Copyright © 1986, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ARCHITECTURES AND DESIGN TECHNIQUES FOR
REAL-TIME IMAGE PROCESSING ICs

by

Peter Alexander Ruetz

Memorandum No. UCB/ERL M86/37
2 May 1986

e

ARCHITECTURES AND DESIGN TECHNIQUES FOR
REAL-TIME IMAGE PROCESSING ICs

by

Peter Alexander Ruetz

Memorandum No. UCB/ERL M86/37
2 May 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Architectures and Design Techniques for Real-Time Image-Processing ICs
Ph.D. Peter Alexander Ruetz EE.CS.

Abstract

A set of 8 chips, which perform real-time image processing tasks, was designed and fabricated
with a 4u NMOS technology. The chips include: a 3x3 linear convolver, a 3x3 sorting filter, a 7x7
logical convolver, a contour tracer, a feature extractor, a look-up-table ROM, and two post processors
for the linear convolver. All chips were designed using architectures that are dedicated to the particu-
lar image processing task to be performed. The image processing circuits operate on 10 MHz video
data (512 x 512 pixel images). The design time for the chips was kept to 1.5 man years by re-using
hardware and, in addition, utilizing and developing some appropriate CAD tools. ROM generators
and a data-path generator were developed to reduce the circuit design time. An image recognition
system was built with these custom chips that can recognize two-dimensional objects that are charac-

terized by their closed outer contours. The complete system is controlled by a SUN work station and
operates at rates up to 15 %. The recognition system achieved a 97% recognition rate for 8
ec

objects over a wide range of orientation and size variations and a 100% recognition rate without size

I ok

Committee Chairman

variations.

Table of Contents

Acknowledgements
CHAPTER 1 INTRODUCTION
1.1 Applications
1.2 Computational Requirements
1.3 Goals
1.4 References
CHAPTER 2 IMAGE PROCESSING REVIEW
2.1 Introduction
2.2 Segmentation
2.3 Contrast Enhancement
2.4 Filtering
2.5 Noise Rejection
2.6 Edge Extraction
2.7 Edge Enhancement
2.8 Binary Transformations
2.9 References
CHAPTER 3 IMAGE RECOGNITION TECHNIQUES
3.1 Introduction
3.2 Raw Data to be Utilized
3.3 The System
3.4 Recognition Features
3.5 References
CHAPTER 4 HARDWARE CHOICES
4.1 Introduction
4.2 Major Issues
4.3 Comparisons of Image Processor Performance
4.4 Dedicated Architectures for Space EffiCient PrOCESSOTSceveseeesormsceeecseesssssssesssnssssossssssosens
4.5 References .
CHAPTER 5 DESIGN TECHNIQUES FOR FAST CIRCUIT DEVELOPMENTcoooovvveveennnn.
5.1 Introduction
5.2 The Hardware Hierarchy
5.3 CAD Issues
5.4 Module Generation
5.5 Data-Path Generation
5.6 References
CHAPTER 6 CIRCUITSccccovermrsamserssssmssmssssssssassssssessessessssesssssssossessassasssssssensessssssssssssssssssassassssens
6.1 Introduction

0 NN W = T

N IS BB W WL WRNN -
S8 2322322223 EEEEEREEYNNg g

ii

6.2 Commonly Used Circuits

6.3 Data-Path Cells

6.4 Central Storage Cells

6.5 References

CHAPTER 7 THE IMAGE PROCESSING ICs

7.1 Introduction

7.2 Image Processor Interfaces

7.3 A Single Chip 3x3 Convolver

7.4 A 7x7 Logical Convolver
7.5 A 3x3 Non-Linear Filter Based on Sorting

7.6 An Image Contour Tracing Chip

7.7 A Feature Extractor for the Image Contour Tracer

7.8 The Line Delay

CHAPTER 8 RECOGNITION RESULTS AND ANALYSIS

8.1 Introduction

8.2 The Features

8.3 Recognizer Operation

8.4 Recognition Results

8.5 More Constrained Recognition

8.6 Improving Recognition Accuracy

8.7 Other Recognition Techniques
8.8 Conclusions

APPENDIX A THE RECOGNITION BOARD

A.1 Descriptions of Chip Signals

A.2 Board Layout

APPENDIX B A COMPARISON OF STORAGE CELLS FOR DIGITAL SIGNAL PRO-

CESSING
B.1 Introduction

B.2 General Tradeoffs

B.3 Distributed Storage

B.4 Centralized Storage

B.5 Making Choices
B.6 Design Considerations

APPENDIX C NMOS CIRCUIT LAYOUT GUIDELINES

C.1 Introduction

C.2 Transistors

C.3 Interconnect

C.4 General Chip Layout

C.5 Sensitivity
APPENDIX D CAD INPUT DESCRIPTIONS

APPENDIX E USING THE IMAGE PROCESSING SYSTEM
E.1 The Graphical Interface

E.2 Input and Output Formats

92

94
102
113
114
114
126
129
142
148
154
163
173
181
181
183
195
197
198
203
204
208
209
209
214

226
226
226
226
227
232
236
237
237
237
239
241
241
243
264
264
267

APPENDIXF IMAGE PROCESSING PROGRAMS 275

iv

Acknowledgements

My research advisor, Professor Robert Brodersen, provided me with excellent high level guidance.

The advice he gave always seemed to be slightly ahead of its time. His technical and personal skills

made it a pleasure to work with him.

I would like to acknowledge the value of the help and advice given by Robert Kavaler, alsq known
as the roving consultant of Cory Hall. His knowledge of UNIX, the C programming language and his
interest in just about everything made my research progress more rapidly.

The core graphics routines in "ittool” were developed by Brian Richards. This program made it

possible to give good demonstrations in addition to providing a controller for the general development

system.

This research was sponsored in part by DARPA and the General Electric Company. IBM partially

supported me for three years as an IBM fellow.

The MOSIS group deserves a great deal of credit for providing a reliable and fast NMOS foundry

service. They were also very helpful and cordial in trying to resolve any problems that arose.

Finally, my thanks go to my wife, Susan, who read many sections of this and tried to correct my

numerous writing errors.

CHAPTERI INTRODUCTION

Although work in image processing has been progressing for some time, it is beginning to
accelerate with the advent of new image processors. These new processors attack the problems of /O
and computational bottlenecks that have long been associated with image processing. Hopefully, high
performance, compact processors will make new image processing algorithms and systems feasible that

were considered beyond the realm of possibility only a few years ago.

1.1 APPLICATIONS

There is a wide range of applications of image processing. Some broad classifications are image
enhancement, restoration, coding, recognition and characterization. The goal in each of these applica-
tions is to convert an image either to a modified image (enhancement and restoration) or to some other

representation that requires fewer bits of information (coding, recognition and characterization).

Image enhancement is the subjective improvement of an image for the human visual system. The
goal is to allow a person to more easily see some particular feature or features of an image without regard
for image fidelity. In fact, techniques are often used which purposefully and drastically alter an image.
Medical X-rays are enhanced [1,2] to allow physicians to more easily locate tumors, broken\ bones or
other conditions affecting the patient’s health. Image enhancement is also used to help bring out details in
or remove noise from images taken in outer space [3]. In these cases, where each image comes at consid-

erable cost, it is desirable to extract as much information as possible.

Image restoration is concerned with restoring an image to its original state after the image has been
degraded. In this case it is desired to maintain high image fidelity. One common example of image res-
toration is the correction of blurred images. The image blur could be caused by camera or subject motion

(4], a turbulent atmosphere [5] or diffraction limited optics [6]. Unlike image enhancement algorithms

which tend to be ad hoc, image restoration algorithms are usually based upon more rigorous theory.

Coding of images is used to reduce the bandwidth required to transmit an image via satellite, tele-
phone line or other medium. In addition, mapping satellites generate an enormous amount of data that
must be stored. By reducing the transmission or storage requirements for the images, the cost of the
image transmission and storage system is reduced. There are two broad classes of coders, those which
produce and exact representation of the original image and those which do not. Usually, if some distor-

“tion in the final image is tolerable, the total number of the bits required to represent the image can be

significantly reduced.

In an industrial environment, characterization of images is quite important. To ensure that
manufactured items are of suitable quality, some kind of inspection must be performed. Normally, this is
performed by a person who tends to be good at intuitive reasoning but has a more difficult time perform-
ing quantitative measurements or tedious tasks. In order to save on labor costs or to improve the reliabil-
ity of performing tedious inspection tasks, the inspection may be performed with an image processing
system. Automated inspection has been employed to verify the quality of thin film disk heads [7], to
check that the placement of IC dies within a package is within specifications, and to inspect of various

automotive parts [8].

Inspection deals with the characterization of a known object, while recognition deals with the
determination of the identity of an unknown object. Recognition could be used to help a robot sort parts
on a conveyer belt or to locate a part in order to perform some action upon it. With more advanced
recognizers, robots could pick up articles around the house and put them away or look for an electrical
outlet to recharge its batteries. In this field, the applications are virtually limitless for a robust 3-D natural

scene recognizer.

1.2 COMPUTATIONAL REQUIREMENTS

There are many applications for image processing, but the computation requirements are quite
severe. Images typically have a much higher data rate than speech or audio signals and hence special

techniques must be employed to handle the /O and computational bottlenecks.

A typical broadcast quality video image is sampled.at arate on the order of 10-20 MHz. This sam-
pling rate will yield an image that is approximately 512 pixels on a side with a 30 Hz frame rate. It is
important to note that the spatial and temporal resolutions both contribute to the high data rates. An
image with large spatial resolution, 1K x 1K pixels, but very low temporal resolution, 1 frame/Sec, would

only have to be sampled at a 1 MHz rate,

Audio band signals can be sampled at a much lower rate because audio signals are band limited to
20 KHz. For telephony applications, sample rates of 8 KHz are common while for digital audio a sample
rate of 44 KHz is typically used. In contrast to video signals which are inherently three-dimensional func-
tions (the dimensions are time, X, Y), audio signals are only one-dimensional functions (functions of

time) and therefore there is no notion of a frame rate for audio.

The ratio of data rate to circuit clock rate is quite different for audio and video processing. For a
standard MOS process, 10-20 MHz clock rates are feasible. Of course, the actual clock rate depends on
the details of the processing technology, the type of signal processing that must be performed, the circuit

design techniques and the circuit architecture. Assuming that the use of a 10 MHz circuit, the ratio,

F,
R= I3 otk » is 227-1250 for audio signals but only 1 for video signals. R indicates how many times each
sample :

piece of hardware can be used per sample to perform different operations in the algorithm. In the audio
case, each piece of hardware can be used to perform hundreds of operations per sample, while in the
video case, each piece of hardware can perform only one operation per sample. If R is large, a single
standard architecture can be micro-coded to perform a wide variety of tasks. However, as R approaches
1, parallel architectures must be used, with one physical piece of hardware being used for each operation
in the algorithm. To keep the processing elements and storage elements fully utilized, the processing ele-

ments have to be connected in a custom configuration.

1.3 GOALS

Several major goals guided this work. It was desired to produce high performance image proces-
sors that could perform many of the basic image processing functions that are needed in different applica-

tions. In addition, the decision was made to design all of the processors to operate in real-time. This

makes it possible to utilize all available data and heﬁce achieve the highest possible throughput. In addi-
tion, by operating in real-time, the need for external frame buffers, which add to system complexity, cost
and size is avoided. To demonstrate the ability of the chip set to perform some complete task, a goal was
set to design and build an image recognition system. To make the problem feasible, the recognition goal
was restricted to recognizing 2-dimensional objects that are characterized by their closed contours.
Finally, there was a desire to keep the project development time to a minimum. The set of chips had to
be designed, fabricated and assembled into a working recognition system in the time allotted for the

Ph.D. degree.

Development of a real-time image processing system requires the merging of many fields. The
designer or designers must have knowledge regarding the algorithms to be implemented, architectures
and circuit design. To quickly develop custom circuits, some knowledge of CAD techniques is invalu-
able. Tradeoffs must be made between efforts in each of the fields. The designer must know how to
choose new algorithms or modify existing algorithms to make the implementation easier. In addition,
tradeoffs must be made between the circuit design effort and the CAD software effort. Essentially, if
small compromises can be made in one area that result in a major savings of effort in another area, the

designer will be successful.

Chapter 2 covers some basic image processing tasks, most of which were implemented on a chip.
The functions implemented include 3x3 linear convolution, a 3x3 sortix;g filter operations, 7x7 logical
convolution, contour tracing, feature extraction and point-wise non-linearities. These functions are com-
mon tasks that are mentioned often in the literature and these functions appeared to be sufficient to solve
the recognition problem. In chapter 3, some basic recognition techniques are discussed. Some analysis is
perfdrmed to determine the ideal performance that can be expected from these systems. A comparison of
the performance, size and complexity of various types of hardware is made in chapter 4. In chapter 5, the
techniques used to achieve a fast development time is covered. These include the use of hardware
hierarchically and the appropriate use of CAD tools. The basic circuits used in many of the chips are
covered in chapter 6. In chapter 7, the architectures and other details of the chips are discussed. Finally,

in chapter 8, the performance of the recognizer is covered and some analysis is carried out to determine

the causes of recognition errors and ways in which the system could be improved. In the appendixes,
details of the recognition board are covered (appendix A), some storage design techniques are discussed

(appendix B) and the CAD input descriptions used in the chips are documented (appendix D).

1.4 REFERENCES

(1] Hall, E. L, et al., "A Survey of Preprocessing and Feature Extraction Techniques for Radiographic

Images," IEEE Trans. Computers, vol. C-20, no. 9, pp. 1032-1044.

(2] Andrews, H. C,, et al., "Image Processing by Digital Computer,” JEEE Spectrum, vol. 9, no. 7, pp.
20-32.

[3] Nathan, R., "Picture Enhancement for the Moon, Mars and Man," Pictorial Pattern Recognition, G.

C. Cheng, Ed., Thompson, Wash. D. C., 1968, pp. 239-266.

(4] Slepian, D., "Restoration of Photographs Blurred by Image Motion," Bell Syst. Tech. J., vol. XLVI,
no. 10, 1967, pp. 2353-2362.

[5] Hormer, J. L., "Optical Restoration of Images Blurred by Atmospheric Turbulence Using Optimum
Filter Theory," Applied Opt., vol. 9, no. 1, Jan. 1970, pp. 167-171.
(6] Frieden, B. R., "Band-Unlimited Reconstruction of Optical Objects and Spectra,” J. Opt. Soc. Am.,

vol. 57, no. 8, Aug. 1967, pp. 1013-1019.

(7] Petkovic, D., et al., "An Experimental System for Disk Head Inspection,” IBM Research Report,

Dec. 1985.

(8] Baird, M. L., "Computer Vision Techniques for Locating and Determining Orientation of Circular

Gear Banks," GM Research Report CS—244, Aug. 1978.

CHAPTERII IMAGE PROCESSING REVIEW

2.1 INTRODUCTION

As discussed previously there are many applications for image processing. To implement an image
processing system one must choose particular algorithms to perform various low level tasks such as noise
rejection, edge enhancement, edge extraction, contrast enhancement and binary image transformations.
Usually there are many different ways to perform each task. There are global and local techniques, linear

and non-linear techniques and memory-less techniques,
To build a real-time image recognition system, image processing algorithms must be emphasized
that are simple enough to implement quickly and efficiently in silicon. Further, it is important to choose

algorithms that produce good results for machine decision making and not necessarily for subjective

human viewing,

2.2 SEGMENTATION

There are two primary ways to segment an image into the foreground, or objects of interest, and the
background. In the first technique, it is assumed that the background and foreground can be separated by
using absolute gray-level information. In the second technique, it is assumed that there is a local discon-

tinuity in gray values at the interface between the foreground and background.

2.2.1 Gray-Level Thresholding

In the first technique, it is assumed that objects in the foreground and background have sufficiently
different gray levels so that the gray-level image can simply be thresholded. Pixels with gray values
above the threshold (or below it) are considered to be in the foreground and pixels with gray values

below the threshold (or above it) are assumed to be part of the background. If the image environment is

sufficiently well controlled, the threshold can be determined once and then left at this one particular

value.

140004
13000
120004
11000
100004
90004
80004
70004
6000
50004
4000
30004
20004

1000

e Ul Ny Aeenerar T
0 20 40 60 80 100 120 140 160 180 200 220 240
Figure 1a. Histogram for a Large Wire Cutters

For changing environments, the threshold is usually determined adaptively, using information from
the image histogram [1,2]. If the background and foreground do have very distinct gray values, the histo-

gram will have two distinct peaks in it; one corresponding to the background and one corresponding to

the foreground.

Deficiencies in this technique begin to show up when the foreground and background gray levels
overlap or when the foreground objects become small. An example of this is shown in figure 1a, the his-
togram for a pair of wire cutters. The two peaks can be clearly seen. The large peak at gray levels near
150 corresponds to the background, while the peak at gray levels near 70 corresponds to the foreground.
The threshold was chosen to be half way between the two peaks and the resulting segmented image is
shown in figure 6. This approach seems to have been fairly successful, except that a small piece of the

cutters near the jaws was falsely classified as background. A greater problem arises in dealing with very

7000
6500
6000]
5500
5000.
4500
4000
3500
3000
zsoo_g
2000
1500
1000}

500

0 20 40 60 80 100 120 140 160 180 200 220 240
Figure 1b. Histogram for a Small Wire Cutters

small foreground images. The histogram for a smaller cutters is shown in figure 1b. The peak correspond-

ing to the foreground has virtually disappeared, leaving little information to base the segmentation on.

2.2.2 Edge Extraction

Another common approach to image segmentation is involves finding "edges" in the image and
assuming that the foreground and background are separated by these edges. These techniques will be dis-
cussed in greater detail later. The two cases examined above were also segmented with an edge extractor
and the results are shown in figures 7a and 7b. The edge extractor generated a well defined boundary for
both cases and hence has better size invariance, but the edge extractor also produced edges inside the
object. For systems in which only the outer boundary information is utilized, this is not a problem. How-

ever, it may be undesirable in some systems.

2.3 CONTRAST ENHANCEMENT

Contrast enhancement [3] refers to the point-wise manipulation of grey levels to "improve" the

contrast of an image. This could be used to bring out details in medical X-Rays or to make an automated
image recognition system less dependent on illumination variations. Because the operations are
. memory-less and the data is commonly only 8 bits, a simple way to provide an arbitrary grey level
transformation is with a look-up table. This can be implemented in 2 RAM, ROM or PLA depending

upon the nature of the problem.

If the image illumination is poor or variable, the grey levels of an image may span only a few bits
and provide little contrast. Transforming the image by spreading these few bits into the entire range of
available bits will subjectively improve the visibility of the image. The transfer characteristic can be
chosen by a human -operator or adaptively, using a technique know as histogram equalization [4,5] or
modification. In this technique the histogram of an image, the relative probabilities of each grey level
occurrence, is used to create a transfer characteristic to modify the original image. The output image has
some desired histogram shape, usually flat, that utilizes the entire available range of grey levels. The idea
can be demonstrated by assuming that the input (X) and output (Y) have continuous cumulative probabil-

ity distributions, Fy and Fy respectively.

If Y is computed from X by: Y =Fx(X)

Then: Fy(y)=Pr[Y<y]
=Pr[Fx(X)<Fx(x)]
=PriX<«x]
=Fx(x)
=Fx(FY'0))
=Yy

0 Y has a uniform probability density.

To summarize, the histogram equalized image is formed by modifying an image by a transfer
characteristic that is equal to its cumulative probability distribution. If a non-uniform density is desired,
another look-up table can be used to generate an arbitrary output image density.

All of this assumed that the probability densities are continuous. In reality, the densities are

discrete which often results in fewer grey levels in the output image. This effect is most pronounced

10

when the histogram of the input image has strong peaks. Since it is not possible to map pixels with the
same grey level to different output grey levels, the large peaks will exist in the output histogram but will
be spaced out to make the average height of the histogram a constant. This technique can not add infor-
mation which did not exist (i.e. more quantization values). For human viewing, the reduction in the
number of grey levels in the image may not be a problem (if the number of grey levels is reduced too
much contouring of the image becomes obvious) and the resulting image will often be seen as improved.
However, problems occur when edges are extracted from the equalized image because pixels that origi-
nally were very close in grey value near the peak of the histogram become much farther apart in the out-
put image. Therefore differences in grey level that were caused by low level noise will be amplified and

result in false edges.

The problem can be illustrated by assuming that the input and output images have continuous gray
levels. The common method of edge detection is to find spatial gradients. If the spatial gradient is large,
the point is called an edge point. So, if ¥ = Fx(X) and the edge extraction filter is a first derivative in the

"s" spatial direction, then:

dy dFy(x) dFx(x) gx
Yedge = j‘% = =

ds = dx z =f X (x)xa’lge
Therefore, differentiating the histogram equalized image is equivalent to weighting the derivative of the

original image by the pdf. It can now be clearly seen that even if Xe45¢ is small and possibly non zero

only because of noise, y.4,, can be large and a false edge will be found.

The problems with false edges can be seen in figures 2 and 8. Figure 8a shows the original edge
map image and the histogram of the grey level image is shown in figure 2a. Notice that there is a strong
peak in the histogram that corresponds to the nearly uniform background. The histogram of the equalized
image is shown in figure 2b and the corresponding edge map in 8b. The pixel values from the peak of the
original histogram (128-160 grey values) were spread over almost the entire range (40-255). The result
of this can be seen in the edge map. The background is full of false edges due to to gain introduced by

the equalization.

Histogram equalization can be performed with a few simple operations. First f.(x) must be com-

puted by counting the number of pixels that have grey level x. F,(x) is then computed by performing the

11

11000

10000

90004

8000

7000

50004

4000}

3000

2000

1000

™7 T T T 4 = = 0 i 7. LTV) LT | T
0 20 40 60 80 100 120 140 160 180 200 220 240
Figure 2a. Histogram of Original Image

X
discrete integral: Fy(x) = 3£, (i)
i=0

Another technique is to simply normalize the image by a linear to logarithmic transformation. This
is the basis of homomorphic processing [6] and has advantages by reducing the sensitivity of future pro-
cessing to the image illumination. This technique also introduces gain for small grey values and, there-
fore, also has some of the same problems as histogram modification. In fact, the logarithmic conversion

is similar to histogram equalization when the the image has a histogram that is peaked for small grey

values (they are identical if the image has a probability density fy (x) = %).

2.4 FILTERING

The noise rejection, edge extraction and edge enhancement algorithms are all based upon linear or
non-linear filters. The linear filters can be FIR (finite impulse response) or IIR (infinite impulse response,

or recursive). The difference functions for the FIR and IIR filters are:

gx.y = EZ hn,mfz-n y-m

12

110001
10000
9000
80004
7000
6000+
50004

4000+

30004

HEL) P2 e s o B T Telsra]] BT e ; :
40 60 8 100 120 140 160 180 200 220 240
Figure 2b. Histogram of Histogram Equalized Image

gxn}' = EZ h’l fo—n,y-m+2 E an.mgx--n,y—m

n>0m>0

The FIR filters are commonly used for several reasons. First, FIR filters can be easily pipelined to
reduce the required performance of the circuits. Although IIR filters can be pipelined, pipelining
requires a significant increase in complexity. Also, since good image models typically do not exist, ad
hoc filtering techniques tend to be used that can be implemented with short FIR filters. FIR filters with
short impulse responses (3x3 or shorter) have been commonly discussed([7]. Template matching [20] can
be performed with an FIR filter where the filter impulse response is the template. These are popular
because the short impulse responses can be implemented with less hardware and hence at a lower cost
while larger impulse response filters can be made from a cascade of 3x3 impulse response filters. As

higher density circuits become possible, the impulse response length will likely increase.

In addition, it is very common for the impulse responses coefficients to be only powers of two
(8,12,14,15]. Again, this reduces the cost of the circuit by making it possible to use a small multiplier.

For very short impulse response lengths, it is usually not necessary to have higher precision coefficients

13

(see low-pass filter example later) because careful tailoring of the frequency response is not possible.

The frequency response of the FIR filter can be found by taking the Fourier transform of 4,
H((D,,O),) = ZZ by me =j(nan+ma,)
nm

Hy(@)=H(wx,0)=Y h,e ™™ where hy=hyn

Hy(w)=hg+2 Y, hycos(no) ifh,=h_,
n>0
Hy(w) = ho+2jY, h,sin(nw) ifh,=—h_,
n>0
2.5 NOISE REJECTION

Noise rejection is a common image processing task. Often, the point of view is taken that in a con-
trolled environment, a sufficiently high SNR can be obtained so that noise rejection processors will not be
needed. This is true for the human visual system which is insensitive to most kinds of noise. However,
in systems which employ local operators to extract edges (i.e. high-pass filters), even seemingly imper-

ceptible noise can produce an output that is comparable with the "true edges”.

There are two broad categories for low-pass filters for noise rejection: linear and non-linear.

2.5.1 Linear Low-Pass Filters

Some examples of 3x3 FIR low-pass filter impulse responses [8] (neglecting the gain factor

required for unity DC gain) are shown in table 1.

(@ (b) ©

Table 1. Impulse responses for linear FIR low-pass filters

Note: filters (a) and (b) are separable and can be represented as by impulse responses in the vertical

and horizontal dimensions as shown in table 2.

14

(@ (@ ®) ®)

Table 2. Corresponding Vertical and Horizontal Impulse responses for filters 1a and 1b

Figure 3. | Hy(w)| = | Hy(®)| for
filter a (solid), filter ¢ (dotted) and filter b (dashed) in table 1.

Visually, these filters appear to do very little. A slight blurring of the image can be seen which

does not appear to be significant. However, if the low-pass filtering is performed before high-pass filter-
ing and thresholding for edge extraction, an improvement in the resulting edge map can be seen (fewer

edges caused by noise).

All of the filters perform similarly. The reason for this is that the shape of the frequency responses
for each filter is very similar (see figure 3 for a plot of the one dimensional frequency responses). The

filters in table 1 have the following impulse responses (for @y = 0):

15

Hy(@) = l+2c;>sga))

1+1cos(w)
2

Hy(w) = 2+3c;)sga)2

Hy(w)=

With such a short impulse response significant attenuation occurs only at fairly high spatial frequencies
,
(>T"-). Even though the coefficients of the filters are coarsely quantized to powers of two, the frequency

responses are virtually identical. This indicates that more precision in the coefficients is not a necessity

to a shaper roll off. A longer filter impulse response would be needed to produce a narrower filter.

2.5.2 Non-Linear Low-Pass Filters

If linear filters are used for noise rejection preceding high-pass filtering for edge extraction, the
edges will be blurred along with the noise. If the filters are not carefully tailored to the power spectrums
of the noise and the image (as is not the case in 3x3 operators) the low-pass filter will simply make it
"harder” to find the edges. To combat this problem, non-linear filters are often used for noise removal.
The most common non-linear filter for noise removal is the median filter, which takes the median of a
neighborhood as its output. Another technique rejects "out of bounds" pixels. Both of these filters tend
to perform well on noise that has a probability density with long tails (pulse type noise) while the linear

filter performs well on Gaussian noise.

The "out of bounds” filter [9] is based upon a linear filter. To determine if a pixel is "out of
bounds", it is compared to the average of the 8 pixels around it. If the difference is larger than a predeter-
mined threshold, the pixel is replaced by the local average. With this technique, pixels are only changed
when detected to be "bad". If the threshold is chosen properly, obvious errors (pulses) will be removed
but edges will be well preserved. The problem is that the threshold must be determined and the optimum
value depends upon the image and noise characteristics. If the threshold is too high, noise will not be
rejected properly. A threshold that is too low will cause the filter to become linear with the disadvan-
tages described earlier. With a human operating in the loop, it can be chosen subjectively. Otherwise, it

must be chosen a priori or an algorithm must be developed to adaptively choose the threshold.

16

Probably the most common type of non-linear filter for noise rejection is the median filter [10].
The median filter has some advantages over the filters discussed previously. First, edges or other mono-
tonic changes (over a distance greater than the filter length) are preserved while pulse type noise is
removed. Unlike the "out of bounds” ﬁltér, no threshold is needed for proper operation.

The major disadvantage of median filters is the computational requirements. To sort the elements

4
over an n x n region requires at least n2log,(n%) comparisons (bubble sorters use _nz_ comparators to

achieve a more regular circuit layout). For filters operating over a large region, the median filter becomes
much more costly than linear filters which require only 72 multiplies and additions. To reduce the com-
putation costs of the median filter it has been proposed to use a separable median [1, chap 7] instead of a
true two-dimensional median. The separable median is found by utilizing a cascade of two median pro-
cessors, one operating in the vertical dimension and one in the horizontal dimension. The total number of
comparisons required is reduced significantly from 29 to 6 (for n=3). The separable median has some-

what poorer noise rejection properties but still rejects pulse type noise well.

A second problem with the median filter is that, unlike the linear filters, it tends to give the image
an unnatural appearance. However, for image recognition systems, the subjective appearance of the

image is of no consequence. The only thing that is important is the overall performance of the system,

Filters which replace a pixel by the minimum or maximum of some region around the pixel have

been proposed for use as noise rejection filters [11].

The effectiveness of some of these noise rejection filters was tested by putting the noise rejecter
before an edge extractor and examining the edge map for different types of image noise. Figure 9a
shows the edge map of a scene with no noise and no noise rejection filters. The edge map of the image
with additive Gaussian noise is shown in figure 9b (again no noise rejection was used). When the rec-
tangular impulse response low-pass filter is used, the edge map of figure 9c results. Many of the false
edges caused by the noise pulses cleared have disappeared without major degradation of the edges. When
a 3x3 median filter is used more false edges were left (figure 9d). For pulse noise, the median filter per-

forms far better than the linear filter. The edge map of an image with added pulse noise (and no noise

17

rejection) is shown in figure 9e. With median ﬁltaring (figure 9f), the noise is almost completely
removed. The edge map of the linear filtered image (figure 9g) is actually worse than that with no noise

rejection as the pulses were smeared over a wider region.

2.6 EDGE EXTRACTION

Because many image processing systems use the edges of the image for segmentation, characteri-
zation or recognition, much work has been done to develop filters to perform edge extraction. Here the
emphasis is on operators that produce outputs that can be used by a machine to make decisions, not on
operators that produce good subjective results for a human observer. Again, there are both linear and

non-linear techniques and variation of the size of the region that is utilized.

2.6.1 Linear Edge Extraction Filters

There are several very common 3x3 FIR filters that have been examined and characterized for edge

extraction. The masks of some of these are shown in table 3.

0O -1 01 -1 111 2 111 0 -1
1 4 -1]-1 8 -110 0 0]2 0 -2

0 -1 0f-1 -1 1|1 2 -1]1 0 -1

@ ®) (©) @

1 1 -1]- 1 1 1 1 1{-1 -1 -1
1 2 1|1 2 1 1 2 1 1 2 1

1 1 -1]-1- 1 111 -1 -1]1 1 1

O] ® @® (h)

Table 3. 3x3 edge extraction filters

All of these filters are high-pass filters (the DC gain is the sum of all coefficients which is zero for
all the cases shown); this is a basic property of edge extraction filters. To determine if a point is an edge
point, the magnitude of the output of one of these filters is usually thresholded. Large filter outputs

correspond to edges while small filter outputs do not.

18

Unlike the linear low-pass filters, the ﬁltéxs in table 3 perform quite differently and have quite dif-
ferent frequency responses. Filters 3a and 3b are omni-directional high-pass (Laplacian [12]) filters with

the following frequency responses:

Hy(®) = Hy(0) = 1-cos(w)

Pratt [13] proposed a measure of performance for these filters that penalizes a filter for responding
to noise. The Laplacian filters do not perform well because they have peaked responses along each fre-
quency dimension (figure 4) at normalized frequency n. This corresponds to very high frequency signals
so these filters enhance the noise greatly. Just by looking at the impulse responses one can see that these
filters produce their maximum output when pulse noise is encountered (when the center pixel is bright
while the background is dark). In fact, these are the filters that are used to indicate that a pixel is "out of

bounds" in the non-linear low-pass filter.

Filters 3¢ (Sobel Y) and 3d (Sobel X) [14] have frequency responses (below and figure 4) that are
quite different from the Laplacian filters. The major difference is that the Sobel filters are separable and

are band-pass filters in one dimension and low-pass filters in the other.

Sobel Y: Hy(w) = 14+cos(w)
Sobel Y: Hy(w)=sin(w)
- Sobel X: Hy(w) = sin(®)

Sobel X: Hy(w)= 1+cos(w)

These Sobel filters have the separable impulse responses shown below:

1 1
1 2 110 (1 0o -1} 2

- 1

(a) (b) () d

Table 4. Separable Impulse responses for the Sobel X (¢,d) and Y (a,b) filters

The Sobel filters also perform quite differently (have better edge extraction characteristics) than the

Laplacian filters. The primai'y reason is that the Sobel filters are low pass in one dimension. Further, the

19

SR L LA ALL N B S L B N IS JLAN B B LN B L R S BN NE B an mm e |

o n2 T
Figure 4. Frequency Responses for the Laplacian and Sobel Filters. The dotted

and dashed curves are the responses of the Sobel filters in the wy and @y
directions. The Laplacian filter (solid) has the same response in both dimensions.
band-pass filter of the Sobel filters has a steeper rise at low frequencies and falls off for high frequencies.
The Sobel X and Y filters are fairly insensitive to noise because they are low-pass filters in one dimen-
sion. This means that the filters will not respond to the high frequency signals (such as noise) at half the
sample rate. Because the low-pass filter operates perpendicularly to the high-pass filter, the output of the

filter will be large only if the edge exists over several pixels, as opposed to the omni- directional filters

which have maximum output for an isolated point.

When using the Sobel X and Y filters, the edge map is obtained by taking the square root of the
sum of the squares of the Sobel filters which approximates the magnitude of the gradient at that point.
Commonly the sum of absolute values is performed instead of the square root of sum of squares to sim-

plify the computations.

The remaining four filters (3e - 3h) are from a set of eight compass gradient filters [15]. Each filter

produces its maximum output when an edge occurs in the same orientation as the filter impulse response

20

(there is one filter for every multiple of 45d). In this way, the direction in addition to the magnitude of an
edge can be determined. This is useful in schemes that use relaxation as well as the magnitude and direc-
tion of edges to determine whether marginal edges should be rejected or not [21]. Essentially, in each
pass of the algorithm, for each point in the image, the confidence of that point being an edge point is
modified. The confidence in the previous iteration and the direction of nearby edge points and the
confidence that neighboring points are edge points are all used to modify the confidence that the current
point is an edge point. This procedure continues until a steady-state solution is reached. For example, if
 the current point has a low confidence of being on an edge (the magnitude of the high-pass filter output is
small), but adjacent points have similar edge directions and high confidence values, the confidence that

the current point is an edge will be increased.

To achieve better immunity to noise it may be necessary to use longer filter lengths and more com-
plex filtering schemes. One suggestion [16] is not to use a single filter but many filters of different
lengths. An appropriate algorithm is used to correlate the filter outputs to better reject noise and find
edges that shorter impulse response filters can not. Others have suggested the use of "best fit" algorithms

[17] to achieve noise immunity.

2.6.2 Non-Linear Edge Extraction Filters

A non-linear edge extraction filter that is based upon sorting, like the median filter, is the maximum
difference operator. It finds the maximum difference of pixel values in a region and has high-pass
characteristics. Although this filter will produce a maximum output for pulse noise, it responds better to
edges (produces a higher output at human determined edges) than the Laplacian filter so that the noise
performance is better than the Laplacian filter. In fact, subjectively, it appears to perform very similarly

to the Sobel filter.

There are several advantages of the maximum-difference filter in implementation. The arithmetic
units need only be as wide as the data words to retain full precision. Further, comparators are the basic
computational elements which are more compact than multiplying adders. Unlike the median filter, the
separable maximum difference is identical to the true two-dimensional maximum difference so that no

concessions are made by reducing the number of comparators used to implement a separable filter.

21

Further, the maximum and minimum can be computed with only 4(n—1) comparators compared to n*

multiplying accumulators need for a nxn convolution, -

A comparison of the operation of edge extractors based upon the Laplacian, Sobel, maximum
difference and compass gradient filters is shown in figure 10. Figure 10a is the edge map after Laplacian
edge extraction. Note the false edges due to noise and the weak real edges. The Sobel edge map (figure
10 b) has many fewer false edges and much stronger real edges. The edge map generated by the max-
imum difference operator (figure 10c) looks similar to the Sobel edge map except there are slightly more
false edges. Finally, the compass gradient edge map (computed by thresholding the sum of the magni-
tudes of the north and east operators) is shown in figure 10d. It appears to a have fewer false edges than

the Sobel edge map and also fewer real edge points.

2.7 EDGE ENHANCEMENT

Edge enhancement is similar to edge extraction in that processing is done to make the edges more
obvious. However, edge enhancement is only concerned with improving the subjective quality of a
image for a human observer. Filters similar to those used in edge extraction can be used for edge
enhancement. By adding the high-pass output of the Laplacian filters back to the original, the edges are
made more prominent. By varying the amount of high-pass signal that is added to the original, the
amount of edge enhancement can be varied.

!
2.3 BINARY TRANSFOilMATIONS

Just as filters are utilized to perform transformations on grey level images, they are also used to

transform binary images. The most common operations that are performed are dilation and erosion.

Dilation is the expansion of the foreground and is comparable to low-pass filtering in that fine
image detail is lost. There are many uses of dilation [18,19] including: edge joining, bandwidth reduc-
tion, closing and opening. In our image recognition system, dilation is used to connect broken edges in
the edge maps because the contour tracer needs continuous contours. Further, dilation is employed to

reduce the bandwidth of the binary image to allow down-sampling without aliasing.

22

The dilation operator can be thought of as an FIR filter that operates on 1-bit input images with 1-
bit impulse responses and produces 1-bit output images. If both the input data and coefficients are single
bit, the multiplication of the convolution equation becomes an AND operation. If the sum is saturated to

a single bit, the sum can be replaced by an OR operation.

Therefore the difference equation for dilation is:

8xy = gﬁ(hn,m AND fx—n,y—m)
'Because all of the coefficients are of the same sign (0 or 1), the filter is basically low pass. Just as

in muld-bit filters, the longer the mask or "impulse response”, the less detail gets through.

Erosion is the expansion of the background and can be found by inverting the input image, dilating

and inverting the output image.

Closing is performed by first dilating then eroding, while opening is performed by eroding fol-
lowed by dilating. Closing fills in all portions of the image that are not large enough to hold the mask.

Opening only leaves regions that are large enough to hold the mask.

The operation of dilation is illustrated in figure 11. Figure 11a shows the edge map without dila-
tion. Note that many edges have small breaks in them. In figure 11b the edge map has been dilated by 1
pixel (mask shown in figure 5). The small gaps have been closed in. After 3 pixel dilation (figure 11c),

the edges are all well defined but fine details have been lost.

‘
i

(@ V)

Figure 5. Masks for 1 pixel dilation (a) and 3 pixel dilation (b)

processing examples

Figure 6. Thresholded Gray-Level Image

23

24

processing examples

Figure 7b. Edges Extracted, Small Image

25

processing examples

1w
7

S
il ..\.v‘....
41

VETY

¥ e
L,.EM‘_
ok

> Mf"g
¥

2,
W,
A,

&

%

1

i

2
gl
N%&f

- ...__wu. S LT
S fo Gl Wrmmw.«wm il

Figure 8b. Edges Extracted, Histogram Equalized Image

26

processing examples

Figure 9b. Edges Extracted, Gaussian Noise and no Noise Filter

27

processing examples

Figure 9d. Edges Extracted, Gaussian Noise and Median Noise Filter

28

processing examples

Iter (bottom)

ise Fi

ian No

Iter (top), Med

th Pulse Noise, No F

Figure 9e,f. Edges Extracted w

29

processing examples

|}
-
W

r v 3
e
3

n

]

f
wlli

d Linear Noise Filter

IS¢ an

th Pulse Noi

9g. Edges Extracted w

igure

F

Figure 10a. Edges Extracted, Laplacian Filter

30

processing examples

Figure 10c. Edges Extracted, Maximum-Difference Filter

31

processing examples

Figure 10d. Edges Extracted, Compass Gradient Filter

32

processing examples

e)
2D W Y P
= ke

Figure 11 a-c. Edges Expanded by 0 (top), 1 (center) and 3 (bottom)

33

2.9 REFERENCES

[1] Gonzalez R. C., Wintz P. W., Digital Image Processing, Addison-Wesley, Reading, Mass., pp. 118-

119.

[2] Prewitt J. M. S., Mendelsohn M. L., "The Analysis of Cell Images,” Ann. N. Y. Acad. Sci., 128,

1966, pp. 259-267.

[1] Gonzalez R. C., Wintz P. W, Digital Image Processing, Addison-Wesley, Reading, Mass., pp. 115-

117.

[4] Andrews H. C,, et. al., "Image Processing by Digital Computer,” IEEE Spectrum, 9, 7, July 1972,
20-32.

(51 Hall E. L, "Almost Uniform Distribution for Computer Image Enhancement,”

IEEE Trans. Computers, C-23, 2, Feb. 1974, 207-208.

[6] Oppenheim A. V., Schafer R. W., Stockham T. G., Jr., "Nonlinear Filtering of Multiplied and Con-

volved Signals,"” Proc. IEEE, 56, 8, Aug. 1968, 1264-1291.
(71 Prat W. K., Digital Image Processing, John Wiley & Sons, 1978, pp. 320-323, 479-485.
(8] Pratt W. K., Digital Image Processing, John Wiley & Sons, 1978, pp. 320-323.

[91 Graham R. E., "Snow-Removal: A Noise-Stripping Process for Picture Signals,"

IRE Trans. Inf. Theory, IT-8, 1, Feb. 1962, 129-144,
[10] Tukey J. W., Exploratory Data Analysis, Addison-Wesley, Reading, Mass. 1971.

[11] Healy G., Sanz J. L. C., "CONTAM: An Edge-Based Approach to Segmenting Images with Irregular

Objects,” IBM Research Report; Jan. 1985.
[12] Pratt W. K., Digital Image Processing , John Wiley & Sons, 1978, pp. 482.
[13] Pratt W. K., Digital Image Processing, John Wiley & Sons, 1978, pp. 495-499.
[14] DudaR. O., Hart P. E., Pattern Classification and Scene Analysis, Wiley, New York, 1973.

[15] Prewitt J. M. S., "Object Enhancement and Extraction," Picture Processing and Psychopictorics,

Academic Press, New York, 1970.

34

[16] Rosenfeld, "A Nonlinear Edge Detection Technique," Proc. IEEE Letters, 58, 5, May 1970, 814-

816.

[17] Nalwa, V. S., "On Detecting Edges,” Proc. Image Understanding Workshop, Oct. 1984, pp. 157-

164.

(18] Mandeville J. R., "Novel Method for Analysis of Printed Circuit Images,”

IBM Journal of Research and Development, Jan. 1985, pp. 73-86.

[19] McCubbrey, D. L., Lougheed, R. M., "Morphological Image Analysis Using a Raster Pipeline Pro-
cessor,” Computer Architecture for Pattern Analysis and Image Database Management, Nov.

1985, pp. 444-451.
[20) Praw W. K., Digital Image Processing , John Wiley & Sons, 1978, pp- 502-503.

(21] Ballard, D. H., Brown, C. M., Computer Vision, Prentice Hall, 1982, pp. 85-88.

35

CHAPTERIII IMAGE RECOGNITION TECHNIQUES

3.1 INTRODUCTION

There is, at present, considerable effort going on in the field of image recognition and scene
analysis [6-11]. At one end of the spectrum there is the general image recognition efforts in which few
assumptions are utilized about the images of interest and the scenes which contain them. On the other
. end are the more practically oriented schemes which make use of known information to simplify the
problem. As more specific information regarding the images is used, the recognition system becomes
less general. However, the computational requirements should decrease and the performance of the sys-

tem should improve as the range of applications is restricted.

An image recognition system was developed to recognize a class of images. Currently, the class is
restricted to 2 dimensional objects which are characterized by their closed outer contours. - This may
seem to be a severe restriction, but often the images of interest are located in a known plane in space. In
industrial assembly lines, some parts are transported on conveyer belts which are in a plane. Robots
could use the recognition results to sort parts by type or remove defective parts in an inspection system.
By restricting the class of images that can be recognized to those that are characterized by closed con-
tours, some types of problems can not be solved. For example, inspecting some characteristic of a part

that is inside the outer contour is not possible with this recognition system.

To make the recognition process more general, the decision should be insensitive to the rotation,
size and the absolute position of the object. In some systems, insensitivity to rotation and or size may not
be required and actually may be undesirable . For example in an assembly line application, if the camera
remains at a fixed distance from the image plane, the size invariance would not be needed since the same

object will always appear to be the same size. Size invariance would be undesirable if it is desired to

36

recognize two objects with the same shape but different sizes. For these cases, it is often possible to util-

ize more information and improve the performance of the recognizer with some reduction in the general-

ity of the system.

In addition to the identity of the object, it is interesting to know the position, orientation and size of
the object. This information makes it possible to perform some action on the object after it has been

identified. The principle axis of the object may also be of interest if a robot "hand" is to pick up the

object.
O D digitized imags dacision

video processar
@

2Dimgs DIz 24 1mago cozmar 1-Dcarv 0-D et pezem docisica

10 Mz, 8 bit 10 Mha, 3 bit tracer 3000 bivixme 150 biu/framo macher
()

taise LINTO HIGH-PASS —'—
—_— EXPANSION [——————t
ecdction LoG FILTER

()

Figure 1. The Image Recognition System

The basic set-up is illustrated in figure 1a. The real-time video image from a camera is digitized
and sent to the image processing hardware. The processing hardware generates a fpw rate decision and a

description of the location of the object which can be used by the outside world.

Some of the techniques that are available for performing this type of image recognition and the sys-

tems that are needed to generate the desired features will be discussed in this chapter.

3.2 RAW DATA TO BE UTILIZED

A contour tracer is the primary source of information for the recognizer to work with. The tracer
follows along the outside edge of the image and outputs the curvature of the contour at every pixel. The
absolute coordinates and the direction between pixels are also available. The curvature was chosen as the

primary output signal because it can be represented in 3 bits (the coordinates require 14 bits) and the cur-

37

vature is invariant with respect to translation, rotation and size of the image if it is scaled and shifted
appropriately. It is important to note that the contour tracer does not discard any information about the
contour. From the curvature signal and initial conditions on the position and the direction, the entire con-
tour can be unambiguously reconstructed. This allows many different recognition schemes to utilize the
tracer output, because no assumptions regarding the use of the data has been built into the tracer except

that only the object’s outer boundary is of significance.

The curvature computed is really the discrete curvature. The continuous curvature and the discrete
curvature are defined below. ¢(s) is the angle of the tangent at each point on the continuous contour and

$(n) is the angle between adjacent points on the discrete contour.

curvature (s) = ﬁz(%)- where ¢(s)= m“(%)

and the contour is represented by (x(s),y(s))

discrete curvature(n)= A% where $(n) = tan™\(2; E:)2)

and the contour is represented by the sequence, (x(n),y(n))
Ax(n)=x(n)-x(n-1), Ay(n) =y(n)-y(n-1), An = n~(n-1)=1

The curvature basically indicates how fast the contour is changing. Near sharp corners, the curva-
ture has a large value while the curvature is zero for straight lines. With the continuous curvature, the
problem a.rises that it is unbounded at discrete corners, for example, the comers of a square. The discrete
curvature is always bounded because An is always 1. By matching the curvature signals, one is essen-
tially matching the "corners" or abrupt changes in the contour. Intuitively, this seems to be good thing,

since the human visual systems seems to utilize the corners of an image to a large extent.
There is one fundamental problem with using the discrete curvature. Because Ax and Ay can only
have the values -1,0 or 1, ¢ will always be n-% (only 8 distinct values) and the curvature will effectively

be quantized to only three bits. Another way to see this is that each pixel has only 8 adjacent neighbors

and hence ¢ and the curvature can only have 8 distinct values.

The three bit quantization of the curvature results in a very low SNR which can be seen in figure 2a
which shows the raw curvature signal for a 5 pointed star. This is the signal from which the entire con-

tour can be reconstructed. The background quantization noise is evident and a few small spikes can be

38

seen which correspond to the sharp comers of the star. The effect of filtering on the curvature signal can
be seen in figures 2b-d. The simple filters used in figures 2b-d are given in table 1. As the filter cutoff
frequency is reduced (from figure 2b to 2d), the quantization noise and fine features in the curvature sig-
nal disappear while the major features in the curvature signal, that is, the 5 points and S corners between
points, remain.

To get useful information from the curvature signal other than the actual (X,Y) coordinates of the
contour, some low-pass filtering appears to be necessary. Actually, the coordinates are obtained by
integrating the curvature twice (i.e. low-pass filtering). The problem with filtering the curvature signal is
that the filtered curvature varies with image scaling and size invariance is lost. The spectrum of the cur-
vature signal spreads as the image is compressed according to the relationship:

if curv(n) - H(w)
1y

f°f
As the image is scaled down, features will be filtered out that would pass through the low-pass

then curv(fa) —» —H (=)
filter when the image is larger. To solve this problem, either the filter must be adapted to the image size
or the image must always be large enough to ensure that important features will not be filtered out while

the quantization noise will be attenuated sufficiently. Basically, it is required that the image be oversam-

pled to make it possible to obtain a larger SNR than that obtained by the original quantization.

figure H(z) ‘
2z

2b n=0

2¢c

2d

Table 1. Filter Transfer Functions used in Figures 2b-d

0.

24

0

50

40]

30

20

104

04

.10

=20

=304

-40.]

-50.]

-60

T
20

T R ST TR ¥ R -] TR BB AT P i I SRR
40 60 80 100 120 140 160 180 200 220 240 260
Figure 2a. Original Curvature for 5 Pointed Star

0

TT T T

20

LS NSLA NLNLINLIN JHLANE NN I S S N B B LRSI LI I, |

40 60 80 100 120 140 160 180 200 220 240 260
Figure 2b. Filtered Curvature for 5 Pointed Star

39

40

35004

1000

-1000
-1500
-20001

30003
35003
4000
4500
50001

UL B LAt L e

0

20 40 60 80 100 120 140 160 180 200 220 240 260
Figure 2c. Filtered Curvature for 5 Pointed Star

\

0

URMEPURES S UL NS D DL R DAL AL
20 40 60 80 100 120 140 160 180 200 220 240 260
Figure 2d. Filtered Curvature for 5 Pointed Star

41

3.3 THE SYSTEM

The complete recognition system is shown in figure 1. Figure 1b shows a high level representation
of the system. The 10 Mhz video is processed by the 2-D image processor which outputs an edge map
image ready for contour tracing. The contour tracer reduces the number of bits required to represent the
image by generating the curvature signal. The feature extractor computes several features for a feature-

based recognizer.

The 2-D image processor is shown in more detail in figure 1c. The 8-bit 10 MHz video signal is
first processed by a noise filter to reduce the number of false edge points generated by noise. Currently, a
median filter is used to reduce the noise. The "cleaned” video signal is then passed through a point-wise
linear to logarithmic converter to reduce the sensitivity to illumination variations. The output of the log
converter is high-pass filtered to enhance the edges. A Sobel filter is used with a sum of absolute values
being performed instead of the square root of the sum of squares. The high-pass video image is then
thresholded to generate the 1-bit edge map. The edge map is dilated or expanded by logical convolution
to join broken contours and to reduce the bandwidth of the signal before down-sampling in the contour

tracer. All blocks in the 2-D processor generate a 2-D raster representation of an image from an input 2-D

raster representation,

Currently, all of the processing blocks in figure 1 (except the pattern matcher) have been imple-
mented with custom chips. The pattern matching is being performed on a SUN work station. It would be
possible to either develop a custom chip to perform this task or to use a fast general purpose signal pro-
cessor. At present, very little processing is performed by the SUN and hence it does not significantly

slow down the recognition process.

3.4 RECOGNITION FEATURES

There are many different ways to discriminate objects based upon the basic information that is out-
put by the contour tracer. Basic features include Fourier descriptors [1], invariant moments[2] and the
curvature signal itself. There are several other features that can be computed from the curvature of an

object.

42

3.4.1 Fourier Descriptors

To generate the Fourier descriptors, the set of (X,Y) points of the contour is parameterized by a
single variable. A complex sequence, z,, is generated from the (X,Y) pair by setting z, =X, +jY,. The
positions on the contour represented in this way are a complex-valued periodic sequence of a single
parameter. The DFT of z, can be obtained but the resulting DFT coefficients are not invariant with
respect to translation, rotation and size. The DC term represents the position of the center of mass and
can be neglected for recognition. If the image is rotated a phase shift appears in all terms that must be

removed. Scaling of the image results in a scaling of the Fourier coefficients.

Different ways for normalizing the Fourier coefficients have been suggested from simply normaliz-
ing the magnitude of each coefficient by the magnitude of the first harmonic [3] to more complicated nor-
malization schemes. In the first scheme, the normalized coefficients are invariant to translation, rotation
and scaling because the term with absolute position information is discarded, the phase information
which contains rotational information is also discarded and the rest of the coefficients are normalized to
remove scaling information. Granlund [1] suggests a more complicated normalization technique which is
supposed to retain more "significant” information regarding the shape of the image.

Tests have shown that the first 8 normalized coefficients are sufficient for recognizing several dif-
ferent images but more coefficients may be needed to distinguish objects that are very similar, A stan-
dard FFT should not be used because the number of points will, in general, not be a power of two.
Further, it is not necessary to compute all DFT coefficients. If only 8 normalized coefficients are needed,
approximately 19 coefficients must be computed. The extra coefficients represent the terms used to nor-
malize the final 8 coefficients and the negative frequency terms which are not the complex conjugate of

the positive frequency terms.

The DFT computation requires approximately 2Nm complex multiply adds for input signals with
N points and m normalized Fourier coefficients. The matching requires very few operations since only

m (typically 8) numbers must be compared for each image.

43

3.4.2 Invariant Moments

Invariant moments have been used to characterize objects. The basic technique is to compute some

number of moments for the object where the p,q"* moment is defined by:

M, , =§‘:§xpyqfw
where f, , is 1 if the point (x,y) is inside the object and O otherwise. As with the Fourier descriptors,
these basic moments are not invariant with respect to translation, size or rotation. By normalizing the
computed moments, a set of invariant moments is obtained. For example, invariance to translation can be
obtained by replacing x? with (x—x” and y? with (y—y)? in the equation above. Again, it has been

found that only a few moments are necessary to distinguish several objects.

3.4.3 Curvature Signal

The curvature can be matched directly to previously measured curvature signals for the template
images if the sequences are scaled and shifted with respect to each other. Spatial scaling, making the
sequences the same length, removes the effects of size variations and shifting accounts for a possible
relative rotation. These one dimensional signals can in principle be treated just like speech signals and

matched similarly [4].

When matching the curvature signals directly, the two signals must first be made the same length.
When scaling, the choice must be made whether to simply decimate the longer length signal or interpo-
late the the shorter length signal or to use a dynamic time warp algorithm. Once the two signals are the
same length, the difference between the two can be computed at each point and the square of the error
accumulated. This accumulated error is called the score and must be computed for every possible align-
ment. The lowest score among the different orientations is taken to be the score between the signals.
The process is then repeated for each test image. The current image is assumed to be the same as the

template image that produced the lowest score.

If N is the signal length and & is the number of template images, the direct matching technique
requires at most kN 2 subtract-square- accumulates in addition to the operations required for the size nor-

malization and the filtering. This number can be reduced by terminating the matching process if the error

44

for the current alignment exceeds the minimum error computed for a previous alignment.

It can be shown that these operations can be performed in the frequency domain. The total number
of operations can be reduced by using fast transforms to only kNlog (N) if the sequences can be made to
have lengths that are powers of two. Matching the auto-correlation coefficients instead of the full curva-
ture has also been suggested. This would reduce the total number of computations to only N, or ess,
if not all N coefficients are needed in the matching procedure. Both of these techniques would require

additional algorithm development.

3.4.4 Feature based recognition

A very promising recognition technique is based upon features which can be computed as the con-

tour is traced. Currently, three features are being investigated: the ratio of area to perimeter squared [5]
(f;), the sum of positive values of the low-pass filtered curvature signal (FCS), and the variance of the

FCS.

Essentially, % measures the “circularity” of the image. The ratio has a maximum value for a cir-

cle and is zero for a line. The variance of the FCS reflects the "pointyness” of the image. Ideally, a circle
has constant curvature and therefore zero variance of the FCS. For "pointy" objects, such as a multi-
pointed star, the variance of the FCS is large. The sum of positive values of the FCS is a function of how
far the image deviates from a convex shape. For all convex objects, the FCS always has a negative sign
(and sums to a constant) and the sum of positive values is zero. For non-convex shapes the FCS can be

positive at some points. The larger the sum of positive values of the FCS, the more areas of the image

are concave.

Calculations and simulations showed that these features were reasonably distinct for some simple

objects and hence could be used as the basis of a feature-based recognizer.

It is obvious that, in the continuous case, % is invariant with respect to translation and rotation of

the object from the definitions of area and perimeter. Since the area and the perimeter squared have units

of linear dimension squared, scaling does not effect the ratio. This can be shown more rigorously by the

45

examining the definitions of area and perimeter in polar coordinates:

P =[r(6)do
A= J'%r 20)d0
if the object is scaled by k (such that r,.(8) = kr ,(6)):

P (k) = [r(0)d0 = fkr 1(8)d0 = kP (1)
Ak)= f—;-n?(e)de = J’%kzr $(0)d0=k?A(1)
then:
Ak) _ k24 (1) _AQ)
P¥k) k?P%1) PY1)

The continuous curvature signal will not vary with the rotation of the object except for a shift in the

curvature. Therefore, ideally, the sum of positive values and the variance of the FCS will be invariant

with respect to the object orientation.

Features based on the FCS are not invariant with respect to the object size. The problem can be
seen by looking at two types of contours, one with continuous slope or bounded curvature (e.g. an ellipse)
and one with discrete changes of slope or unbounded curvature (e.g. a square). It can be shown that the
variance of the curvature for the first and second cases varies differently as the size is varied. If the con-

tour is represented by r, = kr(0), where k is a spatial scaling factor, then for the continuous curvature

1
case, 62, (k) = k—zca’w(l).

This relationship can be established by noting that the curvature in polar coordinates is given by:

2
dr; d*n,
2
'**2[4_(5}_"‘797 :
3 =Icurv(l)

gl

1
then Ol (k)= Fﬁfm(l)

curv(k)=

For the discrete curvature case, the curvature as a function of the scaling factor k¥ and the position

on the contour, 7, is:

!
curvy(k) = 3, a:8(n—kn;)
i=0

46

and the variance is defined as:

Olure (k) = Ep[curv Xk)1-Ecurv, (k)]
where the estimate of the expected value of curv? is given by:

E,[curv2(k)] = P(k) z curvi(k) = Id’_(l)z Za 25(n—kn;)

a=0 i=0

a
kP(l)za‘ u§08(n —kn;) = kP(l)za' =

similarly, the estimate of the mean of the curvature is:

EXcurv,(k)) = li a; 2=L
n n k‘.ﬂ L kz

so, the estimate of the variance is:

ko, (k)=a-2
k
The difference between the two cases can be explained qualitatively. In the first case, the variance

of curvature decreases as the image is scaled up because the curvature itself decreases in magnitude by

%. In the second case, the curvature does not change in magnitude, but the contour is longer and hence

the variance only decreases by % If it is assumed that the image is dominated by sharp corners and the .

values of a or k are sufficiently large, then the value ka2, (k) should be reasonably insensitive with

respect to size variation.

Although 62, is not invariant with respect to the object size, the feature is not totally useless.
Because the relative size of the object can be easily determined, by computing the area or perimeter,
features which vary with object size can be measured and stored for various object sizes. When recog-
nizing, the size of the object can then be used to choose the most appropriate feature value for com-
parison from the set of stored values. This is not easily extended to the use of features that are not rota-
tionally invariant, because there is no simple way of measuring the object orientation to choose the most

appropriate feature value.

Although it is possible to use features that vary strongly with object size, it is convenient to use

features which vary as little as possible. If the features do not vary greatly, it is possible to store only a

47
few values of the feature for different sizes and interpolate between the stored values.

3.5 REFERENCES

(1] Granlund G. H., "Fourier Preprocessing for Hand Print Character Recognition”, IEEE Tans. Comput,

vol. C-21, pp. 195-201, Feb. 1972,

[2] Hu M-K, "Visual Pattern Recognition by Moment Invariants”", IRE Trans. Iform. Theory, vol IT-8,

pp. 179-187, 1962.
[3] Gonzalez R. C., Wintz P., Digital Image Processing , Addison-Wesley, pp. 352, 1977.

[4] Kavaler R, et. al,, "A Dynamic Time Warp IC for a One Thousand Word Recognition System",

Proc. ICASSP, Vol. 2, pp. 25B.6.1-25B.6.4, Mar. 1984.
[5] Pratt W. K., Digital Image Processing, John Wiley and Sons, pp. 526, 1978.

[6] Petajan, E. D., " Automatic Lipreading to Enhance Speech Recognition,” Proc. CVPR 85, June 1985,
pp. 40-47.

[7] Skolnick, M. M., "Automatic Comparison of 2-D Electrophoretic Gels,” Proc. CVPR 85, June 1985,
pp. 48-54.

(8] Magee, M., "A Rule Based System for Pattern Recognition that Exploits Topological Constraints,"

Proc. CVPR 85, June 1985, pp. 62-67.

[91 Weymouth, T. E., et al, "Rule-Bases Strategies for Image Interpretation,”

Proc. Image Understanding Workshop , June 1983, pp. 193-202.

(10] Ketonen, J., "Deducing Facts about Scenes from Images,” Proc. Image Understanding Workshop,

June 1983, pp. 182-183.

(11 Barnard, S. T., et al, "Three-Dimensional Shape from Lire Drawings,"

Proc. Image Understanding Workshop , June 1983, pp. 282-284.

48

CHAPTERIV HARDWARE CHOICES

4.1 INTRODUCTION

Image processing algorithms have been implemented in many different types of hardware. These
include: large arrays of processors (e.g. MPP [1,10], CLIP [2]), data-flow processors (e.g. ImPP [3]),
pyramid connections of processors (e.g. NON-VON [4]), processors built from very high speed general
purpose components and custom image processors that have architectures designed for a particular image
processing algorithm. Within these broad groups is still the choice as to whether the data is processed in
a bit-serial or bit-parallel manner. The choice of a particular type of hardware is dependent upon system
tradeoffs, including: programming ease, cost, size, and expandability. To achieve real-time performance
in a small area we have designed dedicated image processors with bit-parallel arithmetic (when the data
is n bits wide then we use a n bit wide data path). With this choice, we can guarantee that all hardware
elements are fully utilized and no excess hardware is included. However, the circuit design time (over all

applications) is probably greater for the custom chips than for the aﬁays of identical processors.
4.2 MAJOR ISSUES

4.2.1 System Cost

Normally it is desired to minimize the "cost" of a particular system. The problem is that there are
many types of costs. For example there is the development cost, which includes the cost of designing any
ICs or other components which go into the system. There are also costs in building and operating the
system. These include, materials (chips, boards, etc), power, maintenance and labor, which increases as
the number of components in the system increases. Building compact, high performance processors

minimizes the cost of building and operating the system while increasing the development cost. On the

49

other hand, large arrays of similar processors may decrease the development cost by increasing the other
costs. If the development time of compact processors can be reduced, a lower total cost may be achiev-
able. We have developed a design methodology which reduces the design time by re-using hardware in a

hierarchical way and utilizing CAD tools to quickly assemble the remaining hardware.

4.2.2 Processors Constructed from High Speed MSI Components

One of the most common approaches to implementing image processing algorithms in hardware is
to use fast bipolar adders and multipliers that are assembled at the system level from discrete chips.
These systems usually have a very high cost because the components are expensive and require a large
board area and consume a great deal of power (most of the fast adders and multipliers are bipolar cir-
cuits). Because the components are general purpose, pipelining (and hence lower power circuits) often
can not be employed even when it is allowed by the algorithms. Further, little or no parallelism is

obtained within each chip so many chips must be used to increase the system throughput.

Systems built with these components would not be suitable for high volume products which require
low power consumption and small system size. They are most useful for low-volume programmable
development systems that need higher processing speeds than those commonly found in general purpose

computers.

4.23 Problems with General Purpose Image Processors

The problem with using general purpose processors, including arrays of similar (possibly systolic
[9)) processors, data-flow machines and pyramid processors is that in general the hardware is not fully
utilized and there is excess hardware overhead in the processor. The hardware will be under-utilized if
some processing elements are inactive because data is not available due to /O bandwidth problems
and/or inadequate inter-processor communication or because the algorithm can simply be performed with
fewer processors. Excess hardware includes control, computational and/or storage elements that are not
inherently necessary for performing the algorithm. Processors which try to span a wide range of diverse
applications will have to include all hardware that is necessary for any of the appliéations. Inevitablely,

some of this hardware will not be needed for some algorithms. For example, a general purpose processor

50

may include an ALU that can perform multiplications, additions and logical operations. If only power of
two multiplications are required, a fully parallel multiplier would be.excess hardware. If only AND and
OR operations were needed (as is the case in a class of image processing algorithms [chapter 2, 18 and
19]), the adder-multiplier section would be useless. Because of these problems, solutions using these
types of processors typically require much more hardware for a given application than a solution utilizing
custom circuits. If more hardware is used than is needed, the system cost will increase due to greater
space and power demands. Further, because the hardware of these "general purpose” processors is fixed,
the algorithm will often require more time or hardware for execution than it would in a custom architec-

ture that is better suited to the particular application.

This problem is much more severe for image processing (with a sample rate that is comparable to
the circuit clock rate) than for audio signal processing. For the audio case, general purpose processors
are available that can perform a wide range of tasks on a single chip (e.g. TMS 320). The reason for this
is that most audio signal processing algorithms are based upon a few standard operations (multiplication
and addition) and the circuit clock rate is typically several orders of magnitude greater than the sample
rate. Therefore, a single fast processor with a RAM, adder and multiplier can be designed in which the
hardware can be almost fully utilized and ﬁtﬁe excess hardware is included. Because there are many

clock cycles per sample (typically) under utilized processors do not add to the system cost as long as the

_clock rate

algorithm does not require more cycles for execution than
sample rate

. In addition, any excess
hardware only occurs once.

For most image-processing algorithms, a great deal of parallelism in the hardware is required to
achieve real-time operation. The optimum inter-connection of these processors is dependent upon the
particular algorithm being implemented. The opemﬁons performed by the processor also vary from algo-
rithm to algorithm. For this case, any excess hardware and under utilized processors caused by poor
inter-processor communication both add significantly to the total hardware costs of the system. The
excess hardware of the processor is now multiplied by the number of processors (as noted, some suggest
the use of 32K processors). Under utilized processors increase the over all hardware cost by increasing

the total number of processors required to increase the throughput of the less efficient processors.

51

Of course, there is one major difference between most of the general image processors and the cus-
tom processors. The general processors can usually be programmed to handle a wider range of tasks
while the custom processors perform a limited class of applications. This may be a desirable feature for
algorithm development, but in an actual system where cost is important and the algorithms are fixed, a
few custom chips which have been optimized for a particular class of algorithms may be preferable to
many boards full of general purpose chips. In addition, it is important to note that the general purpose
chips were designed to execute a class of algorithms. For algorithms outside of this class of anticipated

algorithms, the performance of the general purpose hardware may decrease dramatically.

4.2.4 Bit Serial Vs. Bit Parallel

For any of the general classes of hardware discussed, it is possible to implement the arithmetic
units in a bit.-sexial or bit-parallel manner. Many of the large processing arrays (MPP, CLIP) use bit-
serial techniques. It is thought that since a very large array of processors is being created it is important
to make each processor as small as possible. However, bit-serial arithmetic units are inherently less
efficient in the utilization of silicon area than bit-parallel units when the sample rate and clock rate are the
same (or nearly so0). This is a result of the fact that state of the system must be stored in either case. For
example, in an accumulator, the entire data word must be stored. In the bit serial case, there will be one
bit of adder for every N (the word width) bits of storage, while in the bit-parallel case there will be N bits
of adder for N bits of storage. In the bit-serial scheme there must be N times as many processors to
maintain the same throughput. Under this condition, the number of single bit adder cells will be the same
for both cases but the bit-serial hardware will have N' times the number of storage cells. Bit-serial pro-
cessors also have the disadvantage that the parallel input pixel values must be converted to serial and the
serial processor outputs must be converted to parallel. It seems that the goal of these processing arrays is

to achieve a high degree of parallelism and bit-parallel arithmetic would be one way to achieve greater

parallelism.

These ideas are illustrated in figures 1 and 2. Figure 1 shows a bit-serial accumulator with one
adder bit and an N -bit shift register (the accumulator). In figure 2 a bit-parallel accumulator is shown.

Now the N-bit shift register has been replaced by an N -bit parallel register and the single adder bit has

52

been replaced by a bit-parallel adder. If a system with N bit-serial processors is used to achieve the same
throughput as the bit-parallel processor, the bit-serial system will have over N2 bits of storage compared

to N bits of storage for the bit-parallel system.

Reg

N bit Shift Register
bit serial in : cout bit serial out
—————— L

I

B out
1-bit adder -

Figure 1. Bit-Serial Accumulator

W ;

L froon ..

Mo ..

out Z * >
————MB cin

T

]
I_’A cout K
out Z >
cin

o
(o]
t
L
A cout a1
out Z >
——B cin

Figure 2. Bit-Parallel Accumulator

For audio band processing, this problem does not exist because the sample rate is much lower than

the clock rate and only one adder bit needs to be included for each addition in the algorithm. The total

53

number of storage bits would be roughly the same for both the bit-serial and bit-parallel schemes.

4.3 COMPARISONS OF IMAGE PROCESSOR PERFORMANCE

Some comparisons of estimated execution times for different image processing algorithms on vari-
ous image processors is shown in tables 1 and 2. It should be noted that all of the processors except the
custom processors require external buffers to store the image frame. The relative strengths and

weaknesses of each processor can be explained by examining the architecture of the processors.

processor | #chips | external " function
storage | median | thresh | 3x3 conv | 7x7 log conv
CLIP many yes X 4.5 45.5 174
MPP 2000 yes 28 04 69 24
ImPP 1 yes X 66 3000 15000
RISP 1 yes X 5.1 47.2 257
Kung 1 1 yes N/A N/A 58 N/A
Kung 2 1 yes N/A N/A 33 N/A
custom 1 1 no 33 N/A N/A N/A
custom 2 1 no N/A 33 N/A N/A
custom 3 1 no N/A N/A 33 N/A
custom 4 1 no N/A N/A N/A 33

Table 1. Image Processor Execution Time (in mSec) Comparisons for 512 x 512 Images

processor function
area | perimeter | center of mass | total
| CLIP [40 | 05 | 30 | 360
MPP 0.5 0.5 3.0 4.0
custom 5 & 6 - - - 24.0

Table 2. Image Processor Execution Time (in mSec) Comparisons for 128 x 128 Images

4.3.1 Single Chip General Purpose Processors

The ImPP data-flow machine exemplifies (figure 3) the problems of general purpose processors.
This circuit has a general purpose arithmetic logic unit and a circular pipeline to prevent the system from

becoming memory bound. The programmable controller reads the "tokens” attached to the incoming data

54

and decides if it should be queued for processing or passed through. When all pieces of data for a partic-

ular operation have arrived, the controller sends the data to the arithmetic unit for processing.

output output ut
‘p_ tpu O“lP | ———— Qlleue
contr 'ﬁ queue
data
ALU .
memory
input input link _.funcuon
contr table table

Figure 3. ImPP Processor

To perform these operations a fairly complex controller is required. Because the control circuitry
is large, less room is available for computational elements. The data storage and arithmetic unit (a single
alu and multiplier) occupy only about 35% of the chip area. Further, the multiplier and the adder must
be used in different cycles so that arithmetic operations are only performed at a 5 Mhz rate. A common
image processing task, 3x3 convolution, can be performed with this circuit. In real-time video signals,
the data appears in a known order and the data-flow aspects of the chip are not necessary. What are
needed are arithmetic units to perform at a 10 MHz rate the 9 multiplies and 8 additions (170 Mops/Sec)
that are required to achieve real-time operation. Because resources are put into the control section instead
of the arithmetic section of the chip, this chip takes 3 sec to perform the 3x3 convolution. The custom
processor described in section 7.3 completes a 3x3 convolution in real-time (33 mSec). However, InPP

can be programmed to perform a wide range of tasks.

The two orders of magnitude reduction in throughput is caused partially by the use of a lower exe-
cution rate (5 MHz) for the ImPP (x2 reduction) and only being allowed to perform one arithmetic opera-
tion per cycle instead of 17 (x17 reduction). This only accounts for a throughput reduction by a factor of

34. The remaining degradation in throughput can probably be attributed to the need to fetch coefficients

55

for the multiplication operations from the data RAM and other general operational overhead.

ImPP is also much larger (in normalized units) than the custom processor. The ImPP processor
was implemented in a 1.75 o NMOS processor and was 7 mm on a side. This corresponds to area of 256
mm? when scaled for a4 p technology. The area of the custom processor, fabricated with a 4 | technol-

ogy, is only 42 mm?2,

It is also interesting to note that ImPP can not perform the 7x7 logical convolution faster than 3x3
linear convolution. This is because the bit-parallel architecture does not make it possible to perform sin-
gle bit operations any faster and hence it takes longer to perform the operations on the 49 single-bit
values in a 7x7 region than on the 9 multi-bit values in a 3x3 region. When performing logical convolu-

tion, the entire 16x16 multiplier is basically useless.

Another issue of importance is the time required for circuit development. The ImPP is a very com-
plex (110K transistors) circuit that inevitably required a large development time. Our 3x3 convolver util-
izes information about the convolution algorithm to allow the use a relatively simple array of processors

that could be designed quickly.

The author of a paper describing a general purpose image processor [8] that contains more transis-
tors than ImPP but does not have the complex data flow mechanisms, said that the total development time
for the chip was 50 man years. In comparison, the total development time for our set of eight chips,

including the 3x3 convolver, was only 1.5 man years.

Another single chip processor h;s been recently introduced for Real-time Image Signal Processing
(RISP [S]). It is similar to ImPP except that RISP is not a data-flow processor and achieves a higher
clock rate (cycle time is less than 20 nSec) by using a bipolar technology. In addition, with RISP it is
possible to perform both a multiplication or division and an addition in the same cycle. The RISP proces-
sor (figure 4) has been designed to perform local image processing and stores a local region (5 x 5) of the
image in a set of internal registers. In general, RISP looks very much like general purpose signal proces-
sors. It has a small data RAM (16 words), coefficient RAM (32 words) and a multiplier, accumulator

structure. The processor is micro programmable.

56

video in Local Imago video out
l Register
data RAM
= { e o
[res | | Res |

MULT

output

Figure 4. RISP Processor

It can be seen that this processor out performs the ImPP for the algorithms shown. However, this
processor still can not perform the 3x3 linear convolution or the 7x7 logical convolution in real time.
Althm;gh the circuit gets a speed advantage (approx. x5) over the custom processors by running at a
higher clock rate, it loses this advantage by not having more parallel arithmetic units (x—lzl disadvantage

for 3x3 convolution and x% disadvantage for 7x7 convolution). The overall execution time for 3x3

convolution is about 1.7 times greater than that of the custom chip.

Although these general purpose single chip processors can perform local operations reasonably
well, it is not clear how efficiently they could perform more global operations such as contour tracing,

and the determination of the area, perimeter and center of mass of an object in the image.

4.3.2 General Purpose Array Processors

Arrays (figure 5) of thousands of processors (CLIP, MPP, NON-VON) suffer for similar though

less dramatic reasons. Papers discussing the relative prowess of these machines usually include tables

57

showing orders of magnitude reductions in execution time for certain algorithms compared to a standard
machine such as a VAX. The problem is that the execution time per processor is normally much higher
for the large arrays than for the VAX. This indicates that the value (number of operations performed per
unit time) per processor is much lower because the hardware is not fully utilized or because the architec-
ture is poorly suited to the algorithm. One example, that results in poor processor utilization, is the com-

putation of an image histogram.

Computing the histogram of an image (discussed in chapter II) simply requires the number of
occurrences of each gray level be computed. This can be accomplished by storing the number of
occurrences of each gray level (for typically 256 gray levels) in a RAM. For each pixel the value
representing the previous number of occurrences of that gray level is incremented. This is repeated for
each pixel in the image. It can be seen that only two memory accesses (one read and one write) and one
increment need be performed per pixel. A custom processor consisting of a 256x18 RAM and one adder
(with associated pipeline registers, etc) could perform this task in real time.

The 32K processor NON-VON machine is organized in a tree of planes. Each plane has half as
many processors as the plane below it. The processors can communicate with 4 neighbors in the same
plane. In addition, the processors in one plane can communicate with the parent in the plane above (each

parent has two children).

Each processor has a bit-serial ALU with local RAM, registers and I/O circuitry and has a structure

like that shown in figure 6 (MPP and CLIP also have a very similar structure).
The NON-VON machine barely achieves real-time (for a 128 x 128 image) performance when

computing a histogram, requiring 4400 %. This means that each processor performed on

the average only 1 increment (only required increments are counted) every 4400 uSec. This shows that

the processors are not performing useful operations very often. The 16K processor MPP performed

.. . . . rocessor USec .
much worse requiring 64 times real-time to compute the histogram or 128000 m’:‘tg—. Obvi-

ously, these architectures are not well suited to this algorithm because a simple processor could easily

. rocessor ec . . .
achieve 1%&%%' A square array or pyramid array of processors is not well suited to comput-

58

ing histograms because of the overhead involved in having the individual processors each compute a part

of the result and then combine the partial results.

<« 4—J — e—> «—> —>
<> —> e—> —> O O O <« —
<+« —> «— «—>

Figure 5. Processor Array

vo to/from other processors

Figure6. Processor

These array processors can typically perform local deterministic operations, such as convolution,
fairly efficiently. The arrays are designed to communicate only locally which is sutficient for these algo-

rithms.

59

The CLIP processor has an array of bit-serial processors arranged in a 96x96 array. Each proces-
sor has a limited amount of RAM and can communicate with each of its 8 nearest neighbors. The basic

processor has a very simple arithmetic unit that can only perform logical operations.

The CLIP processor performs reasonably well with logical operations (e.g. logical convolution) but
performs poorly with multi-bit operations. Each processor is not only bit-serial but does not even have a
full adder cell. Therefore, 1-bit additions must be performed over several cycles so that multi-bit addi-
tions are much slower than single-bit operations. It should be noted that the 9.6K processor array per-
forms 3x3 convolution (actually just a 3x3 sum) slower than a single chip implementation (custom 2). In
addition, CLIP computes the area, perimeter and center of mass in more time than a two chip solution
(custom 5 and 6). Although each arithmetic-logical unit should be quite small, each processor still has
substantial /O and storage (as discussed earlier in the comparisons between bit-serial and bit-parallel

processors). Therefore, it appears that this approach results in a large system that performs worse than a

single chip for some common algorithms.

It is interesting to see why an array of nearly 10K processors can not perform a 3x3 convolution in
less time than a custom chip with 9 multiplying accumulators. First, CLIP has clock rate that is one fifth
that of the custom chip. The bit-serial nature of CLIP reduces its throughput by a factor of
N =data word width = 10. Inefficient inter-processor communication reduces throughput by a factor of
2. Finally, because each processor does not have a full adder cell, the throughput is reduced further by a

factor of about 20 (because each single bit addition requires about 20 cycles). Taking all of this into

account, each CLIP processor has an effective throughput of only of that of one custom processor

1
2000
so that the 9.6K processors provide the throughput of only 4.8 custom processors. The custom 3x3 con-
volver has 9 multiplying-accumulator processors and hence has greater processing power for performing

3x3 convolutions than CLIP.

When performing logical operations, CLIP performs better. Because logical operations are single-

bit and do not require a full adder, the use of a bit-serial processor and the lack of a full adder does not

degrade performance. In this case the effective throughput of each processor is only % that of the cus-

60

tom processor. It can be seen from the table that the performance of CLIP compared to the custom pro-

cessor is relatively better for logical than linear convolution.

The MPP was built by Goodyear for NASA. It has 16K processors organized in a plane with 128
processors on a side. Each processor has access to 1 Kbits of RAM also organized in planes (total RAM
is 16 Mbit). The memory planes get data from and send data to the "S" plane. The "S" plane is a buffer
that loads data from (or sends data to) the staging memory and transfers the data in one cycle to or from
the RAM. The staging memory is another buffer which is used to convert data from a format used in the

" Hdst cc;mputer to the plane format (bit serial) for use by the processors. In addition to a VAX 11/780 host

computer, the system has a PDP-11 operating as a control processor.

Each processor contains a bit-serial adder, 6 one-bit registers, a variable length shift registers and

control logic. Each processor can communicate with four neighbors.

MFP performs much better than CLIP and always achieves better throughput than the single chip
solutions. The main reasons for this seem to be that MPP has a higher clock rate and better inter-
processor and frame buffer /O that seems to be able to keep the processors operating a large percentage
of the time. In addition, there is a full adder in each MPP processor. MPP performs relatively worse
when computing the area, perimeter and center of mass, indicating that the architecture is not as well

suited to these types of computations.

MPP does require an enormous amount of hardware to achieve the high computation rate that it
does. Eight MPP processors were put on a single chip, each 6.0x3.3 mm2ina 5 p technology. A com-
plete system is composed of 2000 of these chips which occupy 25300 mm 2 (normalized to a 4 JLprocess).
For this system, the time-size product for 3x3 convolution on 512x512 images is 17.5 Sec mm? not
including data storage and control hardware. For the custom 3x3 convolver chip, the time-size product is
only 1.4 Sec mm? for the entire circuit. MPP also requires large amounts of storage (memory planes, "S"
plane, the staging memory) and auxiliary control processors that were not taken into account in this

measure.

61

4.3.3 What About I/O?

One thing that seems to be universally ignored when discussing these large computing arrays is
where the data comes from and goes to. Presumably, in a real application there must be a source and sink
of data. The amount of time taken to get data into and out of the array and whether this is a significant
part of the total processing time is not discussed. For SIMD (single instruction multiple data streams) pro-
cessors without additional hardware to quickly load all processors in the array with new data, it is likely
that all processors will be ihactive during the time when the data is being loaded into the array and read
out of the array because the entire array will not have valid data. Without at least two complete storage

arrays some frames could not be processed when operating from a standard video signal.

It is not obvious how the array performs when the number of processors in the array is smaller than
the number of pixels in the image because, in this case, it may be necessary to load the image into the
array part by part for processing. In this case, the /O considerations are very important because it does

not matter if the computation time can be reduced to 15 pSec if the loading of data takes 33 mSec .

4.3.4 Special Purpose Computing Arrays

Kung [6,7] has proposed two systolic arrays that perform specific functions such as 3x3 convolu-
tions. The goal is to minimize the amount of excess hardware included in each processor and to keep all
processors fully utilized by designing a processor dedicated to a single algorithm. This is very similar to
the approach that we have chosen except that Kung has decided to keep the constraint of using systolic

arrays.
The first attempt by Kung (Kung 1 in table 1) utilized a bit-serial basic processor (figure 7). A 3x3
array of 9 basic cells along with a row interface to sum the results from each row is used to compute a

3x3 convolution. However, because of the bit serial nature of the processor, the throughput is only %

that of a bit-parallel design. To increase the throughput, Kung suggests adding more (3) 3x3 arrays in
parallel. This circuit was projected to produce only one valid result every 175 nSec. Disadvantages of
this approach include the need for access to 5 lines of video data (for 3x3 convolution), the need for

parallel to serial and serial to parallel converters and the need for many storage bits in the complete pro-

62

input data
e 8-bit Shift Reg H 8-bit Shift Reg H—s

partial result X serial ——1 15-bit Shift Reg —

adder

Figure 7. Bit-Serial Systolic Convolution Cell

cessor array. It can be seen that each processor has 32 bits of storage (registers needed to make the pro-
cessor systolic). To achieve real-time operation, about 54 processors with a total of 1728 bits of storage
(pipeline registers) will be needed. The custom chip has only 9 MACs, each of which has 3 10-bit regis-

ters for a total of 270 storage bits.

comrol ™1 5
1z "
address 3 .
z >
LCoef storage
partial result
N

odd input r 3

Y/

even input Jz_'

Z
7 + 7 —
-1
1
Z
__,l xl
Z

Figure 8. Bit-Parallel Systolic Convolution Cell

The basic processor that Kung proposes for a bit-parallel implementation is shown in figure 8. To

make a kxk convolver out of these processors, k2 basic processors are connected in a linear

63

configuration. A system made up of these processors requires only 2 streams of data for any length
impulse response (with the previous processors, the number of data streams increased with the vertical
length of the impulse response). Further, because he uses a one-dimensional array, the data in the two
streams is required in an order that is different than that obtained by normal raster scanning of an image.
This means that a random access frame buffer that can be read at twice the data rate would be required to

generate the data for the systolic array.

Like the bit-parallel case, the bit-parallel processor has many registers that are required to make the
processor systolic. Kung’s convolver requires 90 registers, 9 adders and 9 multipliers while the custom
circuit needs 27 registers, 12 adders and 9 multipliers. Because the registers are about 1/3 the size of a

full adder, Kung’s design would likely be larger if it were actually built.

4.4 DEDICATED ARCHITECTURES FOR SPACE EFFICIENT PROCESSORS

One way to minimize the amount of hardware needed to perform a particular application is to
design the system and circuit blocks so that each block performs its part of the application in real time.
Instead of ignoring the problem of /O bandwidth, each chip is designed to eliminate the problem by
accepting a standard video stream as input and generating a standard video stream as output. In this way,
the /O requirements do not increase as the amount of processing increases. The blocks can simply be
inserted in the videp stream and generate a modified video stream that can be utilized by the next proces-
sor (figure 9). As more processing functions are required, more blocks are added to the system. One
obvious benefit of all this is that the frame buffers are not needed at all (for all of the other circuits dis-

cussed an external frame buffer or storage device is needed).

TOC out, ideo
[> proc proc proc 000 p put vi

Figure 9. Possible Connection of Real-Time Processors

The net result of having all chips operate in real time is that each processing element must perform

all data buffering for the algorithm that it is executing. It may appear that all that has been done is to

64

move the storage problem from off chip to on chip. This may be somewhat true, but each algorithm may
only need to buffer part of the video image instead of the entire image. In addition, the way in which
data is accessed from the buffer can be exploited to simplify the buffer design. For example, to perform
2-dimensional convolution requires the storage of at least n—1 lines for an nxn convolution. If the archi-
tecture is chosen properly, the data required by processing elements are exactly one video line apart. For
this architecture (different from Kung’s), the storage requirements can be met with n—1 line delays. It
should be noted that as » increases, only the number of line delays increases, not the rate at which data
must be read from the line delays. Although the bandwidth of each line delay does not increase, the

bandwidth of the entire data buffer increases because the number of line delays increased.

This approach works very well for local operations that require limited storage capacity. For more
global operations (e.g. contour tracing), the total amount of required storage is larger. The contour tracer
has to store an entire frame on chip, but the image is only a single bit wide and thus the storage require-
ments are not as severe and a 128x128 buffer could be put on a 44 NMOS chip. With a more advanced

technology, the amount of storage that could be put on one chip could be increased.

Each video processor block is designed with a dedicated architecture that contains only the circuits
that are needed for its particular function or class of functions so that no excess hardware is included. In
essence this means that as many processing elements as are needed to perform the algorithm in real time
are included on the chip, but no more. For example, to perform the histogram operation, which requires
only a RAM and an incrementer, a chip with only a RAM and incrementer would be designed. To ensure
that the hardware is fully utilized, the inter-processor communication is customized to prevent

bottlenecks.

65

4.5 REFERENCES

[1] Reeves A. P., "Parallel Algorithms for Real-Time Image Processing", Multicomputers and Image

Processing, Academic Press, New York, 1982, pp 7-18.

(21 Preston K. Jr, "Cellular Logic Algorithms for Gray-Level Image Processing”,

Multicomputers and Image Processing , Academic Press, New York, 1982, pp 135-148.
[3] Nukiyama T., "A VLSI Image Pipeline Processor", 1984 ISSCC Digest of Technical Papers .

[4] Shaw, D. E., "The NON-VON Supercomputer”, Technical Report, Department of Computer Science,

Columbia University, 1982.

[5] Mori T., "A Micro-Programmable Realtime Image Processor”,

1986 ISSCC Digest of Technical Papers.

6] Kung H T, Song S. W, "A Systolic 2D Convolution Chip",

Multicomputers and Image Processing , Academic Press, New York, 1982, pp 373-384.

[7] Kung H. T., Picard R. L., "One-Dimensional Systolic Arrays for Multidimensional Convolution and

Resampling”, Visi for Pattern Recognition and Image Processing , Springer-Verlag, Berlin, 1984.

[8] Kanuma A, et. al, "A 20MHz 32b CMOS Image Processor”,

1986 ISSCC Digest of Technical Papers, pp. 102-103.

[9] Kung, S. Y., "On Supercomputing with Systolic/Wavefront Array Processors,” Proc. of IEEE, Vol.
72, No. 7, July 1984,

(10] Potter, I. L., editor, The Massively Parallel Processor, The MIT Press, Cambridge Mass., 1985.

66

CHAPTER V DESIGN TECHNIQUES FOR FAST CIRCUIT

DEVELOPMENT

5.1 INTRODUCTION

It has been pointed out that custom processors can achieve a higher throughput in a smaller area
than general purpose processors by using architectures dedicated to particular applications. To avoid
prohibitive design times for these custom circuits, two primary techniques have been employed. First,
the hardware was designed and utilized in a hierarchical manner. Secondly, CAD tools were developed

and used to assemble hardware at one level in the hierarchy from lower level hardware.

The techniques described made it possible to develop a set of eight custom chips in only 1.5 man

years.

5.2 THE HARDWARE HIERARCHY

The hardware hierarchy is four levels deep with hardware at one level of the hierarchy being com-
posed of hardware at lower levels. At the top level of the hierarchy are the image processing systems
such as image recognition, image enhancement, etc. At the next level are chips that Mom basic image
processing algorithms such as convolution and contour tracing. The third level contains macrocells, or
large circuit blocks. The blocks include RAMs, ROMs, arithmetic data paths and controllers. The last

level contains the basic cells, such as: registers, adder cells and ROM cells.

The hardware at each level was designed to be re-used as often as possible in the hardware at the
next higher level. The chips are complete functional blocks such as linear and logical convolvers, look-
up tables, sorting filters and contour tracers that can be used in different image processing systems or to

perform multiple functions within a single system. For example, the 3x3 sorting filter can perform both

67

median filtering for noise rejection and maximum-difference high-pass filtering for edge extraction. The
same macrocells are used in many different chips. There are three major types of macrocells: storage
elements (ROMs, RAMs and line delays), bit-sliced data paths and controllers. Every chip is composed
primarily of these three macrocells. Finally, the same basic cells are used in different macrocells. For
example, the same line delay was used in 3 different chips and the basic arithmetic blocks were used in

the data paths of 5 different chips.

5.3 CAD ISSUES

In addition to re-using hardware as often as possible, CAD tools were used to assemble some of the
hardware at one level in the hierarchy from hardware at a lower level. A data-path generator automati-
cally assembles bit-sliced data paths from basic cells and a module generator is used to create tiled
macrocells from the basic cells. At a higher level, a place and route tool is being developed to assemble

the chips from macrocells.

The worst problems encountered in the layout of the chips are the assembly of blocks with many
details that must be handled individually. These include the assembly of ROMs and PLAs that may have
thousands of cells that must be programmed. Also in this class are data patl;s with complex signal con-
nections. Random circuit routing with many nets is also a job that is often performed inefficiently and
with many errors. The assembly of these circuits is very tedious, time consuming and error prone.
Further, small modifications can mean that the entire circuit block must re-assembled so that the previous

assembly time is wasted.

There are also some circuit assembly problems which are quite easily handled. Regularly tiled
macro-cells and simple data paths can be created quickly and modified easily by hand. For example, a
data path made out of a stack of bit slices (with no additional signal routing) can be created with a single
Kic command. Regular structures such as a RAM array can similarly be created with a single Kic com-

mand. Small data busses can often be routed quickly by hand.

There is also a vast difference in the complexity of the software tools required to perform these

tasks. The module generation problem is the simplest because the entire circuit assembly is solely a func-

68

tion of the cell design. With the basic cell parameters and a description of the way in which the cells are
tiled together, the circuit can be assembled. No optimization or complex algorithms are needed. The
data path generation is of slightly greater complexity because the program must place and route the cells.
However, a simple data path compiler can be developed quickly if complex optimization is not per-
formed. The program should perform the most tedious and error prone parts of the task and let the user
make the higher level decisions. Finally, the most difficult task is the general placement and routing for
the chip assembly. This program requires a fairly complex human interface and data base system. In
addition, the more general nature of the problem makes the development time correspondingly longer as

more general (and robust) algorithms must be developed.

Although it would be desirable to have the entire chip design automated, some tools must be imple-
mented first due to relatively high development costs for some software tools. In light of this, it was
decided to first implement the tools which provide the greatest utility for the lowest cost. Therefore, a
ROM generator was developed first; in actuality it was just adapted from a filter bank generator [1,2].
Modgen [3] , a more general module generator, was developed later to allow the assembly of any tiled
macrocell. The data-path generator was developed when it became apparent that data paths with more
complex signal routing were required and that these new data paths would require too much human effort

to assemble by hand. Finally, the placer and router (FLINT [4]) is currently being developed and is

nearly finished.

Although much of each chip was hand assembled, automating the most time consuming and error
prone aspects of the design reduced the total development time significantly. Even the assembly of a

fairly complex chip from macro cells could be completed in a few days.

5.4 MODULE GENERATION

Because ROMs appear in many circuits and are exceedingly difficult to correctly program by hand,
it became apparent that a ROM generator would be extremely valuable. The program used was simply
taken from the filter bank generator and modified for slightly different input and output registers and row
buffers. The program explicitly specifies the tiling process as a function of the circuit parameters. The

circuit parameters include the number of words, number of column decoders, number of outputs and the

69

binary contents. In addition, programs were written to generate the binary ROM contents for each partic-
ular chip because this was also a tedious task. For the linear convolver, a program determines the micro
code from the desired impulse responses. A program was used to convert an arbitrary point-wise func-
tion into binary ROM contents for look-up-table ROMs. For development of the contour tracer, a pro-
gram generates the FSM contents from a state transition table. Modgen was used to generate the PLAs

and the FSM that were used in the feature extractor.
5.5 DATA-PATH GENERATION

5.5.1 Introduction

The data-path generator was developed to assemble bit-sliced data paths made up of cells accord-
ing to the user’s specified organization. The user specifies the organization in terms of some number of
bit slices (of the same or different types) and the way in which the slices are made of some connection of
basic functional blocks such as adders, registers, etc. All routing between cells is handled automatically.
Data regarding the terminal locations, terminal layers and the cells bounding box size are determined by

the "parse” program and stored in the file, "celldata", that is read by the generator.

Because the data-path generator was developed for the image processing chips it will be discussed
in some detail. The data-path generator was used to generate the data-paths in the sorting filter, the non-
linear low-pass filter, the feature extractor, a histogram chip [5], and the small storage array in the pro-

grammable convolver controller.

5.5.2 Overall Organization

The data path is made up of some number of slices. These slices stack from top to bottom (figure 1)
and data flows from left to right (or vice versa). There are two general classes of slices, those that con-
tain data signals and those that do not. Slices without data signals are typically top or bottom slices that
connect GND, Vdd, and the clocks to the bit slices. Data slices contain blocks which are routed accord-
ing to the user-specified description. In addition, the user can specify the different slices which make up
a data path, It is possible for the user to use as many slice types as are needed. For example, one might

have a top slice (CNT for control), an MSB, EVEN and ODD (for optimized ripple carry adders) and a

70

bottom slice (GND).

SLICEN
SLICE N-1
SLICE N-2
SLICE N-3

o O o O

SLICE3
SLICE2

control SLICE1
signals

data signals

Figure 1. Data Path

Each slice is made up of blocks (figure 2). Typically these are basic building biocks, such as,
adders, shifters, registers, etc. Again, there is no restriction on the number of blocks. The actual imple-
mentations of a block for each slice are called cells. The user simply needs them to be designed and

declared in the "celldesc” file. This file describes the Kic cells which are to be used in each slice of a
block.

All cells in a given slice must have the same height to make the global routing channel rectangular.

The width of cells for different blocks in the same slice can be different, but the width of all cells of a

particular block must be the same.

All cells used in the data slices must have Signal terminals on the left or right side of a cell in either
polysilicon (POLY) or diffusion (DIFF). Control terminals must be on the top or bottom of the cell in
metal. The slices without data signals may have two types of terminals. The first are those on the left or
right of the cell which should be connected to the terminals of the next cell on the right or left, respec-

tively. These terminals are simply extended to the next cell. The second type of terminal is found on the

71

ANHMMHIIIHHIHIHHIHIDIDD000

block 2 % block 3 _

block1 block 4

N

NN

&\ global routing channel

7/4 local routing channels
(@)

/ block 2 % block 3
7

DA\
N

block1 block 4

<
&\ global routing channel

-
j terminal extension areas

(b)

block1l block 2

M\
N

block 3 V%/ block 4

7.

IO

N
\\\\ global routing channel

7/4 terminal extension areas
(c)

Figure 2, Data Slice (a), Top Slice (b), Bottom Slice (c)

top or bottom of the data path (the top of the top most slice or the bottom of the bottom most slice) in
poly. These terminals correspond to control inputs and outputs and are routed according to the user

specified description.

72

The user describes the placement of the blocks and the way in which the terminals of the blocks
should connect. Because the data path is bit sliced, this information need only be specified once for all
slices containing data signals. The user may also specify how any signals which enter/leave the top or
bottom of the data path should be connected. These signals are typically control signals (e.g. the adder
carry input). For example, the user may want to connect the adder carry in to an invert signal to obtain a
true twos-compliment subtraction. All connections are made within a single slice. That is, it is not possi-
ble to have terminals of one slice connect to terminals of another slice. If inter-slice connections are

desired (such as in a shifter), a cell has to be designed to make the connections.

5.5.3 Data-path Description

The user describes the data path in an input file (figures 3 and 4 give the syntax diagrams). There
are three main parts to this description. The first part contains the lists of external nets (nets which leave
or enter the data path for connection to another circuit block). A list for each side gives the net name, a
net number and a cable name. The net number and the cable name are used by FLINT and are passed to
the HDL file. In addition to external signal nets, the user declares external control nets which should be
handled differently than signals. These include Vdd, GND and the clocks. The program checks for the
any occurrences of "control” terminals on the boundary of the data path and marks the position of the ter-

minals appropriately for FLINT in the HDL file.

The next part of the data-path description is a list of the slice types which gives the name of the
slice type and whether that slice has data signals or not. Finally, comes the description of how the slices

are constructed.

5.5.4 Slice description

The slice description was chosen to make: things simple for the user and the data-path generator.
Basically, this part of the description declares a list of blocks and the connections of any routed terminals
on each block. The basic format is "block (terminal=net, terminal=net, ...)". Since most blocks have a
single input and oﬁtput, the connection of these signals can be described easily through use of a redirect

symbol, ">, This symbol is used similarly to the UNIX pipe and redirect. The symbol ">" used before a

73

P T NPTy
P N T
P T s

DATA

ORGANIZATION slice type
NODATA
—

Figure 3. Syntax Diagram for the Data Path

block declaration indicates where the standard input of a block (the terminal labeled “in") should come
from and where the standard output (the terminal labeled "out") should go when used after a block
declaration. The standard input can be connected to a net or to the standard output of another block.
Similarly, the standard output can be connected to a net or to the standard input of another block. If a
block has more than one input or output, these connections must be described explicitly in a parameter
list. This setup is completely general, in that, any connection of blocks with any number of terminals can
always be made. The defaults are simply included to prevent having to explicitly specify every connec-
tion.

Connections to terminals on the top and bottom of the data path are specified by putting

"T/terminal=net” or "B/terminal=net" in the parameter list, respectively.

The slice description not only gives the information of how blocks are connected but also of the

74

(| terminal name |— = [~ net same |—-'|Ll——>
-

[L
s

(@)

LT S I S ey B gy B ey :

(b)
net name . net number . terminal name I' >
©
const= I——'I ’ binary string '
()]

Figure 4. Syntax Diagrams for " parameter list" (a), "control net desc" (b)
"net desc" (c), and "const" (d)

physical placement of the blocks. The blocks are placed in the same order they are described in in the
input description. It would be possible to have the program choose a block placement which minimizes
the number of tracks needed for the channel routing. This creates a problem if the user has a different
optimization criteria than the program. For example, the user may not care if the channel route required 5

or 7 tracks but may care a great deal if two critical blocks are put on opposite ends of the data path.

5.5.5 Creating Extra Space

A function is available to force more space between blocks. It can be used to create space in the
circuit for something that the data-path generator can not handle such as inter-slice routing. If "space(n)"
is inserted between two blocks, n Kic units will be added to the space between the two blocks. 100 Kic
units is one lambda. The user also has some control over the pitch of the bit slices. If the minimum slice
height is less than the user declared pitch, the slices are simply spaced out to achieve the desired pitch.

This option makes it possible to attach a data path to another circuit which has a different bit pitch.

75

5.5.6 Constants

The previous discussion has assumed that all data bit slices have identical blocks and connections.
If this were the case, it would be possible, but not very easy to implement constants in the data path. A
constant parameter can be spéciﬁed in the parameter list which tells the compiler how to modify the
block in each slice (not each slice type). For example, suppose for the block counter, two counter cells
exist, count.0 (loads 0) and count.1 (loads 1). To generate a counter which loads the value "10011", one

would put "counter (const=10011, ..." in the SLICE description.

5.5.7 Capabilities

To improve the final circuit, some degrees of freedom are given to the cell designer. More than
one terminal can exist for a given signal. Typically, a terminal in each layer (POLY and DIFF) could be
brought out. With this extra freedom, the generator can more likely abut two blocks or choose routing
layers to avoid metal or buried contacts to minimize channel width. Also terminals can be defined which

are larger than the minimum conductor width, so the generator can choose the point to contact the termi-

nal.

Handling these extra capabilities is not too difficult when there are few nets to be routed, but makes
general routing more difficult. For example, to check if a river route is possible is fairly easy when each
net has only two terminals and only one layer. Adding the extra terminals and layers (and the possibility

of making buried contacts) makes this problem non-trivial.

5.5.8 Routing Strategy

There are basically five routing problems which must be solved. The nets at the top and bottom of
the data path must be routed. In these cases, all terminals are on one side of the routing channel. There
are three distinct routing problems in the data slices. First, there is the routing of global nets above the
blocks. Since these nets must cross metal control lines, the nets are routed in poly. Second, there are the
nets that must connect from a cell to the global routing channel. Finally, there are the nets that are local,
that go from one cell to another without entering the global routing channel. To simplify the problem and

produce a small routing channel, certain decisions were made. The nets that enter the global routing

76

channel are routed in metal in a river fashion and local nets are routed in a river in poly or diffusion.
Although the local routing could be easily solved by using a channel router, it would often produce poor

results for typical channels with only one output and one or two inputs.

5.5.8.1 Global Routing

The global routing problem is simplified since all terminals are on one side of the channel. This
means that there are no vertical constraints and the channel can always be routed in the minimum number
of channels using a very simple algorithm. To minimize the routing area, the tracks are not evenly spaced
because the contact pitch is greater than the poly pitch. Alternating tracks have their contacts on opposite

sides of the poly.

5.5.8.2 Local to Global Routing

Routing of the signals to the global routing channel is a river route problem with one terminal free
to move. These are routed in metal since the global routing is done in poly and these nets must cross the
global nets to make connections. Because all nets leave the local routing channel on the same side of the

channel, the channel width is determined by the density or simply the number of nets.

5.5.8.3 Local Routing

The local routing is a fairly complex problem because there are obstacles (metal contacts to con-
nect terminals to the global routing channel) and the terminals can be in poly or diffusion. Further, com-
plications arise with the possibility of connecting a poly terminal to a terminal in diffusion because a
buried contact is needed. The program checks for obstacles and proper design rule spacings to minimize
the routing channel width. To simplify the routing algorithm, only river routing is allowed. This is not

really a major restriction since most local routing channels have at most a single net.

5.5.9 Datapath Generator Operation

The program first reads the user input file (the data path description) and the cell data file (lists of
cells, bounding box sizes, terminal locations, etc) and creates the linked list data structures. The pl‘ace-

ment and routing is done for each slice type independently in a two pass fashion.

77

On the first pass, the area required for all the local routing channels is determined, but no
geometries are actually created. This allows for differences in the area required for the local and global
routing between the different slice types. On the second pass, the block placement is done, separating
blocks by the maximum area required (over the slice types) for the local routing. After each block has
been placed, all routing in the local channels is performed and the geometries are created. When all
blocks for the slice have been placed, the global routing above the blocks is performed, since now the
position of all global terminals is known. All terminals on the top of the cells are then extended to cross
the poly global routing channel. This procedure is followed until all slice types have been created. Then
the entire data path is created out of these different slice types and the signals in each slice are labeled for

simulation. At this point, blocks modified by the constant parameter are inserted.

5.5.10 Cell Parser

In order to relieve the cell designer and users of the system from characterizing the cells in a
description file, a program was written to create the cell description file automatically. The program
"parse” reads the file "celldesc” to see which cells have been defined. It then parses each Kic file to
determine its bounding box and the position and layer of all terminals of the cell. The data is written to
the file “celldata” for use by the "compile” program. This process need only occur when a new cells are

added to the library, not every time a data path is generated.

The bounding-box information is computed as the boundary of all geometries in the cell. The ter-
minals are determined from information in the "NS" layer that is put in by the cell designer. A box in the
"NS" layer with a side that touches the side of the cell indicates the terminal boundaries. A label in the
same layer that is inside the box indicates the name and mask layer of the terminal. This information also

creates documentation in the cell.

The input file "celldesc” is a list of all cells used for each block. The format is:

78

BLOCK name
SLICE type cellname
SLICE type cellname
SLICEtype cellname

BLOCK name

The types are defined by the user and only have meaning in the organization description in the data
path input file. The exception to this is the type "CELL". This is the default type and the cell defined as
"CELL" will be used if the type in the organization description does not exist for that block. For exam-
ple, the delay block uses the same cell for EVEN, ODD and MSB slices. So, instead of defining all three

types to have the same cell, only the "CELL" type is defined.

The operation of the parser is fairly simple. It opens each file and finds all boxes. It finds the
bounding box corners from the minimum and maximum of the box boundaries in each dimension. It then
scans the symbolic layer (NS) for terminal names and locations. To help the data-path generator, the ter-
minal information is stored by name, side of the bounding box the terminal is on, the layer it is in and the

boundaries (either in X or Y) of the terminal.

The parser assumes that "nice” files will be read; that is, in the format written by Kic. Kic writes
files with all geometries for a given layer grouped together and with all layers in the order specified in the
KIC file. Since all cells used in this system were developed with Kic, this is a reasonable assumption. If

files that do not meet these requirements are to be used, a program can be written to make them "nice" or

they could simply be read and written by Kic.

The currently used "celldesc” file is given below. It shows the blocks that are defined.

5.5.11 Cell Description File

BLOCK shiftright
SLICE CELL shiftright
SLICE GND shiftright.gnd
SLICE CNT shiftright.cnt
SLICE MSB shiftright.msb

BLOCK const /for introducing hardwired constants/
SLICE CELL const
SLICE GND const.gnd
SLICE CNT const.cnt

BLOCK sideright /interface for FLINT/
SLICE CELL sideright
SLICE GND sideright.gnd
SLICE CNT sideright.cnt

BLOCK sideleft /interface for FLINT/
SLICE CELL sideleft
SLICE GND side.gnd
SLICE CNT side.cnt

BLOCK maxselect /mux for max circuit/
SLICE CELL maxsel
SLICE GND maxsel.gnd
SLICE CNT maxsel.cnt

BLOCK invert-clear / inverter with clear/
SLICE CELL invert-clear
SLICE GND zero-one.gnd
SLICE CNT zero-one.cnt

BLOCK zero-one / cell to generate either low or high output/
SLICE CELL zero-one
SLICE GND zero-one.gnd
SLICE CNT zero-one.cnt

BLOCK smlatch /small static latch without TS buffer or input inverter/
SLICE GND staticlatl.gnd
SLICE CNT staticlatl.cnt
SLICE CELL staticlatl

BLOCK latch Istatic latch with TS buffer for convolver/
SLICE GND staticlat.gnd
SLICE CNT staticlat.cnt
SLICE CELL staticlat

BLOCK zero
SLICE CELL zero
SLICE GND zero.gnd
SLICE CNT zero.cnt

BLOCK ssort2 /produces max(a,b) and min (a,b)/
SLICE MSB sort.o
SLICE EVEN sort.e

80

SLICE ODD sort.o
SLICE CNT sort.cnt
SLICE GND sort.gnd

BLOCK delay2 /2 input, 2 output register/
SLICE GND delay2.gnd
SLICE CNT delay2.cnt
SLICE CELL delay2

BLOCK increment /incrementer carry chain and sum/
SLICE EVEN carrye
SLICE ODD carryo
SLICE MSB carryo
SLICE GND carry.gnd
SLICE CNT carry.cnt

BLOCK buffer2 /dual buffer for sort circuit/
SLICE CELL buffer2
SLICE GND buffer2.gnd
SLICE CNT buffer2.cnt

BLOCK mux2to2 / switch circuit/
SLICE GND mux2to2.gnd
SLICE CNT mux2to2.cnt
SLICE CELL mux2to2

BLOCK compare /comparator -- smaller than adder and inverter/
SLICE CNT compare.cnt
SLICE GND compare.gnd
SLICE MSB compare.o.new
SLICE EVEN compare.e.new
SLICE ODD compare.o.new

BLOCK TSbuffer / non inv tristate buffer /
SLICE GND busdriv.gnd
SLICE CNT busdriv.cnt
SLICE CELL busdriv

BLOCK buffer /non inv super buffer /
SLICE CELL buffer
SLICE GND buffer.gnd
SLICE CNT buffer.cnt

BLOCK mux2tol / 2 input mux - no regenerating logic /
/ has 2 inputs -- 1 from control slice (delay)
-- 1 for user override/
SLICE CELL mux2tol
SLICE GND mux2tol.gnd
SLICE CNT mux2tol.cnt

BLOCK possataccum /full register with pos saturation logic and feedback/

SLICE MSB sataccuml
SLICE CELL sataccum1
SLICE CNT sat.cnt

SLICE GND sat.gnd

BLOCK sataccum /full register with saturation logic and feedback/
SLICE MSB sataccuml.msb
SLICE CELL sataccum1
SLICE CNT sat.cnt
SLICE GND sat.gnd

BLOCK satregister /full register with saturation logic and feedback/
SLICE MSB sataccum.msb
SLICE CELL sataccum
SLICE CNT sat.cnt
SLICE GND sat.gnd

BLOCK possatregister /full register with pos saturation logic and feedback/
SLICE MSB sataccum
SLICE CELL sataccum
SLICE CNT sat.cnt
SLICE GND sat.gnd

BLOCK posadder /2’s compliment adder - carry in from preceding block/
SLICE EVEN naddce
SLICE ODD naddco
SLICE MSB naddco
SLICE CNT posaddersat.cnt /contains saturation logic /
SLICE GND adder.gnd2 /has cin logic for 2’s comp subtr/

BLOCK adder {2’s compliment adder - carry in from preceding block/
SLICE EVEN naddce
SLICE ODD naddco
SLICE MSB naddco.msb /different to handle saturation /
SLICE CNT addersat.cnt /contains saturation logic /
SLICE GND adder.gnd2 /has cin logic for 2’s comp subtr/

BLOCK delayl / full register ph2-ph1/
SLICE CELL delay
SLICE CNT delay.cntl /passes msb to next block/
SLICE GND delay1.gnd2 flattened version of delay.gnd1/

BLOCK buff /non-inverting buffer/
SLICE CELL buff
SLICE CNT buff.cnt
SLICE GND buff.gnd

BLOCK delay-clear / full register phl-ph2 with clear/
SLICE CELL delayc
SLICE CNT delayc.cntl /passes msb to next block/
SLICE GND delaylc.gndl /flattened version of delay.gnd1/

BLOCK delay / full register ph1-ph2/
SLICE CELL delay
SLICE CNT delay.cntl /passes msb to next block/
SLICE GND delayl.gnd1 /flattened version of delay.gnd1/

81

82

BLOCK minus1 /multiply by minus 1 -- invert /
SLICE CELL invert
SLICE GND invert.gnd
SLICE CNT invert.cnt

BLOCK absvalue
/control inputs -- zero and absvalue/
SLICE MSB abszero.msb
SLICE CELL abszero
SLICE CNT abszero.cnt
SLICE GND abszero.gndl

BLOCK gain /variable gain (1,2,4,8)/
/control inputs shift1,shift2,shift3/
SLICE CELL gainl - /flattened version of *gain’/
SLICE CNT shleftl.cnt /flattened version of shleft.cnt’/
SLICE GND gain3.gnd /saturation logic/

BLOCK modify / handles output format conversion for video/
/control inputs negclip,binclip/
SLICE CELL modifyl /falttened version of modify/
SLICE GND modify.gnd

SLICE CNT modify.cnt
SLICE MSB modifyl.msb /flattened version of modify.msb/

5.5.12 Nonlinear Low Pass Filter Processor

This data path (see section 7.3.6.1 for a description and block diagram) performs the conversion
from linear to non-linear low-pass filter. Overall it is very similar to the Sobel processor except that it
has more complicated signal connections. Basically, this processor takes an all-pass and high-pass signal
and generates the corresponding low-pass signal. If the magnitude of the high-pass signal exceeds a
threshold, the low-pass signal is output. Otherwise the all-pass signal is output. Pads were added to the
data path to make a complete chip for fabrication. The input description for this block and the plots fol-
low in figures 5 and 6. Figure 5 shows the actual work performed be the generator. The generator placed
the blocks shown in the figure and created all of the geometries shown. The full circuit plot is shown in

figure 6.

5.5.12.1 Nonlinear Low Pass Filter Input Description

/*
non linear low pass filter processor
5/2/85

*/

CONTROL
Vdd.0.vdd
GND.0.GND
ph1.0.phil
ph2.0.phi2

TOP
nofilter.40.cable5
binary.41.cable0

BOTTOM
negclip.42.cable
absvalue.43.cable
invert.44.cable
Ipf.45.cableS

LEFT
laplac_in.0.cablel
allpass_in.10.cable2 /* input signals */

RIGHT
out.20.cable3
thresh.30.cable4 /* output signal and threshold */

ORGANIZATION
CNT NODATA
MSB DATA
EVEN DATA
ODD . DATA
EVEN DATA
ODD DATA
EVEN DATA
ODD DATA
EVEN DATA
ODD DATA
EVEN DATA
GND NODATA

SLICE
’allpass_in’ > delay > ’allpass’

/* generate low pass signal */

’laplac_in’ > minus1 (T/’high’=’cin1’)
> delay (T/’in’="cin1’,T/’out’="cin2’)
> adder (’inb’="allpass’,T/’cin’="cin2’)
> satregister > "lowpass’

"allpass’ > delay > ’allpass1’

83

84

/* generate decision */

"laplac_in’

> absvalue (T/’carry’=’cin3’,B/absvalue=absvalue, T/zero=nofilter,B/invert=invert)
> delay (T/’in’="cin3’,T/’out’="cind4’)

> adder (’inb’="thresh’, T/ cin’=cin4’)

> delay (B/’msb’=’decision’)

/* generate output */

*allpass1’
>mux2tol(’inb’="lowpass’,B/’in_to_out’=’decision’,B/inb_to_out=Ipf)
> delay

> modify (T/’binarycon’=binary,B/’ negclip’=negclip)

> ’out’

Figure 5. Non-Linear Low-Pass Filter Plot (high level)

85

ENEHIE
ol

11 S E-H: A A=
0 RO 0

a Hafl 0 [P [ape]a 1 |

Sl 0 TPl
DEERL O DN
! i-z. i AR ERE R “ i
10 G O0 B i+ i
100 OEERO 00 0.0
a i3 i L RIE I i'.s x. i
s O R OO B Ii i
; o G
SRl b Tl T TR
i P Iut BN

86

Figure 6. Non-Linear Low-Pass Filter Plot (detailed)

87

5.5.13 Program Documentation

The programs are broken into several major blocks. These are the cell parser, "parse”, the user file
parser, "compile”, the placement and routing routines ,"route”, “localroute” and distance" and the basic

kic cell generation routines, "createkic”. "datapath.h” contains the constant and structure definitions.

5.5.13.1 Parse.c

The routine "nextcell" reads data from the cell description file until the next cell declaration is found. It
then will try to open this file and return the pointer to it. It also copies the slice type to the output

file.

“scansymboliclayer” finds all boxes and labels in the symbolic layer. It then matches the boxes and

labels and writes the required information to the output file.
"layer” extracts the layer information from the label.
"findside” determines which side of the cell bounding box the terminal is on.
“"readlabel” reads a label from the kic file.

“findboundbox"” reads all boxes in the KIC file and computes the coordinates of the cell"s bounding box

from that.

"readbox” reads a box from the kic file.

5.5.13.2 Compile.c

This file contains routines to read in the input files and create the data structures so that the datapath can

be generated.

5.5.13.2.1 Parsing routines

“parseinput” scans the user input file for the eight main fields and calls routines to read in the data.
"readcelldata” reads the "celldata” file and generates the linked lists of blocks, cells and terminals.
“checkerrors” checks for some errors during the assembly process.

"netnamematch” compares the user terminal name with that in the kic cell.

88

“readinput” parses the slice description of the user file and creates a list of strings. Comments are

ignored.

"readslice” parses the list of strings created by "readinput” and checks for syntax errors and creates the

linked lists of user blocks, nets and global nets.

“readparameters” reads the explicit and implicit net connections specified for a user block and adds these

to the database.

"fixnetname" gets rid of the optional single quotes from net names.

"findkeyword" determines if a string is a keyword or not.

“"checknets" checks for nets with only one terminal and also determines if nets exist only on the right or

left of the datapath so that they can be handled efficiently.

“findslicetypes" reads the ORGANIZATION description and generates a list of the slice types used.

5.5.13.2.2 Data Storage and Retrieval Routines

“initstructs” initializes the linked lists.

"addnets" adds the nets listed in the LEFT, RIGHT, TOP, BOTTOM or CONTROL fields to the net list.
"findterm" returns the pointer to the terminal with a given name and layer in a particular slice and block.
"findterm1" returns the pointer to the terminal in a given cell ,layer and name.

"newterm” adds a terminal to the linked list.

“newnet" adds a net connection to the list for a user block.

"findnet” returns a pointer to a net for a user block.

“newbitslice” adds a slice type to the slice type linked list.

"findbitslice” returns the pointer to bit slice witl; a given name.

“findcell" returns the pointer to the cell of a block.

"findblock" return the pointer to a block.

"newlocterm” adds a net to the list for a user block that connects to a terminal on that block.

89

"findlocterm” returns the pointer to terminal on a block with a given name.
"newuserblock” adds a new user block to the list.

"newblock” adds a new block to the list.

"newcell” adds a new cell to the list.

"newconst” adds a new constant to the constant list.

"addblockterm” adds net connections for a block to the appropriate lists.

5.5.13.3 Route.c
This program contains routines to do the routing and placement.

“assembledp” coordinates all these routines. In the first pass the sizes of all routing channels are deter-

mined. On the second pass, instances are created and the roﬁting is performed.
"extendcontrol” extends all terminals on the top of a cell across the global routing channel.
"labelexternnets” labels the external nets in the datapath and generates HDL file entries.
"routeLRnets" puts in the geometries for nets that exist only on the left or right of the datapath.
"outputnet" stores net and terminal information for global routing.
“routeglobal” performs the global routing and creates the geométries.
"addexternnet” adds an external net to the linked list.
"labelnet” saves information regarding the signals in each slice so that they can later be labeled.

"wireextend" extends all wires on a side of a cell a certain distance. This is used for extending control

over the global routing channel and extending control in the NODATA slice types.

"routelocal” computes the distance necessary between blocks for routing or puts in the geometries. This

routine just calls other routing routines.

"routelocalmetal” routes signals from the blocks to the global routing channel in metal. Actually this

routine just computes the size of channel needed and the list of nets.

“abutt" determines if two cells can be abutted or not.

90

"sort” sorts the list of metal nets for routing.

“"routemetal” creates the geometries for the metal route.
"metalcont” creates a metal to POLY or DIFF contact.
"insertconstants” puts in cells that were modified by constants.

“slice_global_route" collects all data slice nets and routes them. The control wires are extended to the

next slice.
“topbot_global_route" handles the routing of nets on the top and bottom of the data path.
“outputleftnets” adds nets on the left side of the data path the global routing list.
"genhdl" opens the HDL file and writes the header information.
"gentopbotnets” adds nets on the top or bottom of the data path the global net list.

"findcontrol" adds nets of type control to the external net list.

5.5.13.4 localroute.c
This file has some of the local (POLY, DIFF) routing routines.
"routelocPD" river route local nets between blocks

"routelocall” creates the geometries for the route performed in "routelocPD".

5.5.13.5 distance.c

This file contains some routines that compute the minimum spacings between nets in the local routing

area.
"distance” determines the channel size (space between blocks) needed for a local route.
"findy1y2" determines the boundaries in the Y dimension of a net.

"localchansize” retumns the channel size needed to route 1 net and the position of the net in the channel.

Checks for constraints.

91

5.6 REFERENCES

[1]1 Ruetz, P. A, et al., "Computer Generation of Digital Filter Banks," ISSCC Digest of Tech. Papers,
Feb. 1984, pp. 20-21.

[2] Ruetz, P. A, et al, “Computer Generation of Digital Filter Banks,"

Trans. of CAD for Integ. Circ. and Systems, April 1986.

[3]1 Ruetz, P. A, et al, "Automatic Layout Generation of Real-Time Image Processing Circuits,"

Proc. of ISCAS , May 1986.

[4] Rabaey, J. M,, et al,, "An Integrated Automated Layout Generation System for DSP Circuits,"

IEEE Trans. on CAD, Vol. CAD-4, no. 3, July 1985.

[5] Richards, B., "Design of a Video Histogrammer Using Automated Layout Tools," UCB M.S. Report,
to be published.

92

CHAPTER VI CIRCUITS

6.1 INTRODUCTION

As noted in the preceding chapter the hardware at one level in the hierarchy is re-used to fnake
hardware at higher levels. In this section the basic cells will be discussed and the extent to which they
can be re-used in the macro cells examined. Each macro cell can re-use the basic cell hardware to a dif-
ferent extent. Many data paths can make use of a rather limited cell library while the storage circuits tend
to require a fair amount of new circuit design for each new storage macro cell. The controllers lie some-
where between these two extremes. The degree to which basic cells can be re-used depends upon the

constraints put upon the basic cells.

Generally, circuits that are not in the critical path can use standard size transistors. The use of stan-

dard device sizes makes it possible to quickly layout new circuits. Typically, pull-down devices with

l{-:% are used in conjunction with depletion pull-up devices with %:-g— This basic inverter is very

compact. Of course, if very low power dissipation is desired, the pull-up current should be minimized.

For high speed circuits, the width of the two devices could be increased.

Mead and Conway [1] design rules supported by MOSIS are used throughout. The use of these
standard rules made it possible for many of the basic cell designs to survive several changes in the

minimum feature size without modification.

6.2 COMMONLY USED CIRCUITS

Rather than show all circuits at the transistor level, it is convenient to represent some commonly
used circuits more abstractly. The common register (figure 1) and several buffers (figure 2) are used in

many different circuits and will not be drawn at the transistor level. Typically, the output depletion pull-

93

up device has %=% and the output enhancement pull-down device has %=1T6 For heavily loaded out-

put nodes, the width of the two output devices is doubled.

load/hold phil phi2
input % _ J— %

>

hold

1

{>c output

phil phi2

input -J,_-_4> % {>c output

Figure 1. Registers, load-hold register (top), load-only register (bottom)

g
gl
g %é
8

Vdd

out in out out
in in
Vdd Vdd
in éj

in out*

1 o4
out* ot St out*
in

Figure 2. Buffers

94

6.3 THE DATA-PATH CELLS

Different data paths can make use of the same cell library because the cells have been designed
with some common standards and the data path generator has some degrees of freedom when assembling
the data path. All data path cells have some common characteristics which makes it possible to assemble
them automatically in a fairly efficient manner. The heights of all cells in the same slice must be the
same and the width of all cells for the same block must be the same. The generator can insert space
between cells and slices when needed to create space for routing wires. In this way, the cells are not spe-

cialized for a particular application, they are just connected in a custom way at assembly time.

There are certain conventions that have been followed when designing these cells that are not
required by the data-path generator. First, the control slice (type CNT) is at the bottom of the data path
and contains the Vpp bus and all control signals that can be brought in at the MSB side of the data path.
The slices then stack from bottom to top (MSB to LSB). The top slice (GND) contains connections to

ground, the clocks and any control signals that need to connect to the LSB slice.

There are basically three types of cells: storage cells, buffers and arithmetic-logical cells. The
arithmetic-logical cells include: a comparator, an adder, a 2 to 1 MUX, a 2 to 2 MUX, an incrementer, an

absolute value cell, inverters, zero cells and shifter cells.

There are many cells that are not really needed because the function performed by these cells can
be performed by using more general cells. For example, the full adder could replace the comparator and
incrementer. However, to achieve reasonably efficient space utilization, special cells are created when
the space savings is significant. In the sorting filter, many comparators are used and hence space and
power consumption could both be reduced by using a comparator instead of an adder. In addition, these
specialized cells are then added to the cell library for use by future designers. It is always up to the data
path designer whether he/she wishes to produce a better data path by customizing some cells or just to get

a data path in the least amount of time possible.

6.3.1 Arithmetic Logic Cells

The comparator is a ripple carry type and is shown in figure 3. It has different even and odd slices

95

inb outlg
f >
in J
i IC 164 I—-’
16/4
out
v "
cout*
cin*
Y
144 I]I——
: 16/4
in | out
t >
inb :]
f [164 J—
16/4
outlg
] >
cout
inb>in

Figure 3. "compare", EVEN slice (top), ODD slice (middle), CNT slice (bottom)

to minimize the delay time in the carry chain by having only one gate delay per slice. Essentially this cir-

cuit is the carry chain of an adder with out the sum circuit and hence is quite a bit smaller than an adder.

It is interesting to note that the two circuits are identical except that the inputs have been re-labeled.

Therefore only one circuit had to be laid out by hand. Simulations showed that the carry chain requires

approximately 4 nSec/slice in 44 Nmos technology. This circuit was used in the sorting filter and the

feature extractor.

The incrementer also utilizes different even and odd slices and is shown in figure 4. This circuit is

essentially the same as an adder with one input always tied to ground. Incrementers are commonly used

96

in up counters. In the control slice, signals are generated to saturate a saturating register when appropri-

ate.

increment
v
cin
104 48
: D>
/
124 1244
an2

cout*
cin*

(2] 84

|—|_[[. w16 1 oat

Figure 4. "increment", GND slice (top) EVEN slice, ODD slice, CNT slice, XNOR gate (bottom)

97

The full adder is shown in figure 5. The even and odd slices are different to minimize the delay
path in the carry chain. In addition there are two carry inputs and two carry outputs. One input and out-
put is in the critical path while the other input and output is in the sum path. By designing the circuit this

way it was possible to keep the loading of the critical carry node to two transistor gates.

The carry input for the entire adder comes in from the GND slice to allow proper twos-compliment
subtraction and other functions. The CNT slice has saturation logic (figure 6). There is a saturation cir-

cuit for both signed operands and unsigned operands.

cin

K

el c(g‘

inb _Do_%

ol
+8

{

cout cout®
Figure 5§ a-b. "adder", "posadder", GND slice (top), EVEN slice (bottom)

Absolute value, inversion and zeroing can all be accomplished with the "absvalue” block shown in
figure 7. Basically, the circuit is an XOR gate that can be used to perform absolute value if the invert sig-
nal is derived from the data sign bit or inversion if the invert signal comes from some other source. A
pull down transistor makes it possible to zero the result. The circuit generates a carry signal that can be
connected to an adder carry input to make the operations true twos compliment by adding one if an inver-
sion is performed without a zeroing. There are several simple circuits that make it possible to invert or
zero the data path signal or to insert constants. The "invert-clear” block (figure 8) inverts the signal with

a selectable clear. The "zero" block is just a selectable clear (same as “invert-clear" with out the

98

<5

4 v

comt* cout

Figure § c. "adder", "posadder", ODD slice

~

cout* nof
cin I E : : pof*
cout pof*

Figure 6. "adder" CNT slice for signed operands (top)
"posadder" CNT slice for unsigned operands (bottom)

inverter). "Zero-one" is identical to "invert-clear” with the input grounded. It allows the insertion of zero

or one into the data path.

There are three multiplexors. A non-inverting 2 to 1 MUX (figure 9), an inverting 2 to 1 MUX with

logic level restoration (figure 10) and a non-inverting 2 to 2 MUX (figure 11).

The 2 to 2 MUX is used in the sorting filters where a data swap is required. The 2 to 1 MUX with

logic restoration is used in cases where the bi-directional nature of the pass transistor is not desirable.

inv*

Zero carry
A A
._C
G
invert* zero

msb

absvalue invert

Figure 7. "absvalue", GND slice (top), CELL slice (middle), CNT slice (bottom)
6.3.2 Registers

There are two major classes or registers: static and dynamic. The static registers are more complex

and are used in cases where asynchronous loading and static operation are desired. "smlatch” (figure 12)

100

zero*
A

]

Z€ro

in DC out
l_.

zero*
Figure 8. "invert-clear", GND slice (top), CELL slice (middle), CNT slice (bottom)

is a basic cross-coupled NAND gate RS latch. NAND gates were used to minimize power dissipation
because only one gate is consuming power when the register is not being loaded. "latch” (figure 13) was
used in the programmable arithmetic controller in the convolver and is similar to "smlatch” except for the

addition of a tri-state output.

The dynamic registers fall into two classes: regular and saturating. The regular registers are

101

A A
aa out

inb

e
in

selin selin*

S
in_to_out inb_to_out

Figure 9. "2tolmux", CELL slice (top), CNT slice (bottom)
"delay” (figure 14), "delayl” which is the same as "delay with the two clocks reversed, "delay-clear"
(figure 15) which is the same as "delay” except that is can be cleared and "delay2” (figure 16) which is a

double register.

"delay" has a register in both the GND and CNT slices. The CNT slice register can be used to
delay control signals (e.g. the carry input to an adder) to compensate for corresponding delays in the sig-
nal path. The register in the CNT slice is to allow the msb to be used for control purposes. In the non-
linear filter post processor, the msb of a subtraction (performing a comparison) was used to control a mul-
tiplexor input. "delay2” was created for use in the sorting filter to reduce the number of routing channels

that would be needed.
The are four very similar saturating registers (figure 17). "possataccum” and "possatregister” are
for unsigned values and do not have a different MSB slice. "sataccum” and “satregister” are for signed

values and hence have a different MSB slice. The “possataccum” and "sataccum” blocks have an output

102

L A

Lo

in [
,——15‘ Lﬁ
" H H

selin selin*

A

intoout

Olls

Figure 10. "maxselect", CELL slice (top), CNT slice (bottom)

A A
in Fﬁ_ﬂ‘:
M
+ X
M »
inb outb

selin selin*

inb_to_out
Figure 11. "2to2mux", slice (top), cnt slice (bottom)
connection on the left side of the cell to make accumulators easy to assemble. The register in the GND

slice performs the same function that it does in "delay".

103

out

in |
:>o— latout

w2

Cs

Figure 12. "smlatch", CELL slice (top), CNT slice (bottom)

* vdd &
in
i out
} >
2] ou:tg
w2 enable
cs enable*

Figure 13. "latch", CELL slice (top), CNT slice (bottom)

104

in out

phil phi2
msb

Figure 14. "delay" , GND slice (top), CELL slice (middle), CNT slice (bottom)

6.3.3 Buffers

There are basically two types of buffers: static and tri-state. The tri-state buffer, "TSbuffer",
(figure 18) is used for bus driving. "buffer" is a super buffer for driving large loads (figure 19).
"buffer2” is a double version of “buffer” used in the sorting filter (figure 20). "buff" (figure 21) is a

smaller buffer used for logic level restoration.

6.4 CENTRAL STORAGE CELLS

All central storage requirements for the chips could be met with a NOR-NOR type ROM for fixed
storage and the 3 transistor cell RAM for dynamic storage. For both cases, modifications were made to
customize the circuit for the particular application. One reason that several versions of these circuits
were designed was that it was desired to keep the core as small as possible. Therefore, general tech-

niques like those used in the data-path compiler were considered unacceptable and custom circuits were

105

‘gn out
3
D
z
phil phi2
r S
in 1 out
zZ
il
phil phi2
clear
clear*

Figure 15, “"delay-clear", GND slice (top), CELL data slice (middle), CNT slice (bottom)
designed to minimize the final circuit size. Also, because the ROM and RAM cell pitch is quite small to
begin with, any increase in pitch to allow standard cells to be wired together will result in a larger percen-

tage increase in the circuit size than in the data paths.

Three different ROMs were used. The convolver arithmetic controller had a ROM with slow row
circuits but 10 MHz column circuits. The ROM look-up table chip used a pipe-lined circuit with both
row and column circuits operating at a 10 MHz rate. The contour tracer FSM ROM was not pipe-lined

because the circuit would not allow the extra pipe-line delays.

The basic NOR-NOR ROM configuration is shown in figure 22. This is the pipe-lined circuit used
in the look-up table ROMs. Note that there is a pipe-line register at the inputs (column and row address
inputs) and at the output. The row decoder inputs are driven with a standard depletion mode output
driver. Because the rows have potentially large capacitance (the gates of many ROM cells) it was also

desired to drive the row selects with a fast super buffer. A standard super buffer was not used because in

106

in 4 out

phil phi2

inb 1 outb

I

phil phi2
in outb
Figure 16. "delay2", CELL slice (top), CNT slice (bottom)
a NOR-NOR ROM all row selects except one are low at a given time. This means that all super buffers
except one will be consuming power. By replacing the depletion output pull up device with an enhance-
ment device, the buffer becomes a true push-pull circuit and consumes no static DC power (actually, the
smaller input inverter will continue to consume power). The degraded high level output voltage of the
row driver reduces the performance of the circuit somewhat but is still acceptable because the ROM cell

has voltage gain.

The bit line has both an active and passive pull up. The active pull up quickly precharges the bit

line high while the passive pull up provides a small current to offset leakage on the bit line.

To make the layout of the output register simpler, the circuit always has at least one column
decode. This doubles the pitch available for the output register. After the first column decoding device,
the first half of the output register latches the data. The remaining part of the tree column decoder is
between the two halves of the output register. The first half of the output register isolates the bit lines

from charge sharing in the last part of the tree decoder.

107

1n out

outl (possataccum and sataccum only)

nof* pof
A Vdd a4

[m‘{ phi2
§ Pji-l B H _I’LL_[>O_ out

__I_L__|

outl (possataccum and sataccum only)

nof* f
, vdd p‘?

=L
J_L.|

nof* pof
phil :Ll !
nof
pof*

Figure 17. "sataccum", "satregister”, "possataccum”, "possataccum"
GND slice (top), CELL slice, MSB slice, CNT slice (bottom)

out

The contour tracer FSM ROM is very similar to figure 22 except that the input registers and some
of the output registers were removed (the FSM state registers were left). Further, each bit line was iso-

lated from the column decoder because the column address may become valid after the rest of the ROM

108

104 48 84 48

in
o >
out

ml
Jl

enable

&4

K4

enable*

Figure 18. "TSbuffer", CELL slice (top), CNT slice (bottom)

16/4 416 66 ka=d

in out

Figure 19. "buffer", CELL slice

settles and it was desired to prevent any charge sharing between adjacent bit lines when the column

addresses change.

The convolver arithmetic controller ROM did not require registers at the input or fast row drivers
because the row addresses change once at reset. The active bit-line pull-up was also not used in this par-

ticular circuit.

The line delay, contour tracer RAM, look-up table RAM and histogrammer all use the same 3T cell

with different peripheral circuits.

The line delay (see section 7.8) utilizes a shift register pointer instead of more general decoding

logic found in the other RAM circuits. In figure 23 the row select logic is shown. The shift register

109

164 4/16 6/6 k=4

in out

16/4 416 6/6 k=4

inb outb

Figure 20. "buffer2", CELL slice

high

-

in D& out

in {>& DC out

Figure 21. "minus1", GND slice (top), CELL slice (middle), "buff", CELL slice (bottom)
pointer and distributed OR gate (pull down devices are at all but the last two shift register outputs) keep a
single row selected without the need for a reset circuit. The read row selects are taken directly from the
shift register outputs. The shift regiéter outputs are gated with "wen" to generate the write selects.

Notice that the row previously read is the current row being written.

The output circuit is shown in figure 24. The circuit is basically a precharge device, load-hold
register and tri-state buffer combination. The size of the circuit was reduced by using the inverter in the

register to generate the true and inverted data signals needed in the tri-state buffer.

The input circuit (not shown) is just a cascade of load-hold registers. The peripheral circuits for

the contour tracer RAM are quite different and were designed virtually from scratch. The input circuit

110

[A
c__|
%I—
G
l_
2
k]

rr column dec
; fow select — output reg
SE/ l rom cell
tow sddress latchvdriver I
row gddress in _& 'l
g
A e | /X
philphi2 zdmu S fedriver
coladd in
fog rg [reg
11 lﬁTH |ATTT
ph"m sl gl) N oad i
mudn estia

Figure 22. NOR-NOR ROM used in the look-up table chips

weell wael2 wael3

Y ¢r

wael62 weel63
4
ad Vdd Vdda

€]
. thp,_ rﬁ..r - i
o A ASPARA

p i ™ o otfin a4t ctlb» o0 o o o i out[TMia out
shift* -I- T
load
S
rsell rsel2 u‘e’ll n;4 rsel62 rsel63
Figure 23. Line Delay Select Logic
vdd
precharge _| shift phil phi2 vea o
read bit line I{ ,J_—. %MD ,-.-L Ef f] tusout
—
L

Figure 24. Line Delay Output Circuit

111

(figure 25) contains the shift register (a load-hold register) that handles the loading of one entire line of
the video image in the acquire mode, a register to make perform refreshing (the data is always written the
cycle after it was read) and the multiplexor that selects the proper data for the bit line based on the mode

of operation.

The output circuit (figure 26) is very similar to the ROM output circuit. The bit lines are first buf-
fered (to prevent charge sharing). The desired output is selected by a seven stage column tree decoder.
The tree decoder is broken at the half way point to decrease the critical path length. For this case half of
the nodes fall during a transition instead of all nodes rising, yielding a faster circuit. Further, if the
column addresses are valid during precharge, the second half of the column decoder will be precharged
high. When the precharge cycle is over, the column decoder circuit can be quickly pulled low when the

bit line is pulled down.

The row select logic is shown in figure 27. The read select line is driven by an enhancement super
buffer to minimize power consumption. The write select is simply the row select delayed by one cycle in
the trace mode (for refresh). During loading, the pipe-line stage is bypassed. A standard NOR decoder is

used to generate the un-buffered row selects.

The circuits for the look-up table chip and the histogrammer are similar but have modifications

necessary for each particular application.

112

shift hold

L3 A

1

philw

write
l—<{>_r—_l>c : 4} 3
L , bit line

acquire trace slowphi2 slow phil
~N

~ L3

phi2w

1

m||
.||

o < p
bit line

out*
CONTROL
SECTION
phi2 phi2 |
phizw —| phi2w —|
shift* acquire slow phi2* slow phil*
Figure 25. Tracer RAM input circuit
precharge
[Vdd
L CA0 CAl CA2 CA3 CA4 CAS CA6
read bit line |_| 4> % ,_ll "Lr'1 J-,_l I: J-I_I J'r—n J—'_1 I: ram output
vdd

read bit line B : |_| :

CAQ* from other bits

phi2 —

prech*

Figure 26. Tracer RAM output circuit

113

read sel write sel
CONTROL
SECTION
E .
S i | °<} acquire
gequire
) L
b phi2 .
trace r = | hsync
B iy
wen
phi2
slow phi2 : /S R r'l—'l phi2 slow*
« I \U
phi2
slow phil . /S R r—.‘-.. phil slow*
“ } \.,
é) row decoder
Figure 27. Tracer RAM select Circuit
6.5 REFERENCES

(1] Mead, C., Conway, L., VLSI Systems, Addison Wesley, Reading, Mass., 1980.

114

CHAPTER VII THE IMAGE PROCESSING ICs

7.1 SUMMARY OF CHIPS

A set of chips has been developed to perform the functions needed for the image recognition sys-
tem. The set includes linear convolvers, linear convolver post processors, a logical convolver, look-up-

table ROMs, a sorting filter, contour tracers and a feature extractor.

Table 1 gives a summary of the circuit information. Figures 1 through 9 are die photos for the

chips that have been produced. Note that the die photos are not uniformly scaled.

7.1.1 The Linear Convolvers

Three different 3x3 linear convolvers were developed to perform edge extraction and noise rejec-
tion functions. These include a convolver for 512 pixel lines with impulse responses stored in ROM
(figure 1), a convolver for 512 pixel lines with a programmable impulse response (figure 2) and a 256

pixel line convolver with ROM based impulse responses (figure 3).

7.1.2 Linear Convolver Post Processors

2 chips were developed to perform additional operations on the outputs of the linear convolvers.
One performs the absolute value, sum and threshold required in the Sobel filter while the other performs
the additional operations required to compute the "out of bounds” filter output (figure 4). Both of these

chips are fairly small data paths.

7.1.3 The 7x7 logical Convolver

The 7x7 logical convolver is used to perform binary filtering in general and edge dilation in the

image recognition system. Only one version for 512 pixel lines has been developed (figure 5).

115

7.1.4 3x3 Sorting Filter

This circuit computes the maximum, minimum, median or maximum difference over a 3x3 region.
The median is used for noise rejection while the maximum difference can be used for high pass filtering

for edge extraction. Again, only one circuit for 512 pixel lines was developed (figure 6).

7.1.5 Contour Tracer

Contour tracers for 512 and 256 pixel lines were developed (figure 7). The contour tracer scans for
images in the edge map. When one is found, the image is traced and the curvature is output. To make it
possible to put the edge map RAM on a single 44 NMOS chip, the edge map is down-sampled to
128x128. Therefore, the two tracers only require differences in the down-sampling logic and not in the

amount of storage required.

7.1.6 Feature Extractor

The feature extractor computes features (bounding box, center of mass, area and perimeter) from
the curvature signal output by the contour tracer (figure 8). It also provides the interface between the

tracer and the host computer.

7.1.7 Look up table ROM

These circuits can be programmed to store an arbitrary memory-less transfer function for 8 bit gray

values. Linear to logarithmic and linear to exponential tables have been produced (figure 9).

116

circuit line.length area number Oqs/§ec*
(pixels) (sq. mm) | xsters (Millions)

3x3 convolver 512 42 39K 280
3x3 convolver 256 35 25K 140
3x3 sorting 512 42 35K 410
filter
7x7 logical 512 18 16K 1470
convolver
contour tracer 512 45 57K 12
contour tracer 256 45 57K 12
look-up-table NA 2%% 2K 10
Sobel post NA 1.5%* 1.3K 50
processor
non-linear LPF NA 2%* 1.5K 60
processor
feature
extractor NA 30 75K 40

* includes: memory accesses, arithmetic and logical operations.

** active area

Table 1. Circuit Information

117

Figure 1. 3x3 Convolver for 512 pixel Lines, ROM Based Coefficients

FERRIR

szt i

FRPH

L

|

&

118

Figure 2. 3x3 Convolver for 512 pixel Lines, Programmable Coefficients

i

~‘A 3
A Ayt i
LAV APAYE e P Mk e e
&

’ SRS ACT T K T A sATAT
RE i af e an A B aa.n
fauxﬂhﬁfﬂ.ﬁ..?«%ﬁ':ﬁﬂﬁnudﬂﬂdﬁz

3 e o st e e st S e st AT Rerd s e e RN wars
\r i A ASAE I AT A SRR TN BRI).(lv e !dﬂw‘ﬂh..w%ﬂ i eyt
I B o S D T O D e e oo, EAAC NN A ,:!»muv.mhuﬁurww.mwuw.&v. TT. ;urwnm.uvﬁ..lwmxrurﬁmwt %
- A R AR S o H R R R I S R L
. n T - = s AR Tar) XD v S b TR e v
r ERATRARN AR II‘_‘W;
LLLALTLTLE iiidthinity
15 R N R e N
m..ﬁw FonaTUGnOUUoGTTIo ORIy ALY LATIC R
2 y SRS

EELERAN

J£% ETEE

¥

AL R
ryen vrnﬁmywwm‘
3 LRI
a

Sl RIWEVRTS TR PIRCN NG
e e

S Lo

|

R

119

Figure 3. 3x3 Convolver for 256 pixel Lines, ROM Based Coefficients

ififiti

il

thiili

et

T

£

12 bl S b,

VESA
s

)

RN
A AN RN A R ind

1
1
!
i

!‘

13 148 -
{‘-}'1'- ey v
e

b Sa T -.4-1}-

Figure 4. Non-Linear Low-Pass Filter Post Processor

121

Figure 5. 7x7 Logical Convolver (512 pixel lines)

T Tt i It i i e i e et e A R
LA N I I O e D oo s

S T A vy wame
rﬂl rﬂ‘ r -

L AR Sl 2 Ha

122

Figure 6. 3x3 Sorting Filter

AR e u al
.,ruaaq1uunnm4uauhm1¢u¢4uqq

e R T et B T

I P EY PP YT T YT TP YYYY I Y Y

i

123

Figure 7. Contour Tracer

bnbnbinbe
EES333s

BERET

124

Figure 8. Feature Extractor

IETE

125

Figure 9. LUT ROMs

126

7.2 IMAGE PROCESSOR INTERFACES

Most of the image processing chips developed have standard interfaces. for both data and control
signals. In this way, circuits can be easily connected in parallel and cascade. A typical cascade connec-

tion of chips is shown in figure 10.

input) . . output

— 3 in out m out) in out —>
start start start

start

Figure 10. Typical Chip Connection

7.2.1 Data Signal Interfaces

Data signals are the input or output video signals and are usually high speed (5-10 MHz). To avoid
the need for multiplexing the mputs ‘and outputs on a single set of pﬁs. separate output and input pins are
provided. To ensure compatibility of different chips, all data signals passing between chips are valid dur-
ing ph2. To provide more timing margin when going between chips, a ph2 latch is provided in the input
pads and a phl latch in the output pads (standard pads with the registers have been created). In this way,

an extra pipeline register is inserted to accommodate delays when driving off-chip loads.

7.2.2 Control Signals

The control signals are a little harder to standardize, but some efforts have been made. There are
basically two kinds of control signals, those that are synchronized to the processor and those that are not.
The synchronized signals usually are associated with the video signal (e.g. start of line). The asynchro-
nous signals are typically low rate (down to DC) signals that set the operating mode of the chip (e.g. the

impulse response of the convolver).

Currently, the synchronous control signals include:

127

line start - goes high for one cycle at the start of each line

hsync - horizontal sync

hblank - horizontal blank

The line start signal is used to synchronize the delay lines and the contour tracer to the video line.

It is also useful for applications requiring one operation per video line. An example of this is the incre-
menting of the refresh counter in the look-up-table RAM. The hsync and hblank signals are useful to
control operations during the horizontal blank period of the video signal. Because there is no useful data
during this period, it is often possible to suspend the signal processing and perform other operations. In
the contour tracer, the blank time is used to write the entire line of data into the RAM. In the look-up-
table RAM, the blank time is used to refresh the RAM. In both cases, the hblank signal is used to change
the mode of operation (switch multiplexors, etc) and hsync is used as a write clock. All these signals

should be latched into the chip during phl.

So far, the asynchronous interfaces have been handled in two ways. The first way is to simply
bring the control lines off-chip and allow the host computer to put a DC signal on these lines to determine
the operation of the chip. The advantage of this scheme is that the chip can be operated without a host
computer. That is, the operation can be set by jumper switches. This is also convenient during testing,
when the host computer and the interface are no longer variables. To prevent the number of external
control lines from growing too large, the number of degrees of freedom have to be limited. For example,
a convolver was built with 16 preprogrammed impulse responses. In principle, for custom applications,
simulations would be used to determine which impulse responses will be used and full programmability

is not necessary and is even a hindrance.

Of course, there are people who claim that full programmability is essential. To achieve full pro-
grammability, a host computer interface was put on some chips. Because the host computer is operating
asynchronously to the processors, an asynchronous interface is required. Further, the interface is
required to be static as the control words must remain indefinitely. The standard interface has an 8 bit
data word, a number of address bits that depends on the number of words stored on chip and a write

select. The host computer puts the address of the internal register and the desired data on the bus and

128

then asserts the write select. An active low write select was chosen so that the interface could easily be
implemented with a 74LS138. Usually, the data can be written into the internal registers at any rate
below a maximum. Exceptions to this include the writing of the histogram equalization look-up table

which must occur during the vertical blanking time to achieve real-time operation,

The timing for the programmable interface is shown in figure 11. This interface was used in the

programmable convolver and the look-up-table RAM.

DATA1 X DATA2 X DATA3 X DATA4

ADDR1 X ADDR2 X ADDR3 X ADDR4

Figure 11. Host Interface Timing

7.2.3 Other Cases

The chips which do not input and output video signals have a more special purpose interface. The
contour tracer and feature extractor fall into this category. The contour tracer operates on a video signal
and hence its input interface is similar to that described above. The output and control interface is quite
different and was designed for the tracing algorithm. The feature extractor was designed to interface
between the contour tracer and a host computer. The host computer interface is similar to the asynchro-

nous control interface described above.

129

7.3 A Single Chip 3x3 Convolver

7.3.1 INTRODUCTION

Many noise rejection, edge extraction and edge enhancement techniques are based upon linear FIR
filters. In addition, 3x3 FIR filters have been used to find "interest” points in stereo images to determine
the disparity between the two images [1]. A chip has been developed which performs a complete 3x3
convolution in real time on a 10 MHz video stream. A 3x3 convolver was chosen because it could be put
on a single chip in 44 NMOS technology. Also, many 3x3 masks have been examined and proven to be
useful (see chapter 2). Further, longer impulse responses can be obtained by cascading several 3x3 con-
volvers. The convolver for 512 pixel lines occupies 47 mm? and dissipates 445 mW, while the convolver

for 256 pixel lines occupies 35 mm? and dissipates 275 mW.

There are two ways of selecting the impulse responses. One chip has 16 impulse responses stored
in a ROM. By using a ROM, the complexity associated with a computer interface for down-loading the
coefficients is avoided. The 16 impulse responses initially put on the chip (see Listing 10, Appendix D)
include 3 low-pass filters, 3 omni-directional high-pass filters, an edge enhancement filter, both Sobel
operators, 3 all-pass filters for testing parts of the circuit and 4 compass gradient operators. A second
chip has a fully programmable interface to demonstrate that there is no inherent reason why these filters

can not be programmable. The programmable interface makes it possible to set each coefficient indepen-

dently.

7.3.2 THE ARCHITECTURE

The convolver (see figure 1) consists of a gain stage, 2 line delays, 9 multiplying accumulators, 3
accumulators and controllers for the line delays and the arithmetic units. The 8 bit input data is first

modified by the gain stage. The output of the gain stage is connected to the arithmetic units directly or

130

through the line delays. The data path is 10 bits wide inside the arithmetic units. The 8-bit result is then

sent off the chip through a separate bus.

The gain stage scales the incoming data by a factor less than one (1-2™) to prevent overflow in the
arithmetic units. By making overflow impossible, there is no need to include saturation logic in the arith-
metic units. The gain stage also keeps the DC gain of the low pass filters near unity so that the average

intensity of the image remains relatively constant. For most filters, the gain stage simply multiplies by

unity.
tmpulse response Arithmetic =0
select Controller —I coeflicients (7x 3)
l
fnpat GAIN
STAGE | | i
—] 1 — — 1 J— — f—1
MAC z MAC z MAC @
T | T I [
z-l
l l |
] 1 — s — e—'
MAC 27| || MAC z7| || MAC »
—Y__T —j_T ;
zl
| l |
o 1 [— Nes —i . J
MAC 27| || MAC z7| || MAC ”
()
Line Delay V |
Controller
s]
ACC 2" ACC 2" ACC z”

The line delays delay the video signal by exactly one line. The line delay controller generates all
control signals necessary to shift in one line of data (512 pixels) while simultaneously shifting out one

line of data each time the "start” signal occurs. The line delays are inactive after the proper number of

outpat

Figure 1. 3x3 Convolver Architecture

131

pixels have been shifted in/out until another “"start" pulse is given. In this way, the blanking period of
standard video can be accommodated. If "start” is held high, the convolver will free run for use with a

sensor with no blank period.

There are two basic ways to organize the arithmetic units for operation at 10 MHz. The conceptu-
ally simplest way (see figure 2) would be to have all arithmetic units operating on the appropriate data for
a single result. For example, this would mean that in a single cycle, the products aky, bk 12, Chy3, 8441,

hh 3y, ih33, mh 3y, nh 3y, Ok 3, (see table 1) would be generated and accumulated for the result at pixel "h".

BB

¢ D me M

[~ T A, I |

¢ " e omy
L]

[
lEN”l
[— BT -~ P]

Table 1a. Pixel labels for the example

hu hyp kg
hy hypy hyn
hsi hy hy

Table 1b. Impulse response coefficients

=y)
Tmw
QO »

Table 1c. Processor Designations

In the approach chosen, the multiplications being performed in a given cycle are actually for three
different results. Instead of shifting the data, the coefficients are shifted and each arithmetic unit com-
putes a different (offset by one or two pixels) 3x1 convolution over three cycles. That is, one unit (e.g.
A) would compute ak +bh 15+ch 3 while the next (e.g. B) would finish computing bk ,;+ch 15+dh 13 one
cycle later and so on. Three units operating on different video lines (e.g. A,D,G) each compute one third
of the entire 3x3 convolution. To get the final result, the outputs of the these three arithmetic units are
summed and output. To decrease the number of additions needed to be performed by each accumulator
in one cycle, the three units (A,D,G) output their results in consecutive cycles. This is accomplished by
inserting an extra delay after the first line delay and two extra delays after the second line delay. These

delay elements, along with a corresponding delay in control signals to the arithmetic units on each line,

132

input

out
Figure 2. Direct Implementation

offset the results computed on each line. Instead of three results being valid on each output bus in a sin-
gle cycle and none during the other two cycles, there is one result valid in each cycle. Finally, these three

sums of 3x1 convolutions, computed by the accumulators, represent three complete results in three

cycles. Therefore, real-time operation is achieved.

133

The arithmetic controller cyclically outputs the coefficients to the arithmetic units. It also outputs

the "finished" signal which clears the accumulator and puts the result on the bus after a computation has

been completed. Table 2a shows the coefficients at each arithmetic unit in the array for 5 consecutive

cycles. Table 2b shows the data at each unit at the corresponding points in time. The value of the accu-

mulator for the right-most arithmetic units is shown in table 2¢ and the accumulator values for the center

row are shown in table 2d. It can be seen that the right row has a complete computation ready in cycle 6

while the center row has the next computation ready in cycle 7.

hip his hy | hy hy hyg | hy hy hy [k hiy hy |k hy hy
hy hy hy | hy hyy hy | By hy hy | hyy hyy hyy | Ay hy by
hss hsy hyy | hyy hyy hyy | hyy hyy hyy | has hyy hay | by hy kg
1 2 3 4 5
Table 2a. Coefficients at each arithmetic unit over 5 cycles.
a a al|b b b} ec c c|d d djie e e
X x x|(g g g|h h h|[i i i|j j§ j
X X x|xXx x x|m m m|n n n|lo o o
1 2 3 4 5
Table 2b. Data at each arithmetic unit over 5 cycles
cycle | top (A) middle (D) bottom (G) accumulator
1 ahy, X X x
2 ah 1+bh 12 ghy X X
3 ah u+bh 12+Ch 13 gh 21+hh22 mh 31 X
4 dh 1 gh zﬁ-hh 22+lh 23 mh 31+Ilh 32 ah 11+bh 1z+ch 13
. ah (1+bh ytch 13+
5 dh u+eh 12]h 21 mh 31+Ilh 3z+0h 33 g h o hh 22+i h ”
ah 11+bh 12+Ch 13
6 dh 1|+eh 12+fh 13 jh 2|+kh 2 ph 31 +gh 21+hh zz'i'ih 23
+mh 31+nh 3z+0h 13
7 X jhortkhaotlhys | phyrtqhsy dhy+eh ytfh 3

Table 2¢c. Accumulator values for right row of array over 7 cycles

This approach appears to be much more complicated than the direct approach, but it results in a

very regular layout. Because the layout is very regular, the circuit can be easily assembled and modified

for different impulse response lengths. On the negative side, 12 accumulators are required instead of 8

and the coefficients change at the data rate. In the first approach, the coefficients at each multiplier never

change. However, to allow different impulse responses, the coefficients must be alterable at each multi-

134

cycle | top (B) middle (E) bottom (H) accumulator |

1 X X x| x

2 bh 11 X X X

3 bh yy+chy hh 4 X X

4 bh y+ch (p+dh 13 | hhay+ihqy nhay X

s ehq; hh o1 +ih orkjhay | nhitoh 32 bhy+ch+dh 5

6 ehytfhyy kh nhay+oh 3ptphs, f_z}:z.:i:‘,: ::;’;,2
bh 11+ch 12+dh 13

7 X kh 21+Ih 22 qh 31 +hh 2l+ih 22+jh 2
+nh31+ohspiphys

Table 2d. Accumaulator values for center row of array over 7 cycles

plier and the second approach provides a simple means of achieving this.

To see the importance of a symmetric layout, one need only look at the number of busses connect-
ing to the 9 multipliers. There are 3 input data busses of 8 bits each, 9 coefficients of length depending
on the encoding scheme and 9 outputs of 10 bits each. If not done properly, these connections could be

an enormous mess.

One way of looking at these two approaches is that the direct approach has a single word micro-

program while the chosen approach has a three word micro-program.

733 ARITHMETIC UNIT

Each arithmetic unit (figure 3) consists of a multiplier, an accumulator and pipeline registers.
Because the coefficients are limited to powers of two, the multiplier is very small (15 transistors/slice)
and consists of a barrel shifter (to control the magnitude of the coefficient) an XNOR gate (to control the
sign of the coefficient) and a pull-down transistor to allow zero coefficients. The adder is a ripple-carry
type with different even and odd bit slices. The\oulput bus is pre-charged high and can only be pulled-
down by the selected arithmetic unit. There are 7 control lines to specify the coefficient and a single con-
trol line to reset the accumulator and put the result on the output bus. The arithmetic units that perform

the accumulations (bottom of figure 1) are similar to those of figure 3 without the multiplier section.

It would be possible to allow greater precision in the coefficients without going to a full parallel
multiplier. Another multiplier-adder section could be added to the arithmetic unit for each additional "1"

allowed in the coefficient.

135

1 12 14 18 116 -1 0 Vdd finish
3

» 3 » &~ 3 -~
na —|
BUS

NN

¢———— MULTIFLIER ——M8M8M — ACCUMULATOR —

Figure 3. Arithmetic Unit
7.3.4 ARITHMETIC CONTROLLER

The ROM-based arithmetic unit controller (figure 4) consists of a 3-bit shift register that provides
the micro-program address and a NOR-NOR ROM that contains the coefficient data and other control
signals for the 16 3x3 impulse responses. A shift register was chosen over a counter and decoder because
the shift registers accomplishes both functions in less space than the counters alone would occupy. By
choosing the impulse response number to be the row address and the micro-program address to be the
column address, a very fast low-power circuit could be designed. As the impulse responses changes at a
very low rate, the row selects and bits lines have a long time to settle. The column decoder and output
register are the only parts that must settle quickly. By keeping the impulse response select separate from
the high speed part of the controller, the number of impulse responses stored on chip can be increased

without performance degradation.

The programmable arithmetic controller consists of a 3-bit shift register for selecting the current
micro-code word and an array of static registers, 10 words of 8 bits each, to hold the micro-code for a
single filter. There is one register for each coefficient (7 bits for the coefficient and 1 bit for the "finished"
signal) and a single register to set the gain stage operation. Fully static selection logic on chip makes the
registers appear like a write only static RAM. Because the programmable interface does not need to be

written at image data rates, low-power circuits could be used for the selection logic and for the latches

136

coatral out

poti—|

L

VAVAY,

AE.
3

4016 5216 72x16 ROM
NOR dec ROM COEFFICIENTS

impulse response select
Figure 4. ROM based Arithmetic Controller

(NAND type cross-coupled circuits were chosen).

7.3.5 EXPANDING BEYOND 3x3

One question that is often asked concerns the possibility of expanding the convolver beyond the
basic 3x3 configuration. There are three basic approached that can used. First, for small expansions that
require more operations per line but not over more lines, it is possible to put more MACs on the original
3x3 convolver chip. A 3x5 kernel would fit on a single chip in 44 NMOS technology. The second
approach would be to break the problem up in a different way (figure 5). Instead of trying to make each
chip a self contained functional block, the line delays could be put on one chip and the arithmetic units
on another. The line delay blocks could be cascaded to operate over as many lines as desired. Further,
for operators that operate on the same input data (e.g. both Sobel operators), the line delays would not be
duplicated as they are when using the basic 3x3 convolver chips. The third possibility would be to keep
the basic 3x3 chip, but bring out the line delay outputs so that several convolvers can operate over dif-
ferent lines (figure 6). Another input could be used to sum up the outputs of the different convolvers to
achieve the complete output. This scheme has the advantages that all the blocks (3x3 convolvers) are the

same and are also functionally complete as a single chip. The line delays may be repeated, however,

137

leading to a somewhat less efficient use of the silicon. A final approach is to simply cascade existing 3x3

chips. In this way, a #n x n operator requires only l"_;.ll chips. However, an arbitrary impulse

responses can not be obtained for n>3 as there are only ("—'2-1-)-* 9 parameters to determine 22 coefficients

(all of which currently must be powers of 2).

foput z.x. . zl. - z-l. z-l. - z-l. - z-x. [|
o
arithmetic units (4x7 FIR) arithmetic units (4x7 FIR)
output
< N\ &/
Figure 5. Expanding to 7x7 with 4 Chips and 6 Line Delays
input z-x. ‘[z-z. R|
-3
z arihtmetic units (3x3 FIR) 3x3 Convolver
iy &/ '| —l
|——
3x3 Convolver 3x3 Convolver
output
—> > f———>

Figure 6. Expanding to 5x6 with 4 Chips and 8 Line Delays

138

7.3.6 POST PROCESSORS

A post processor was developed to provide a complete Sobel operator using 2 convolvers, more

general edge enhancement, edge extraction and output format control.

The chip (figure 7) has two signal inputs and a single signal output. Both input signals can be
inverted or zeroed or the absolute value can be found. In addition one signal can be multiplied by a
power of two between 1 and 8. After this processing, both signals are summed. Full control of these
functions is not possible in current chips due to pin limitations. If a host processor interface is put on

chip, all functions could become available.

offset
®
inputa xlor
————— —
(8) 8 shsval 8
T T
A a2 a1 ma sat sat L, format | output
reg reg select | (8)
inputb sat xlor T T
—> reg na g il pg
@® reg absval
T ‘I‘ TT
wi e a1 pa
12438 absval zero a negelip binarycon

Figure 7. Sobel Post Processor Block Diagram

After being summed, a constant is added to the signal and one of three output transformations can
be chosen. The constant makes is possible to add offsets to the signal or to adjust the threshold depend-
ing on the output format chosen. The first output format, called negative clip, displays positive grey lev-
els over the entire range of output grey levels available. This the normal mode of operation. The second
output format displays the negative grey levels over the lower half of the output grey level range and the
positive grey levels over the upper half. This allows the outputs of filters that generate negative values
(e.g. high-pass filters) to be displayed. The third (called binary clip) zeros out all lower bits to yield a

binary or thresholded image.

To perform a Sobel operator, the output of the Sobel-X and Sobel-Y operators are passed through a
full wave rectifier and summed. Edge enhancement can be performed by adding a omni-directional high-
pass filtered version of the image to the original. The degree of edge enhancement can be varied by vary-

ing the gain in the high-pass filter path. To extract edges, the output of a high-pass operator is simply

139

thresholded. The threshold can be varied from off the chip.

The active area of this chip is 1.5 mm? and and power consumption is 200 mW (including pads).

140

7.3.6.1 Non-Linear LPF Post Processor

A second post processor (figure 8) was designed to perform non-linear low-pass filtering (see sec-
tion 2.5.2) from a low-pass and an all-pass input. The technique is to compare the current pixel with the
average of its eight neighbors. If the difference is greater than a threshold, the current pixel is considered

to be "bad” and is replaced by the neighborhood average. Otherwise, the current pixel is left alone.

The original convolvers did not have a filter that computed the average of eight neighbors (all LPF
included the current pixel). However, a Laplacian filter is actually the difference between the desired
low-pass and the all-pass filters. By subtracting the Laplacian filter output from the all-pass signal, the

neighborhood average is obtained.

laplacian sat lowpass
— reg A
reg
21 neg output
.MUX clip
allpass allpass
reg y reg B
selB
msb
absval reg reg
dont filter threshold linear filter

Figure 8. Post Processor for Non-Linear Low-Pass Filter

The processor determines if the current pixel is "bad" by thresholding the absolute value of the
Laplacian filter output. This decision controls a multiplexor that either passes the all-pass signal or the
difference of the all-pass and Laplacian signals (low-pass signal).

This circuit was generated by a data-path compiler that worked from a description of the desired
operations. It then placed all blocks and performed the routing, making it possible to create the chip lay-

out in a matter of hours.

The active area of this chip is 2 mm? and power consumption is 150 mW (including pads).

141

7.3.7 REFERENCES -

1 Bandyopadhyay, A, "Interest Points, Disparities and Correspondence,"

Proc. Image Understanding Workshop , Oct. 1984, pp. 184-187.

142

7.4 A 7x7 Logical Convolver

7.4.1 INTRODUCTION

The logical convolver performs two-dimensional logical operations on binary images in real-time
(10 Mhz for 512x512 images). The operator has a mask of size up to 7x7. Currently, the chip performs
nearly circular "dilation” or "bloating" type operations but could be easily reconfigured for other types of
operations. Dilation is used to join broken edges after edge extraction and to reduce the bandwidth of the

edge map before down sampling. The logical convolver occupies 18 mm? and consumes 130 mW.

Logical convolution has an affect similar to a two-dimensional FIR low-pass filter that operates on
binary images. That is, a point in the input image is spread into a finite pattern specified by the binary
mask or impulse response. The filter is, however, non-linear so that the output is not the sum of
responses to the individual points in the input image. Rather, the output is the "OR" of the responses to
the individual points.

Logical convolution is simply a degenerate case of linear convolution in which the input data, out-
put data and impulse response are all single bit signals. To perform two-dimensional FIR filtering, the
input values are multiplied by the corresponding value of the impulse responses and summed. If the
input values and impulse response values are both single bit, the multiply operation is identically an AND
operation. The sum of these single bit multiplies is, however, multi-bit. To get the desired number of
bits at the output, simple saturation is used. That is, if the sum is greater than or equal to 1, it is set equal
to 1. Otherwise, it is set equal to 0. This is identically an OR operation. Therefore, the logical convolver

is just a linear convolver with the multipliers replaced by AND gates and the adders replaced by OR

gates.

The basic difference equations for dilation and erosion are given below. The equation for dilation

143

is the same as that for linear convolution with the sum replaced by an OR operation and the multiplica-

tion replaced by an AND operation.
dilation 8xy = gﬁ(hb am AND fx-n.y-m)

erosion g, =A’ﬁll)(hz 2m OR frny-m)

The equation for erosion can be transformed into;

erosion g, = Qﬁ(hg amAND fr nyem)

If the input, output and mask values are inverted, the erosion equation is identical to the dilation
equation and both operations can be performed with a single logical unit (with the addition of an XOR
gate at the input and output). Essentially, erosion is the expansion of the background. Inverting the
background and foreground and expanding the foreground and then inverting the background and fore-

ground again is equivalent to expanding the background.

742 WHY A CUSTOM ARCHITECTURE IS NEEDED

To perform a 7x7 logical convolution in real-time, the equivalent of 49 memory reads, 49 logical
ANDs, 48 logical ORs and 1 memory write must be performed per sample. At 10 MHz this adds up to
about 1.5 Gops/Sec. It is unlikely that such a large rate of logical and memory operations could be per-
formed on a general purpose processor. The linear convolver could be used to perform a logical convolu-
tion over a 3x3 region if the output is clipped to the same magnitude as the input. This should be clear
because logical convolution is a case of linear convolution. However, the linear convolver has multi-bit

line delays and data-paths and has multipliers which can multiply by +~2""". All of this extra hardware

transistors

4
(340 mask elements

) will be unused when logical convolutions are performed. To keep the size of the

processor as small as possible so that the logical convolution can be performed over a larger region, a

transistors

custom architecture is used which requires only 10—————
mask elements

. By using single bit storage elements

and logical processors a full 7x7 logical convolver requires only % the area of the 3x3 linear convolver.

144

Although the logical convolver is a natural extension of the linear convolver, there is virtually no
similarity in the actal circuit. In the 3x3 linear convolver, the data was held in place while the
coefficients were shifted. This resulted in greater uniformity of layout because the outputs of several
units could be utilized in a regular manner. In this case, the outputs of the individual AND gates can be
combined in a straight forward manner using a direct implementation. Because the data is a single bit

wide, the problems associated with routing are greatly reduced.

7.43 HARDWARE

The core of this circuit is the line delay originally designed for use in the linear convolver.
Although it was designed as a 1-line x 8-bit delay, by wiring the first bit output to the second bit input,
and so on, it could be changed into an 8-line x 1-bit delay element (figure 1). The output of each of the 7
delay lines is input to a set of shift registers that are 7 bits long (figure 2). At the output of these 7 shift
registers are the 49 points that are used to compute the current output by the logic array. Each of these 49
points is multiplied by the corresponding mask or impulse response value. The outputs of all multipliers
are then ORed together to get the output. Currently, the logic array is set up for a circular expand by
0,1,2 or 3 that is chosen by the user. However, this could be altered for any type of impulse response

either mask or user programmable.

The logic array is very compact (figure 3). Each shift register output is gated with the appropriate
mask value. All gated shift register outputs on the same video line are wired ORed together. Because the
OR gate is fairly long a pre-charge device pulls up the output node quickly. After the OR gate a pipeline
register is used to reduce the critical path length. The outputs for each line are then wired ORed together

to produce the final result.

7.4.4 HARDWARE PARAMETERS

Parameters which can vary include the operator size (N), the line length (L) and the degree of free-
dom allow in the impulse responses. The affect of L on the hardware has been discussed already in rela-
tion to the delay line. N affects the hardware in two primary ways. First, a different number of line

delays is required. If N<7, the problem of changing the standard line delay for fewer bits arises. For

145

input X LT] Z X
o
AR ¢
bl in bkl o
YARD
viah 8-BIT 1-LINE b2 o AL
ZX
bis {a a3 o
zhx
bistta DELAY brax
AP
tuS tn kS ot
AR |
bitS in bks o
Figure 1. Line Delay Organization
™ |_
(0] m
— 1 bit Line delay 7 bit SR
input y]
|
m
1 bit Line delay 7 bit SR
™
I
m
1 bit Line delay 7 bit SR
™ AND-OR| ¢
— 5
m LOGIC output
1 bit Line delay 7 bit SR
™
)
W
1 bitLine delay 7 bit SR
™
r——)
™
1 bit Line delay 7 bitSR
™
I
- m
—DL 1 bit Line delay 7 bit SR
mask
select

Figure 2. 7x7 Logical Convolver

146

-—l- -—|» ' --4A AL 2o -:-{ﬁ A—t,ij_
FERPBEET

e 7 bit Shift Register

line 1
—

o O 0 0 o

--l- ' --|» --|> --l- " :i_lﬁ ‘J__L‘D:E—
FEEFEET

tu 7 bit Shift Register

line 7

L b

-L[: ,_|-L[: output

Figure 3. Logic Array
N>7, either more bits can be added to a single line delay or more line delays can be added. N also

affects the number and size of the shift registers.

The degree of freedom given to the impulse response can make a large difference. At one extreme,
a single impulse response can be hard-wired by including connections or not in the logic array (hard-
wired AND gates). The next step, is to allow some parameterizable class of impulse responses, such as
circular expand or shrink. In this case, transistors are included in the logic array to perform the AND
operations, but many fewer than N2 parameters are needed to describe the impulse response. For circular
expand and shrink operations only 4 parameters are required. This means that only 4 wires had to routed
to the logic units. In the fully programmable mode, N2 wires will be routed to the logic arrays and all N2
AND gates would be programmable. Some form of host interface would be required on chip since 49

pins can not be used to define the impulse response. For a 7x7 operator, full programmability could be a

147

significant cost that should be justified with corresponding gains in performance. In the fully programm-
able case with large N, the architecture of the linear convolver may be preferable since only N wires
would be needed to connect the host interface and the logic array. However, the logic unit and the inter-

face would both increase in complexity.

7.4.5 PERFORMING OTHER LOGICAL OPERATIONS

The expanding and eroding operations are a subset of neighborhood operations performed on
binary images. A more general approach would be to take all the pixels that enter into the computation of
the current output and form a binary word from the string of binary values. This word can then be used
as an address to a ROM with a single output, the result. The ROM could then be programmed for any
function of the neighborhood pixel values. This approach is reasonable for a 3x3 neighborhood as the
ROM would be 512 bits. However, for larger neighborhoods, the ROM size becomes prohibitive. The

7x7 processing would require a ROM with an area of 112000 square meters.

Shown in table 1 are the masks for expanding by 0,1,2 or 3. If the input is a single dot, the output

of the logical convolver will be the same as the mask.

mask0 maskl mask2 mask3

0600000 0000000 0000000 0001000
0000000 0000000 0001000 0011100
0000000 0001000 0011100 0111110
0001000 0011100 0111110 1111111
0000000 0001000 0011100 0111110
0000000 0000000 0001000 0011100
0000000 0000000 0000000 0001000

Table 1. MASKS

mask0 maskl mask2 mask3

————— —_—— r
* Rk
* sk Aol sk
. L L 2 L 2 212 kol
* Wk b2 2 bt Bk

» £ 21 3 Wmafeale ol

* ek
*

Table 2. Output for input image with 2 dots

148

7.5 A 3x3 Non-Linear Filter Based on Sorting

7.5.1 INTRODUCTION

Some image processing techniques are based on sorting the elements in some neighborhood of
pixel and taking the Nth largest of the sorted values as the new value for that pixel. For noise with very
long tails in its distribution, median filtering has been shown to be very useful [1]. Median filters possess
the desirable property that monotonic changes in the signal are preserved but sharp spikes are removed.
Therefore it is possible to filter the image to remove noise without blurring the edges and making edge
extraction more difficult. Median filters have been shown to be inferior (in the MSE sense) to an averag-
ing filter [1] for some cases when the noise has a Gaussian distribution. The use of the minimum and
maximum over a region has been proposed for noise rejection filters [2]. The difference between the
maximum and minimum (maximum difference) can be used for edge extraction and other high-pass pro-

cessing.

7.5.2 HARDWARE REQUIREMENTS

To completely sort the 9 pixel values in the 3x3 window requires at least 29 comparators [1]. The
29 comparators must be wired in a fairly complex manner, resulting in a large cost. Other schemes [3]
use more comparators (36) in a bubble sorting network, but achieve simpler wiring. However, if not all
of the 9 sorted values are needed, fewer comparators can be used. For example, the minimum or max-
imum of a 3x3 region can be computed with only 8 comparators. The number of comparators can be
reduced further by noting that the entire maximum does not need to be recomputed for each pixel. Adja-
cent pixels have six pixels in common that go into the maximum or minimum computation. The max-

imum, or minimum, of these six pixels can be re-used to save comparators.

149

One way to reduce the number of comparators is to make the filter separable. That means that a
cascade of two filters is used. The first operates in one dimension while the second filter operates in the
other dimension. The net result is that only 2 one-dimensional filters are needed instead of one two-
dimensional filter. The reason that fewer processors are needed for the separable filter is that each output
of the first filter is used n times by the second filter instead of being recomputed. The non-separable filter
requires n2-1 processors to compute the maximum or minimum over a nxn region while the separable
filter requires only 2(n—1) processors. Because the results of the first filter of the separable filter are used
n times by the second filter, the effective number of processors in the separable filter is (n~1)n+(n—1) or

n?-1, which is the same as the number of processors in the non-separable filter.

Making the maximum, or minimum, processor separable does not alter the results of the computa-
tions. The maximum of one-dimensional maximums (i.e. the separable maximum) is the true 2 dimen-
sional maximum; this is also true for the minimum. Although the separable median is not the true 2
dimensional median, it will still reject extreme points while preserving edges. To compute the 3 pixel
one-dimensional maximum, median, and minimum (i.e. a three element sort) requires only 3 compara-
tors. Therefore, the separable maximum, minimum, and median can be computed with only 6 compara-
tors that can be easily wired. If the median is not required, only 4 comparators are needed to compute the

maximum or minimum over 3 pixels.

7.5.3 CHOSEN ARCHITECTURE

The chip that was developed has a total of 10 comparators: six compute the separable maximum or
median, and the remaining four simultaneously compute the separable minimum. Therefore, the max-
imum difference can be computed. The basic processing element used is the two-way sorter (figure 1). It
takes in two values and outputs the minimum and maximum of the values. Three of these can be con-
nected to form the three-way sorter (figure 2). Two three-way sorters can then be connected to give the
complete separable filter (figure 3). One filter processes 3 pixels from the same vertical line. That is, the
inputs to the filter are the current pixel and the pixels delayed by one and two lines. The second filter
processes three pixels from the same horizontal line. Its inputs are the current pixel and the pixels

delayed by one and two pixels.

150

X_ z 1 X z 1 Max (M)
2102
Y a 1 Mux | Min(m)
-/ Z Y z —
X>Y [_
B
z
Figure 1. 2-Way Sorting Element
X1 2 Max
—_ M yA M—>
2 Way 2 Way
X2 Sort Sort Med
—') m m _"
M
2 Way
X3 2 Sort 2 Min
— 3 Z w3 Z >
Figure 2. 3-Way Sorting Element

mavmed max/med

| |

Mo f— M

) L e L 3WAY [J2w01f [0 I 2 3WAY_[l2t01
SORT MUXT SORT | [MUX

]

3IWAY z4| L 3way C?\ 3t01| oupm

SORT | SORT

Figure 3. Complete 3x3 Sorting Filter

7.5.4 REGION OF OPERATION

The user has limited control over the mask of the filter (see table 1). Essentially, the mask indi-

cates which pixels will be included in the computations. Only a single bit is needed to represent each

151

element of the mask because it indicates only whether the pixel will be included or not in the current out-
put of the filter. Because the filters are separable, the user can only choose which points in each of the 2
3x1 regions are operated upon. Of the 64 possible masks, only 16 are really useful because many of the
masks are equivalent and some mask out all points from the 3x3 region and produce a constant zero out-
put. Therefore, only 2 bits are used to represent the mask of each of the 1D filters. Essentially, one mask
bit in each of the two filters is set so that the corresponding pixel is never masked out. The net result of

this masking scheme is that the filters operate only over rectangular subregions of the 3x3 region.

The center pixel in vertical processor was not chosen to be always included in the computations for
testing purposes. By always including data from the current line and being able to ignore data from each
of the line delays it is easier to test the line delays and arithmetic units separately. For example, if the
first line delay is defective, the data from both will be corrupted. In this case the only way to test the

arithmetic units is to disable both line delays.

The mask is implemented with AND gates that mask out values from the maximum computation
(adding zeros does not change the maximum) and OR gates that mask out values from the minimum com-
putation (adding full scale values does not affect the minimum). There is no comparable way of masking

values for the median calculation so the median must be computed over the entire 3x3 region.

Because the filter masks are implemented by inserting full scale or zero values, the vertical
minimum must be computed in a separate processor. The zeros inserted to mask out values from the
maximum computation would force the minimum to always be zero. If the sorter always operated over

the entire 3x3 region only a single vertical processor would be needed and 2 comparators would be

saved.

7.5.5 COMPARISON TO THE LINEAR CONVOLVER

Although this sorting circuit and the linear convolver both perform some operations on the pixels in
a 3x3 region, the architecture of the two circuits is quite different. First, the linear convolver is micro-
coded and requires a controller that operates at the sample rate while the sorter operates in a fully parallel

mode with no controller. The micro-coded approach was chosen for the linear convolver to minimize the

152

complexity of signal routing and coefficient routing. This was a major concern because each of the 9
arithmetic units requires a multi-bit coefficient and the outputs of all nine arithmetic units must be
summed to obtain the result. The architecture chosen made the routing very regular and hence easy to
perform. The sorter has only four single bit coefficients and the outputs of the individual processors con-
nect only to nearby processors. Further, the median is more difficult than the maximum or minimum to
compute over several cycles by a single micro-coded processor. The maximum and minimum can be
computed from only the current input and the partial maximum or minimum. The median can not be
computed in a similar manner and must have more data stored. With these differences, the parallel imple-

mentation proved simpler.

7.5.6 CHIP GENERATION

This circuit could be created quite quickly, as the line delays and line delay controller were the
same as those used in both the linear and logical convolvers. The arithmetic units (sorters) were assem-
bled with a data-path generator using some of the same basic cells as those used in the linear convolver.
To reduce the size of the sorters, special cells were generated. Double registers, buffers and multiplexors
(double cells have circuitry for 2 signals in a single bit slice) were created because the comparators and
switching circuits operate on two signals at time in a symmetric way. All routing wires for the two ele-
ment sorter are included inside thé double cells and no global routing was needed. Further, the double
cells are less than twice as large as the single cells because every cell requires a certain amount of over-
head regardless of the number of transistors it contains. The net result of using the double cells is that

space is saved by both the more efficient use of the cell space and the reduced need for global routing.

The separable filter architecture made the bit-sliced data path approach more feasible. The data-
path compiler requires that all blocks in a bit slice be physically arranged in a line. This can always be
done for an arbitrarily complex network, but may require complicated and area inefficient routing.
Because the separable sorting filter has blocks that are connected to near neighbors, the routing can be
done with only a few tracks. Non-separable filters have more global routing and hence could not be as

efficiently implemented with the data-path generator.

153

Table 1. Masks or regions of sorter operation

7.5.7 REFERENCES

(11 P. M. Narendra, "A Separable Median Filter for Image Noise Smoothing",

Digital Image Processing and Analysis: Volume 1: Digital Image Processing, pp. 450-459,
198s.

(2] Healy G., Sanz J. L. C., "CONTAM: An Edge-Based Approach to Segmenting Images with Irregular

Objects,” IBM Research Report, Jan. 1985.

[3] N. Demassieux, et al, "VLSI Architecture for a One Chip Video Median Filter", Proc. of ICASSP,
pp. 26.7.1-26.7 4, 1985.

154

7.6 An Image Contour Tracing Chip

7.6.1 INTRODUCTION

To recognize two-dimensional images that are characterized by their closed contours, the curvature
of the contour is useful as a feature. The curvature is a one dimensional signal that can be matched using
techniques from speech processing to provide insensitivity to translation, rotation and size. To generate

the curvature from the video image, a contour tracing chip has been developed.

The discrete curvature was defined in section 3.2 and is given below:

curv(n) = %l where §(n) = -;—tan“%(%
4

Because AX and AY can only be -1, 0 or +1, the curvature is an integer between 0 and 7 (or -4 and 3).
By representing the contour by its curvature, not only does one get a signal that has useful properties for
image recognition but also a representation of the contour which requires many fewer bits than a direct
representation based upon the X and Y coordinates. If the initial conditions X (0),Y (0) and ¢(0) are

known, the contour can be reconstructed from the curvature in the following way:
om) = 6OH, curv 1)
X(n) =X(0)+i2::o AX(i) where AX (i)=sin [%‘P(i)]m(‘i’(i)j
Y(n)= Y(O)+§ AY () where AY (i) =cos [%tb(i)]As(d)(i)]

As(n) is the length of the contour between two the points at position 7 and has a value of either 1 or V2.

Because both ¢ and curv are 3 bit numbers, AX and AY can be easily computed with a 8 word look up

table.

155

7.6.2 THE ALGORITHM

The contour tracing algorithm which was implemented is quite simple. First, the edge map image
is loaded into the internal RAM after being down sampled to 128 x 120. Then, starting from a user preset
location, the controller starts raster scanning in search of an object in the image. When an object is found
(i.e. a non zero pixel is found), pixels in the neighborhood of the current pixel are checked. The pixels
are checked in an order which guarantees that the first pixel found to be "on" will be on the outside of the
contour [1]. This "on" pixel is then made the current pixel and the process repeats until the contour has

been traced.

The contour is traced in a generally counter-clockwise direction. The search for the next pixel
proceeds in a counter-clockwise direction around the current pixel and starts at the pixel in the most
clockwise position that was not checked in the previous search. In this way, the tracer always stays on
the outside of the contour (some schemes [2] do not do this) and can not get stuck in holes in the interior

of the object.

Figure 1 shows the definition of direction vectors and the steps that the tracer will make to find the
next pixel on the contour as a function of the direction between the last two points on the contour. The
points marked with "*" indicate the last two points found on the contour. The center point was the last
point found. The numbered points indicate the order that the points will be tested. The "x" points were
tested in the previous cycle and do not need to be tested again. An exception is for direction O when the
contour is first encountered after raster scanning and the "x" points are checked. It can be seen that the X
and Y coordinates change by at most +/- 1, so that an up/down counter is sufficient for computing the

next X and Y values.

Every time a valid point is encountered, a refresh cycle is performed and the trace algorithm halts
for one cycle. The current row address is taken from the refresh counter and the refresh counter is incre-
mented. Although every row is written the cycle after it is read, the refresh cycles guarantee that data
will not be lost. The image is raster scanned in direction 0 so that a new row is read every cycle and

proper refreshing will occur without special refresh cycles.

156

If all numbered test points are found to be in the off state, a point that has already been determined
to be on the contour is checked. If this point is not on, the tracer will stop in an error state to indicate that

the memory is not consistent,

3 4 5
2 * 6
1 0 7

-
[0 >
w
w
[B
w
w
| &
wn
w
Wl
*

5§ * x|* x 1|x x 1|1 2 3
4 5 6 7

Figure 1b. Search paths for each direction (0-7) between last 2 points

7.6.3 HARDWARE

The hardware consists of four main components. These include the image RAM, the trace con-

troller (FSM and clock generator), auxiliary counters and the clock generators (figure 2).

This circuit is quite different from many of the other image processing circuits that have been
developed, in that a decision is made every cycle. This means that pipelining can not be used to the
extent that it is in circuits with no decision making. In fact, the circuit is one large loop containing the
FSM, the 16K RAM, and the counters. For correct operation of this loop, there must be exactly one
delay from any point to itself. These facts dictate that the delay through all the components must be less
than one clock cycle time. There was very little chance of designing these circuits for a 10 MHz clock
rate in a 4. NMOS technology. However, this does not mean that real-time operation is not possible with
the chosen architecture. Because the circuit operates on the data a frame at a time, the algorithm must

complete before one frame time (1/30 of a second) to achieve real-time operation. Therefore, the clock

157

input
(4] l
in
128 x 120
128
bit ool Edge Map RAM out = >
SR
Row Col
RW Address
—] - -
e “
[] 1
WRITE REFRESH | Y — b
couater couater counter counter
IS : : -
g0
I . =
= DY — DX
counter counter
[P —
Acquire o=
Controller Trace Clock Gen .
and Controller

Figure 2. Tracer Architecture
rate can be reduced and still meet the real-time condition. Even if the algorithm required 2 frames for

completion, two contour tracers could be used, each tracing objects in every other frame, to achieve real-

time operation.

7.6.3.1 The RAM

The RAM stores the down-sampled edge map and is organized as an 128x120 array of three
transistor cells. The 3T cell was chosen for the same reasons that it was used in the line delays. Separate
read and write bit-lines and select lines makes it possible to read and write data in the same cycle with

very few timing constraints.

158

When »\;riting, the input is shifted into a 128-bit shift register during the horizontal display time and
written into the array during the horizontal blank time one row at a time. In this way, the RAM-write
operation is made very non-critical because the horizontal blank time is approximately 12 micro-seconds.
Further, no decoder and other logic is needed to make it possible to write a single column at a time.

When acquiring the image, the line number (Y) is supplied to the row decoder.

During RAM-read operations, the Y address of the test pixel is applied to the row decoder and the
X address of the test pixel to the column decoder. To refresh the dynamic 3-transistor cell, every row
read is automatically written back the next cycle. To ensure that all rows are refreshed, a refresh counter

accesses rows sequentially at certain points in the tracing algorithm.

7.6.3.2 The Trace Controller

The trace controller is made up of a FSM that implements the contour tracing algorithm and a

clock generator.

The FSM consists of a ROM and a state register. For the tracing algorithm, there are 8 possible
directions to travel in the array. For each of these 8 directions, there are 8 more possible directions to
look for the next pixel. This makes a total of 64 states. However, some states are illegal, corresponding
to the points marked with an "x", and can be used for refreshing, scanning and error trapping. 52 states
are used for the tracing, 8 for refreshing, 3 for scanning and 1 for errors. The states are represented in 6
bits. The current direction is encoded in the top three bits of the state vector and the test direction is
encoded in the lower three bits. In this way it is simple to determine what the tracer is doing from the

state information.

The next state is computed solely from the current state and the image (1 bit) at the current point.
Therefore, the only inputs to FSM ROM are the state and the RAM output. The outputs of the 128 x 16
ROM include the next state, AX and AY to control the X,Y,DX and DY counters and the discrete curva-
ture. To keep the magnitude of the curvature to a minimum, values corresponding to greater than &t (4-7)
are translated to values less than O (-1 to -4). It can be shown that the curvature is a function of the

current state and the RAM output and hence is easily looked up in the ROM.

159

The finite-state-machine approach was chosen to simplify the circuit design. Although the next
state can usually be computed in a fairly straight-forward manner from the current state and the RAM
output, a few sl.)ecial cases make the use of random logic more complicated and error prone. Further,
using ROMs or PLAs for logic makes the circuits much easier to handle with CAD programs and

simplifies changes. The FSM ROM was generated automatically with a ROM generator.

7.6.3.3 The Counters

The current X and Y address, the current line being written, the refresh address, and the total dis-
tances traveled in X and Y (DX and DY) are kept in up/down counters that are controlled by the FSM.
The use of separate counters was chosen to minimize the size of the FSM ROM. If the X and Y positions

were included in the state of the FSM, the ROM would have become unreasonably large.

The total distance traveled in X and Y is computed so that it is possible to determine when the
entire contour has been traced. When every pixel in the contour has been traced and the X and Y
counters are at their original values, the DX and DY counters will both contain zero, which is detected

and sent off-chip.

7.6.3.4 Outputs

There are many signals sent off-chip for either testing and "debugging” or for actual use. The pri-
mary output is the curvature. The X and Y values are sent off-chip for computing the area, bounding box
and moments of the contour. The next state is output for detecting when the tracer is raster scanning,
computing the area in the feature extractor and for general testing. The DX=0 and DY=0 signals are used
to detect when the contour has been traced. The carry out of the X and Y counters (CoutX and CoutY) is
output to detect tracing off the edge of the frame and when the frame is done. CoutY occurs when the
contour contacts the edge of the frame Auring tracing. CoutX during trace indicates that the contour is off
the edge, while CoutX during scan indicates that the entire frame has been searched. The RAM output

and the shift register output are used for testing.

160

7.6.3.5 Inputs

The X and Y counters and state register can all be loaded with arbitrary values. The X and Y
counters n;ed to be loaded with arbitrary values to allow searching from various points in the frame so
that multiple images will be found and traced. The state register only needs to be loaded with a single
value (scanning state) in normal use, but was made fully loadable for testing. Other inputs include the

video input, acquire signal, load control, and clocks.

7.6.3.6 Testing

Since the chip is a FSM and all components are in the decision making loop, it was very important
to be able to break the loop for testing, Otherwise, had the circuit not worked, it would have been
difficult to control the FSM and isolate the problems. The RAM output is a very convenient place to
break the feedback loop as it is only one bit wide. By allowing external signals to be substituted for the
actual RAM output and by bringing the RAM output off chip, testing was made much simpler by making

it possible to test parts of the chip independently.

7.6.3.7 Clock Generators and Circuit Timing

There are two sets of low frequency clocks that are generated from 2 sets of high frequency clocks.
The acquire (load array with image) and trace modes work with entirely separate clocks to allow asyn-
chronous operation. The write controller generates clocks to latch the proper number of pixels into the
shift register and to perform the down sampling (1/4) and is a circuit identical to the line delay controller

with the OR plane programmed differently.

The trace clock generator (figure 3) generates the clocks (figure 4) for the trace modes. The pri-
mary reason for having the trace mode operate at a lower rate (1/8 input clock) is that the FSM approach
does not allow pipelining and the critical path in;:ludes virtually the entire circuit. Also, having a lower
clock rate makes it possible to generate more complicated signals for writing the RAM and pre-charging
(the pre-charge signal is the same as slow phi2) because one slow clock cycle is 8 input clock cycles. It
is also possible to get clock separation needed for RAM writing that is defined by the fast clock instead of

by circuit parasitics.

slow phil

slow phi2 won®

I

I I
I_T register/buffer]‘—nﬂ pm_il register/buffer

[

OR Logic OR Logic

r

T
:

10

—
11—
—

load

slow phi2

| 1 | 2

Figure 3. Trace Clock Generator

3 | 4 | s | e | 1 | 8

B T I S I Y [1 [[[

mpn [[7]

slow phi2

"] stowpm

[[[[1 [[1
i

T oo crutie

Figure 4. Trace Clocks

L
L

161

When acquiring a new image, the trace controller is held inactive and starts up in an orderly way

after the image has been acquired. To prevent writing the wrong data into the RAM, refresh operations

must be inhibited until\valid addresses are available (figure 5).

7.6.4 IMPROVING CIRCUIT SPEED

The critical path in the tracer, during trace mode, starts at the X and Y counters and goes through

the RAM, ROM and the ripple carry circuits of the X and Y counters. To improve the performance of

the circuit, the ROM was organized as 64 words x 32 bits with a one bit column decoder. The RAM

162

acquire

slow phil

slow phi2

register load

RAM writing enabled

Figure 5. Trace Clock Waveforms After Acquire
output was chosen to be the column address. With this configuration, the row decoder and bit lines of the
ROM can be settling while the RAM is being accessed. The RAM output only propagates through the

column decoder and output circuitry of the ROM. The delay through that part of the ROM is quite small.

The up/down counters used in the circuit have identical slices and therefore have two gate delays
per bit in the carry chain. Also, in the worst case, all carries are rising which is slow. To improve the
speed of the counters even and odd up/down counter slices should be used.

7.6.5 REFERENCES

[1] Kitchin, P. W., et. al., "Processing of Binary Images,” Robot Vision, IFS Ltd., UK, 1983.

(2] Pratt, W. K., Digital Image Processing, Wiley, New York, 1978, pp 543.

163

7.7 A Feature Extractor for the Image Contour Tracer

7.7.1 INTRODUCTION

A chip has been developed to interface the contour tracing chip to a host computer and to compute
object features as the object is being traced. The center or mass, area, perimeter and bounding box of the
image are computed. The chip also controls the loading of curvature data into an external buffer and

reports the tracer status to the host.

The contour tracing chip only stores the image and implements the tracing algorithm. All data is
generated at a high rate and can not be easily read by the slow host computer. Further, it has no provi-
sions for indicating if the trace was finished successfully or with an error or if the entire frame has been

scanned.

The feature extractor keeps track of the state of the contour tracer and indicates the state to the host
processor. It also handles the loading of the curvature data into a buffer for reading by the host proces-
sor. Addresses, data and strobes are generated which can be used to load the data into an external RAM.
This chip generates the starting coordinates for the next search. For schemes not requiring the more com-
plete information contained in the curvature, basic features of the image are computed by the feature

extractor and are available immediately after the tracing is completed.

The system diagram showing the inter-connection of the tracer, the feature extractor and the host
computer is shown in figure 1. The feature extractor loads the state and X and Y coordinate outputs of the
tracer over an input bus. There is a common I/O bus that is used to read results from the feature extractor
by the host, load constants from the host into the feature extractor, load start values from the feature
extractor into the tracer and set the address of the external buffer RAM from the extractor during tracing

or from the host. The curvature data passes through a second bus to the RAM or from the RAM to the

164

host. Finally, there are control signals that set the feature extractor operation and status outputs to signal

the host that the tracer has finished its current operation.

HOST SIGNALS
status
Xin Xout Xin stams >
©) () ()] o
Yin Yout Yin BUS 1(>
3 ©) m (16)
—————) statein state _i Statein write
© ©) eddress
curv out curvin curv out ws RAM
@ o
TRACER FEATURE puiz I
data
EXTRACTOR >
Q) reg el
loed losd reg sel
acquire reset @
loed
Z YA
logic
new frame
frame #, vest blank

Figure 1. System Organization

The feature extractor-tracer combination operates in several distinct modes. During the acquire
mode, the image is loaded into the tracer RAM and the feature extractor is idle except that the user
chosen start position is on the I/O bus to be loaded into the tracer X and Y registers. When the image has
been acquired, the tracer loads the start position from the I/O bus and begins searching for an image.
While the tracer is searching for an image, the feature extractor resets all internal registers for the next
feature computations. After the image is found, the feature extractor puts the RAM address on the /O
bus for loading data into the RAM and begins computing features from the X,Y and state outputs of the
tracer. When the contour tracer finishes tracing (either successfully or with an error) the host processor is
notified via a feature extractor output. The tracer continues &acing the last image while the feature
extractor is idle. At this point the host can load the computed features from the feature extractor and the
curvature data from the external RAM. The feature extractor then puts the new start position on the /O

bus for the next trace. When the host resets the tracer, by loading the search state into the state register,

165

the feature extractor again computes features and signals the host when the trace is done. If the search
continues and no image is found, the feature extractor notifies the host that the entire frame has been

searched. The host can then repeat the whole process by starting another acquire operation.

7.7.2 COMPUTED FEATURES

The features computed include: the perimeter, the even perimeter, the area, the center of mass
(except for the required division) and the bounding box. The perimeter is computed by counting the
number of valid points on the contour. The perimeter is also used as the address for the buffer RAM for
loading the curvature. The even perimeter is the number of contour points where the direction had an
even number (i.e. the tracer did not take a diagonal step) and is computed so that an estimate of the true
perimeter can be determined, since the diagonal steps are longer than the vertical or horizontal steps. The
bounding box is computed by keeping track of the minimum and maximum values of both the X and Y
coordinates. The center of mass of the contour is computed as opposed to the center of mass for the solid
figure. That is, the image is treated as though the center of the image has no mass. To obtain the center of

mass of the contour, the sums all the X coordinates (xbar) and all the Y coordinates (ybar) are divided by

the perimeter.

The area is determined as the image is traced by accumulating the area under the contour when
tracing in one direction and subtracting the area under the contour when tracing in the other direction.

The trapezoidal approximation for integration is computed and is derived below:

X;4X;
area =Y, Bl i} Y
7 2
but x; ;=x;—Ax;

X;+x;~Ax;
soarea =Y +Ay; =Y x;a;+b;
i i

where g; = Ay; = {-1,0, +1} (determined from tracer direction)

Ax; Ay;

and b,' = 2

= {-1/2, 0, 1/2} (determined from tracer direction)

It can be seen that the area can be computed by performing two sums and a simple multiply. A

166

PLA is used to compute the values a; and b; from the current tracer direction.

In order to simplify the feature extractor, some operations are left to the host processor to perform.
The division and multiplication operations were not implemented on-chip because these operations
require a relatively large area and would be needed only once per contour trace. Therefore, to compute
the center of mass, the host processor would load the sums of the X and Y coordinates and the perimeter
and perform the division. The true perimeter would be obtained similarly. The host would load the per-
imeter and the even perimeter values from the feature extractor and perform the final multiplication and
addition. By leaving the multiplication and division operations off chip, all features could be computed

with adders, comparators and incrementers which are all quite small.

7.7.3 THE HARDWARE

The chip (figure 2) consists of an arithmetic unit that is composed of three sub-arithmetic units that
compute the features of the current image and a control section consisting of 2 PLAs and a finite-state-
machine (FSM). There are two 7-bit input data busses for the X and Y coordinates. A single 16-bit /O
bus is used to send results to the host processor and to load constants from the host processor. The 16-bit
bus also transmits the address to the buffer RAM and the starting coordinates to the contour tracer. Con-
trol signal inputs include the 6-bit contour-tracer state and the 3-bit tracer output. The features are com-

puted in parallel processors (figure 3), one simple processor computing each feature.

The perimeter processors are simply counters which can be cleared. The xbar, ybar processors are
accumulators that can be reset. The bounding box processors are resetable maximum or minimum proces-
sors. The area computation requires two adders and a complimenter. All registers except the minimum

and maximum registers will saturate.

7.7.3.1 General Organization

The arithmetic functions were spread over three units to accommodate varying requirements for
data word width. The bounding box processors (min-max circuits) only need a width equal to that of the
input data width (7 bits). The perimeter, area, and moment processor require more bits. The theoretical

maximum limits for a 128x120 image are:

167

pudd pii2 il i
! l |
X
—> Dataln o
Y° Arithmetic Units | l o
—m* Dataln
“ | ||
C— Reg Enable
carv
—_ — PLA
loatieset ESM
cox/error | T | reg select
dx=dy=0 @ status
5 >
] e
P
PLA
state
©

A

Figure 2. Chip Architecture

BUS

v

inc yA I/I\/

)
T

valid point reset counter enable

Figure 3a. Processor for Perimeter and Even Perimeter

area: 128x120 or 14 bits

xbar: 23 bits
ybar: 23 bits

perimeter: 14 bits
even perimeter: 14 bits

168

m >
x Max
input . .
= z' 2to 1 z" >
P WA 7T
TT '* o j
w2 —F p2 gt
valid point xeLt enable
Figure 3b. Processor for Y and X Maximum
. BUS
N X — Max
input B 1
= oz 4(>>—£ 2t0 1 z
MUX
T I* " | [’] TT
phi2 phit ph2 phit
vatid paiat s’- suable
Figure 3c. Processor for Y and X Minimum
P BUS R
input -1 -1
= 4 - . o) —— z L\/
T] ¢ T
phi2 phil phi2 phil
valid point reset enable

Figure 3d. Processor for Center of Mass

169

BUS

input 7 1 \:; _) z a1 L\

'

s 3wl

rMUX

-12+172 +-1 0 reset enable
Figure 3e. Processor for Area
The processor for these quantities was chosen to be 16 bits for several reasons. First, the limitation
to 64 pins on the chip was a factor. Second, it is a convenient number for connecting to the host com-
puter (usually /O ports are multiples of 8 bits). Finally, although the xbar and ybar computations may
require more bits, only extremely complicated non-convex shapes will required more than 16 bits. For
these complex shapes, it is unlikely that the center of mass will be very useful for determining the posi-

tion of the object as the center of mass will be a strong function of the quantization.

7.1.3.2 Control

The control functions of this chip are very data dependent (the tracer state data) so an FSM is
employed to handle the required decision making. One PLA and the FSM determine of the contour tracer
state and generate control signals for the arithmetic processors. The PLA generates all signals which are
a function of the contour tracer state (detects when the tracer is scanning and generates a; and b; for the
area computations). The FSM also performs unrelated functions to decrease the number of circuit blocks
needed on chip. For example, the delays needed to synchronize the curvature signals with control signals
for writing into the buffer RAM are provided by the FSM. This is not an efficient use of the FSM but

avoids the need for random wiring to additional circuit blocks.

The state transition table for the FSM is given in table 2. When the tracer is acquiring an image, the

FSM is forced to the acquire state via the reset signal. When reset goes low, the FSM goes to a waiting

170

state. It will wait there until it is detected that the tracer is scanning. When scanning is detected, the
FSM will go to the scan state. If scanning is not detected, an error will be flagged because the tracer
started on a contour and correct characterization is not possible. The FSM will wait in the scan state until
either the end of frame is reached (COX true) or a contour is found (scanning false). If a contour is
found, the FSM goes to tracing state where it remains until the trace is done or an error occurs. The FSM
waits in the error state and the contour done state until either a LOAD signal is encountered to reset the
tracer at a new point or RESET occurs to acquire a new image. The resetreg signal goes high during the
waiting state to reset all processors for new computations. Selstart goes low during tracing to allow for

the RAM address to be put on the I/O bus instead of the tracer start position.

Another PLA handles the register selection and permits asynchronous access of the internal regis-
ters by the host computer. If the user sets the override signal high, then the registers can be selected
(enabled onto the 16-bit /O bus) by the three address lines for reading by the host processor. In this
mode the circuit looks to the host processor like a 7-word static ram. If override is low, the feature extrac-
tor along with the user supplied register address determines which register is enabled. Registers are
enabled to provide the start position for the tracer while the tracer is searching and the address for writing
data into the RAM while the tracer is tracing. The register address inputs give the user control over the
choice of start positions for the tracer to begin searching for a new contour after one or more contours

have been found and traced. Register control information is given table 1.

7.7.4 USE OF AUTOMATED LAYOUT TOOLS

Almost the entire circuit layout was generated automatically. The three data-paths were assembled
with the data-path generator and the 2 PLAs and the FSM were assembled with Modgen. The resulting
blocks were, however, placed and routed by hand. The automated aspects of this circuit made changes
quite easy. Several mistakes were found that could be quickly corrected by changing the circuit descrip-
tion file. Some changes to the FSM did not even change the block size and hence did not require any

routing changes at the chip level.

171

7.7.5 TESTING

This circuit was fairly easy to test because there are no large arrays of memory and the outputs of
any processor can be watched during computation. The user can force any processor to put its output on
the /O bus at any time as described previously. That makes it possible to observe the partial results dur-
ing all phases of operation. The FSM state is brought off-chip in encoded form which is quite useful for

testing to verify that the state is determined properly.

172

override | RESET* | selstart* | address | bus direction | busdata
1 X X 0 to host ymax, xmax
1 X X 1 to host count of pixels around contour
1 X x 2 to host count of non-diagonal pixels
1 X x 3 to host Xmin, xmin
1 x b 4 to host ybar
1 X X 5 to host xbar
1 X X 6 to host area
1 x x 7 from host ystart, xstart
0 1 X X to host ystart, xstart
0 0 1 0 to host ystart, xstart
0 0 1 1 to host ymax, xstart
0 0 1 2 to host ystart, xmax
0 0 1 3 to host ymax, xmax
0 0 0 X to host pixel count (RAM address)
* - internal signals
Table 1. Register Control
current state input next done out | ss
name | # P state code
scanning*COX*RESET 000 0 00 0 1
scan 000 | scanning*RESET 001 0 00 0|0
scanning*COX*RESET 100 0 00 01
DX=DY=0*ERROR 1*RESET | 010 0 01 010
tracing 001 | ERROR 1*RESET 011 0 01 0110
ERROR 1*DX=DY=0*RESET | 001 0 01 0110
RESET*LOAD 110 1 00 01
contour done | 010 | prerri6ab 010 | 1 [o0 [0 |1
error 011 | RESET*LOAD 110 1 01 011
RESET*LOAD 011 1 01 0 1
frame done 100 | RESET 100 1 11 011
acquire 101 | RESET 110 0 11 0 1
scanning*RESET*LOAD 000 0 10 1 1
waiting 110 | scanning*RESET*LOAD 110 1 10 1 1
RESET*LOAD 110 0 10 1]1
xxx | RESET 101 0 11 0|1

validpoint = (out O+out 1+out 2+(tracerstate =36))* (tracing)

IT = resetreg, ss = selstart

Table 2. State Transition Table

scanning = (tracerstate =3)
ERROR 1 = COX +CQOY+ERROR

173

7.8 The Line Delay

7.8.1INTRODUCTION

To perform two-dimensional signal processing algorithms on the one-dimensional video signal,
line delays are required. The basic function required of the line delays is to accept the current pixel value

and output the value of the pixel "directly above" the current pixel (i.e. delayed by one video line).

7.82 HARDWARE CHOICES

The line delay could be implemented with a shift register that has a length equal to the number of
pixels in the line. This would be a simple solution, but would require a significant amount of space and
power. To avoid these drawbacks, a RAM is used and a pointer to the data is shifted instead of the data.
Since every location in the RAM is written at the video line rate (i.e. every 75 micro-seconds), a dynamic
memory with no refresh can be used. By using the three transistor RAM (3T cell) with separate read and
write selects and separate read and write bit lines, a read and a write operation can occur in the same
cycle with both operations having the full cycle time for completion. The 3T cell with separate bit lines

is only slightly larger than that with a single bit line, so a high price is not paid for the performance

increase.

Figure 1 shows the basic operaﬁ;n of the RAM array. The shift register pointer is at the bottom of
the diagram. The shift register is currently enabling the left cell for writing and the right cell for reading.
Input data on the write bit line is written into the left cell, while data stored in the right cell is put on the
read bit line and output. In the next cycle, the pointer will shift to the right and the cell that is currently

being read will be written.

The shift register pointer replaces a row decoder and a counter. Although the total number of

transistors is virtually the same for both cases, the circuit with a shift register is more compact because

174

word n+1
reading
' 3

datain [N write bit line
l/

vaa

read bit line w—lm 4>data out

shift reg pointer

Figure 1. 3 Transistor Cell Operation

the shift register abuts the RAM array while the counter must be a separate block and routed to the RAM
decoder.

The fact that the data is always written and read in the same order can be exploited to ease the cir-
cuit design with some increase in architecture complexity (figure 2). The input data is de-multiplexed (by
a factor of eight) to form a 64-bit word that changes at a 1.25 MHz rate. The internal RAM array works
at one-eighth speed, making low power implementations feasible. The array is also square, 64 rows by 64
columns for 512 pixels per line with 8-bit data, which is easier to handle when putting the entire chip

together. At the RAM output, the 64-bit, 1.25 MHz data is multiplexed to form the desired 10 MHz 8-bit

word.

The de-multiplexor consists of an 8-bit recirculating shift register, a set of 8 8-bit registers (there
are actually only 7 registers, but tolsimplify thetdjscussion it will be assumed that there are 8 registers)
and a 64-bit register. The set of 8 registers latches 8 consecutive pixels at the video rate (10 Mhz for 512
pixel lines). The shift register has only one output high and provides the load signals for the registers.
On the first cycle, the shift register points to the first (top most) register and the first register latches a
pixel value. The next cycle (10 Mhz cycle), the shift register pointer shifts and the 2™ pixel is latched
into the 2™ register. After 8 cycles, the 8 pixels are latched into the 8 registers forming a 64-bit word.

To synchronize this data with the RAM which is running a one eighth speed, the 64 bits of data are

175

T [+] o o T
shift T 63 bit SR shift
l Il o o o] _p;
» ® ®
| 0 |
ﬂam ® eabit Main Storage abit ®) BS:
SR - ® (69 64 x 63 RAM 64 ® C
o REG REG -
. 1.25 MHz .
o
foput — - write precharge _& L1 output
@ ®) ®) ®
[shift

line start ————— Line Delay Controller

Figure 2. Line Delay Architecture
latched into the 64-bit register. At the output of this register, all 64 bits change at the same time unlike

the outputs of the first set of registers. The data is then written into the RAM.

The first 8-bit register does not really exist and is only shown for the sake of simplicity. It is not
needed because the multiplexor adds an extra delay of 8 pixels to the top most path of the circuit. By
removing the top most input latch, the pixel is advanced by 8 cycles in the de-multiplexor, canceling the
delay in the muitiplexor. Therefore, the first pixel is latched directly into the top 8 bits of the 64 bit regis-

ter. The other 56 bits come from the 7 8-bit registers.

The multiplexor operates similarly. A 64-bit register latches (at the lower rate) the RAM output
which consists of 8 consecutive pixels. A shift register pointer, enables the 8-bit tri-state buffers in suc-
cession at the high rate. The output bus then contains the 10 MHz 8-bit signal that has been delayed by

one video line.

The operation of the line delay is shown in tables 1a-f. Each table shows the register contents at a
multiple of 8 cycles. The input and output columns indicate the 8 inputs and outputs that occurred during
those 8 cycles (the top entries are the first inputs and outputs). Two rows of the RAM array are also

shown. In table 1a, the first 8 pixels have been latched. Note that pixel 1 was latched directly into the

176

64-bit register. 8 cycles later (table 1b), pixels 9-16 have been latched and the 64 bit register was written
into the RAM array. After another 8 cycles (table 1c), pixels 2-9 are written into the RAM array. Table
1d shows the situation at the very end of the video line. Pixels 505-512 (last 8 pixels on the line) are
latched into the input registers and row, is read from the array and latched into the output register. As
mentioned, the top most pixel in the output latched is delayed 8 cycles and does not appear at the outputs
until pixel 513 is at the input. After row, has been read, it is over written with the data in the input regis-
ter. At the same time, row,,; is read and latched in the output register and multiplexed on the output

lines. The data appearing at the output is in the proper order and exactly 512 pixels behind the input.

Without this de-multiplexing scheme and with a 4j1 NMOS technology at 10 MHz, large buffers
would be needed to drive the select lines, particularly the write select line. To prevent the wrong data
from being written into the cells, the write select must be gated with one clock phase ("40 nS) and must
pull up close to Vpp to get a good a high stored charge. Simulations showed that quite a bit of power

would be dissipated and that 3 technology would be needed since the RC delays were quite large.

The multiplexing and de-multiplexing logic requires a significant amount of space. If a more
advanced technology were available, it would be possible to operate the RAM array at the data rate

without the MUX-DEMUX circuitry and hence save the space associated with these circuits.

7.8.3 HARDWARE PARAMETERS

The primary parameters of the line delay are the line length (L) and the number of bits/pixel (B).
The multiplexing and de-multiplexing ratios (M) are also important. The line delay can be easily

modified to handle other line lengths, but the line length must be a multiple of M. The internal RAM
should have IL{——I rows. It does not have % rows because the other registers account for a single slow

cycle delay. The RAM should have MB columns. Arbitrary word widths can not be handled because the
shift registers which accomplish the latching of data at the input and the enabling of data at the output,
are put between the data lines and must remain even if fewer bits are desired. The number of bits/word
can vary by multiples of two, due to mirroring in the circuit, between 6 and an upper limit determined by

timing constraints. For small numbers of bits, the general approach taken requires a lot of overhead and

177
may no longer be better than a direct implementation.

7.8.4 CONTROLLER

A controller is used to generate the lower frequency clocks for the line delay and to shift in exactly
one line of video data. The controller (figure 3) consists of an 8 bit shift register (SR), an OR logic array,

a counter and start-stop logic. The slow clocks required for the line delay are pre-charge, write enable

and shift.
register/buffer A
[1
OR Logic

T
phai2

e Shift Reg —L[>_<,,. 1 bit counter -

1 o]

Figure 3. Line Delay Controller

It was desired to make the slow clocks be fully programmable. That is, each slow clock can go
high during any combination of the 8 fast cycles that make one slow cycle. One way to implement this is
to have a 3-bit counter that is connected to a PLA or ROM. The 8 states could then be decoded in an
arbitrary manner. However, the counter and row decoder of the ROM can be replaced by an 8-bit SR.
The shift register outputs are identical to the row select lines of the ROM. If the OR plane is connected
to the output of the SR, the equivalent of a ROM has been made. This was the approach taken. One bit
in the OR plane is used to ensure that the SR has only one output high at a given time and the rest of the
bits control one slow clock each. To have a slow clock active during a particular fast clock cycle, a

transistor is put in the OR array at the corresponding SR output.

To ensure that exactly one line of the video signal is shifted into the delay line, additional hardware

is required. A counter keeps track of the total number of slow cycles that has occurred. When this total

178

reaches the number of slow cycles that occur in one video line (64 slow cycles occur in a 512 pixel line),
the controller is shut down. The shift register stops shifting and the clocks are left in an inactive state.
When the “start” (start of line) signal goes high, the controller starts again and shifts in another line. If

the “start” remains high, the controller free runs which is useful for testing.

The slow clocks generated by the controller are shown in figure 4. Shift (same as "next 8 pixels” in
figure 2) goes high once every 8 cycles. This causes the 63-bit shift register pointer to shift once every
slow cycle and keeps exactly one output of each of the 8-bit shift register pointers active in any cycle. It
also causes data to be latched into the 64-bit RAM input and output registers. The write enable goes low
one cycle before shift and returns high one cycle after shift to disable write operations when the RAM
addresses are changing. The bit lines are pre-charged high at the beginning of each new read cycle (for

three cycles after shift goes low).
The controller stops at cycle 8 when waiting for the beginning of the next line. In this state, RAM

write operations are disabled, the main shift register pointer is frozen and no pre-charging takes place.

Basically, the circuit is inactive in cycle 8.

shift

write enable

precharge

4l s l 6
Figure 4. Line Delay Clocks

1 2 3 7 8 cycle

The controller is easily reconfigured for other line lengths (L) or number of fast cycles per slow

cycles (R). The shift register length is equal to R. The counter must count up to L/R.

179

input | regl | reg2 | row, | row,,; | outreg | output
1 1 X X X X
2 2 X X X X X
3 3 X X X X X
4 4 X b X X X
5 5 X X x X X
6 6 X X X b 4 X
7 7 X X X X X
8 8 X X X X X
input | regl | reg2 | row, | row,,; | outreg | output
9 9 1 X X X
10 10 2 X x X b4
11 11 3 X X X x
12 12 4 X X X X
13 13 5 X X X be
14 14 6 X X X X
15 15 7 X X X X
16 16 8 X X X X
input | regl | reg2 | row, | row,,, | outreg output
17 17 1 9 x x
18 18 10 X 2 X X
19 19 11 X -3 X X
20 20 12 X 4 X b
21 | 21 13 X 5 X X
22 22 14 X 6 X X
23 23 15 X 7 X b4
24 24 16 X 8 X X

input | regl | reg2 | row, | row,, | outreg | output

505 505 1 9 1 X
506 | 506 | 498 X 2 X X
507 507 | 499 b'e 3 X X
508 508 | 500 b'e 4 b'e X
509 509 | 501 X 5 x X
510 510 | 502 X 6 b 4 b 4
511 511 503 X 7 X X
512 512 | 504 X 8 X X

input | regl | reg2 | row, | row,,; | outreg output
513 513 505
514 514 | 506 | 498
515 515 | 507 499
516 516 | 508 500
517 517 | 509 501
518 518 | 510 502
519 519 | 511 503
520 520 | 512 504

00~ O\ bW O
O & WO
O IANAN B LN

180

input | regl | reg2 | row, | row,,, | outreg | output
521 521 505 513 17 9
522 | 522 | 514 | 498 506 10 10
523 523 | 515 | 499 507 11 11
524 524 | 516 500 508 12 12
525 525 | 517 501 509 13 13
526 526 | 518 502 510 14 14
527 527 | 519 503 511 15 15
528 528 | 520 | S04 512 16 16

Tables 1a-1f. Data Storage in the Line Delay is Shown over 512 cycles.

181

CHAPTER VIII RECOGNITION RESULTS AND ANALYSIS

8.1 INTRODUCTION

The image recognition system described in chapter 3 has been built using the custom chips which
were described in chapter 7. The system accepts a standard 10 MHz video image and outputs features

(the curvature, area, perimeter, center of mass and bounding box) at low rate for use by a host computer.

The feature based recognizer was implemented because the three basic features (%, Po?,, and
2 curv) could be computed quickly. This made it possible to collect a large amount of data. Recog-

curv >0

nition based upon the Fourier descriptors and the curvature signal were examined to a lesser extent.

The overall system does not quite achieve real-time operation, that is, the recognition can not per-
formed on all frames, because some feature extraction and the pattern matching is performed by the host
computer. It would be possible to achieve real-time operation if the remaining feature extraction and pat-

tern matching were performed by either a special purpose chip or by a faster general purpose processor.

The system can recognize approximately 7 % when Po2,, and Y. curv must be computed on

curv >0

frames

the SUN host computer and approximately 15 when only the features computed by the feature

extractor are used.

The results of the recognition process for a set of 8 simple objects (see figure 1) have been obtained
for the system described in chapter 3. The basic objects were chosen to simplify the analysis of the
results. Several very different geometric shapes were used in addition to some similar complex shapes.
From the results with these objects it is possible to determine some of the strengths and weaknesses of the

techniques used.

182

Figure 1. Objects Used in Recognition Tests

The recognition task was chosen as a good test of the custom circuits which have been designed
and the basic algorithms chosen. For recognition problems with fewer degrees of freedom (e.g. size

invariance is not required), it is possible to come up with more robust recognizers which require fewer

computations.

183

8.2 THE FEATURES

In chapter 3, the ideal properties of the features were discussed. It is interesting to see how close
the characteristics of the measured features are to the characteristics of the ideal features. Plots of the
features for different sizes and orientations of each object are shown in figures 2,5 and 12. Each feature
was measured for 5 different object sizes and 4 different orientations at each size. The features are plot-
ted against image area.

A

8.2.1 The Feature, P2

There are several striking aspects of the plot of % shown in figure 2. First, there are three objects

which have very distinct values of the feature and six which have very similar values. Second, the

feature seems to vary significantly for different sizes and orientations of a single object.

It is clear from figure 2 that this feature is quite useful for distinguishing a circle from any of the
other objects but not particularly useful for differentiating the pliers from the strippers. In fact, the use-

fulness of this or any other feature is heavily dependent upon the nature of the objects being recognized.
For the objects used in these tests, it was apparent that the -:—2 would have to be used in conjunction with

other features to achieve reasonable recognition accuracy.

From the plot, it is also evident that -1-,‘47 is not invariant to either the size or the orientation of the

object. Earlier it was shown that this féature would ideally be invariant with respect to both size and rota-
tional variations. There are three primary reasons for these variations. First, the perimeter is a micros-
copic feature, whereas the area is macroscopic. Second, the digitization process results in images which
are not processed in a way that is invariant with respect to object rotation. Finally, quantization errors

cause the feature to vary.

The perimeter is a microscopic feature which depends very strongly on the the fine detail of the
contour. If a straight segment of a contour is changed slightly so that every over point is offset by one
pixel, the length of the line will appear to lengthen by ¥2. Therefore, one can not really expect the perim-

eter to be unchanged as the object is rotated because the quantization effects will be different for each

184

760 Ao circle

6504
uare
550

500

4504
400 | —triangle

350

--

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Figure 2. — A —7 VS. Area for the objects

rotation and hence the perimeter will vary. This effect can be seen in figure 3, a plot of the area, perime-

ter and % for the square for different orientations of the square. The area varies little, while the perim-

eter has a variation of 7.5%, which results in a variation of about 14% in -PA—z

Other variations in % can be attributed to the way in which the image is digitized. The camera

generates a video signal which consists of two interlaced fields. Every other line of the image is actually
in a different field and is therefore separated by one field time (16 msec) and not by one line time (75
uSec). With this scheme, an n x n operator becomes a2n x n operator, because consecutive lines in the
video image are really two lines apart in the original image. As a result of this, operators that were
intended to symmetrically expand the image (e.g. the logical convolver with a symmetric mask), will
actually expand the image more vertically than horizontally. This will distort images that are not radially

symmetric as they are rotated. This effect is most pronounced for objects that are very "thin", such as the

185

2200
A
2000. /\/\//\/\
1800.] P
1600}
1400
1200
1000}
800
600 \,/_—_/W
400 'P—z'
/\ e, \——_/\/—
2
200 Pocur
)
b 1 1

1] 1 L)] I [1 U 1 I 1 I 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
. . A . .
Figure 3. area, perimeter and r vs. Orientation for the square

pen. The area and % for different orientations of the pen are shown in figure 4. For this object, the area

varies by about 20% and accounts for most of the variation in fz— For orientations near the center of the
plot, the pen is nearly vertical. The area is greatest when the major axis of the pen is horizontal and the
greater vertical expansion more strongly affects the area.

Another cause of feature variation is error due to spatial quantization. Earlier it was mentioned that
quantization errors affect the perimeter for all object sizes. In addition to this, the area is affected by

quantization errors. However, this affect is only severe when there are "thin" parts within an object or

the object is small. Therefore, one would expect to see more variation in the feature, ;,AT, when the

object area is small. In general, much more variance is seen in the curves shown in figure 2 as the area

approaches zero.

186

250+

245

2404

235

230

225

2204

215

2104

205

200 \ ~

. y '.;
S Y area
]

T T 1 T 1 1 7 T T T T T
0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17

Figure 4. area and % vs. Orientation for the pen

8.2.2 The Feature, PG2,,
The feature, P 62, for the objects for different sizes and orientations is shown in figure 5. This
feature has some very different characterists than % The most notable characteristic is the very large

change in the feature which occurs as the orientation and size of the objects are varied. In addition, the

objects that were clustered in the % space are, in general, spaced farther apart in this feature space.

The ideal analysis showed that this feature should be invariant with respect to object rotation. This
is not the case since features for objects with the same size but different orientations can be seen
clustered closely together. The quantization errors and non-isotropic image processing seem to be a
major cause of these variations. It is also interesting that the curves all tend to slope downward as the

area, and the scaling factor £ from previous analysis, approaches zero. This was predicted for the case in

which the object is dominated by sharp comers and P62, = a-% (derived in section 3.4.4).

187

J star

2000

1800 strip
16004

1400

12004

1000 mmer

liets
h
wwtool

800
600 triangle
pen square
400- —
200 ‘/'/ circle
ol==

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Figure 5. P 62,, vs. Area for the objects

The feature varies more with respect to size and rotation for the objects with fine detail (e.g. the
pliers and the strippers) than for the objects without fine details (e.g. the square and circle). This basi-
cally is a problem with under-sampling caused by the down-sampling in the contour tracer and non-
isotropic processing. The fine details are lost for some orientations and also as the object is scaled down.
This problem is clearly illustrated in curvature plots shown in figures 6 and 7 and figures 8 and 9. In
figure 6, some of the fine detail (point of attachment for the spring) of the wire strippers does not show.
Figure 7 is the curvature for the strippers (of the same size as that in figure 6 but a different orientation)
when the fine detailed was clearly visible. In figure 7, the amplitude of the spikes in the region marked
"fine detail" is greater and there are also negative-going spikes. A similar problem occurs when the pliers
is rotated. The curvature signals shown in figures 8 and 9 are quite different in the areas marked "jaws".

In figure 9, the interior of the jaw was filled in and the large curvature spike evident in figure 8, is not

present.

188

70004

-1000 fine detail

A SRS AN B Bt e e

0 20 4 6 8 100 120 140 160 180 200 230

Figure 6. Filtered Curvature for the Strippers

Feature variations are also evident from the plots of the features vs. area (figure 10) for a fixed
orientation and vs. rotation (figure 11) for a fixed size for both the strippers (solid) and the pliers (dotted).
In figure 10, the value of P62, for the pliers is relatively constant until the area reaches about 800. At
this point P2, increases because the space between the two jaws becomes more pronounced and a
greater curvature spike is produced. The P2, for the strippers is relatively constant. The feature
varies more with respect to object rotation. The feature peaks for the strippers near the center of the plot
(figure 11) as this is when the fine detail becomes clearly visible. For the pliers, Po2,, has a local
minimum near the center of the plot because the fine detail in the jaws becomes obscured. In both of
these cases, part of the problem is due to the non-isotropic expansion. For rotations corresponding to the
center of the plot, the jaws are aligned nearly horizontally and the greater expansion in the vertical direc-
tions tends to fill in the area between the jaws. This causes some spikes in the curvature signal to disap-
pear. A similar situation exists for the strippers when the fine detail disappears. Because the features

vary fairly smoothly as the angle of orientation is varied, non-isotropic processing seems to be the

189

10004

-6000. fine detail

TTTrTrTT LANLI BN B B N B B N B B

0 20 40 60 80 100 120 140 160 180 200 230 240 260

Figure 7. Filtered Curvature for the Strippers
dominant cause of feature variation.

8.23 The Feature, Y, curv

curv >0

Aplotof Y, curv for the objects for different sizes and rotations is shown in figure 12. Because
curv >0

this feature is computed from the filtered curvature, the problems cited for the P62, in general apply

here. At first look, this feature appears to be very sensitive to both the orientation and size of the object.

Because this feature measures the "how convex" (and is ideally zero for all convex objects) an
image is, it does little to distinguish the convex objects: pen, square, triangle and circle. In fact, when

Y, curv is below 300, there appears to be little information in the feature. For the convex shapes, the
caav>0

feature value is dominated by quantization noise in the curvature. To reduce the noise, the curvature
could be filtered with a lower cutoff filter, but this filtering would also obscure the fine details and cause

the type of problems cited earlier.

190

" i

L AL JLANLEN A B N B

0 20 40 60 8 100 120 140 160 180 200 220 240

Figure 8. Filtered Curvature for the Pliers

8.2.4 Use of the Features

From the preceding discussion, it should be clear that the three features used by the recognizer vary
significantly with both the size and orientation of the objects. The variation with object size can be
accounted for to some extent as discussed in chapter 3 when generating the templates and when recogniz-
ing.

The object templates are generated by measuring the features for 4 object sizes and some number
of rotations at each size. The area is used as a measure of size because it is in general a more robust
feature (the area is a macroscopic feature of the object). An average of the features is obtained for each
area and stored along with the area as part of the template. The template features are assumed to be
piece-wise linear functions of the area. When recognizing, the area and features of the unknown object
are determined. The features for the template objects are found by computing (by linear interpolation)

the features that correspond to the unknown object area. A score for each template object is computed

191

50004
4000
3000
2‘)‘)"'{iaw

1000

-1600-

<2000

LIS LRSS LA R B R B |

0 20 40 60 80 100 120 140 160 180 200 230

Figure 9. Filtered Curvature for the Pliers

according to the equation:

2

i tempiate A Y—F i snin .
score = z W; (f" e ¢)_f‘r object
i=featire number L M‘ni+fi.mkmwu object

where f; iempiaie(A) is the interpolated template feature value

Essentially, the score for each feature is the square of the percentage deviation of the feature for the unk-
nown object from the feature of the template object. The score for each object is the sum of scores for
the features. This basic scheme has some slight modifications. Each feature score is modified by two
weights (W; and Min;). These weights take into account the ability of each feature to distinguish dif-
ferent objects. Ideally, W; should be a function of c,i,,,,,,. Objects which have small feature variance
shouid be weighted heavily (W; large). Min; is used to reduce the weight of features as the value of the

feature decreases. This is used for both P62, and Y. curv which tend to be less reliable as the value
curv >0

of the feature decreases. The features are less reliable for small areas because the features are more sen-

192

16004
15004
14004
13004
1200
11004

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Figure 10. Features for the Pliers and the Strippers for Fixed Orientation

sitive to quantization noise or other aspects which are not characteristics of the object.

The weights can be chosen analytically if some assumptions are made and the problem is
simplified. Assuming that there is only one feature and there are only two objects, the weights can be
chosen by making the probability of mistaking object 1 for object 2 (P,,,;) the same as the probability of
mistaking object 2 for object 1 (P,,,,). Assuming that the feature, X ;, for object 1 has a Normal distribu-
tion (with mean 1, and variance o;) and that the feature, X ,, for object 2 has a Normal distribution (with
mean L, and variance o), the goal is to choose a threshold, T, between p; and L, such that,
Por1 =P oppy. If the feature value, X, for the unknown object is less than T, the object is assumed to be
object 1 and if X >T, the object is assumed to be object 2. T can be derived under these conditions:

Port =P
=> Pr(X >T]=Pr{X,<T]

T T-
=>l—<b[‘ﬂ1]=°[Mz]
01 02

193

15004 L
1200 \-\ P
\ e
1100 \ ;,,n.\ /
. —. ',c'"\ -./""A\\ / P &cm
900 DN ™
600 /,__./\/_l_}uw\
500 . curv >0
- \\\\..o-""'\-._~ 4-"/.\“-..-.—"’“”- T
- A
3004 —_—
P 2
] I

1 1 T T T
9 10 11 12 13 14 15

(-]
ot =}
[]
)
E -3
w4
o
-
[- -}

Figure 11. Features for the Pliers and the Strippers for Fixed Size

let To=T"'111
T To—
M| Oz
T T
g Gy
- T, Toap
o1 a2

G
=>-To=a(TAN) where a = ?l

2
a
=> "o-""[mr]
a
=>T = 1+Al [ta]

2
X-
let Sl = [Tul]
1

2
X1,
02

and S, = [

194

1000+

900

800

strip

ool

200
en triangle

100

square

L B B B e S s s s e s s
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Figure 12. ¥ curv vs. Area for the objects

curv >0

If §1<§ 5, the object is assumed to be object 1 and if §,<S ;, the object is assumed to be object 2. These

conditions for making the decision can be shown to be equivalent to those using T directly.

Therefore, under the stated assumptions, the weighting factor is the inverse of the variance of the
feature value. The computed weighting function is intuitively satisfying. If the variance of a feature is
small, that feature is more reliable and that feature is weighted heavily. However, there is little hope that
aff of the assumptions that were made are really valid and hence the derived weighting function is not
used. The variance of the features is a function of the object size and not constant as assumed above.

Instead the variance of the feature values was used to subjectively determine the weights. The values of

the weights for the three features are given in table 1. % is weighted twice that of the other two

features because of its lower variance.

195

feature W | Min
PO'Z;,,, 1 60

Y curv |1 400
curv >0

Table 1. Feature Weights

2204

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Figure 13. Recognition Successes and Errors for the pen

8.3 RECOGNIZER OPERATION

The image recognition system can be divided into three main parts, the high rate image processors,
the lower rate feature extractors and the pattern matcher and central controller. The high rate processors
(sorting filter, linear convolvers, logical convolver, post processors) process all video data in real time
and and are not controlled by the central controller. The lower-rate feature extractors (contour tracer and
feature extractor) provide the interface between the high rate processors and the slow host computer (pat-

tern matcher and controller). The host computer controller must control the operation of these chips and

196

550

500

450

350

3004

250

200

150

100

50

0.
0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Figure 14. Recognition Successes and Errors for the wire wrap tool

read the output results.

The host computer controls the contour tracer operation. It commands the tracer to load a new
frame into the intemnal buffer of the tracer and also restarts the tracing algorithm to try to locate multiple
objects in a frame. The host reads the features computed by the feature extractor and the curvature com-
puted by the tracer. After all data for the objects have been read by the host, it computes the P62, and

2. curv features and performs the pattern matching.

curv >0

The basic tasks that the host performs are diagrammed in figure 17. First, the controller commands
the contour tracer to acquire a new frame and search for objects. The same command resets the feature
extractor. The controller then waits for the feature extractor to indicate that the tracer has completed its
algorithm. If no objects were found in the frame, the process repeats and a new frame is acquired. If the
trace ended in an error, the pattern matching is not performed and the controller computes a new start

point for the tracer and initiates another trace, still using the old image frame. If the trace finished

197

successfully, the features are read from the feature extractor and the curvature buffer. The host then
computes any additional features and performs the pattern matching. After this, a new start point is com-

puted and the tracer is commanded to begin searching for other objects.

The computation of new start points is one weakness in the current system. Currently, after a suc-
cessful trace, the tracing is started at the top of the image and at an X position one pixel past the right side
of the last object’s bounding box. This is a simple way to compute the new start point, but is possible for
objects to be masked by larger objects and not be found. If there is an error, the computed right side of
the bounding box may be unreliable because the contour of the object touched the right side of the frame.
In this case, the previous X start position is increased by a constant and the tracing is performed again. If
single point noise is encountered, the bounding box data is useless because the first point is not recog-
nized as valid. The first point is recognized only after the the rest of the contour has been traced and
there are at least two points on the contour. For this case, the X start position for the tracer is the X posi-

tion of the noise plus one.

The controller is also required to detect certain pathological cases. If the tracer starts inside an
object, useless data will be generated. Tracing on the inside of an object can be detected by examining

the sign of the computed area. If the area is negative, the object was traced from the inside.

8.4 RECOGNITION RESULTS

The recognition system was tested with the basic objects shown in figure 1, the same objects used
to create the templates. Each object was recognized over a wide range of orientations and sizes. The
object rotation was varied by continuously rotating the table the object was on. Size variations were
simulated by changing the focal length of the camera lens. A record was kept of the total number of

times the recognizer chose each object as a function of the object size.

The recognition results for a system with a median noise rejection filter, no linear to logarithmic
conversion, a Sobel edge extractor with pre-determined threshold and single pixel expansion are given in

table 2.

All of the errors, except the one for the triangle, consist of mistaking the pen for the wire wrap tool,

198

recognition
object = error
successes | errors | rate
[stripper | 1607 | 45 23
square 3282 0 0
circle 1568 0 0
star 2449 0 0
triangle 2085 1 005
pliers 1755 43 2.5
pen 1980 342 14.7
wwtool 1946 30 15
| overall 16672 461 2.7

Table 2. Recognition Results

the wire wrap tool for the pen, the pliers for the strippers or the strippers for the pliers. This seems to be
a reasonable way for the recognizer to fail because the objects that were erroneously picked are actually
quite similar (in a subjective sense) to the true object. The number of recognition successes (line) and
errors (bar) as a function of object area is plotted in figures 13-16. For the pen and the wire wrap tool, all
of the efrors are made for relatively small sizes. This is not unexpected because, many of the effects

which cause variations in the features are most pronounced for small image sizes. In addition, the pen and

wire wrap tool both have the type of shape that causes the value of ;‘—2 to be sensitive to quantization

errors and the non-isotropic processing. It is interesting that the wire strippers were incorrectly identified

as the pliers for relatively large object sizes.

The overall error rate for this test was 2.8%. However, if the recognition errors that were made for

very small areas (< .6% of the frame area) were ignored, the error rate would drop nearly in half to 1.6%.

8.5 MORE CONSTRAINED RECOGNITION

Originally it was desired to recognize two dimensional objects with invariance to the size and
orientation of the object without many other constraints put on the problem. However, in some cases it is
likely that specific information regarding the environment of the objects or the characteristics of the
objects can be used to make the recognizer more reliable. In addition to increasing the reliability of the

recognition process, it is likely that the computational requirements would decrease. For example, if size

199

550
500
450
400
350

300

2004

150

100

--

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Figure 15. Recognition Successes and Errors for the pliers

invariance is not needed, the absolute size of the object will aid the recognition process. If the types of
objects to be recognized are known in advance, it may be possible to use features that are better tailored

to distinguishing those particular objects.

8.5.1 Constant Size Recognition

For some cases it is quite reasonable to assume that the object size will not change. As mentioned
in chapter 3, if parts are located on a conveyer belt or other surface in a known plane and the camera is a
fixed distance from the known plane, size invariance is not required. In these cases, the absolute size of

the image, measured in terms of the area and/or perimeter, can be used to aid the recognition process. In
fact, if all objects have different sizes and shapes (as measured by %). then the it should be possible to
distinguish the objects solely from the area and perimeter of the object. It is no longer necessary to actu-

ally compute % because size invariance is not needed. In addition, the features do not need to be

200

2804
260
240
2204
200
180
160
140
120

100

--

0. 100 200300400500600700800900100011001200

Figure 16. Recognition Successes and Errors for the strippers

parameterized with area.

To test the effectiveness of a recognizer using only these two object features, the four objects
which were recognized incorrectly in the previous test were tested again without size invariance. The
orientation of the objects was varied as in the previous test. The areas of each of four objects along with
the recognition results are listed in table 3. All of the objects in this test filled only a small portion of the
screen; the largest strippers that can be displayed has an approximate area of 2300 units 2 or about 7 times
larger than the object used in this test. The problems with variations in area and perimeter were not

severe enough to cause recognition errors with these object sizes.

8.5.2 Distinct Shape Recognition
An example of another constrained problem is the recognition of objects with distinct shapes as

measured by ;AT If it is desired to recognize the circle, square and triangle, the f; feature seems to be

201

start
| start new frame
start new
u-a‘lfce l frame doze
compute new . .
P) wait for comlpetion
start point
| I R P B
error
read features
compute additional
features
perform
attern matchin

Figure 17. Recognizer Operation

object area | perimeter | successes | errors
pen 156 87 3868 0
wwtool 77 68 2628 0
pliers 178 111 3317 0
strippers | 373 168 2480 0

Table 3. Recognition Results for Constant Size Objects

adequate to differentiate these objects. This might be used is in very specific problems, such as, having a

robot locate a ping-pong ball and then hit or catch it.!

The recognizer was tested using only the % feature to recognize the circle, square and triangle

over a wide range of orientations and sizes. Although no attempt was made to recognize the other

objects, they were still template objects and hence the recognizer could still mistakenly choose one of

! This has been suggested as a goal to demonstrate the abilities of robots in the control systems group at U.C.B.

202

them. The results of this test are shown in table 4.

object successes | errors
square | 1756 0
triangle 2116 0
circle 1494 0

Table 4. Recognition Results for Distinct Shape Recognition

It should not be surprising that the recognizer made no mistakes in this test because the values of
};—42- for these objects (figure 2) are quite distinct. This test demonstrates the ability of the recognizer to

achieve good recognition accuracy for specific objects using a feature which can be computed easily.

8.5.3 Using Color

Until this point there has never been any mention of the use of color information to aid in either
edge detection or recognition. To rely only on the intensity of the object to find edges is a handicap
unless all objects of interest are black and white. Changes in luminance as well as hue should be used to
find edges. In addition, hue information could simplify some recognition problems. For example, the
wire strippers and the pliers have different colored handles (one red, one blue). It would be possible to
have the image processor count the number of pixels with each color within the boundary of the objects
after contour tracing. If the information from the other features was not sufficient to make a reliable

decision (i.e. the scores for the two objects were close), the color information could be used.

8.5.4 Recognition without Edge Extraction

The problems with thresholding the gray-level image were discussed in chapter 2. In environments
with good contrast and low noise, it may be possible to simply threshold the gray-level image and use this
as an input to the contour tracer. This was in fact done when the contour tracing algorithm was being
simulated because the convolver chips were not yet available. If the gray-level image is thresholded
directly, not only is the edge extractor and logical convolver unnecessary, but the 8-bit A/D converter

could be replaced with a comparator.

203

8.5.5 Achieving Size Invariance Optically

There is no reason why the invariance with respect to object size of the recognizer must be
achieved algorithmically. It could instead, be obtained optically, by changing the focal length of the lens
and perhaps translating the object or camera in order to have the object fill the frame, If this were done,
features would not have to be used that are reasonably invariant with respect to object size. In addition,
the recognizer would not have to deal with small images which are more sensitive to quantization errors.
If the object were scaled to fill the frame, quantization errors would be as small as possible. Higher reso-
lution may be more economically obtained through this method compared to simply sampling the object
at a higher rate. The value of this scheme can be seen by noticing that this kind of size normalization
would make the recognition problem the same as that in section 8.5.1. By making the objects a standard

size, no recognition errors were made when using only two features which were quite easy to compute.

8.5.5 Conclusions

We tried to solve a relatively general recognition problem and hence used some general techniques
and features which resulted in recognition errors. For a specific recognition problem, as much specific
information regarding the objects and the environment should be utilized to make the recognizer as
robust as possible and to also reduce the computational requirements of the system. It has been shown
that specific recognition problems can be solved with fewer computations than the general problems and

with a greater accuracy.

8.6 IMPROVING THE RECOGNITION ACCURACY

The basic causes of feature variations and hence recognition errors, include quantization errors in
the spatial image and the curvature signal, non-isotropic image expansion and the use of the perimeter

which is a microscopic property of the object.

Both spatial and curvature quantization errors can be reduced by simply increasing the resolution
of the system. The tracer down-samples the image to 128 x 128 pixels. With a more advanced technol-
ogy, a larger buffer could be put on-chip and the down-sampling would no longer be necessary. If no

down-sampling were performed a significant increase in resolution would result and hence quantization

204

errors would be minimized. Although the curvature is inherently quantized to three bits, the effects of
quantization errors can be minimized by over-sampling the curvature (which happens as the spatial reso-

lution is increased) and then removing quantization noise by low-pass filtering.

As mentioned above, it may be more economical to achieve greater resolution by scaling the image

before digitizing to efficiently use the available resolution.

The problems associated with under sampling are made worse by the logical convolver. Although
expansion of the binary image behaves like a low pass filter in some sense (i.e. image details are blurred),
it can actually create high spatial frequency components in the image by shrinking the background. For
this case, it is possible that aliasing will occur when the image is down-sampled if the background region

becomes narrower than the sampling interval.

The non-isotropic processing can be corrected by employing an image digitizer that samples the
image on a square array and without interlace. Another way to solve the non-isotropic processing prob-
lem is to modify the image processing chips to take into account the particular distances between pixels
horizontally and vertically. For example, to compensate for greater expansion vertically, the "impulse
responses” could be lengthened in the horizontal dimension. It may be advantageous to actually digitize

the image on a hexagonal grid, where each pixel is equidistant from each of its six nearest neighbors.

The perimeter may have to be discarded as a feature as there is no obvious way to reduce the vari-

ance of the perimeter as the object is rotated.

8.7 OTHER RECOGNITION TECHNIQUES

Two other recognition techniques were examined. The performance of these techniques was com-
pared to the performance of the feature-based recognizer. Both the Fourier descriptors and curvature

matching techniques were characterized.

8.7.1 Fourier Descriptors

The first eight normalized Fourier coefficient magnitudes were used as features to recognize the
/

objects in figure 1. The same basic system configuration was used that was used in the feature-based

recognizer. In this case, the curvature values were used to reconstruct the (X,Y) pairs which are needed

205

to compute the Fourier coefficients. Because the Fourier coefficients were computed on the host, the total
number of recognition tests was reduced. The images which were used to generate the templates for the
feature based recognizer were used as test images (about 20 images/object). The system was trained on
one large image per object and no attempt was made to allow for size variance as discussed previously.

The error measure used was a simple Euclidean distance between the template and unknown coefficient

vectors.
object l attempts | errors l error object |
star 20 0 -
square 20 0 -
triangle 20 3 circle
pen 20 1 wwtool
wwtool 20 1 pen
pliers 20 2 triangle
strippers 20 0 -
circle 15 0 -
total 155 7 1 |

Table 5. Recognition Results for Fourier Descriptors Features

The results of the recognition are given in table 5. There are some similarities between these
results and those for the feature based recognizer. The pen and wire wrap tool were mistaken for each
other. In addition, the objects which were recognized correctly most of the time in the feature based
recognizer were also typically recognized correctly in this test. However, the pliers was mistakenly

called the triangle and the triangle was called the circle.

coeff o’

(F, 42
F, 36
NFE+F? |12

Table 6. Variance of Fourier Coefficients for the Triangle

There are two problems with this technique. The first is that by computing Fourier coefficients, it
is being assumed that the contour is uniformly sampled. However, for a square sampling grid, the diago-

nal points are farther apart than the points that are aligned vertically or horizontally. This could be

206

corrected by sampling the image on an hexagonal grid. The other problem is that the coefficients tend to
be somewhat correlated. That is, if one coefficient is large, another may tend to be small. For example,
for the triangle, the first and second normalized coefficients (the two largest ones) have a correlation
coefficient of -.85. In table 6 it can be seen that the variance of the two coefficients is larger than that for
the square root of the sum of the squares of the coefficients. For some cases the first coefficient is large
and the second is small. In other cases, the converse is true. The exact magnitude of each coefficient is
probably determined by quantization errors and the non-uniform sampling. This results in recognition

errors in a system in which this relationship is ignored.

object attempts | errors | error object
star 20 0 -

square 20 1 circle
triangle 20 2 pen, wwtool
pen 20 4 wwtool
wwtool 20 8 pen

pliers 20 0 -

strippers 20 0 -

circle 15 0 -

total — 155 | 15 | |

Table 7. Recognition Results when matching Curvatures

8.7.2 Curvature Matching

A recognizer which matches curvatures was tested in a similar way to the Fourier descriptors
recognizer. A curvature template for each object was generated from a single image of an object which

fills the frame. The images which spanned a wide range of orientations and sizes were then used to test

the recognizer.

Size invariance is obtained by simply making the template curvature and the curvature of the unk-
nown object the same length. This is done by down-sampling the longer curvature. Because the curva-
ture is the second difference of the position of the contour, it has significant high frequency content and
can not be simply down-sampled without aliasing. To prevent these problems, when a point is removed

from the curvature, the value of that point is added to an adjacent point. In this way the slope, which is

207

the discrete integral of the curvature, is not changed significantly. Because sharp corners can be
represented by an impulse in the curvature signal, it is important not to simply discard points or major
object features may be lost. This simple matching technique requires that the relative distance between
corners be maintained as the image is rotated and its size is varied. Therefore, a correction must be made
when there is a diagonal step in the contour, because diagonal points are actually V2 units, not 1 unit
apart. To accomplish this, one dummy zero point is inserted into the curvature after two diagonal points
are encountered on the contour. This makes the diagonal points appear to be approximately 50% farther

apart than the horizontal or vertical points.

Rotational invariance is achieved by shifting the template relative to the curvature of the unknown
object and using the best match over all shifts. The two curvature signals are filtered by the same filters
used in the feature-based recognizer. The error between the scaled curvatures is found for each shift by

accumulating the square of the error between the two at each point.

The results of the recognition process are summarized in table 7. Again, mistakes were made
between the pen and the wire wrap tool. It is interesting that the pliers and strippers were not confused
with each other. However, the square was mistakenly called the circle and the triangle was called the pen
and the wire wrap tool. Considering that only a single template curvature was stored for each image, the

recognizer performed reasonably well.

The use of the curvature in this way is fairly sensitive to errors in quantization of the object. If
quantization errors make a normally smooth side of an object become jagged, its apparent length, meas-
ured by the normalized number of pixels along the edge, will increase. This could cause the object to
appear different from itself when the (iuantization errors cause the side to appear shorter. An example of
this is a triangle with one side aligned with one axis of the digitizing grid and another side that is not vert-
ical, horizontal or diagonal. The side aligned with the digitizer axis will have zero curvature because the
pixels are perfectly in line. The off-axis side will have non zero curvature because the particular slope of
the line is not one of the 8 which can be exactly represented. As a result the slope will change between
the two values closest to the true slope of the line. The line will appear "jagged" and hence will appear

longer relative to the edge aligned with an axis. The net result of this is that the shape becomes distorted,

208

with errors in the relative distances between sharp corners. Basically, this parameterization of the curva-

ture has the same problems of the perimeter because the perimeter is simply the integral of the curvature

parameter.

One solution to the problem is to find the true X,Y position of points on the contour which have
large curvature values. The points with large curvature are the ones which can contribute large errors in
the matching and hence should be positioned accurately. The distance between points of large curvature
would be known within the spatial resolution of the system. The curvature could then be non-linearly

scaled to ensure that these points are the proper relative distance apart.

8.8 CONCLUSIONS

Although none of these recognizers produced perfect results, they do show that high-speed object
recognition can be performed with a very simple custom system. By utilizing custom chips to perform
the bulk of the high rate processing and mid-rate feature extraction, the entire system could be made to
run at nearly real-time rates. With minor improvement to the system, real-time operation is likely to be
obtained. Further, it was found that a very simple feature-based recognizer performed comparably to
much more computationally intensive recognizers. The performance of the feature-based recognizer
could be improved by using greater resolution, sampling the image on a square grid and/or using optical
size normalization.

The use of hardware in an hierarchical manner and the appropriate CAD tools made it possible to
develop a working set of image processing chip and the recognition system in only 1.5 man years. By

making tradeoffs between the algorithms, architectures, circuits, and CAD tools, large savings in the total

design effort could be achieved.

APPENDIX A. THE RECOGNITION BOARD

209

The recognition system described in chapters 3 and 8 was built on a board. The way in which the

custom chips are connected on the recognition board is shown in figure 1. The connections are fairly

straight forward for the chips that produce video outputs (they are connected in a simple cascade

fashion). There is a much more complicated interconnection between the contour tracer and feature

extractor. In addition to the connections shown in figure 1, there are circuits to latch the control words

from the host, send results from the board to the host, generate the control signals for the contour tracer

and the feature extractor and generate the clocks for the custom chips.

CONV1
in out
—L CONVPP id
inb LOGCONV OUTROM video out
videoin | INROM SORTER out in out [in out
—in out ¥ in out ina
CONV2 _r
in out
FE TRACER
bus 0-7 Yin0-6 in
bus 8-15 Xin0-6
CURV data
BUFFER T curv out Xin0-6 Xout0-6
Yin0-6 Yout0-6
curv in e ot
low rate data
TOHOST |

Figure 1. Custom Chip Interconnection

A.1 DESCRIPTION OF CHIP SIGNALS

The pinouts for the various chips are given in tables 3-10. For each chip a brief description of all

signals is given below. For all signals that are numbered (e.g. din0-7) the Isb is the lowest numbered sig-

nal (e.g. din0) and the msb is the highest.

210

LUT ROMs
din0-7 video input
dout0-7 | video output
enable modify video when high, pass data when low

Logical Convolver

din0-7 video input
dout0-7 | video output
bypass modify video when low, pass data when high
bloat0-3 | impulse response select - to bloat by n set only bloat0-bloatn high
start start of video line synchronization
Convolver Post Processor
a0-7 video input
b0-7 video input
dout0-7 video output
select gain for input b
g1=0, g2=0, gain=1
gl,g2 gl=1, g2=0, gain=2
gl=0, g2=1, gain=4
gl=1, g2=1, gain=8
t3-t7 offset (or threshold) value, LSBs are zero
when high map positive gray values to entire range
negclip when low map positive gray values to top half of the gray values
and negative gray values to lower half
binarycon | set all bits but the MSB to zero when high (for thresholding)
zeroa zero video input a
absval modify both a and b inputs by full wave rectifier

3x3 Convolver (ROM based coefficients)

din0-7 video input

dout0-7 | video output

sel0-3 impule response select

start start of video line synchronization

3x3 Convolver (programmable coefficients)

din0-7

video input

dout0-7

video output

con0-7

control (coefficients) signal inputs (see table below)
for MAC:
only one of sh0*-sh4* should be low (selects coeff magnitude)
invert high gives negative coefficient
zero* low gives zero coeff
for GAIN
zero high gives gain of 1
shn high (zero low) gives gain= 1-2™"

a0-a3

register address (see table below)

active low write strobe
latches con0-7 into register determined by a0-3

start

start of video line synchronization

programmable convolver register use

:igdlig coeff | type | done
0 hs; MAC 0
1 hy; | MAC 1
2 ha MAC 0
3 hay MAC 0
4 hoy MAC 0
5 hy | MAC 1
6 Gain | GAIN X
7 hy; | MAC 1
8 his MAC 0
9 hy MAC 0

Programmable convolver control words

bit TYPE
" ['MAC | GAIN

con0 | sho* zero
conl shl* sh4
con2 sh2* sh3
con3 | sh3* sh2
cond | sh4* shl
conS | invert

con6 | zero*

con7 done

211

212

3x3 Sorter
din0-7 video input
dout0-7 video output
c0-c1 vertical region of operation select
c2-c3 horizontal region of operation select
invert* invert minimum when low

zeromin zero minimum
zeromax* | zero maximum or median
selmax* compute maximum when low, median when high

start start of video line synchronization

function invert* | zeromin | zeromax* | selmax*
minimum 1 0 0 X
maximum X 1 1 0
median X 1 1 1
max diff 0 0 1 0

Contour Tracer
yinl-yin6 Y start value (LSB is always high), normally connected to bus2-7
xinl-xin6é X start value (LSB is always high), normally connected to bus10-15
ramout RAM output for testing
xout(0-7 Current X position, normally connected to FE xin0-7
yout(-7 Current Y position, normally connected to FE yin0-7
SRout input shift register output for testing
videoin video input signal (1 bit)
output curvature signal, normally connected to FE curvinl-3
curvoutl-3 This output is the actual curvature offset by 4. So when
curvout=0 the actual curvature is -4.
stateout0-5 Current tracer state, normally connected to FE statein0-5
error indicates trace error when high
philw, phi2w | video clocks for loading data into tracer
hsync write clock during horizontal blank
acquire when high, loads frame into buffer and starts trace
load loads tracer registers for tracing same frame at different location
phil,phi2 clocks used during trace mode (can be different than philw,phi2w)
statein0-5 start state for tracer after "acquire" or "load” (normally 000011)
auxram FSM input for testing
selauxram when high FSM takes input from auxram instead of real RAM output
for testing
start start of video line synchronization
slow phil slow clock used by tracer, needed to synchronize FE
Coyout carry out from Y counter, used to detect trace off edge
Coxout carry out from x counter, used to detect trace off edge and frame done
dx=zero* indicates that X position is the same as first point on contour
dy=zero* indicates that Y position is the same as first point on contour

These 2 signals are used to determine when the contour has been traced

213

214

Feature Extractor
statein(-5 Current tracer state, normally connected to tracer stateout(-5
yin0-yiné Y current value, normally connected to tracer yout0-6
xin0-xin6 X current value, normally connected to tracer xout0-6
curvinl-3 input curvature signal, normally connected to tracer curvoutl-3
curvoutl-3 output curvature signal to buffer
bus0-15 I/O bus for sending data to host, reading data from host, setting

buffer address for read/writing and setting tracer X,Y start values

latch signal that causes FE latches to load data from the bus
dir indicates direction of data on bus, used to control tri-state buffers
validpoint strobe to latch curvature data into buffer
override force register to be selected from a2-a0
a2-a0 register address (address 7 for loading data)
reset resets FE after tracer acquire
Coxin Coxout from tracer
dx=dy=0 indicates that current X,Y position is same as first point on contour
errorl* signal to indicate trace errors (computed from tracer signals)
load tracer load signal
done* indicates when the trace has finished
outcode0*-1* | code indicating tracer state

A2 BOARD LAYOUT

The layout of chips on the board is shown in figure 2. The host computer and video connectors are

at the left and the custom chips are clearly marked.

215

IN SORTER 1

B
¥]

CONV1 PP o

out) —
3 3
ROM CONV2]

9 =] A0 —
AAAAO00R k|-
JHAPF

Figure 2. Board Layout

I
L] [&] |
L& L] |

(=] [z

l
L=l L] [=] [®] [=]
8

dot clock
{} clock

clock*
59
clock phil
59 .
clock* phi2

clock ‘E)' inlatch
oo

clock* outlatch

Figure 3. Clock Generator Circuits

A.2.1 The Clock Generators

The clocks for all of the chips on the board are derived from a single phase clock (dot clock) sup-

216

plied by the video digitizing circuit. All chips were designed to utilize clocks with zero clock separation
to prevent the need to generate difficult to control clock separation and to give the circuits as much of the
complete cycle as possible for operation. The circuit used to generate the clocks is shown in figure 3.
The cross coupled NOR gates generate non-overlapping clocks from clock and clock* (clock is buffered
to equalize the delay in clock and clock*). The resistors are utilized to reduce ringing. To get clocks

which rise quickly to 5 Volts, 74S02 parts were used with a 7 V supply.

G3SDI0-GISDOO —:_ _:_ videoin 0 vidoo ot 0 _:. .:,_ GISDI0-G3SDO0O
A s -7 <
T)) L
. 1 E— R k) 373 Lt S
| 3714 [mF— 1
:{ﬂl L L
GISDI7-033DO7 G oc* viteo 7 vidoo o 7 G OCH——i— CIDIT-G350007
inlatch outlatch

Figure 4. Video Input and Output Latches

A.2.2 Video Interface

The video in (input video from the digitizer) and video out (output video to the display) signals are
latched with the circuit shown in figure 4. The circuits are the interface between the video signals on the
recognition board and the video signals on the digitizer board which operate off different clocks. Video

in goes to the input ROM and video out comes from the output ROM.

All low rate control signals from the host are latched by the circuit in figure S. This is just a bank
of registers that latches data on the Multibus when the appropriate address is decoded. Low rate data is
read from the board with the circuit in figure 6. This circuit enables data onto the Multibus when the
appropriate address is decoded. The "wsel/” and "sel*" signals are decoded selects from the Multibus.
The "BDATn/" signals are the Multibus data signals. The input and output port assignments are shown in

table 1 and table 2.

217

. port
bt 2 |3 a5 6 | 7
sorter convl | convpp conv2 | FE N
0 zeromax | impsel0 | thresh3 impsel0 | a0 bus0 | bus3
sorter convl convpp conv2 FE
1 zeromin impsell | thresh4 impsell | al busl | busd
sorter convl convpp conv2 FE
2 | selmax* | impsel2 | threshS | impsel2 | a2 bus2 | bus10
sorter convl convpp conv2 FE
3 c0 impsel3 | thresh6 impsel3 | override bus3 | busl1
sorter convpp | convpp logconv | FE
4 cl negclip | thresh? bypass | latch bus4 | bus12
sorter convpp | convpp logconv .
5 c2 absval binarycon | bloatl acquire busS | bus13
sorter convpp | convpp logconv
6 3 gl zeroa bloat2 load busé | busl4
out ROM | convpp | in ROM logconv | tracer
7 enable g2 enable bloat3 selauxram bus7 | busls
Table 1. Output Port Assignments
. port
bt 0 1 2 3
FE tracer
0 outcode0* bus | bus8 xout)
FE tracer
1 outcodel* busl | bus) xoutl
FE tracer
2 done* bus2 | busl0 xout2
tracer tracer
3 error bus3 | busll xout3
FE tracer
4 curvoutl busd | bus12 xout4
FE tracer
5 curvout2 bus5 | bus12 xouts
FE tracer
6 curvout3 bus6 | busl4 xout6é
7 done bus7 | buslS tracer
ram out
Table 2. Input Port Assignments
A.2.3 Control Signals

Figure 7 shows the circuit that generates the "start” signal for chips with line delays. This circuit
detects edges in the horizontal blank signal and generates a single pulse at the start of each line. The con-
tour tracer could use this signal directly if the pixels were on a square grid. However, because the pixels

are 20% closer vertically than horizontally, the circuit shown in figure 8 is used to discard one out of

218

every 5 lines,

The signal "hblank*" is generated by the video digitizing system.

BDAT(/-BDAT7/

port?

dir

Figure 5. Latches for Low Rate Control Signals

The tracer requires a signal that goes high during the frame that is to be loaded into the internal
buffer. The circuit in figure 9 generates a signal that is high during the first frame (actually the first even
frame after the first odd frame) after the acquire signal is asserted by the host. The timing for this circuit
is shown in figure 10. The circuit in figure 9 also synchronizes the "load” signal from the host to clocks
on the board.

The video digitizing system generates "vblank*" and "field".

The feature extractor must be synchronized to the internal slow clocks of the tracer. Slow phil is
brought off the tracer chip but limitations did not allow "slow phi2" to also be brought off. The circuit in
figure 11 regenerates the slow clocks from "slow phil". The timing for the circuit is shown in figure 12.
Although the clocks are not identical for the two circuits, there is no overlap between the two phil clocks
or the two phi2 clocks. The rest of the circuit in figure 11 generates the reset signal for the feature extrac-
tor. Because the slow clocks are turned off during the tracer acquire mode, the feature extractor must be
reset after every frame has been acquired. In addition, the feature extractor must hold the X and Y start
values on the bus for loading by the tracer until these values are loaded into the internal tracer registers.

This is why the feature extractor reset is the acquire signal from the tracer delayed by four cycles. The

sel2*
z0ATH s 18° 28*
Pta———
BDATY E]
RDATY 7

244
AT »
Pt
EDATY I
—
EDATY 14,
]
RDATV 16|
DAt 1
—

3
sel0*
BOATH s| 18* 2g*
P
BDATY 3
—]
E0ATY 2

244
0ATY ’
——]
DAY a
preia—
BDATY 1
——
ROATY 16
—men]
AT 1
——]

sell*
A &
" s BDATY s| 18* 28* |n a7
13 bt i s 1 e
n) BDATY)) teas
u a2 ATV ’ 244 u beae
[b i1 ATV o s tus3
s) DATY 14 6 bes2
.) DTy 18] a st
2 L 1] EDATY 18 2 ua®
sel3®
5 &
" 9 2DATH s| 18* 28* |» o
1 7 e 2DATY 3 1 raomracuss
D 7 o BDATY 1 o acer acut
1 8 axrvomt 3DATY ’ 244 u [re——
s tmaereoe BDATY 1| ' RSy
6 B sDATY 1 s tracxr ace?
4 7B oateclel® BDATV 16 4 ranny nonti
2 R unoteon BDATY 1 2 traeer s

]

Figure 6. Buffers for Reading Low Rate Results

delayed hblank*

delayed hblank
——>

T
A

I

hblank* 2

outlatch

3

DR

b}

Figure 7. Start Circuit

219

220

Co
161 *
Ain Bin Cin Din c*

JI 4| % GI

no comection

Figure 8. Contour Tracer "start" Circuit

ry
2
RD
Q outlatch
o | Tra <
Q*
S
-J
l 2 bR B 1 D-lJ;\. C
S 9 13 .
port5Sbits s Q —r_" Q 7 00 n 10 @ nt.raceracqmtg
B4
DR |, tracer load
sync phil n> 74 >

Qp

s
< &

Figure 9. Tracer "acquire" and "load" circuits

data from the bus is loaded during the first "slow phil"

The circuits in figure 13 generate signals for the feature extractor from tracer signals (top two) and
handle the buffering of curvature data (bottom). Figure 14 shows the circuit that indicates when a trace is

finished. The done signal is reset during acquire and is set when any of the feature extractor status lines

is set.

c ! I
Figure 10. Tracer "acquire” timing
sync phil
s
trecer 1 A Qc Qf
premrram—
el 164 P9
= B
FE reset
13
tracer gcquire 1
dot clock —3A Qh
> 164
= B

Figure 11. Feature Extractor Clock Generator and reset Circuits

, D DR
3508 3N 74

FE done* "b > Q*
S

s done
—

O

Figure 14. "Done" Circuit

221

222

tRoee sequire

tracce slow phil

trzcer slow phi2

FB dow phiz

FH alow phil

Figure 12,

]

Feature Extractor Clock Generator and "reset" Circuit Timing

tracer dx=0*

curvoutl m m
1 .
curvour2 12 I—;O_\G FE dxedy=0
- 10 27; >
mdy-O‘
trecer Coy
tracer Coy ! FE errorl®
27 >
traccer error
16
FE curvou®
FE curvou
__‘Fﬂmmtl 9 10 1
n ror ro2 3

9 10p——d W* 6116
18 20

gc Ccs* a0-al0 QEp*
= !

BUS0-BUS10

Figure 13. Feature Extractor Control Circuits

Convolver Post Processor Logical Convolver
function pin | pin | function || function | pin | pin | function
sub 1 40 | doutd sub 1 40 | dind
dout3 2 39 | douts din3 | 2 39 | din5
dout2 | 3 38 | dout6 din2 | 3 38 | din6
doutl 4 37 | dout7 dinl | 4 37 | din7
dout0 5 36 | vVdd din0 s 36 | bloat0
t71] 6 35 | nmegclip bypass | 6 35 | bloatl
t6 7 34 | a7 dout7 7 34 | GND
t5 8 33 | b7 dout6 8 33 | bloat2
t4 9 32 | a6 doutS 9 32 | bloat3
t3 | 10 | 31 | b6 doutd | 10 | 31 | Vdd
binarycon | 11 | 30 | aS dout3 | 11 | 30 | GND
g2 12 | 29 | bS dout2 | 12 | 29 | phi2
gl| 13 | 28 | ad doutl | 13 | 28 | phil
zeroa | 14 27 | b4 dout0 14 27
absval | 15 26 | a3 start | 15 | 26
phil | 16 | 25 | b3 16 | 25
phi2 | 17 | 24 | a2 17 | 24
GND | 18 | 23 | b2 18 | 23
b0 | 19 | 22 | al 19 | 22
a0 | 20 | 21 | b1 20 | 21

Tables 3,4 Pinouts for the Post Processors and Logical Convolver

LUT Rom Programmable 3x3 Lin Convolver
function in | pin | function || function gin I pin | function

sub 1 28 | GND sub 1 40 | doutd
vdd 2 27 douts 2 39 | dout3
dout0 3 26 douté 3 38 | dout2
doutl 4 25 dout7 4 37 | doutl
dout2 5 24 start S 36 | doutd
dout3 6 23 | Vdad Vdd 6 35 | GND

doutd 7 22 | GND GND 7 34 | phi2

douts 8 21 | phi2 8 33 | phil
dout6 9 20 | phil GND 9 32 | GND

dout7 | 10 19 | din7 a3 | 10 31 | con7

enable | 18 30 | diné a2 | 11 30 | conb
dinl | 12 17 | din§ al 12 29 | con$S
din0 | 13 16 | dind a0 | 13 28 | cond
din2 | 14 15 | din3 W= 14 27 | con3
Vdd | 15 26 | con2

din7 | 16 25 | conl

diné | 17 24 | conl

din5 | 18 23 | din0

dind | 19 22 | dinl

din3 | 20 21 | din2

Tables 5,6 Pinouts for the LUT ROM and Programmable Linear Convolver

223

224

3x3 Linear Convolver 3x3 Sorter
function | pin | pin | function || function | pin | pin function
sub 1 64 | start sub 1 64 | din0
vdd 2 63 | dout7 start 2 63 | dinl
3 62 | dout6 Vad | 3 62 | din2
4 61 | dout5 GND 4 61 | din3
GND 5 60 | doutd 5 60 | din4
6 59 | dout3 6 59 | dinS
7 58 | dout2 7 58 | diné
8 57 | doutl 8 57 | din7
9 56 | dout0 9 56 | GND
10 55 10 | 55 | phi2
11 | 54 11 | 54 | phil
12 | 53 | GND 12 | 53 | GND
13 | 52 | phi2 13 | 52
14 | 51 | phil 14 | 51
15 | 50 15 | 50
16 49 16 | 49
17 | 48 17 | 48
18 | 47 18 | 47
19 46 | GND 19 46 | invert*
20 45 | sel0 20 45 | zeromin
21 44 | sell 21 44 | zeromax*
22 | 43 22 | 43 | 3
23 | 42 23 | 42 | 2
24 41 | sel2 24 41 | selmax1l*
25 | 40 | sel3 25 1 40 | el
26 | 39 | din0 26 | 39 | c0
27 | 38 | dinl 27 | 38 | doutd
28 37 | din2 28 | 37 | doutl
29 | 36 | din2 29 | 36 | dout2
30 | 35 | din3 30 | 35 | dout3
31 34 | dind dout7 | 31 | 34 | doutd
din7 | 32 | 33 | din6 dout6 | 32 | 33 | douts

Tables 7,8 Pinouts for the Linear Convolver and Sorter

Tracer Feature Extractor
function | pin | pin | function function' | pin | pin function
sub | 1 | 64 | yinl sub | 1 | 64 | cutcode0*
yin2 | 2 63 | phi2 outcodel* | 2 63 | load
yin3 3 62 | Coxout done* 3 62 | errorl*
yind | 4 61 | dx=zero* curvoutl 4 61 | dx=dy=0
yin§ | § 60 | dy=zero* curvout2 5 60 | Coxin
yiné 6 59 | Coyout curvout3 6 59 | reset
xinl | 7 58 | start statein0 | 7 58 | curvinl
xin2 | 8 57 | slow phi stateinl | 8 57 | curvin2
xin3 | 9 56 | youté statein2 | 9 56 | curvin3
GND | 10 | 55 | yout5 statein3 | 10 | 55 | a0
Vdd | 11 | 54 | youtd stateind | 11 | 54 | al
xind | 12 | 53 | yout3 stateinS | 12 | 53 | a2
xin5 | 13 | 52 | yout2 xin6 | 13 | 52 | override
xin6 | 14 | 51 | youtl xin§ | 14 | 51 | Vdd
ramout | 1S | S0 | yout xind | 15 | 50 | yin6
xout6 | 16 | 49 | selauxram xin3 | 16 | 49 | yinS
xoutS | 17 | 48 | auxram xin2 | 17 | 48 | yind4
xoutd | 18 | 47 | statein0 xinl | 18 | 47 | yin3
xout3 | 19 | 46 | stateinl xin0 | 19 | 46 | yin2
xout2 | 20 | 45 | statein2 buslS | 20 45 | yinl
xoutl | 21 | 44 | statein3 busl4 | 21 | 44 | yin0
xoutd) | 22 | 43 | stateind bus13 | 22 | 43 | dir
SRout | 23 | 42 | statein5 23 | 42 | bus7
videoin | 24 | 41 | phil 24 | 41 | bus6
curvoutd | 25 | 40 | load bus12 | 25 | 40 | busS
curvout2 | 26 | 39 | acquire busil | 26 | 39 | bus4
curvoutl | 27 | 38 | hsync busl0 | 27 | 38 | bus3
error | 28 | 37 | philw bus9 | 28 | 37 | bus2
stateoutS | 29 | 36 | phi2w bus8 | 29 | 36 | busl
stateoutd | 30 | 35 | GND validpoint | 30 | 35 | bus0
stateout3 | 31 | 34 | stateout(latch | 31 | 34 | GND
stateout2 | 32 | 33 | stateoutl phi2 | 32 | 33 | phil

Tables 9,10 Pinouts for the Contour Tracer and Feature Extractor

225

226

APPENDIX B. A COMPARISON OF STORAGE CELLS FOR

DIGITAL SIGNAL PROCESSING

B.1 INTRODUCTION °

Every digital signal processing algorithm requires some form of storage for state variables. Every
delay in the algorithm corresponds to one word of storage. In image processing, where line delays are
used, whole lines (512 or 256 words) must be stored. The type of storage element which yields the
optimum tradeoff between power consumption, circuit size and design complexity is very application-

dependent.

B.2 GENERAL TRADEOFFS

Storage can be distributed, such as in a fully parallel implementation, or centralized, as in a micro-
coded implementation. If the storage is distributed, every state variable can be accessed each cycle. This
is in contrast to the micro-coded case where only a single, or perhaps a few, state variables are needed in
each cycle so that the variables can all be stored in a single RAM. The distributed storage elements may
be dynamic or static and may have inputs and outputs which are synchronous or asynchronous. Like-
wise, for the centralized storage elments. Centralized storage has, however, more degrees of freedom.
Size of the cell can be traded off for ease of using the cell. As the number of transistors in the cell is

decreased, the complexity of the peripheral circuits and the circuit timing increases.

B.3 DISTRIBUTED STORAGE

Typically, dynamic registers can be used to provide internal distributed storage since clocks are

usually available in the system and the inputs and outputs are synchronous to the system clocks. An

227

example of this is shown in figure 1a, the 6 transistor (T) register. This register will load every clock
cycle. If itis desired to hold data in the register, the first clock can be gated with a load signal (figure 1b).
Problems with this circuit include: possible clock skew between the gated phl and the ph2 clocks (phl
and ph2 have no overlap). Also, data will remain in the register only as long as leakage currents permit.
To remedy these problems, a feedback path can be provided (figure 1c). This circuit will load only when
the load signal is high and will refresh otherwise, so that data will remain as long as the clocks run. Also,

the original clocks (ph1, ph2) are used to load the 2 halves of the register, so clock skew is not a problem.

phil phi2

in —l- -|- out

(a)

phil * load phi2

in J— J— out

(b)
load phil phi2
a L 1 1 out
hold
1
©

Figure 1. 6T register (a), load-hold register (b), 7T load-hold register (c)
B.4 CENTRALIZED STORAGE

B.4.17T Cell

The choice of cell to use for centralized storage is much more difficult to make. The differences in

cell size and peripheral circuit design are great. At one end of the spectrum (largest, but simplest to use)

228

is the fully static asynchronous write and read 7T cell (figure 2a). This cell has separate read and write
bit lines and separate read and write selects, so that read and write operations can occur during the same
cycle. The cross coupled inverters refresh each other. The feedback transistor can be a weak depletion
device which can be overridden by the write device or an enhancement device that is driven by write
select*,

write bit line read bit line

A A

write sel read sel

—t
1

(a)
R/W bit line R/W bit line
R/W select R/W select
L L

—{ >0
o

®

Figure 2. 7T cell (a), 6T cell (b)

This cell is useful in small arrays which require static operation, in which refresh cannot be done
conveniently, and asynchronous read and write operations. An interface between the internal circuitry

and an off-chip processor is one possible application for this cell.

B.4.2 6T Cell

Another fully static cell is the 6T cell (figure 2b). Again cross coupled inverters store the state of
the cell without refresh. However, to get rid of the feedback transistor, both select devices and both bit
lines are used to write the cell. The same devices are used to read the contents of the cell. No longer are

the read and write operation independent,

229

B.4.34T Cell

The 4T cell (figure 3a) can be obtained by removing the loads from the 6T cell. This not only
makes the circuit consume no static power, but greatly reduces the size of the cell because the depletion
devices must have a small W/L ratio (<<1) to minimize power. Without the loads, the circuit is dynamic
and must be refreshed. The cross-coupled nature of the circuit automatically refreshes the cell each time
the cell is read. This is simpler than having to read and then write the cell to refresh it. To prevent
changing the cell contents during a read operation, the select devices must have a small W/L ratio. Dur-
ing a read operation, the bit lines are pre-charged high. If the select devices are large, both nodes in the
cell will start to pull up causing a loss of stored information. To ensure this does not happen, the select
devices must a small W/L compared to the storage devices. This, however, degrades the cell read time
by reducing the cell current. Another constraint imposed by removing the loads is that the read timing
must be controlled to ensure that 2 cells are never enabled at the same time. If two cells are enabled one

could change the data stored in the other.

B.4.4 3t Cell

If one of the storage devices is removed from the 4T cell, then one has the 3T cell (figure 3b). The
circuit no longer has regeneration and can not be refreshed by simply reading the cell. However, the read
and write bit-lines and select lines are now separate so that the read and write operations are independent.
Further, the select devices no longer need to be ratioed to prevent changing the cell contents during read
operations, because the read select is isolated from the stored charged. More read and write ports can be
easily added to this cell. Each additional port requires the addition of a bit line and another select transis-

tor. For the cross-coupled cells, two select devices and bits lines would have to be added.

The 3T cell with separate bit lines has other advantages. Because the write and read data appear on
different bit lines, tri-state buffers are not required on the write bit line. Further, it is possible to design a
RAM that does not require that the two clocks have any separation between them. In lower frequency
applications, clock separation can be obtained by using a higher frequency clock and dividing it down.
The clock separation is then defined by some number of the higher frequency clock cycles. This scheme

is difficult to utilize in image-processing where the clock rate is high, so that clock separation must be

230

R/W bit line R/W bit line
A A
R/W select R/W select
gy i

>

(a)

Read bit line Write bit line

A L3

read select write select

|
-

1

(b)
R/W bit line
R/W sel
1
I s I
()

Figure 3. 4T cell (a), 3T cell (b), 1T cell (c)

generated by difficult to control circuit delays.

The single bit-line 3T cell requires clock separation while the two bit-line 3T cell does not. With a
single bit line, the bit line is usually pre-charged during one clock phase to speed up the read operation.
The gated write signal (write enable in the RAM cell) must not overlap this precharge period or the
wrong data may be written. To guarantee that the gated write signal does not overlap the pre-charge sig-

nal, clock separation must be provided. This is because there is delay from the gate signal (usually a

231

clock) to the write signal in the RAM. With separate bit-lines the write bit-line is not pre-charged. If the
circuit is set up as is shown in figure 5, no clock separation is needed. Essentially, the circuit operates as
that shown in figure 6a. The phl and ph2 clocks have no overlap, but the gated write signal (ph2 AND
W) can overlap either phl or ph2 due to delays in the circuit. It can be seen that this circuit will always
operate as a single master slave register with no race conditions. However, in this configuration there is
only the time of one clock phase to assert the write bit-line and the write select-line. If the circuit were as
shown in figure 6b, the bit line would have more time to settle but race conditions would exist, since there
is a time when all three register clocks are on. To prevent writing into the wrong cell, the write lines
must never go high except when it is desired to write that row. Because the write select is ANDed with
ph2, and ph2 always goes low before ph1 goes high, the write line will only go high at the proper time. A

timing diagram for this RAM configuration is shown in figure 4.

Separate select-lines makes it possible to read data with very few timing constraints. In the 4T cell,
reading and writing occur through the same ports and hence the same care must be taken when reading as
with writing to ensure that the cell data is not corrupted. This usually means that the read time must be
restricted to less than one clock cycle to ensure that 2 cells are never enabled for reading at the same
time. In the 3T cell, the entire cycle can be taken for reading a cell. If two cells are selected for reading

at a given time, the contents of the cells are uneffected.

B.4.51T Cell

A simplification that can be made to the 3T cell is to remove the read select device and the read
bit-line. This circuit is called a 1T cell (figure 3c), but really has two devices, the select transistor and the
storage capacitor. This cell is drastically different from the previous ones. Data is read by directly sens-
ing the charge on the storage capacitor. In all other designs, the output was sensed through some kind of
gain stage (a MOSFET). This makes it possible to achieve full logic levels at the output of the cell
without any kind of sense amplifier. The 1T cell is read by connecting the storage node to the bit line.
Not only does this destroy the stored signal in the cell, but also generates a voltage change which is pro-
portional to ratio of the storage node capacitance to the bit line capacitance (usually << 1). This means

that a sense amplifier must be used to restore signal levels. The sense amplifiers add a great deal of area

232

to the circuit and require complex timing for proper operation.

2
2 { vapb >—
: Y
5 VALID
Figure 4. 3T cell timing
phil
phi2 phi2 < -I- out

F— phi2
read select

1
Phi2 J— phi1
write select,

Figure 5. 3T cell circuit

B.S MAKING CHOICES

Usually, for small storage requirements, the added power and size of the larger cells is not as

significant as the added circuit complexity associated with the smaller cells.

233
phi2 phi2*W phil

(a)

phil phi2*W phil
1 5 1) 1)

(b)

Figure 6. Equivalent Circuits
Often a small (e.g. 3T) cell can be used with little design penalty. For example, if the RAM loca-
tions are are written at well defined periods that are less that the refresh times, a dynamic memory will
work just like a static memory. Sense amplifiers can often be avoided, even when working with arrays of

2K bits at 10 MHz.

If static operation is required with a large RAM array, it is likely that a dynamic RAM with refresh
will be more cost effective than a static RAM. This is because, circuitry must be added to each cell to
make the cell static, but the refresh circuitry is only added to each row and/or column. Further, the power
consumption will increase as R+C (number of rows plus the number of columns) for the refresh circuitry
and by RC for the static cells. To perform the refreshing without slowing the processing down, one can

often utilize specific points in the algorithm where the RAM would be inactive.

Sense amplifiers are rarely needed with any of the RAMs except the 1T RAM. This is because the
select line pull-up times are the largest part of the total propagation delay. To minimize the size of the
cell, typically, the select lines are poly and the bit lines are metal. The poly select lines have a large
capacitance in the form a gate capacitance while the bit line capacitance is composed of the metal to bulk
and active area capacitances. The poly has a much higher sheet resistance than metal so that the RC
delays in the select lines is often significant. The bit lines can be pre-charged quickly and even with very
large bit lines (Smm), the RAM cell can pull the bit line down quite fast. If sense amplifiers could make
the bit line delay approach zero, the total RAM propagation delay would not change by much. Of course,

this situation would change if the select lines were metal and the bit lines were active areas.

234
B.6 DESIGN CONSIDERATIONS

B.6.1 Pre-charged Bit-Lines

Typically, to achieve high speed in a clocked system, the bit lines are pre-charged high. Care must
be taken to ensure that the off-current is small for all cells which are not enabled but connected to the
same bit line. This is particularly true for large arrays. If many cells are connected to the same bit line,
each with a small leakage current, the total current may be large enough to pull the bit line down when
not desired. There are two techniques to avoid this problem. First, a static pull-up can be connected to
each bit line to provide a source of current so that the leakage currents will not pull charge of the bit line
capacitance. Ratioed logic must be used when static pull-ups are employed. To keep the size of the
memory cell small, it is desirable to keep the static pull-up current small. Using weak pull-ups also
reduces the power dissipation. The second technique is to ensure that select lines pull down as far as pos-
sible to reduce the leakage current in each cell. Cz;re should be taken to ensure that the ground potential
in the select driver does not rise above that of the array. If the driver ground is positive with respect to
the array ground, this will show up as positive bias on the. select device, increasing its leakage current.
Further, larger W/L ratios should be used in the pull-down device in the driver than is used in standard
logic to provide a lower output low voltage. If a push-pull driver is used with enhancement pull-ups, the

output low voltage is quite low.

B.6.2 Maintaining Long Storage Times in Dynamic Memories

Similar problems exist in maintaining stored charge on the storage node of a dynamic memory cell.
To obtain long refresh times, leakage currents should be kept small. This means keeping diffused regions
which connect to the storage node small, since the reverse bias leakage current is one component of the
total leakage current. Charge may also leak thrc;ﬁgh the select device if it is not turned off completely.
To keep this component small, the write select drivers should pull down near zero volts and a good
ground potential in the drivers should be maintained. Signals which are capacitively coupled to the
storage node can also change the voltage stored on the storage capacitor. Care should be taken not to

cross the storage node with signals which may alter the stored signal significantly.

235

Lab tests can help indicate which of these problems exist. Increasing the substrate bias (more
negative bias on a p-type substrate) will increase the threshold of the enhancement select devices and
decrease the leakage current. At the same time, the width of the depletion regions will increase as will
the leakage current due to space-charge generation. If the refresh time increases with substate bias, the
drivers are likely the problem. If it decreases, p-n junction leakage could be the problem. Another test is
to increase the Vpp supply. This will raise the voltage at the gates of pull down transistors in the select
drivers. Because the current through this device varies nearly linearly with gate bias in the triode region
(for constant Vs) and the depletion device current is only a weak function of the supply voltage (typi-
cally, the device will be in saturation when the select line is low and changes in Vpp will affect the
current only through channel length modulation effects), the net affect seen by raising Vjp is a decrease
in the output low level of the select driver. This results in a decrease in the leakage current through the

select device.

B.6.3 Example of RAM problems

A 4K RAM using a 3T cell with separate bit lines was constructed for use in the delay line. The bit
lines are pre-charged since there is a large capacitance due to the metal-oxide-bulk capacitance and the
diffused capacitance. Simulations showed that a static pull-up ratioed (with the RAM cell) to provide a
good output low level could not appreciably change the bit line voltage in the cycle times that the RAM
was to operate. It was thought that the bit line capacitance was large enough that the static pull-ups were
not needed. The circuit did not work. The errors which occurred were very data-dependent, but it could

be seen that the bit line was pulled down when it should not be. Some tests showed:

1. Increasing the pre-charge time helped the problem. This showed that the problem was likely at

the read bit line as suspected, since the bit line has 64 devices connected to it.

2. Running the circuit slower made the problem worse. This tended to indicate that leakage
currents of some kind were the problem, since a fixed current would be able to make a greater change on

the voltage on a capacitor in a longer time.

3. An array with half sized bit lines also made the problem worse. This seemed to indicate that the

236

problem is not reverse biased p-n junction leakage since the number of leakage current sources halved as
the capacitance halved. Therefore, the effects of junction leakage currents should be constant with a

change in length of the RAM bit lines.

4. Increasing Vz (more negative) did not help. Negative substrate bias tends to slow the circuit
down by decreasing the currents in the devices while only decreasing the junction capacitance and not the
oxide capacitance. Because of this it was not obvious which effect was being seen, a change in the leak-

age currents or a change in the speed performance of the circuit.

5. Shining light on the substrate fixed the problem! This was quite a surprise, since it was
suspected that leakage currents of some type were to blame. Shining light on the die generates free car-
riers in the substrate which look very similar to leakage currents of the reversed biased junctions. The
electrons are collected by the n+ regions. At the bit lines a net current flows out of the bit line. This

would tend to pull the bit line down not up.

6. Putting positive bias (".4V) on the substrate fixed the problem. Positive substrate bias has
several effects. First, the thresholds of the devices are lowered so that leakage through the select devices
should increase. The depletion region widths decreases, decreasing the junction leakage current. Also, it
injects electrons into the substrate and holes into the n+ regions at ground potential. The electrons in the
substrate will behave as those created by shining light on the die. No holes will be injected into the n+
regions attached to the bits lines as these regions are at a potential far above ground when pre-charged
(no problems were observed on bit lines that should be pulled down). It appears that shining light on the

die and putting positive substrate bias on the circuit have the creation of free electrons in the substrate in

common,

No simple theory could explain all these facts. All other memories (except one) included the static
pull-ups on the bit lines and worked. The circuit was changed to include the pull-ups and the circuit

worked fine with still no explanation as to what the problem was.

237

APPENDIX C NMOS CIRCUIT LAYOUT GUIDELINES

C.1 INTRODUCTION

"VLSI" circuit design has been talked about by many [1]. Usually attention is paid to implement-
ing the desired logic functions with the fewest and most regularly arranged transistors and circuit blocks.
The electrical characteristics of the transistors and the interconnect are usually ignored for the sake of
simplicity. However, in reality the transistors do not act as perfect switches and the interconnect layers
are not perfect conductors. Certain guidelines should be followed when designing circuits which take
these attributes into account to prevent circuits from being designed that are correct logically but not
electrically. Further, to reduce the sensitivity of the circuit performance to processing variations, the user

should design critical parts of the circuit carefully.

C.2 TRANSISTORS

The enhancement devices are very different from ideal switches under certain circumstances.
Likewise, the depletion devices characteristics can vary greatly. The enhancement device operated in the
common source configuration operates very nearly as a switch. When the gate is high, the drain-source
impedance is low. When the gate is low the drain-source impedance is very large. A common source
transistor with a depletion pull-up produces output voltages that can swing close to Vpp and ground.
When the enhancement transistor is used as a pull-up device the source is raised above ground and the
device operation changes. This situation routinely occurs when enhancement devices are used as pass
gates or dynamic pull-ups. The logic output levels are a strong function of both the device zero bias
threshold voltage and the body effect parameter, . Because the device turns off when Vgg—V,=0 the
source can only rise to Vg—V,(Vs). When the circuit is operated from a single supply, these nodes can

only pull-up to Vpp—V,. The actual voltage that is obtained is process-sensitive and is a function of both

238

V., and ¥.

in Dc - [t out
llpF l 1pF

CIRCUIT 1

in
|
{>° T out
llpF l 1 pF
CIRCUIT 2

Figure 1. Circuits Used in Transient Simulation

The transient behavior of source-follower circuits is quite different from a common-source circuit
and must be treated accordingly. The source-follower has the disadvantages that both the input and out-
put are rising in the worst case and NMOS devices pull-up much slower than they can pull-down.
Further, the gain of the circuit is less than one so the input to the source follower must rise very close to
Vpp. The net result of these disadvantages is that the source follower must have a higher performance
driver than the common source circuit. The circuits shown in figure 1 were used to illustrate this point.
All enhancement devices were chosen to be the same size (W/L=8/4) and the depletion devices were
chosen to give a good output low level. Spice simulation indicate that the output of circuit 1 reaches 0.5
V before the driver reaches 3.75 V (120 nSec). For circuit 2, however, the output voltage lags behind the
driver voltage. The output of circuit 2 reaches 2.5 V after 185 nSec and 3.0 V after 235 nSec. After 300

nSec, the output of circuit 2 only reached 3.3 V.

Depletion devices are used at times to allow poly to cross the active area without creating an

239

enhancement device. The depletion device is assumed to be low impedance regardless of the gate vol-
tage and hence to act as a simple interconnect crossing. The parasitic depletion device in a pull-down
path decreases the pull-down current, but can be compensated for by decreasing the pull-up device
current. If the depletion device has to pull-up, the output voltage will only rise to —V,p (the depletion
device threshold voltage) with zero gate bias. For depletion devices with thresholds in.the -2.5 V range,

this type of circuit should be used only with care.

The enhancement device operated as a pass gate has logical characteristics which are quite dif-
ferent from an enhancement device operated in a common-source configuration. A common-source
enhancement device is basically a uni-directional device. That is, voltage at the gate of the device
strongly affects the drain current but the drain current and voltage have little effect on the gate voltage or
current. When operated as a pass-gate, the device is bi-directional because the source and drain are
identical. In some cases this is a desired characteristic and can be used to the designers advantage. How-
ever, it is possible that the bi-directional nature of the device will cause problems if undesired signals
propagate in the direction opposite to desired signals. This can happen in multiplexor circuits made of 2
pass gates with logic to turn one of the two transistors on. If the turn-on and turn-off times of the drivers
are asymmetric, the two pass-transistors can be turned on at the same time. It then becomes possible for
signals to propagate from one input to the other. This will not necessarily cause errors but the designer
should be aware of the possibility. If the inputs were connected only to MOSFET gates, the transmission

between inputs would be virtually eliminated.

C3 INTERCONNECT

Interconnect (typically poly, active area and ,metal) has several properties that make it a non-ideal
conductor. Most importantly, the interconnect layers have both resistance and capacitance. The diffused
regions also form p-n junctions with the substrate. These p-n junctions result in two effects. First, if the
p-n junction is forward biased when a signal goes below ground, electrons will be injected into the sub-
strate to be collected elsewhere. When the p-n junction is reversed biased it collects electrons from the

substrate and those generated in the space charge region.

240

Since dealing with the capacitance is of primary concem in most circuit design courses and "VLSI"

design books, the resistance of the interconnect is probably the most important aspect that is ignored. In
general the metal layer provides the lowest resistance ("40 %) and the lowest capacitance. These pro-

perties make it the preferred conductor. Low resistance is important when DC current flows and low
ohmic voltage drops are desired. Even when there is no DC current, low resistance is desirable to minim-
ize RC delay times on long wires with a significant capacitance. Metal should be used for all (except for
very local) Vpp and ground wiring to minimize ohmic drops. It is important to run the system clocks in
metal to minimize RC delays that can result in clock skew or overlap. There is usually no DC current in
the clock lines but the clock signals should not overlap after propagating through the interconnect. The
resistance of poly or the active area can cause excessive delay in one of the clocks and cause the clocks

to overlap. Of course, if the circuit is perfectly symmetric, the clock signals will be delayed equally and

no clock skew will develop.

Poly and the active area should be used for short or low speed signals. If the signal lines are long
and high speed is desired, the resistance (K Qs of resistance are not uncommon in poly or diffused lines
longer than 100 microns) and capacitance of the two layers must be considered. In NMOS, care must
also be taken when a signal line has DC current flowing in it to ensure that ohmic voltage drops are not
too large. This situation can arise when the pull-up of a logic gate is connected to the pull-downs through
a poly line.

The p-n junctions associated with the diffused regions can be a problem in certain circumstances.
If signals from off-chip are not buffered (such as clocks) and are connected to diffused regions, the p-n
junctions can be forward biased by negative going swings of the signal. The electrons injected into the
substrate when the junction is forward biased will be collected at other nodes in the circuit possibly caus-
ing errors. Diffused regions connected to dynamic storage nodes collect electrons which tend to neutral-
ize the stored charge. Although it is necessary to have the storage node connected to a diffused region to

form the pass-gate, the area of the diffused region should be minimized.

241

C.4 GENERAL CHIP LAYOUT

When a complete chip is put together from macrocells, the supplies, clocks and signals should be
routed in an order that minimizes undesirable effects. First, the supplies should be routed in metal to
guarantee that no cross-overs will be needed. The width of the Vpp and ground wires should be chosen to

keep the ohmic voltage drops below a couple tenths of volts and to prevent metal migration. The latter
usually requires that the conductors carry no more than 1 % Next the clocks, starting with the fastest

clocks and proceeding to the slowest clocks, should be routed in metal and should jump only the supplies
or higher speed clocks in poly. The width of the poly cross-overs should be chosen to minimize RC
delays. Further, the cross-overs should be kept very similar so that one clock is not delayed more than the
other. The resistance of the cross over should be reduced as the capacitance of the line following the
cross over increases. If the clocks are routed only in poly or metal, there is no chance that charge will be
injected into the substrate if an off-chip clock driver circuit produces a clock which rings below ground.
Finally, all remaining signals can be routed in metal with poly or diffusion cross-overs for crossing the

supplies, clocks and other signals.

C.5 SENSITIVITY

In NMOS circuits the power consumption and speed of the circuit are both strongly dépendent
upon the depletion device K, and effective width. In the static parts of the circuit, the power consump-
tion is almost solely determined by the depletion device current and Vpp. When a node is pulled-down,
the depletion device is typically saturated and hence the DC current is only a weak function of the
enhancement K, but a linear function of the depletion K, and width. This is because changes in the
enhancement device K will change the output low voltage which has only a small effect on the deple-
tion device current through channel length modulation effects. The speed of the circuit is also a strong
function of the depletion device current because the pull-up time is usually much greater than, typically
four times, the pull-down time. Therefore, if the enhancement currents are halved, the total delay time
(i.e. Tuy+tyL) is increased by only 11%. If the depletion currents are halved, the total delay is increased

by 66%.

242

Because the circuit power dissipation and speed are very dependent upon the depletion device
currents, it is desirable to make these currents as insensitive as possible to processing variations. The
designer can do little about changes in K, but can reduce the sensitivity to depletion device width. The
use of minimum width depletion devices makes the depletion device current more sensitive to processing.
This is because the depletion device width is reduced by the encroachment of the field regions and this
encroachment has a greater relative affect for small device widths. Therefore, the designer can use
greater than minimum width devices in the time critical parts of the circuit to reduce the sensitivity of the
circuit speed to processing. Because the time critical parts of the circuit usually require large currents for

small rise and fall times, the power consumption and delay times will both tend to stabilize.

C.6 REFERENCES

[1] Mead, C., Conway, L., VLSI Systems, Addison Wesley, Reading, Mass., 1980.

243

APPENDIX D CAD INPUT DESCRIPTIONS

D.1 INTRODUCTION

This section contains the CAD descriptions which were used to generate various parts of the chips.
These are the actual descriptions that were used and not the descriptions that would be used with

upgraded versions of the programs.

Some parts of the linear convolver, contour tracer, feature extractor, non-linear post processor,

LUT ROMs and sorting filter were generated automaiically.

D.2 SORTING FILTER

The data-path descriptions for the two data-paths used in the sorting filter are given in listings 1 and
2. These descriptions are for an old version of the generator that did not deal with control nets on the top

and bottom of the data-path.

D.3 Feature Extractor

The three data-paths and the three PLAs used in the feature extractor were generated automatically
with the data-path generator and Modgen, respectively. Listings 3 to 8 show the input descriptions for

these circuits.

D.4 CONTOUR TRACER

The FSM ROM in the contour tracer was generated from a state transition table (listing 9). A spe-
cial program was written to convert this table to the binary ROM listing. The program generates some of

the ROM outputs that are more easily specified by simple logic in the program than in the state table.

The high three bits of the state numbers in gereral correspond to the current trace direction and the

244

low three bits correspond to the test direction. Some exceptions are the scanning state (3), refresh states,

the error state and the initial states after scanning. Output value “4" corresponds to an error output.

D.5 Linear Convolver

The micro-code for the linear convolver arithmetic controller was generated from human readable
impulse responses (listing 10). A special purpose program was written to perform this task. The pro-
gram determines the binary control signals from the constant definitions given at the top of the input file.

It also checks to see if arithmetic overflow could occur.

D.6 Non-Linear Low-Pass Filter

The data-path generator input file for the non-linear low pass filter is given in listing 11.

D.7 LUT ROMs

The LUT ROMs were generated automatically from a desired function (e.g. logarithmic). The
problem was broken up hierarchically. A program at the lowest level assembled a ROM directly from a
binary bit pattern for the desired number of rows and columns. A second program generates this bit pat-
tern from a list of desired binary output words. This would be the actual bit pattern if column decoding

were not employed. Finally, a third program generated the list of output words from a desired function.

This approach makes it possible to enter the system at different levels to suit the designer.

Listing 1. Maximum-Median Data-Path Description

maxmed -- compute maximum or medean over 3x3 region

7/16/85

LEFT 'inl’ ’in2’ ’in3’ * inputs *
RIGHT 'max’ * output -- max or med *
ORGANIZATION

CNT NODATA

OoDD DATA

EVEN DATA

ODD DATA

EVEN DATA

ODD DATA

EVEN DATA

ODD DATA

EVEN DATA

GND NODATA

SLICE

* compute vertically *

’in2’ > minus1 > minusl > zero

> sor2 (’inb’="in1’,’outb’="min1’,’out’="max1’)
’in3’ > delay > delay >zero

> sort2 (’inb’="max1’,’out’="maxout’,’outb’="min2’)
’minl’ > delay > delay

> sort2 (’inb’="min2’) > mux2tol (’inb’="maxout’) >
* compute horizontally *

delay (’out’="max2’)> delay ("out’="max3’) > delay > zero
> sort2 (’inb’="max3’,’outb’="min3’,’out’="max4’)
’max2’ > delay > delay > zero

> sort2 ('inb’="max4’,’out’="max5’,’outb’=’min4’)
'min3’ > delay > delay

> sort2 ("inb’="min4’) > mux2tol (’inb’="max5’) > buffer > 'max’

245

246

Listing 2. Minimum Data-Path Description

min circuit -- performs minimum over 3x3 area (or sub rectangle)

also has post processing to get max-min
inputs from 3 different lines

7/16/85 *

LEFT ’in1’ ’in2’ ’in3’
RIGHT ’out’ *max’

ORGANIZATION
CNT NODATA
ODD DATA
EVEN DATA
ODD DATA
EVEN DATA
ODD DATA
EVEN DATA
ODD DATA

EVEN DATA
GND NODATA

SLICE

* first compute min over vertical areas *

* compute min (inl,in2) *
’in2’ > minus1 > zero > minus1 > sort2 ("inb’=’in1’,’outb’="min0’)

’'minQ’ > minus1 > *minl’ * invert min *
’in3’ > delay > delay > minusl > zero * invert in3 *
> sort2 (’inb’="min1’) * inverted min (in1,in2,in3) *

* compute min over horizontal region *

> delay ("out’="mindelay1’) > delay(’out’="mindelay2’)

> delay > zero > sort2 (’inb’="mindelay2’) > ’min3’ * first min*
’mindelay1’ > delay > delay > zero > sort2 ('inb’=’min3’) * second min*
* no invert to get min, invert to subtract*

> minus1 > varminusl > delay > *min’

’max’ > delay > zero > adder (’inb’="min’) > delay

> buffer > 'out’

247

Listing 3. Main Data-Path Description used in the Feature Extractor

Input description for tracer post processor that

computes perimeter, odd perimeter, x average, y average
and the area.

Requires 16 bits

8/12/85

LEFT bus’ 'x’
RIGHT ’bus’’y’

ORGANIZATION
CNT NODATA
MSB DATA
EVEN DATA
ODD DATA
EVEN DATA
ODD DATA
EVEN DATA
ODD DATA
EVEN DATA
ODD DATA
EVEN DATA
ODD DATA
EVEN DATA
ODD DATA
EVEN DATA
ODD DATA
EVEN DATA
GND NODATA
SLICE
perimeter, odd perimeter

’perimeter’ > increment > delay-clear ("out’="perimeter’) > TSbuffer
> 'bus’

’oddperim’ > increment > delay-clear (’out’=’oddperim’) > TSbuffer
> ’bus’

* 1st moments of periphery *

’x’ > shiftright > delay > zero > posadder (’inb1’="xb’)
> possataccum ("outl’="xb’) > zero > TSbuffer > ’bus’

'y’ > shiftright > delay > zero > posadder (’inb1’="yb’)
> possataccum ("outl’=’yb’) > zero > TSbhuffer > 'bus’

248

* area *

zero-one > temp’
'y’ > delay > adderl (inb’="temp’) > absvalue > zero >
adder (’inb’="area’) > delay-clear ("out’="area’) > TSbuffer > ’bus’

249

Listing 4. "X" Data-Path Description used in the Feature Extractor

Input description for tracer post processor part
that computes xmin, xmax and holds xstart.

requires 7 bits.
8/12/85
*
LEFT ’bus’ ’x’
RIGHT ’bus’ ’x’
ORGANIZATION
CNT NODATA
MSB DATA
EVEN DATA
ODD DATA
EVEN DATA
ODD DATA
EVEN DATA
ODD DATA
EVEN DATA
GND NODATA
SLICE
xmax

’x’ > delay > zero > compare (*inb’="max’,’outb’=’maxtemp’) >
maxselect (’inb’="maxtemp’) > invert-clear > delay > 'max’ > increment
> TSbuffer > *bus’

xmin

'x’ > delay > minus1 > zero > compare (’inb’=’min’,’outb’="mintemp’) >
maxselect (’inb’="mintemp’) > invert-clear > delay ("out’="min’) > minus1
> TSbuffer ("out’=’bus’)

xstart

> buff > latch ("outg’="bus’)

250

Listing 5. "Y" Data-Path Description used in the Feature Extractor

Input description for tracer post processor part
that computes ymin, ymax and holds ystart.
requires 7 bits.
8/12/85

LEFT ’bus’’y’

RIGHT ’bus’ ’y’

ORGANIZATION

CNT NODATA
MSB DATA

EVEN DATA
ODD DATA
EVEN DATA
ODD DATA
EVEN DATA
ODD DATA
EVEN DATA
GND NODATA
SLICE
ymax

’y’ > delay > zero > compare (’inb’="max’,’ outb’=’maxtemp’) >
maxselect (’inb’="maxtemp’) > invert-clear > delay > 'max’ > increment
> TSbuffer > bus’

ymin

'y’ > delay > minus1 > zero > compare (’inb’="min’,’outb’=’mintemp’) >
maxselect (’inb’="mintemp’) > invert-clear > delay ("out’="min’) > minus1
> TSbuffer ("out’="bus")

ystart

> buff > latch ("outg’=’bus’)

(module

Listing 6. Modgen PDL file for FSM used in feature extractor

/* tracer post processor FSM

keeps track of state of tracer and generates some
basic outputs. The tracer outputs are delay for

writing into the RAM.

*

(name fsm)
(type fsm)
(in13)

(out 14)
(minterm 25)
(numclocked 12)
(output-plane

(array 00000000100111)
(array 060000000000011)
(array 00000000100110)
(array 00000000001101)
(array 00000000001001)
(array 00000000001011)
(array 00000000000000)
(array 00000010100100)
(array 00000010100101)
(array 00000000000000)
(array 00000010101100)
(array 00000010101001)
(array 00000010111110)
(array 00000000111100)
(array 00000100110111)
(array 00000110110100)
(array 00000100110100)
(array 00000000111010)
(array 01000001000000)
(array 01000001000000)
(array 01000001000000)
(array 01000001000000)
(array 00100000000000)
(array 00010000000000)
(array 00001000000000)

/* outputs (left to right):
dummy
validpointnc*
out2
outl
out0
resetreg*
done*
validpoint*
selstart*
outcodel*
outcode2*

251

252

)

FSM state 0

FSM state 1

FSM state 2
*/

(input-plane

(array 000x0xx00xxxx)
(array 000x1xxx0xxxx)
(array 000x0xx10xxxx)
(array 001xx11x0xxxx)
(array 001xx0xx0xxxx)
(array 001xx10x0xxxx)
(array XXXXXXXXXXXXX)
(array 0101xxxx0xxxx)
(array 0100xxxx0xxxx)
(array xxxxxxxxxxxxx)
(array 0111xxxx0xxxx)
(array 0110xxxx0xxxx)
(array 100xxxxx0xxxx)
(array 101xxxxx0xxxx)
(array 11000xxx0xxxx)
(array 11001xxx0xxxx)
(array 1101xxxx0xxxx)
(array xxxxxxxx1xxxx)
(array 001xxxxx00xxx)
(array 001xxxxx0xxx0)
(array 001xxxxx0x0xx)
(array 001xxxxx0xx0x)
(array xxxxxxxxxxx0x)
(array xxxxxxxxxx0xx)
(array xxxxxxxxx0xxx)

/* inputs (left to right):
FSM state 2
FSM state 1
FSM state 0
load
scanningin*
errorl*
dx=dy=0
cox
reset
out0
outl
out2
state=36*
*/

Listing 7. Modgen PDL file for control PLA used in feature extractor

(module

/* tracer post processor PLA.
computes information from tracer state

and validpoint.

*/

(name plal)
(type fsm)

(in7)
(out 8

)

(numclocked 6)
(minterm 9)
(output-plane

)

(array 10000000)
(array 01000000)
(array 00000001)
(array 00000001)
(array 00000010)
(array 00001000)
(array 00000100)
(array 00001000)
(array 00010000)

* outputs (left to right):

scanningin*
state=36*
dummy

validoddpoint*

0*

1/2*

-1/2*

+1%*
*/

(input-plane

(array x000011)
(array x011110)
(array x01xxxx)
(array x10xxxx)
(array x1x1xxx)
(array xx10xxx)
(array xOx1xxx)
(array 1xxxxxx)
(array Oxx0xxx)

/* inputs (LR):

validpointnc*

tracer state 5
tracer state 4

253

254

*/

tracer state 3.

" ‘tracer state 2

tracer state 1
tracer state 0

Listing 8. Modgen PDL file for register select PLA used in feature extractor

{module

I* tracer post processor PLA

generates enables for different computational blocks.

*/

(name pla3)
(type fsm)

(in6)
{out 1

1)

(numclocked 0)
(minterm 14)
(output-plane

)

(array 11000000000)
(array 10000000000)
(array 01000000000)
(array 00100000000)
(array 00110000000)
(array 00010000000)
(array 00001000000)
(array 00001000000)
(array 00000100000)
(array 00000010000)
(array 00000001000)
(array 00000000100)
(array 00000000010)
(array 00000000001)

/* outputs (left to right):

xstart
ystart
Xxmax
ymax
perimeter
odd perimeter
Xxmin,ymin
xbar

ybar

area

input data

*/

(input-plane

(array x10xxx)
(array 0x0xx0)
(array 0x0x0x)
(array 000xx1)
(array xx1000)
(array 000x1x)

255

256

(array 100xxx)
(array xx1001)
(array xx1010)
(array xx1011)
(array xx1100)
(array xx1101)
(array xx1110)
(array xx1111)

/* outputs (Ief€ to right):

selstart*
reset
override
a2
al
a0

*/

257

Listing 9. State Transition Table for Contour Tracer

. current pixel on

next
state

out

TONNTNAQ

dX dy

— v v -4
B .0.111.

-4
L}

-1

VO -

-4

-1

Nt~V OOoON

low

=
O w Ot O~

=

N FTONOON

O =N M= \Or~

NLTFTONONNON

O=ANNMANAN\O™

NSTTOOONA

OmANN<TWVI O~

current pixel off

next

out

__33334333

OO NN

MmN NNT TN

NN MmMNMONST

dX dy

——_mOOO0OO0OOO

OO0 mmOoOT

-—-o 0000 O0O

co~m~moOQO%

-—-o 0T YOO

COm—~O0OO0O0CO0O

state

SO~ AN MW O

e v v o O v

SO =N WNYo

AANANANNANANN

O~ AN NN

NN MO N

current

state
high

~—00O0T0OO
cocoo~OcOT
W70135456
—
-
Mloocooonooo
<=
11
W01234567
—

COO0O0O0COOCQ

O = ANMTWN O~

v vt vt g oy oy e ey

QO NN WV O~

a NN QN

Q= ANMS N0~

B a N e B o B o B o BN 2T 12]

258

Listing 9. State Transition Table for Contour Tracer

current pixel on

next

out

dX dy

o -~

0
-1
-1
-1
-1
1
1
1

state

=
Hlomanentn

[l 2 g 2 BN — |

W WO

e FTOVOOVOOoOON

VAN TN O

NN O VWOON

O~ T WO~

current pixel off

next

state

out

TN NN

NN

TN NN

NN TN

dX dY

oc-ooT Yoo

COMMEMOOO ™

cococoRweoee

SCommooW

cocooT Voo

omMoOomoO

oo Y Yoo

coccoocoocoww

N O v O N U

low

NPT O

SN WO

WM wWwWmwn

AN TN O

VONWYWWWww

O WO

AN~~~

current

state
high

low || hi

SOOI

A B B B R R

D

AN O

Wwwnwmmwmmnwnw

S AN PWMO

- - - A

O™ N IO

[l ol ol ol ol ol o N

Listing 10. Impulse Response Description for linear Convolver

* impulses responses for image convolver chip
*

* 8/8/84
*

* legal constant values
"

1 0 invert/ true

1 0 done/ not done
*coeff code value

G
1 00001 1
1/2 10000 0.5

3/4 01000 0.75
7/8 00100 0.875
15/16 00010 0.9375
C

0 11111x0 O

1 01111x1 1.0

172 10111x1 0.5
1/4 11011x1 025
1/8 11101x1 0.125
/16 11110x1 0.0625
E

*
* Impulse responses to put on chip
*

*

* LPF #1
*

G=7/8

1/8 1/8 1/8
1/8 1/8 1/8
1/8 1/8 1/8
*

* LPF #2
*

G=3/4

1/8 1/8 1/8
1/8 1/4 1/8
1/8 1/8 1/8
*

* LPF #3

*

1/16 1/8 1/16
1/8 14 1/8
1/16 1/8 1/16
*

* LAPLACIAN #1
*

-1/8 -1/8 -1/8

-1/8 1 -1/8

-1/8 -1/8 -1/8

259

260

*

* LAPLACIAN #2
*

0 -4 0
V41 -1/4

0 -14 0

*

* LAPLACIAN #3
]

1/8 -1/4 1/8

-1/4 172 -1/4
1/8-1/4 1/8

*

* SOBEL X
*
-1/4 0 1/4
122 0 172
-1/4 0 14
*

*SOBELY

*

174 1/2 1/4
000

-1/4 -1/2 -1/4

*

* EDGE ENHANCEMENT
*

-1/16 -1/16 -1/16

-116 1 -116

-1/16-1/16 -1/16

*

* ALL PASS #1
*

000

010

000

*

* ALL PASS #2

OO =
[« NN =]

ALL PASS #3

* ¥ OO0 * ¥ xO0OO0 O *
-0 O
[oNoNe]

Compass Gradient West

G=3/4
1/4 1/4 -1/4
1/4 -1/2 -1/4

1/4 1/4-1/4
*

* Compass Gradient East
*

G=3/4
-1/4 1/4 1/4
-1/4 -1/2 1/4
-1/4 1/4 1/4

*

* Compass Gradient North
*

G=3/4

1/4 1/4 1/4
1/4-1/2 1/4
-1/4 -1/4 -1/4
%*

* Compass Gradient South
3

G=3/4

-1/4 -1/4 -1/4
1/4 -1/2 1/4
/4 14 1/4
E

261

262

Listing 11. Data-Path Description for Non-Linear Low-Pass Filter

*

non linear low pass filter processor
5/2/85

*

LEFT ’laplac_in’ "allpass_in’ * input signals *
RIGHT ’out’ ’thresh’ * output signal and threshold *

ORGANIZATION
CNT NODATA
MSB DATA
EVEN DATA
ODD DATA
EVEN DATA
ODD DATA
EVEN DATA
ODD DATA
EVEN DATA
ODD DATA
EVEN DATA
GND NODATA

SLICE
’allpass_in’ > delay > ’allpass’
* generate low pass signal *

’laplac_in’ > minus1 > delay > adder (’inb’="allpass’) > satregister > *lowpass’
’allpass’ > delay > ’allpass1’

* generate decision *
"laplac_in’ > absvalue > delay > adder (*inb’="thresh’)> delay
* generate output *

’allpass1’ > mux2to1(’inb’="lowpass’) > delay > modify > ’out’

264

APPENDIX E USING THE IMAGE PROCESSING SYSTEM

To aid in the development and characterization of the image-processing/recognition system, the
custom hardware was interfaced to a SUN workstation. The image processing hardware can be con-
trolled via a graphical program, "ittool". Ittool allows the user to set the system configuration, gather

results from the chips and display these results.

E.1 THE GRAPHICAL INTERFACE

The program has three windows (figures 1-6), the multi-use graphics window at the bottom of the
tool, the control window in the middle of the tool and a small message window at the top of the tool. The
message window is used to report errors and to display general information. The control window is used
to manipulate some of the chips (top line), to control the writing of hardware control registers and the
frame buffer (2* line), to control the digitizer and frame buffer operation (3™ line), to control the con-
tour tracer (4“ line), and to select the display mode of the graphics window (5% line), and to select the
features used by the recognizer. Five types of information can be displayed in the graphics window,
including: a graphical representation of the most of the hardware system, the contours of objects that
have been traced, the histogram of the image in the frame buffer, the symbolic representation of objects

after recognition, the curvature and slope signals, and the impulse responses of the two linear convolvers.

E.1.1 The Control Window

The control window contains "buttons" spread over 5 lines. "Pressing” the "button” (or selecting a
menu item) causes some action to occur. Buttons on the first (top) line control the input ROM, output
ROM, logical convolver and the sorting filter. For each ROM, there are two modes of operation: active
and inactive. Selecting the proper button toggles the mode of the ROM. There are 4 modes of operation

for the logical convolver: bloat O (inactive), bloat by 1, bloat by 2, and bloat by 3. These options can be

265

selected by the “pressing” the bloat button. The type of operation performed by the sorting filter can be
chosen with the 4* button on the top line. The region of operation of the sorting filter is controlled by the
5" and 6* buttons. The button marked "H" controls the horizontal region of operation while the button
marked "V" controls the vertical region of operation. Selecting "0" makes the region of operation a sin-

gle point. Selecting "1" or "2" makes the region 2 points and selecting "3" makes the region 3 points.

The second line in the control window gives the user the ability to write into the hardware registers
on the Imaging Technology boards and the recognition board, to change or store the hardware
configuration and to load or store the frame buffer. The first button controls which register is changed.
For all choices except "Set-up” and "Frame Bu" when a new value is entered and the user presses
<return>, the register is loaded with the new value. When "Set-up” or "Frame Bu" is selected, the new
value entered should be a file name. Pressing the read button will read data from the file and pressing the
write button will write data to the file. If "Frame Bu" is selected, the green frame buffer will either be
loaded from the file or written to the file. If "Set-Up" is selected, the current hardware configuration will
either be loaded from the file or written to the file. For the "Set-Up" selection, the actual file name used is

the concatenation of ".itinfo." and the name entered by the user.

The third line of buttons makes it possible to change the way in which video signals are digitized.
Selecting the first button, toggles the digitizer between 10 MHz and S MHz modes (512 pixel lines and
256 pixel lines). Selecting the second button toggles the number of lines digitized. The third button indi-
cates whether both interlaced fields are displayed. The "Red", "Green" and “Blue" buttons indicate if
"Watch", "Grab" and "Clear" will affect the corresponding frame buffers. When "Watch" is pressed, the
digitizer will continuously digitize all selected colors. When "Grab" is pressed the data in the selected

colors will be frozen in the corresponding frame buffer. “Clear” will set the selected frame buffers to all

Zeros.

The fourth line of buttons is used to control the contour tracer. The mode button (third button)
indicates the tracing mode. When "Man" (manual) is selected, tracing stops after every encountered con-
tour. When "Auto-I" (auto image) is selected, tracing will stop after a valid image is found. Tracing will

stop only when the end of a frame is found when "Auto-F" (auto frame) is selected. Pressing the

266

"Acquire” button commands the tracer to load a new frame into its buffer and trace according to the
selected mode. The "Next" button can be used to have the tracer search for the next object. If "read" is
selected, contour data is taken not from the tracer but from a file (the name is the same as that used for
changing the hardware set up). If "write" is selected, the traced data is written a file. These options are

used to save template objects and recall them later.

The first two buttons on the fifth line control the display modes. The first button indicates what is
being displayed in the graphics window. The second button indicates whether diagnostic information
should be printed when contour tracing. The next four buttons indicate which features will be used by
the recognizer. The next button (mse n) sets the the length of one FIR filter used in the feature computa-
tion. Pressing "train" causes a new "templates” file to be generated using information stored in the file,
"templates.input”. Pressing "equal” causes the image in the buffer to be histogram equalized (the histo-

gram should be computed first).

E.1.2 Graphics Window

In the schematic mode, the graphics window shows a graphical representation (figure 1) of part of
the system. The configuration can be changed by moving the cursor to the appropriate area (a box will

appear when something can be changed) and pressing the left or center buttons.

When changing the impulse response of the convolvers, the available responses (figure 2) will be
displayed in the window. When one of the impulse responses is selected, the schematic will be displayed

and the change will be made.
If the "hist" option is selected in the control window, the histogram and other information regard-
ing the image in the frame buffer will be displayed (figure 3).

If the "contour” option is selected, the contours of any objects that have been traced will be
displayed in the graphics window (figure 4). In addition, the values of the features for each object and
the results of the recognition will be displayed. The two top choices and the corresponding errors are

printed.

When "recog” is chosen, the continuous recognition mode will be activated by pressing "Acquire”.

267

In this mode, frames will be continuously processed and the images recognized. The results of the recog-

nition are shown symbolically in the window (figure 5).

The filtered curvature and slope of the last traced object are displayed when "curvat” is selected

(figure 6).

E.2 Input and Output Formats

There are several files that are read by ittool: the set-up file, the template file, "templates”, the tem-

plate input file, "templates.input”, the curvature files and image raster files.
The set-up files are not human readable and are simply a binary dump of a structure.

The curvature files written and read by the program have the same format. The first line contains

(xmin, xmax, ymin, ymax, perimeter, even perimeter, area %, true perimeter) for the object. On the
following lines, the value of the curvature at each point on the contour is given and there will be "perime-

ter" curvature values.

The template input file has one line for each object being trained. The format for each line is the
name of the object followed by the number of images at each particular size. For example, one line
might be "square 4 4 4 4 4", This means that there is a file called "square.image" which contains the cur-
vature for 20 images. There are 4 images at each of 5 different sizes. The format of the curvature file is
the same as that described above. In the template file, for each object, the object name is given and the

name of the pixrect file for that object (for symbolic representation). Following this are the area, perime-

ter and % for the standard object size. Next, the area, %,P 62, and Y, curv is given for each

curv >0

area. For example, for the square, part of the template file would be:

square square.pr 645 103 0.060065
2710.062143 1504
756 0.060389 248 41
2162 0.058840 333 113
6431 0.058582 406 132

The raster files have an 8-byte header. The first four bytes are the number of columns (Isb first) in

the image. The second four bytes are the number of rows (Isb first) in the image. After the header, the

268

raster scanned image (row by row, left to right) is stored with one pixel per byte.

To run the program, one can type "ittool >/dev/null &". This will prevent the recognition statistics
from being displayed that are generated and dumped each time the continuous recognition mode is
chosen. If there is no template file or set-up file in the current directory, the program will still run.

Without a template file the program will not attempt to recognize any objects.

Image -Pracessing Tool -2

(Input Rom] (Output Rom) (bloat 1) (median) (A: 3) (vV: 3]

New value: L] l‘-IEX: 584f, DECIMAL: 22687
RN Trertace i Fec) creen g olio)
(Acquire) [Next) (Auto F) (read] (write) status: FRAME DONE

=) ™) & 68 erw @ e =0

Red Plane
A/D Green Plane D/A
Blue Plane

4,8

Sobel X
H 1@ 1 ——{:::>——— |4
-2 8 2 7

-1 8 1

-256 input 248
I -16

Sobel ¥
52 5

8 8 @
-1 =2 -1

Second Processor Region Select

3POJAl ,,21BWAYdS,, ur 003 °T 3anJr

69¢

270

o

status: FRAME DONE xs: 74 ys: 14

Figure 2. Ittool in "impulse response” Mode

584f

DECIMAL: 22687

FRAME DONE
(mse 4] (train) (equal)

HEX:

 B1ue)

»
.

A

(bloat 1) (median) (H:3) (V: 3)
(Green)
ite) status

New value
erlace Jif |
D)
perim

\J
o

(7o)

(pos)
, €

ine
(Next) -

4

(Unput Rom) (Output Rom)

(18 MHz]
Acquire

Set-up

ate

i el
<11t
%121
x !
(CR R R
(&4
€ETTT
w

- o

“u-i-
Vel
wi 1
23«...0
4]
O v <P -
m~]
OO
-l [}

i -
-

b]
F111
m-llil

i -

-
%121
'Y 1
O vt
LA B A |
(]
—-HOooOO®
14
SOm®
a.
000
—
<<
31n-l-1
4]
O N <N
m_ []
@ v N
|]

v -
N
'121
[T
Q.

-t et

-1-1-1
6 8 1-21
18 111

Sobel Y Al11 Pass3 C.G.South
8 0 9

1-1-1 1 2 1
0 6 6 o
“1-1-1 -1-2-1 ¢

LaPlac 1
-1 8 -1

Image Processing Tool 2.8 -

(Input Rom) (Output Rom] (bToat 1] (median] (H: 3) (V: 3]

(Set-up) (Read] (Krite) New value:

HEX: 584f, DECIMAL: 22687

(@) (ircartacolf Red) Greenlil blue) CAEDREID J)
(Acquire) (Next) (Auto F) (read) status: FRAME DONE

| o D e o) @) (D) ()

total number of points: 245768

168

192

224

average: 132.847
non zero values: 176
entropy: 5.366

256

dPOJAl ,, WBAZ03SIY , UI [007] °¢ danSig

ILT

Image. Processing.lo0l.:2.8

(Input Rom) (Output Rom) (Bloat 1) (median) (A:_3)
New value: HEX: 584f, DECIMAL: 226@7
8 _MHz [interiace) Red JGreenji Blue)

(Next) (Auto F) (read) (urite) status: FRAME DONE

G 8 63 (o) @B (e D) (fraln) (3=

I

1 241 786 B.8134 1352 592 stripa 238 pliersa
2 166 443 6.8150 080 538 pliersa 134 stripa

& P A A/P~2 mse pos image error image2 error2 |
404 ||

2901

3POJA! ,, ANOJUOD,, UY JOON] °p 2andyy

e

Qutput Rom) (bloat 1) (median) (W 3) (V: 3)
Read New value: HEX: 584f, DECIMAL: 22687

D Cl) ‘q -) JJ
ST rter lace g Red JGreen (Fah) (Grak) (CTean)

Next status: FRAME DONE

Diag) @D @B (perim &3 (wse 1) (train) (equal)

D
[)

:

APOJAL ,,uonIudodau,, ui jooy] °s 2anJry

£LT

Image Processing Tool 2.8 -~ . & .0 - .=}

(Input Rom) (Output Rom) (bToat 1) (median) (A:73) (Vi 9)

HEX: 584f, DECIMAL: 22687

18 MHz) (460 Line) (IEEED @R XD GIT (Watch) (Grab) [Clear)

D

cquire) (Next) (Auto F) (read) status: FRAME DONE
curvat) G (B €3 (eerin) GED) (wse 4) (traln) (equal)

D

APOJA] ,,2IMjBAIND,, U [0ON] °9 dan1y

vl

275

APPENDIX F IMAGE PROCESSING PROGRAMS

A set of programs was written to make simulations of image processing algorithms convenient. A
standard input/output scheme was used so that programs could be piped together to cascade different

functions. The programs include:

conv performs nxn convolution

add adds two images together

bloat performs 3x3 expansion

bloatbuff performs 3x3 expansion on data in green buffer

combine combines up to four images for display at one time

dither dithers images

ditherprint dithers an image and prints it on the laser printer

downsample downsamples an image

expand expands each point in an image into a rectangle

hist computes the histogram of an image

histequal performs histogram equalization

invert inverts the green frame buffer

lut performs arbitrary point-wise modifications

noise adds different types of noise to an image

offsetgain adds an offset to an image an multiplies by a constant

putsunraster (Sx‘);ll:e;s "::timage from the format for the programs to

rcdisp display an image on IT color display (green)

rdisp display an image of the SUN color monitor or BW window

read read image from IT green frame buffer

readsunraster SOnVerts images in SUN raster format to the format
used in these programs

thresh thresholds an image

Programs with a single image input, typically read the input from standard in. Programs with a sin-

gle image output, typically write this output to standard out.

	Copyright notice1986
	ERL-86-37 (1 of 3)
	ERL-86-37 (2 of 3)
	ERL-86-37 (3 of 3)

