let the two unit tangent vectors to /»,- at pt be denoted by / 2(pi) and / 3(pi).

which determine along with / i (pt) an orthonormal basis at point pt. Let

m4 (pi) — / i (pi) for a soft finger contact, we write explicitly the dependence of the

grasp matrix G on the contact configuration (pt)/ =* as

I flipO ••• fl(Pi). ••• fi
\fl(pi)x(pi-o) ••• fHpiMpi-o) -•' fk3x(Pk

0

^mk4(pk) (3.5-3)

For i = {l. ... k}. the point pt belongs to the surface ft,- and consequently satisfies one

of the (3.5-1) constraints. By composing the function G with ft, we obtain an new

function jEt: R3* -* R from the parameter space pt = (pi.Py.PzX i = {l. ...k} into the

reals R given by JL = fi (G ). n

The problem of optimal grasping is then the problem of

Maximize J&Px.Prt*.' '' Pk) r,r4^

a constrained optimization problem.

The function jt may be non-differentiable with respect to its argument

Pi —(px >Pi- pD and the solution of (3.5-4) is often called a non-differentiable optimi

zation problem. Heavy computation is usually involved, but efficient algorithms are

being developed in literature ([16]).

Example 3-10: We conclude this section with an example of a two-fingered grasp of a

rectangular planar object. The object shown in Figure 7 has weight c and is obtained

by intersecting four half planes. We will assume that the task ellipsoid is a ball in R3,

i.e..
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= Ux . fy . rz ) € R3. f* + (fy- C)2 + T2 <02 (3.5-5)

where f x. fy, and tz are respectively magnitudes of the linear forces along the x-

and y-directions and magnitude of the torque about "o" along the z-direction. We are

asked to find a grasp which is optimal with respect to the task specified in (3.5-5).

Let the planar object in the figure be specified by a function

h=h(x. y) = 0 (3.5-6)

y
'y . Task Ellipsoid

u - 1 = 0

x*1=0 x-1=0
->x

&

Figure 7. Two-fingered planar grasping.

The unit normal to the surface of (3.5-6) at a point px. i =» {1. 2}, is given by

&(pi)

~dy

(3.5-7)

where the symbol "~" denotes normalized quantities. The unit tangent vector to (3.5-

6) is



/2(/>i) =

dh(pj)

ey

dh(pi)
dx
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(3.5-8)

We observe that the tangent and normal vectors to the object are well defined every

where except at the corners. We will not consider points which have no well defined

tangent or normal vector as grasping locations. The resulting torques of / i (pt) and

/ 20>i) about the origin are

m
i( , tdh(Pi) tdhdPi)

(3.5-9)

K ^ i^(Pi) . idh(pi)
m2 (3.5-10)

Assuming that both contacts are point contacts with friction, the grasp matrix G :

R4 - R3is

G =
fHpi* fHpi) flipJ fi(P2)
ml(px) m2l(px) mx(p2) mi(p2)

The force domain K € R4 is given by

(3.5-11)

K = [x€R4.Xx >0.xi ^fiix2.x3 >0.xj <fiixx2} (3.5-12)

To balance any external wrench (/x, f y,tzJ. the applied finger force x € R4 must

satisfy



fx
fy
*z

= G

XX

x2

x*

x4
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(3.5-13)

If we can find such an x in K that solves (3.5-13), then static equilibrium is possible.

For example, when (/x./7.tz )= (0.c.0). one solution would be px = (0,— 1),

p2 = (0.1). Xj = 0 for i > 1 and x i = c {
dh(px)

dy

-1

} .

Even for such a two dimensional example, the solution to (3.5-4) requires heavy

computation. But we can give a qualitative description of the set G(B4 OK).

Apparently, the contact point (p\. p2) must not lie on the same edge to achieve stable

grasp. The four candidate grasping pairs left are

/. px = (0. - 1). p2 = (0. 1); //. px = (1. 0), p2 = (- 1. 0) (3.5-14)

///. px = (0. - 1). p2 = (- 1. 0): IV. px = (0.1). p2 = ( 1. 0)

Since the task ellipsoid shown in the figure is located right above^ the fy axis, a "good"

grasp should have the image set G(B4 ClK) oriented in the fy direction. Any grasp

whose image set G (B4 C\K) oriented alongother directions is considered an inefficient

grasp because the applied body wrenches are not in the range of required task forces.

The first grasping pair (I) has the set G(B4 C\K) oriented along the direction of the

task ellipsoid and obviously achieves a better quality measure. The image ellipsoid of

grasping pair (II) would have identical shape as grasping pair (I) but oriented along the

fx direction. As far as this particular task is concerned it is not the optimal choice.

The reader can readily verify that the other two grasping pairs do not achieve higher

quality measures than grasping pair (I). Notice that the difference between grasp pairs

(I) and (II) becomes insignificant as weight of the object is reduced.

3.5.1 Additional Constraints and Fine Manipulation

Additional constraints beside the geometric constraints (3.5-1) to be considered

are reachability constraints and hand constraints.
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Reachabilityconstraints as considered in [10] include accessibilityof the hand to

the target object, and obstacles in the working environment. For example, when an

oddly shaped object as shown in Figure 8 is sitting on top of a table, then face A. B. C

and D are not accessible by a robot hand.

Figure 8. An oddly shaped object on a table

While constraints on face A. B and C could be classified as intrinsic constraints,

the constraint on face D is extrinsic and could be eliminated if we turn the object

around ( and createnew constraints ). There arealso other types of constraints depen

dent upon the environment and the object shape. See [10] for further discussions of

reachability constraints.

Hand constraints often refer to constraints imposed by geometry, working

volume of the hand and spreading distances of each finger. Without loss of general

ity, we may assume these constraints considered are given by

Reachability constraints:

hj(pi£j)*±0: forall i = {l. • • • *}.andsome ; = {l. • • • p) (3.5-15)

Hand constraints:

h (-Pi- "• Pk.dx. "• dtj) =0. j ={1. ••• p] (3.5-16)

wherethe constants (cj, dt />and p) come from the constraints.

Hence, we have p reachability constraints and p hand constraints. The optimiza

tion problem (3.5-4) is done subject to a total of (k + p + p) constraints. The
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amount of computation time goes up with the number of constraints.

Recent advances in dextrous hand design ([23]) enables fine motion of the object

within the robot hand ([6], [7]). Therefore, some of the reachability constraints (3.5-

15) may be eliminated by performing a fine motion of the object in the hand. For

example as in Figure 7. while face D is not reachable at the initial grasping

configuration it can be reached once the object is picked up from the table and a better

grasping configuration may be obtained. Human hands perform such operations fre

quently; when one grasps a pencil, one would first pick up the pencil and then manipu

late it around in the hand to get to the final grasping configuration which is optimal to

execute the task. Of course, in robot applications, such an operation is limited by the

fine motion manipulability of the robot hand.

3jS Dynamic Grasping

As we can see from (3.3-4) that the quality measure of a grasp depends heavily

on the specific task to perform. As the task varies, the measure of a grasp may change

dramatically. A grasp which is optimal for one task may be completely different for

another. The process of updating the grasp in response to changed task ellipsoid is

called dynamic grasping. Dynamic grasping happens on many occasions. When a cup is

filling with water, the weight of the cup increases with time and the task ellipsoid

varies. We observe that the corresponding action of the human hand is to move up the

finger so as to keep the grasp optimal.

Also when a target object in compliant motion is moved from one environment

into another, the disturbance ellipsoid may change significantly and updating the origi

nal grasp becomes necessary in order to carry out the task. Dynamic grasping is

closely associated with the ability of the robot hand in imparting fine motions.

Nevertheless, dynamic grasping is a very interesting problem both theoretically and

application wise. We will discuss these issues in latter papers.

4* Suggestion for Future Work

We studied in this paper the problem of optimal grasping by a multifingered
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robot hand. The optimality criteria were based on some quality measures defined in

Section 3. Since all these measures are directly or numerically computable the problem

of optimal grasping can be attacked. The numerical issues associated with optimal

grasping have not however been completely discussed and our future effort will study

these problems in greater detail.

As we can observe from human grasping experience, the assumption made of one

contact per finger at the finger tip is rather strict and inpractical. Very often, human

hands rely on contacts at finger links and at hand palm as well to achieve a good grasp.

With only one contact per finger, the set of achievable grasps is precision grasp and a

large class of other grasps studied in [6] such as power, lateral grasps can not be

achieved. Consequently, it is important to relax this assumption and extend the study

of optimal grasping. Further it follows that dimension of the force domain K is also

an optimization variable as well as the contacting configuration for each fixed K. The

dimension of this force domain may get very large as multiple contacts are allowed.

Human grasping experience tells us. when one grasps a light object to perform

tasks which require low-level forces, one usually select grasps that have small

number of contacts; when one grasps a heavy and large object or a light object to per

form tasks which require high-level forces one selects grasps with large number of

contacts. Such grasps are usually called redundant grasps or power grasps. The ques

tion that then arises is: given a specific task to perform, what is the optimal number of

contacts and their contacting locations? Namely, given two grasps

Gx'.R12 - T*mM (4-1)

Gi'.R36 - T*mM (4-2)

with associated force domains Kx CR12 and K2 CR36 and a common task to perform,

how does one compare the quality of the two grasps? Consider again the pencil grasp

ing example. Suppose that two grasps are given as above, while Gx corresponds to a

regular human dextrous grasp with 4 contacts. G2 is a power grasp with 12 contacts.

Apparently, it might be true that /a(G2) ^fi(Gx). but a human always selects grasp

G i because it gives not only better manipulatability but also better senstivity. On the

other hand if the pencil is a Chinese brush pen ( usually heavy and large ) then grasp
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G2 may be chosen instead.

The theory developed so far is still not adequate to answer the question of how

physical properties ( weight, shape, size, etc) of an object and task requirement deter

mine not only the grasping locations but also the number of contacts of a grasp. But it

does present some approaches to the problem.
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