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ABSTRACT

This dissertation is concerned with the modeling of flexible structures sub

jected to large overall motions. Applications span diverse disciplines: from

robotics and machine design to aircraft and spacecraft dynamics.

Traditional approaches to this class of problems are based on the assump

tion of small deformations, thus relying crucially on the use of a floating refer

ence frame. The resulting set of equations of motion is nonlinear and highly

coupled in the inertia terms. By contrast, an alternative approach is proposed

in which fully nonlinear structural theories, which are properly invariant with

respect to superposed rigid body motions, are employed. Owing to this property,

the dynamics of motion can be referred directly to the inertial frame, leading to

a drastic simplification of the inertia operator (with a structure identical to that

found in rigid body mechanics).

Even though the methodology applies to a general class of structural ele

ments, only a one-dimensional type (flexible rod) is considered. Since the rota

tion field for a rod is represented by orthogonal, generally non-commutative

transformations, the deformation map takes values in the nonlinear

diflerentiable manifold ]R?x50(3), instead of the linear space 1R3 (for the plane

case) usually encountered in nonlinear structural dynamics. Concepts of

modern differential geometry and covariant linearization procedures prove use

ful in the numerical treatment of the nonlinear PDE's governing the motion of

the rod.

The dynamics of earth-orbiting flexible satellites is completely described by

the same system of equations of motion as for the fully nonlinear rod model.

However, to avoid numerical ill-conditioning due to the large difference in mag

nitude between the distance from the earth to the satellite and the structural

deformations, an additive decomposition of the displacement field of the rod



u

into the far field and the near field is introduced. Follower loading is con

veniently accounted for in the formulation. Applications of the proposed metho

dology to the dynamics of flexible multibody systems (rigid bodies with flexible

appendages, all flexible chain systems, flexible closed-loop chains) are also con

sidered.
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CHAPTER 1

INTRODUCTION AND OVERVIEW

Scope and fundamental aspects. In recent years, considerable attention

has been devoted to the study of dynamic response and control of flexible struc

tures performing large overall motions.! Tb*5 tvPe of structure is widely used in

applications encompassing diverse disciplines such as machine design, robotics,

aircraft dynamics and spacecraft dynamics. Elastic linkages, rotating

machinery, robot manipulator arms, aircraft propellers, helicopter or turbine

rotor blades, flexible satellites and earth-orbiting large space structures furnish

some specific examples of these applications.

A common characteristic shared by these structures is their flexibility as

one attempts to push the design to the limit of resistance of the material in

order to minimize weight. This flexibility often renders inappropriate the

assumption of "linearized strains" that has been popularly employed in analysis.

The pointing maneuver in many of the above applications is typically an essen

tial phase for these structures to successfully carry out their intended func

tions. Examples are: a flexible robot arm in high precision welding task to zero-

in accurately on a micro spot, a solar array for collecting energy to face the sun,

an antenna for data communication to point at control stations, a space-based

telescope to focus on a star. It has been proposed to decompose the accurate

pointing control of these flexible structures into two stages. In the first stage,

an open-loop controller is assigned the task of quickly slewing the referential

axis of these structures to a desired direction. As the maneuver nears the end

of this stage, structural deformations must be considerably reduced, and the

t See for example the proceedings of the 26th Structures, Structural Dynamicsand Materi
al (bnfvrmcB sponsored by the AIAA, ASHE. ASCE, AHS. at Orlando. Florida. April 15-17.
1965.
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referential axis must fall within a "cone" of pointing error tolerance. In the

second stage, the control is transferred to a closed-loop controller, which may

be assigned several tasks: vibration reduction, disturbance suppression, point

ing error refinement

In the design process and in the synthesis of optimal controls for flexible

structures undergoing large motions, accurate mathematical modeling and

effective simulation of the motion of the structure play a crucial role. These

tasks involve: (i) formulation of a physically relevant mathematical model which

in turn often includes modeling of effects such as large strains, inelastic consti

tutive behavior and appropriate, possibly nonlinear, damping mechanisms; and

(ii) numerical solution of the resulting initial boundary value problem governing

the evolution of the system. For flexible structures, nonlinear effects are partic

ularly important in the first stage of the pointing control. Here, the fast slewing

maneuver induces non-negligible transient loading resulting from the effects of

Coriolis and centrifugal forces, as well as the inertia effect due to rotation.

Moreover, large deformations in the structure relative to its rigid body local

equilibrium configuration may occur during this stage. Finally, an integrated

design approach should account for worst case designs, for example the possibil

ity of catastrophic failure of the control system, so that an analyst could detect

weaknesses in the structure for further reinforcements in the cycle of design-

analysis-redesign. These cases may lead to bifurcation and instability, with sub

sequent large structural displacements, or may even result in structural dam

age. A unified treatment of these effects can only be accomplished through the

use of finite-strain structural theories capable of accommodating general consti

tutive behavior in the general three-dimensional setting.

Traditional approaches. The dynamics of a flexible structure undergoing

large overall motions is typically formulated relative to a coordinate system that
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follows the deformed structure. This coordinate system is often referred to as

the floating frame (Canavin & likdns [1977]). The introduction of a floating

frame, relative to which the strains in the structure are measured, is motivated

by the assumption of small strains (e.g., Ashley [1967], de Veubeke [1976], Cana

vin & LUtins [1977], Kane & Levinson [1981]). With the assumption of small

strains, the use of a floating frame allows a simple expression for the total

potential energy of the structure. By contrast, the expression of the kinetic

energy of the system takes a rather cumbersome form. The resulting equations

of motion, although restricted to small strains, are nonlinear and highly coupled

in the inertia terms due to the presence of Coriolis and centrifugal effects as

well as inertia due to rotation of the floating frame.

Galerkin discretization of the equations of motion in the space variables

leads to a system of implicit, coupled nonlinear differential equations in time of

the form g(y, y, t) = 0, referred to as differential-algebraic equations (DAE). An

essential characteristic of this system is that it cannot be transformed to a

standard explicit form y = g(y, t), without appending an algebraic constraint.^

The structural mode shapes, obtained from solving the vibration eigenvalue

problem at the reference configuration, may be employed as a Galerkin basis

(e.g., likins [1974]). But unlike the case of linear structural systems, the result

ing semi-discrete system of equations remains extensively coupled.

The solution of DAE's requires the use of a special class of numerical

integration algorithms first initiated by Gear [1971b]. Recently, follow-up work

by many researchers has emerged in the literature (Brenan [1983], Lotstedt

[1983.B4], Petzold [1982.84]). DAE's are difficult to treat because they are

t One can always set y = s, and append the algebraic constraint g[x,j,t) ** 0. This is a DAE
system, and not a standard ODE system (Petzold [1982]).
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usually stiff differential equations. Ill-conditioning may arise when the time step

size is decreased to zero. The design of numerically robust algorithms to solve

DAE's, as well as the assessment of their stability and accuracy characteristics,

is one of the areas of current active research in numerical analysis.

The complex nature of these equations has often led to simplifying assump

tions based on linear superposition theory, in which the elastic deformations are

analyzed assuming known rigid body motion. These deformations are then

superposed onto the rigid body motion to obtain the overall motion (e.g., Grotte

et al [1971]). Selective truncation of nonlinear terms to render the equations of

motion linear is another avenue often taken in the past. Such truncation

reduces considerably the complexity of the problem; the design of controller

based on linear partial differential equations (PDE's) is thus more tractable

using established analytical tools in the realm of linear theory (Burns [1985]).

For a review of several approaches in the dynamic analysis of mechanisms and

machines, we refer to Erdman &Sandor [1972] and to Song &Haug [1980].

A new approach. We propose a methodology which represents a complete

departure from traditional approaches where the use of a floating frame is

necessary because of the ab-initio assumption of small deformations. The philo

sophy adopted here is opposite to that outlined above: The kinetic energy of the

system is reduced to a quadratic uncoupled form simply by referring the motion

of the system to the inertial frame. This results in a drastic simplification of

the inertia operator, which now becomes linear and uncoupled, while the

stiffness operator emanating from the potential energy functional becomes non

linear. Conceptually, the essential step needed in developing this alternative

approach is the use of ftnUe-deforrnation structural theories — rods, plates,

shells, three-dimensional continua —whose appropriate strain measures possess

the required property of invariance with respect to superposed isometries (rigid
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body motions).

From a computational standpoint, the substantial advantage of the pro

posed approach over traditional approaches lies in a much simpler structure of

the resulting equations. By introducing a Galerkin semi-discretization in the

space variables, one obtains, for the plane formulation, the standard nonlinear

system of ordinary differential equations (ODE's) that typically arises in non

linear structural dynamics. The Newmark implicit algorithm is widely used to

discretize the time variable of this semi-discrete system of ODE's, and leads to a

nonlinear algebraic system of equations whose solution may be obtained by

employing the Newton-Raphson iterative procedure. Stability considerations

often dictate the choice of an implicit over an explicit algorithm due to severe

restriction on the time step size associated with the explicit schemes. There

have been extensive investigations in error analysis and stability of integration

algorithms for structural dynamics. In the linear case, we refer, for example, to

Goudreau & Taylor [1973] and Hilber [1976.78]; the analysis for the nonlinear

case —when the deformation map takes value in a linear space —is contained in,

e.g., Hughes [1976] (see also Belytchsko & Hughes [1983] and references

therein).

The role of nonlinear structural theories. So far, we have mentioned two

aspects that render the use of a finite-strain formulation attractive: (i) First, we

are able to account for the state of large deformation in flexible structures, a

feature clearly desirable for analysis of safe designs; (ii) Second, the mathemati

cal structure of the equations of motion, when the dynamics is referred to the

inertial frame, is much simpler as compared to the equations resulting from the

Bmall deformation assumption and the use of a floating frame. For cases where

infinitesimal deformation in the structure is insured by physical considerations,

such as the case of a stiff beam undergoing a rotating motion, it seems obvious
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that linear theories should be sufficient to model the behavior of the structure.

Surprisingly enough, however this is not the case: It can be shown that the use of

linear theory leads to an unphysical destabilizing effect characterized by the

loss of stiffness, which is quadratic with the angular velocity of revolution. Such

a phenomenon arises precisely because of a partial transfer of the centrifugal

force to the equation governing the bending of the beam. On the other hand,

higher order structural theories provide a remedy to this situation since they

allow a correct transfer of the action of centrifugal force. Recently, Kane, Ryan

& Banerjee [1985] have been able to account for such stiffening effect using

their discrete approach together with a particular parametrization of the beam.

It should be noted that their approach only applies to the case of a flexible beam

attached to a rigid body with prescribed motions. Since the dynamics of the

beam must be referred to a frame locally attached to the rigid body, the result

ing equations of motion, in the general case where the base motion is not known,

are nonlinear and highly coupled in the inertia term. Hence, within the context

of the proposed finite-strain approach, there is little to be gained by introducing

at the outset the additional small strain assumption.

A three-dimensional finite-strain rod model. When the motion of the rod is

restricted to a plane, the deformation map, for the model considered herein,

take values in the linear space R8. In three-dimensional motions, appropriate

treatment of the rotation field in the rod —with shear deformation accounted

for in the model — plays an important role. Nordgren [1974] considers a res

tricted nonlinear model whereby the cross section is assumed to possess equal

principal moments of inertia. Since shear deformation is not accounted for, the

deformation map of the rod is entirely described in terms of displacements, and

thus takes values in IR3. The model considered by Argyris and co-workers

[1979,81,82], on the other hand, does include shear deformation. However,
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motivated mainly for a desire for a symmetric stiffness operator, these authors

employ the notion of semi-tangential rotation introduced by Ziegler [1977] to

treat the rotation field in the rod. This concept of rotation possesses a property

crucial to their approach: commutativity of two successive semi-tangential rota

tions, a characteristic not shared by the standard notion of finite rotations with

direct physical interpretation. While the derivation of finite element matrices in

Argyris et al [1979] is based on the concept of "natural formulation," the beam

element by Bathe & Bolourchi [1979] is obtained, within the framework of the

"total and updated lagrangian" formulation, from employing Hermitian interpo

lation of the displacements — as in the linear Bernoulli-Euler beam theory —

expressed in convected coordinates. The range of application of such an ele

ment is restricted to motions that involve large rotations but only small strains.

Rigorous error analysis of the spatial discretization requires that the equations

of motion be described by PDE's —see Strang & Fix [1973] and Ciarlet [1978] for

the analysis of the finite element method in the general context, and Arnold

[1981] on the error estimate for the plane beam. In the previously cited work,

only Nordgren formulates a model based on PDE's.

The models proposed by Antman [1974] and Simo [1985], as in the classical

Kirchoff-Love model in Love [1944], employ a standard notion of rotations —

which are elements of the special orthogonal group S0(3), a non-commiiiaivue

lie group. Computationally, we propose a parametrization based on quaternion

parameters that avoids the use of Euler angles (Love [1944], Antman [1974]) and

their associated singularity (e.g., Goldstein [1980], Kane et al [1983]); this

parametrization plays a basic role in the algorithmic implementation. The

configuration maps of the rod thus take values on the nonlinear differentiable

manifold ¥?xSO(3), which no longer has the structure of a linear space. The

dynamics of rotation of a rigid body furnishes another example of a classical
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dynamical system with a nonlinear differentiable manifold (essentially S0(3)) as

configuration space (Arnold [1980]).

We have developed an extension of the Newmark time-stepping algorithm of

the classical structural dynamics formulation (where the deformation map

takes value in the linear space R3xR3) to the present case where the deforma

tion map takes values in the nonlinear differentiable manifold R3x£0(3). This

extended Newmark algorithm furnishes a discretization of the time variable, and

leads to the temporally discrete dynamic weak form of the equations of motion.

Upon lineaiizing this semi-discrete dynamic weak form with respect to the

space variable, numerical solutions are constructed by projection of the tangent

space at each configuration onto a finite dimensional subspace. This lineariza

tion procedure is a basic step in iterative solution methods of the Newton type.

Concepts of modern differential geometry (Spivak [1978]), and covariant lineari

zation procedures (Marsden & Hughes [1983]) prove to be particularly useful in

our algorithmic treatment. As an example, the configuration update in the

iterative solution process becomes the algorithmic counterpart of the exponen

tial map.

The organization of the dissertation is as follows. Chapter 2 will focus on

the dynamics of planar motions of flexible rods to set the stage for the proposed

methodology in dealing with flexible structures undergoing large overall

motions. Chapter 3 reinforces the role of nonlinear theories in the dynamic

analysis of flexible structures. The algorithmic treatment of the stiffness opera

tor of a three-dimensional rod model constitutes the objective of Chapter 4,

while its dynamic treatment is the focus of Chapter 5. Finally, in the concluding

Chapter 6, we present two important applications of the present approach;

namely the dynamics of flexible earth-orbiting satellites and multibody systems.
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CHAPTER 2

DYNAMICS OF FLEXIBLE STRUCTURES PERFORMING LARGE MOTIONS

2.1. Introduction

To establish the methodology, we shall focus on the dynamics of a flexible

beam subject to large planar motions. The essential ingredient in the proposed

approach is the use of the finite-strain beam theory formulated independently

by Reissner [1972] and Simo et al [1985]. This beam model can accommodate

finite deformation in stretch-shear-bending, as well as account for large rota

tions in the cross section. For small deformations, the model reduces to the

well-known Timoshenko beam theory. Moreover, the strain measures satisfy the

requirement of invariance with respect to superposed isometries. The floating

frame that follows the deformed beam performing large overall motions is some

times referred to as the shadow beam (Laskin et al [1983]). The reason for the

restriction to plane formulation to expound the essence of the proposed metho

dology lies in the simpler structure of the partial differential equations in plane

motion as compared to the three-dimensional motion: the deformation map

here takes values in the linear space Rs instead of the differentiable manifold

R3xS0(3) (Simo & Vu-Quoc [1985a]). In subsequent chapters, we shall address

the three-dimensional motion of flexible rods whose formulation follows essen

tially the same basic steps set forth in this chapter. The appropriate treatment

of the three-dimensional finite rotation field is, however, non-trivial.

As a basis for our discussion, we choose a specific problem to introduce the

formulation: the dynamics of a flexible robot arm. This model problem consists

of a flexible beam with one end at the origin E of the inertial frame \E;elt eg. eg]

as shown in Figure 2.2.1. The robot arm is allowed to rotate about the axis e3,

but the motion of the arm is restrained to the plane {e1( eg). It will become
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clear, however, that our formulation can be applied to a more general setting of

flexible plane beams subject to large overall motions.

In section 2.2, we review the traditional approach based on the assumption

of small strains and the use of a floating frame. The equations of motion here

are nonlinear and extensively coupled, and result in a system of differential-

algebraic equations upon introducing a Galerkin discretization in the space vari

ables. A novel approach is presented in section 2.3, based on a finite-strain rod

model in which the dynamics of motion is referred directly to the inertial frame.

This approach leads to equations of motion with a linear uncoupled inertia term.

The inherent nonlinearity of the problem, on the other hand, appears in the

stiffness operator. Section 2.4 will focus on the temporal discretization of the

weak form based on the Newmark implicit algorithm and the Galerkin finite ele

ment discretization, in the space variable, of the consistently linearized weak

form. For the plane formulation of the rod model considered herein, the struc

ture of the resulting discrete equations is typical of nonlinear structural dynam

ics. Section 2.5 gives some numerical examples to demonstrate the applicabil

ity of our formulation.

2.2. Classical approach based on small strains: Floating frame

In this section, we summarize the equations of motion for a rotating flexible

beam using the shadow beam approach and assuming small strains superposed

onto large rigid body rotations. Our purpose is to exhibit the main drawback of

this approach. The basic kinematic assumption is reviewed in section 2.2.1. fol

lowed by the expressions of the potential energy in section 2.2.2 and the kinetic

energy in section 2.2.3. Use of the floating frame, although allowing a simple

expression for the potential energy, leads to a cumbersome expression for the

kinetic energy of the system. The equations of motion, obtained via Hamilton's



§2.2 Flexible structures performing large motions 11

principle, are given in section 2.2.4. From a computational standpoint, the

numerical integration of these equations is a non-trivial task.

2.2.1. Basic kinematic assumption

Consider the rotating beam shown in Figure 2.2.1. Let \0\ eXt 62} be the iner

tial frame with base point 0 e R2 and orthonormal basis vectors (ei, e2). Let

(A'l.A'e) denote the coordinates along et and ez. The domain of the undeformed

beam with length Land depth d is B := [0, £]x[-|-, |-] c R2. Amaterial point

X € B, in the undeformed (reference) conflguration, initially located at

X = Xxei + X2ez is mapped into the point x = 0(A") GR2 by the deformation map

<j>: f?-*R2. Xdesignates the position vector of point X relative to the base point

O. Similarly, the position vector of x relative to the base point O is denoted by

x.| In addition, we introduce a floating frame |0;alt aej that follows the rigid body

motion of the beam, Le., the shadow beam. In the literature, this type of float

ing frame, which is attached to a point within the deformable body, is often

called the locally attached frame (Canavin &Likins [1977]). Components of vec

tors relative to this floating frame will be denoted by a superposed tilde. The

basic kinematic assumption is that plane sections remain plane after deforma

tion. Accordingly, we set

x = Xo + X2te (2.1a)

where

*.%,(*!.t) := [*i+3i(*i.0]ai(0 + ff«(*i.O*(0.

tipfi.O := cosa(A-„0ai(0 + sina^.0<*•(*) . (2.1b)

t Light face letters denote points. Bold face letters denote position vectors of the
corresponding points.
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te(*i.t) := -sinato.OaiW + cosa^,*)!^*).

For notational simplicity, explicit indication of the arguments X\t Xz and t will

often be omitted. Since the motion is planar, 63 • tg • ag. Note that {ti, teJ

defines a moving frame that follows the deformation of the beam with tg always

contained in the deformed cross section and t\ perpendicular to the cross sec

tion. Using matrix notation, relations (2. lb)2i3 may be expressed as

ft) -*(:}• where A :=
cos a —sin a

sin a cos a
(2.2)

Although it is possible to develop the formulation without introducing any res

triction on the size of the strain fleld, the assumption of small strains is typically

introduced ab-initio, as discussed below.

2.2.2. Motivation: Total potential energy

By introducing the floating frame (a1( agj one can enforce at the outset the

following infinitesimal strains assumption:

a small (£ 10*) <=> X =
1 -a

a 1

with Ui and u2 small. (2.3)

The strains 7 and the curvature H relative to the floating frame (at, ag) are then

defined as

7 := 9o - ti. « :*= a tg. (2.4a)

where ( • ) := d( . )/ dX\. In component form, 7 is expressed as

7 = 7iaj + 72«te. (2.4b)

where
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7i = -^1 . yz = uz -*. (2.4c)

One refers to % and % as the axuri strain and the shearing strain, respectively.

Denoting by EA, GA, and EI the axial, shear and flexural stiffnesses of the beam,

the potential energy is expressed as

n := TI \.EAy\ +GA.7§ +EI (a')2] dS - IW - r(0*{*) (2.5)

where I^nty is the potential energy of the external loading acting on the beam

and T(t) 63 is an applied torque at the axis of rotation eg of the robot arm.

2.2.3. Kinetic energy

The kinetic energy of the system takes a rather cumbersome form com

pared with the simplicity of (2.5). To obtain the appropriate expression, we

introduce the time derivative relative to an observer attached to the floating

frame. Accordingly, we define

v d$
x:= —n

dt *./*- ' <2-6>

The following expression for the material time derivative, denoted by a super

posed "dot", is standard in rigid body mechanics (Goldstein [1980])

i = x + wxx (2.7)

where w is the angular velocity of the floating frame. For the plane case under

consideration, the angular velocity w is given as

w=-^Og =#«8 (2.8)

where as := ai x ag meg is fixed. Since the time derivative of the floating basis is

ai = ^az. fife = —#alf (2.9)
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it follows from expressions (2. lb) that

li = (a + #)te. te = -(a + #)t, (2.10)

Thus, we arrive at the following expression for the time derivative of the position

vector x

x = (fii-r-tjdii + [^2 +*(^i+fii)]aB-^2(S+^)t1 (2.11)

The kinetic energy of the system is obtained from the expression

K := ±£p(XltX2) flxf dXx dX2 (2.12)

where p{X\,Xz) is the mass density of the beam material. By substituting (2.11)

into (2.12) we obtain

Z[tU]

Here, the inertia constants Ap and Ip are defined as

"it •"—:= / p(X1,Xz)dX2t /p := / p(XltXz)X\ dX2 (2.14)
t4»H i-frfig.gJ i g.B

2.2.4. Equations of motion: Coupled inertia terms

The equations of motion may be systematically derived by means of

Hamilton's principle. Accordingly, we require that the action

L := f (K - U)dt be stationary, (2.15)
I'i.'eI

for arbitrary paths connecting two points at time t1 and t2 in the configuration

space. Substituting expressions (2.5) and (2.13) into (2.15) and making use of

standard arguments involving integration by parts, we arrive at the following
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equations governing the extensional and flexural motion of the beam

i4p[Si-^8-2^S8-i2(A'1+iri)] - EAZ" = 0

Afitfk +?(*i+ffi) +2^-Si - r*V2] - GA. (uz - a)' = 0 (2.16)

/P<a+?) " & a" -G4.(-u2'-a) = 0

Appropriate boundary conditions automatically follow from the stationarity con

dition. In addition to equations (2.16), one obtains the following constraint equa

tion expressing the overall balance of angular momentum of the system

# / Mp[(*i +Si)2+S|] +/,i dX, +2$ J Ap\ (A-x+S^i +S2S2 j dXx
io.L] tail

+ f Ap {(X^u-jfy-uzfy IdXx+ T/pSd^! = T(t) (2.17)
tfl] [fo] *

The highly nonlinear nature of the coupled system (2.16)-(2.17) involving the

variables [ultu2,a, f] should be noted A Galerkin discretization in the space

variable X\ of (2.16) and (2.17) leads to a system of implicit differential-

algebraic equations in time of the form g(y. y, t) = 0.

Remark 2.1. The Euler-Bernoulli formulation is obtained from the above

equations by assuming that shear deformation is negligible. Accordingly, we let

(u2 - a) -> 0, and G4. -*♦ °° so that GA, (u2 - a) -♦ V where V is the shear force

acting on the cross section of the beam. Equations (2.16)23 governing the

transverse and flexural vibrations of the beam may be combined, to obtain

i4pSfe +EIuzn' - /p8b"+ Ap[^{Xl^ul) +2^S1-^u2)] = 0 (2.18)

The first two terms in (2.18) correspond to the standard linear Euler-Bernoulli

beam theory. This equation is, however, attributed to Rayleigh who accounted

for the contribution of section rotary inertia to the transverse vibration of the
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beam. This contribution is represented by the third term, and is often

neglected in structural applications. The last three terms within brackets arise

as a result of coupling between deformation and rigid body motion. These terms

represent the inertia due to rotation of the shadow beam, the Coriolis and the

centrifugal effects, respectively. We shall further discuss in Chapter 3 the effect

of the centrifugal term $?u2 appeared in (2.18). •

2.3. Proposed approach based on finite strains: Inertial frame

By contrast with the formulation outlined above, we propose an alternative

approach in which the structure of the inertia operator becomes linear and

uncoupled. This is achieved by referring the basic equations of motion to the

inertial frame. As a result, drastic simplification of the inertia (temporal) part is

obtained by shifting the nonlinearity of the problem to the stiffness (spatial)

part of the equations of motion. Conceptually, the essential step needed to

develop this approach is the use of finite-strain rod theories capable of account

ing for large rotations. Section 2.3.3 summarizes from a physical standpoint the

appropriate finite strain measures. We refer to Reissner [1972] for the plane

case, and to Antman [1974] and Simo [1985] for the three-dimensional case. An

essential characteristic of these strain measures is their invariance under

superposed isometries.

From a computational perspective, the substantial advantage of the pro

posed approach over the shadow beam approach discussed in section 2.2.2 lies

in a much simpler structure of the resulting equations. This structure

corresponds to the standard nonlinear system of ODE's that typically arises in

structural dynamics. In addition, we automatically account for large strains.
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2.3.1. Basic kinematic assumption

As in section 2.2.1, the basic kinematic assumption is the condition that

plane sections normal to the axis of the beam in the undeformed configuration

remain plane; i.e.,

x = Xb + Xz\* (2.1a)

The difference from, the previous approach based on the use of the floating

frame is that the position vector Xq and the basis vectors [ti, tej now have their

components expressed relative to the inertia! frame [elt e-z). Accordingly, we

set

M.mf.&i.t) := [Xi+*ui(*i.0]ei + u2(Xx,t)ez

tx(Xltt) := costf(*i,Oei + sintf(*i.0*«2 (2.19)

U(Xut) := -sintf(*i.*)ei + costf(JTi, *) ©2

As in (2.2), we shall use matrix notation and express relations (2.19)2ig as

'M
i ^6 /

= KT
ei

where A :=
cosi5 —sintf

sini5 cost?
(2.20)

Note that the floating basis {alt a2{ plays no role in the present formulation.

2.3.2. Motivation: Kinetic energy

The kinetic energy of the system relative to the inertial basis reduces to

the standard quadratic uncoupled form. To see this, note that from (2.20) the

rate of change of the basis vectors ft], tgj is given by

t, = -dtg. Ve = -iK (2.21)

Hence, the time derivative of the position vector x is obtained as

x = 0O - As^ti, #0 = ^1^1 + ^2«2 (2.22)
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It follows from (2.22) that ||x(|2 has the expression

|xf = [uf+u§] + X\¥ - 2**2[costfu1 + smtfu2] (2.23)

Upon integrating p{Xx, X2) |x||2 over the body B=[0,1]x[-|-, j£j, we arrive at

the following expression for the kinetic energy of the system

Z[£*l

Here, as in (2.13), the inertia coefficientsAp and Ip are givenby (2.14).

Remark 2.1. It is noted that expression (2.13) for the kinetic energy in the

shadow beam approach may be exactly recovered from (2.24) simple by employ

ing the coordinate transformation

[*i +ui
I u2

i _
costf/ —sinV'
sintp cost/*

1
Xx + ux

uz
(2.25a)

That is, the expression for the kinetic energy of the system is independent of

any particular assumption on the magnitude of the strain field. In fact, the time

derivative of (2.25a),

\ux

\u2

If ~ *} ~
costf —sinit> ux— yu2

" •* totsini/" cqstJ? [u2 + y'(Xx +ux) J • (2.25b)

simply expresses the transformation of the components of ii, relative to the

floating basis fat, azj back to the inertial basis {e1( e2{:

i, = uxex+uzez = {ux-j/u2]*i + [&z + i'(Xx +ux)]a2 (2.25c)

This remark would become evident if we express the kinetic energy using

coordinate-free notation

K = fpU\ZdXx = /pji, -X2*txfdXx = /I4pjif +/P48ji«ta25d)
B B [S.L]
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2.3.3. Potential energy and invariance of strain measures

Potential energy. Within the context of large strains, a definition of the

strain field in the beam is provided by

7 := *o - ti. k := tf'ta (2.26a)

The physical interpretation of 7 is clear as shown in Figure 2.3.1. 7 measures

the difference between the slope of the deformed axis of the beam and the nor

mal to the cross section defined by tlt and c is the rate of rotation of the cross

section along the undeformed length of the beam. In component form, relative

to the inertial frame we have from (2.19) the following expression for 7

7 = 7i6i + 72*22 = [(1 + Ui )-cosine-, + [u2 -sintf]e2 (2.26b)

Alternatively, relative to the basis vectors Jti, tej, from relation (2.20) we have

the following expression

where

Ti
= u

7 = ^t! + r2te

1 + ux —costf

u2 - sintf
= AT

1 + ix,

u2

f \

1

w

(2.27a)

(2.27b)

The analogy between expressions (2.4a,b,c) and (2.26a)-(2.26b) should be noted.

We now assume the same expression for the potential energy, relative to the

moving framejti • *ej. as the one considered in the small strain shadow beam

approach discussed in section 2.2. Accordingly, we set

n := |- J [EAT? + GA.?§ +EI(#)z]dS -IW - r(t)4(0.0 (2.28)
[0.L]
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Invariant strain measures. The components of the strain 7 in the basis

(ti. tei denoted by (TXt Tz) are invariant under superposed isometries on the

beam. One can see this by considering the isometry composed of a superposed

translation c(t), and a superposed rotation p(t) represented by the orthogonal

transformation matrix

«K<) :=
cos/J —sin/J
sin/9 cos/? (2.29)

The transformed quantities in the expression of I\ in (2.27) above are as follows

*o+(*i.O = c(0 +«K0 #.(*i. 0: *o+' = 0oVe1 +0oVe2 = Q0O\ (2.30a)

i.e.,
0ol

= Q

1

1 +*U!

/

A+ = QA

Since tf = cos(/?+4) ej + sin(/?+4)e2, it follows that

where

7+ = Tttt + Ttti = #0+ -tf

0- L+T
♦.V cos(£+i>)

Sin(/J+1>) fil

(£30b)

(2.30c)

(2.31a)

(2.31b)

The invariance under superposed isometries of the curvature k follows at once

in the plane case from expression (2.26a). This property of invariance of the

strain measures is essential for the success of the proposed approach.

Remark 2.2. It can be shown that definition (2.26a) and expressions

(2.26b), (2.27) follow from a rigorous argument based on the equivalence of the

stress power for the general three dimensional theory with the reduced stress
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power of the finite-strain beam theory (Simo [1985]). •

Remark 2.3. In this chapter, we shall be concerned only with spatially fixed

loads, which do not depend on the deformed configuration, as opposed to fol

lower loads that are configuration dependent. A treatment of follower loads in

the general context of the three-dimensional finite-strain beam will be given in

chapter 3. Accordingly, the potential of the distributed loading is given by

(2.32a)

where

rfertr = f [m*"tfe3 +n-0o]d*'i
[0.L]

•fi(X„t) := «,(*,, t) ex + n2(Xx% t)e2. m(Xx, t) := m(Xx, t)e3 (2.32b)

are the external force and torque per unit of reference length acting on the

beam. •

2.3.4. Equations of motion: Uncoupled inertia terms

We introduce the following notation

I::) -
EA 0

0 GA, Ar
1 + u x — costf

u 2 — sintf

m := £7tf (2.33)

Here. n(Xx,t) =nx(Xx,t)ex+n2(Xltt)e2 and m(Xx,t) = m{Xx,t)ea represent

the internal force and internal moment acting on a deformed cross section of

the beam.

As in section 2.2, the equations of motion governing the evolution of the sys

tem may be systematically obtained from Hamilton's principle. Standard mani

pulations yield the final result

ux
n,

fi2

m + (1 + ux )n2 —u2 nx

n2

m

= O (2.34)
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Equations (2.34) represents the system of nonlinear partial differential equa

tions governing the response of the system. Note that these equations are linear

in the term involving time derivative.

For the robot arm in Figure 2.2.1 we have the following natural boundary

conditions

m(0,0 = T(Oea. m(i.t) - n(L,t) - 0 (2.35)

These boundary conditions follow automatically from Hamilton's principle and

the appropriate expression for Tlsxr-

2.3.5. Conservation of global momenta

Within the proposed approach global linear and angular momenta are

automatically satisfied, and do not provide any additional constraint. This is in

contrast with the shadow beam approach in which the basic equations of motion

(2.16) must be supplemented by the global angular momentum condition (2.17)

for the evolution of the system to be completely determined. To verify conser

vation of global linear and angular momenta, we rewrite (2.34) with the aid of

(2.33) as

L-n - fi = 0 , H-m - 0„ x n - m = 0 (2.36a)

Here HXx,t) denotes the linear momentum per unit length, and U(Xx,t) the

angular momentum per unit length relative to the centroid of the deformed

cross section. Using (2.19) we have

L:= f pkdX2 =Ap$0, H:= f /o[x-x0]xicUr2 =//)^ (2.36b)

The global linear and angular momentum of the system denoted by I/*) and

H(0. respectively, are defined as
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Ut) := fpx dXx dX2t H(0 := fpxxi et^ d^2 (2.37)

Making use of the identity xxz. (x-Xb)xi + x, xi, the global angular momen

tum is expressed as

M(0= / [H++0xh]dXx (2.38)
[6.L]

where U.Xx,t) and H(Xx,t) are given in (2.36b). Differentiating (2.38) and using

(2.36a), we obtain the following condition involving the applied load and boun

dary conditions

M=[m +0O xn]|£!o +J [m +0O xfi]dXx (2.39)

Condition (2.39) states that the resultant torque of the applied loading equals

the rate of change of the total angular momentum. Similarly, for the global

linear momentum we obtain

i=n|j^o+ ^fi^i (2-40)

which states that the resultant force of the applied loads equals the rate of

change of the global linear momentum. Equations of motion (2.36a) along with

definitions (2.36b) are general, and remain valid in the three dimensional

theory. Thus, the foregoing discussion leading to expressions (2.39) and (2.40) is

not restricted to the plane case.

2.4. Numerical approximation: Galerkin finite-element method

In this section, we discuss the numerical treatment of the nonlinear partial

differential equations developed in Section 2.3. The basic strategy is to perform

the temporal discretization employing standard implicit time-stepping algo

rithms and a Galerkin discretization of the space variable. The finite element
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method provides an established technique for constructing the (spatial) basis

functions necessary to perform the Galerkin discretization. This procedure will

lead to a discrete system of nonlinear algebraic equations characteristic of non

linear structural dynamics. Expressions for the matrices resulting from the

application of this procedure are given in detail.

2.4.1. Temporal discretization of weak form

Weak form. Define the following quantities

I := Diag[Ap%Apt Ip]

#(*,.*) :=

Xx+ ux(Xltt)
u2(Xx,t)

*(Xx,t)
t(Xx,t) :=

«i(*i.O
nz(Xx,t)

l*K(*i.*)J

(2.41)

The weak form of the equations of motion (2.34) is obtained as the scalar pro

duct of (2.34) with an arbitrary weighting function ij = rji e^

Qiyn(*.V) := f i?-I#<Uri +G(0.ij) = 0. V17
[0.L]

(2.42)

where G(0, i|) denotes the weak form of the PDE's when inertia effects are not

taken into account

G(0.i?) :•=-/"*•

n,

7l2

1 t K 'm + (1 + Ux )n2 —u2 n

dXx- f rj'tdXx(2A3)

1)

Recall that equation (2.34) is linear in the term involving the time derivative,

Le., the acceleration f. The inherent nonlinearity of the problem, which results

from the coupling between large overall motions and (possibly finite) deforma

tions in the beam, is contained in the second term and included in the weak

form (2.43). For simplicity of exposition, let 17 be a member of the function



§2.4 Flexible structures performing large motions 25

space

V := {17 E (HKO.L))* | 17(0) = r>(L) . 0 },f (2.44)

and integrating by parts the first term in (2.43) with respect to the spatial

derivative, we obtain

t \

nx

G(*.v) = / H(0)i7-
10.L]

n2

m
\ *

dXx - J r>.

where H(0) denotes the differential operator defined by

H(0) :=

d

dXx

0

0

0 u2

d

dXx

0

-(1-fUj)

d

dX*

tdXx (2.45)

(2.46)

Note that in (2.45), we made use of the identity 17(0) = 17(1) m0. Strictly speak

ing, the function space V in (2.44) represents the space of admissible variations

corresponding to zero displacement boundary conditions for the PDE's (2.34),

i.e., a beam with clamped ends. The choice of the boundary conditions for the

space of admissible variations should account for the essential boundary condi-

IX =£
xX=q m0

determines the choice of boundary conditions for the admissible variations.

Time-stepping scheme. A standard system of nonlinear ODE's, 7 = g(y, t)

can be integrated by employing a variety of time-stepping algorithms. It is

desirable to use algorithms that prove to be consistent with the ODE's and stable

t H^O, L) denotes the Hilbert space of functions defined on the interval (0, L) whose ele
ments and their first derivatives are square integrable, i.e., elements of the function space

Lz. The inner product of apair (/,g) e Hl{0,L) isgiven by f (fg +/ g )dx.
[0.L]
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for some range of the time step size. We refer to standard textbooks such as

Richtmyer &Morton [1967] and Gear [1971] for precise definitions of these con

cepts. Two basic strategies in devising time-stepping algorithms may be
adopted:

(a) Explixnt schemes: Typically, high accuracy may be achieved by employing
high order methods. A classical example is furnished by the family of

Runge-Kutta methods. The main drawback of explicit schemes is the severe

limitation on the time step size imposed by their restrictive stabiUty
characteristics.

(b) Implicit schemes: These typically possess very robust stabiUty characteris

tics. Classical examples are the trapezoidal rule, which is the highest order

(second order) A-stable impUcit multistep method with smaUest truncation

error (Dahlquist [1963], Park [1975]). the stiffly stable methods of Gear

[1971], and the famUy of algorithms devised by Newmark [1959] which are

widely used in nonlinear structural dynamics (see, e.g.. Belytschko &

Hughes [1980]).

Here, motivated by stabiUty considerations, attention is focused on the

Newmark family of algorithms, which includes the trapezoidal rule as a special

case. The error analysis and the stabiUty characteristics of the Newmark algo

rithm appUed to linear problems is weU estabUshed; we refer to the work of

Goudreau &Taylor [1973] and ffilber [1976.78].

Let fn(Xx) denote the approximate solution to ftX^tn) at time *n. Simi

larly. vn(Xx) 3 +(Xx,tn) and an(Xx) S fiX^t*) represent respectively the

approximate velocity and acceleration at time *,». Assume that (0„. •„. O com

pletely satisfy the temporaUy discrete version ofthe weak form (2.42) at time *„

Gayn(0n.i7) = /i7-I«n^i +C(0n,i7) =0. V17 (2.47)
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We search for the solution (0n+i.vn+i. 8n+i) at time fn+1 such that

<W0n*i.i7) = ri7-Ian+ltW1+ G(0n+1,i7) = 0. V17 (2.48)

The Newmark time-stepping scheme defines the relationship between

(0n.Vt».O and (0n+i.••*+!. «n+i) according to

_ _ *0n+l - 0n Vn 2 ^ /o ^ N
11,1+1 " —TFp hf~ "T"* (2*49a)

•n+i = Vn +M(l-T)a„ +rari+1], (2.49b)

where A:=^n+i-'n denotes the time step size, and (/?, t) are the parameters of

the Newmark algorithm. We note that 0= 0.25 and t =0.5 correspond to the tra

pezoidal rule; this choice of the parameters /? and t renders the algorithm

unconditionadly stable (in the sense of continuity with respect to initial condi

tions) and second order accurate (Hughes [1976]).

The notion of stabiUty in general corresponds to the weU-posedness of the

temporally discrete system. In nonlinear structuraldynamics, withthe presence

of certain constants of the motion, a stronger concept of stabiUty is desirable.

We refer to Gear [1971], Chorin et al [1978], and Belytschko &Hughes [1983] for

several notions of stabiUty that have been proposed, such as A-stabUity, spectral

stabiUty, stabiUty in the energy sense, stiffly-stable methods, etc.... The

appropriate concept of stabiUty for integration algorithms in nonlinear struc

tural dynamics remains, however, unsettled.

Substitution of (2.49a) into (2.48) yields a temporally discrete nonlinear

system in the unknown 0»+ipfi). One may employ the classical Newton iterative

scheme to solve this system by first obtaining its linearization with respect to

the space variable Xx.
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2.4.2. Consistent linearization. Tangent operators

I«t A0 := (AUi.Au2.A1?) denote the incremental displacement field. Con

sider a known conflguration *k%(Xx) GR3, and let 0#1.e(*l) e R3 represents

the curve ofperturbed conflguration in the direction ofA0$! defined as foUows

*»u = 0#i +tfittU (2.50)

The superscript (i) designates the ith iteration in the Newton iterative solution

process to search for the unknown configuration *n+x. The linearization of the

weak form 3**(0,17) about the configuration 0 =^lx can be put in the foUow-
ing form

•£[-W0#,.i7)] = q*n(0#i.i?) +DGtyn(t&li.v)*&*Sli = 0. (2.51a)

for all 17 e V. 0*^(0^1,17) represents the dynamic residual at configuration
0$i. Tne linear operator 1^(0$,, ij) can be obtained by taking the direc
tional derivative of ^(0.17) about 0 =0#i and in the direction *##,,

J>-W0#i.i7)-A0$, =iJ Q^ii&l^n) (2.51b)

We shall proceed to give the linearization of each term in the weak form Q^
given in (2.48) and (2.45).

Tangent inertia operator. Consider the first term in (2.48), which involves

the acceleration *n+x(Xx). Its linearized form is easUy obtained from the New-

markalgorithm (2.49a) and the perturbed configuration (2.50) as

Afq^(#«..i|)-A0fi1 =•fff]in-**&li*xl (2.52)

We now introduce some quantities and their linearized forms that prove to

be convenient for the Unearization of (2.45). Rewrite the spatial internal forces
defined in (2.33) as
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lm(*)J
= AW Af8(#)

where [Nx,N2t M\ represent the material internal forces defined by

with

' < '

>*i(#)'
1 + Uj

1

**(*) := C A?W ^2 '_• 0

.*(#),
,

0

C := Diag[EA, GA., EI] , A(tf) :=
costf —sintf 0

sintf costf 0

0 0 1

The foUowing linearized quantities are needed:

29

(2.53)

(2.54a)

(2.54b)

0A(tf).Atf = -£- A(3 +cAtf) =
0 -Atf 0

At? 0 0

0 0 0

A(3), (2.55a)

D N2

M

(*)'A# = £.
c=0

^1

#2 (0 +eA0) = CA(0)H(0)A0, (2.55b)

d

ds
E(0 +eA0)i7 =

|e=0

0 0 Au2

0 0 -Auj

0 0 0

(2.55c)

Recall that the differential operator H has been defined in (2.46). Using the

above relations, we obtain the linear part of weak form G($£lx, rj) in (2.45) as

the sum of the tangent material stiffness operator and the tangent geometric

stiffness operator given below.

Tangent material stiffness operator. It foUows from the definition of the

material internal force (2.54a) and its linearized form (2.55b) that one part of



§2-4 flexible structures performing large motions 30

the linearization of (2.45) is givenby

{0.L]

(2.56)

Tangent geometric stiffiiess operator. The remainder ofthe Unearization of

(£45) corresponds to the Unearization of Hand Akeeping the material internal
force fixed, and constitutes the tangent geometric stiffness operator. Making
use of (2.55a) and (2.55c) with some rearrangement, we arrive at the expression

fleW#fii.*)-A#Ki := / T17 • B(0#1)TA0#l dXl (2.57a)
[oil]

where T and B are defined as foUows

B(0) :=

T :=

0 0

d _

dXx

0
dXx

0 0 1

0 -n2(0)

0 nx&)

-^2(0) nx($) -[(l +ux)nx($) +£2n2($)]

FinaUy. the Unear part of G^ at 0 =$$x is the sum of the above opera
tors

^«yn(0Wi.i7)-A0^, = [DM +DS +A?]GW#$i.*)-A*Bi (2.58)

Upon discretization of the space variable Xx, the tangent inertia operator (2.52)

leads to the typical mass matrix in Unear structural dynamics. The tangent

stiffness operators (2.56) and (2.57) were first obtained by Simo et al [1985]: the

derivation given above is, however, more amenable to an extension to the three-

dimensional formulation. In fact, it wUl be seen that the three-dimensional

(2.57b)

(2.57c)
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finite-strain beam in Chapter 4 reduces exactly to the above plane formulation.

Starting values for Newton scheme. There are various ways to select the

starting values as an "initialguess" for the Newton solutionprocedure by letting

**»*" • *»• or vn¥i • •», or 0$! m#n. Numerical experiments indicate the last

choice of the above three starting schemes to be the best in avoiding spurious

behavior in the results (Taylor [1985]). Accordingly, the starting values are set

to be

0$i = 0n (2.59a)

*Ri = -
•n g"*

(2.59b)

•$i = •« +M(l-T)an +rai,51] (2.59c)

where (2.59b) and (2.59c) foUow from the choice (2.59a) and the Newmark

scheme (2.49).

Other types of starting schemes has been suggested, such as using the

expUcit central difference scheme (Newmark with § = 0) as initial guess (or

predictor stage). However, as reported in Sander et al [1979], this starting

scheme yields computational effort comparable to the one in (2.59a-c), but with

a smaUer time step size for stabiUty consideration. Hence, the starting scheme

given in (2.59a-c) seems to be the most suitable one.

Update procedure. Once the incremental displacement field b$£lx is

known, the updated configuration 0i*+i,\ velocity v£+P and acceleration ai*+i1)
are obtained from

*&'> = *k% +A*#, (2.60a)

vftV> =i«, +jJ-A-tfJi (aeob)
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«iVi'> =*k% +tfj-Wh (2.60c)

We shall next consider the spatial discretization of the residual force and

tangent operator.

2.4.3. Spatial discretization: finite-element matrices

FoUowing standard finite element discretization, let the interval [0,L] be

the union of a finite number of subintervals with N being the total number of

nodes. Le.. [0,X]= U[*i.*i+l] with X{ €[0.1], Vjf =l N, and X{ <A^+1.
/=i

Consider the approximation of the incremental displacement field &+}?li(Xi)

with respect to the space variable Xx

A0#i(*i) S £ Nj(Xx)^i^x, with A0#+1 5 A0#1(*{). (2.61a)
/si

where N/(XX) designates the global interpolating function corresponding to node

/. Further, let the weighting function q(Xx) be interpolated in the same manner

17(^1) s t -N/(*i)i7/. with 17/ S *l(X{) . (2.61b)

We refer to classical textbooks such as Strang & Fix [1973] and Zienkiewics

[197B] for the choice of the appropriate interpolating function. Note that the

above discretization employs continuous piecewise polynomial subspaces of

equal degree for both the displacement field and the rotation field. This stan

dard procedure is shown to produces quasi-optimal approximation in Hl[0,L]

and optimal order of approximation in £*[0, L] tor a given beam thickness d

(Arnold [I98l]).*f It should be noted however that, for the control of distributed

tJQie rate of convergenge, with reaped to the element ruse, of the displacement # in H1-
norm is of the same order as the degree of the interpolatingpolynomial; it is of higher order
when using the £*-norm.
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parameter systems, care must be taken in choosing appropriate basis functions

to insure that certain system properties (controllabUity, observabUity, stabUiza-

biUty, detectabiUty....) are preserved (Burns, Cliff &Powers [1985]).

Introducing the above approximations into the expressions for Gtyn($£lx,r))
and for the tangent operators derived in the previous section, we obtain their

spatiaUy discrete counterparts. First recaU that from a known configuration

0nA at iteration (i) of the Newton solution procedure, we linearize the weak

form G^(0, n) about 0 =0$,

J[«*<#Wi.*>] =t H/*[P/(0Wi)+ t*oMli)A0&-M] =0,(2.62a)
7=1 /=i

for aU i7/t and solve for the incremental displacement field A0$,. In (2.62a),

P/(0n)i) denotes the dynamic residual (or out-of-balance) force at iteration (i),
an^ Kvitnli) the discrete dynamics tangent operator coupling node / and node
J such that

*w(#i*ii) = Mu +Sjj(^%) +GjA*$x) (2.62b)

where H7/ is the tangent inertia matrix. 3rs(0&i) the tangent material stiffness

matrix, and G//(0$|) the tangent geometric stiffness matrix.

Dynamic residual force. The expressions (2.42) and (2.45). together with

the discretization (2.61a-b), yield

P/(*Ri) = f NiiXJlmSU dXx
til)

f»i<0»i)l
«i(0Ki)
h<#JKi),

+r/{S(0^i)[^/(^)l3]jr
[0.X]

**i - / */(*i)f('n+i) dXx (2.63)
[Q.L]

where each term corresponds, respectively, to the inertia, material stiffness,

and external applied force with Hdefined in (2.46) and 13 := Diag[l, 1, l].
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Tangent inertia matrix. Substituting approximations (2.61a-b) for

tynli(Xi) and •n(A'i) in the expression of DmG^ in (2.52), we obtain

*v =-^ JlNI{Xl)NJ{Xl)dXl (2.64)

Note that in the plane formulation Ujj is symmetric and constant; hence, it need

be evaluated only once throughout the computation. However, in a more gen

eral setting of three-dimensional motion, it wiU be shown in chapter 4 that V.jj

actually depends on the current configuration, and is in general unsymmetric.

Tangent material stiffness matrix. It foUows from (2.56) and (2.61a-b) that

(2.65)

Tangent geometric stillness matrix. Substitution of (2.61a-b) into (2.57a)

yields

GlA*k%) = f \r[NI(Xx)l3]lTB{^ilx)T[NAXxn3]dXx (2.66)
[0.1]

with T being the differential operator defined in (2.57b) and B(0) is as defined in

(2.57c). Note that both the tangent material stiffness and the tangent geometric

stiffness matrices in the plane formulation are symmetric. For the three-

dimensional rod formulation, the tangent geometric stiffness operator wiU be

shown to be unsymmetric due to the non-commutativity of three-dimensional

finite rotations.

Numerical integration. It is weU known that using the standard discretiza

tion (2.60) the order of approximation deteriorates as the thickness of the beam

decreases —the rate of convergence is not uniform in the thickness d. This

phenomenon, often referred to as shear locking, is remedied by employing a

reduced/selective Gauss quadrature rule first proposed by Zienkiewics et al
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[1971] and Pawsey &dough [1971]. This procedure consists of lowering uni

formly or selectively the order of the integration rule used to evaluate the

tangent stiffness matrix to achieve a better order of approximation. In fact, it

can be shown that the order ofapproximation thus obtained is optimal for (2.60)

regardless of the beam thickness (Arnold [1981]). The analysis of Arnold is

based on the equivalence between the mixed finite element method and the

reduced/selective integration shceme first introduced by Malkus & Hughes

[1978]; it is this equivalence property that elevates the reduced/selective

integration procedure from amere numerical trick to alegitimate methodology.

For a curved planar beam using a mixed finite element method, we refer to Noor

* Peters [1981] and Reddy &Singh [1981]. In aU computation, we use a uni

formly reduced, one-point Gauss quadrature rule to integrate both the tangent

stiffness matrix and the residual force. Noor. Peters & Andersen [1984]

employed a mixed finite element method to discretize the fuUy nonlinear plane

beam theory of Reissner [1972], and is therefore equivalent to the finite element

displacement model with reduced integration used herein.

The mass matrix, however, is integrated exactly with two-point Gauss qua

drature to ensure its positive-definiteness, an essential property for the use of

impUcit time-stepping (2.49). Note that the positive-definiteness of the dynamic

tangent stiffness K in (2.62b) depends on the positive-definiteness of the mass

matrix H since the tangent stiffness matrix (S+G) is positive semi-definite,

nlien a diagonal mass matrix is desired, care should be taken in choosing a

diagonaUzing procedure such that the global momenta are preserved. For

instance, the usual "row lumping" procedure preserves only the global Unear

momentum but not the global angular momentum. The Gauss-Lobatto quadra

ture rule, sometimes referred to as nodal quadrature rule, is recommended for

this purpose.
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2.5. Numerical examples

In this section, we present a series of numerical simulations that Ulustrate

the formulation and numerical procedure discussed in sections 2.3 and 2.4. Our

purpose is to exhibit:

(a) The simpUcity of the numerical procedure. Essentially any existing non

linear structural finite element dynamics code could be employed. Here an

extended version of the the computer program FEAP developed by RL Tay

lor anddocumented in chapter 24of Zienkiewics [1978] is employed.

(b) The capabiUty of the proposed formulation to automaticaUy handle finite

strains superposed onto large overall rigid body motions. This includes

flexible bodies in free flight.

It is emphasized that no simpUfication is made in the simulations that foUow

in the sense that CorioUs and centrifugal effects as weU as the inertia effect due

to rotation are automaticaUy accounted for. The deformed shapes in aU figures

reported in this chapter are given at the same scale as the geometry of the

beam, i.e., there is no magnification of the structural deformations.

In aU simulations reported herein, the trapezoidal rule —Newmark algo

rithm with r= 0.5 and /?= 0.25 —was employed. Numerical operations were per

formed in double precision on a VAX 11/780 under the Berkeley UNIX 4.2 BSD

operating system.

Example 2.5.1. Flexible robot arm. This simulation is concerned with the

re-positioning of a flexible beam rotating horizontaUy about a vertical axis pass

ing through one end. The finite element mesh consists of 10 elements with

linear isoparametric interpolation functions for both displacement and rotation.

Two cases are considered.

2.5.1.1. Displacement driven The geometry, material properties, finite

element mesh, as weU as the time step size used in the integration are given in
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Figure 2.5.1.1a. The robot arm is first repositioned to an angle of 1.5 radians

from its initial position. This is achieved by prescribing the rotation angle

f(O"tf(0,f) as a Unear function of time, as shown in Figure 2.5.1.1a; the

sequence of motion during this repositioning stage is depicted in Figure

2.5.Lib. Once the rotation angle f(t) is fixed at 1.5 rod for all time t &2.5, the

robot armthen undergoes finite vibrations as shown in Figure 2.5.1.1c.

2.5.1.2. Fbrce driven. The robot arm is now driven by a prescribed torque

T(t) appUed at the axis of rotation es, as shown in Figure 2.5.1.2a. The appUed

torque is removed at time t =2.5; the robot arm then undergoes a torque-free

motion. The simulation is terminated after completion of one revolution, as

shown in Figures 2.5.L26 and 2.5.1.2c.

Example 2.5.2. Flying flexible rod. A flexible rod with free ends, initially

placed in an inclined position, is subject to a force and a torque appUed simul

taneously at one end. see Figure 2.5.2.1a. The appUed force and torque are

removed at the same time t =2.5, so that the subsequent free fiight of the rod

exhibits a periodic tumbling pattern. It should be noted here that the boundary

conditions (3.19) becomes m(0,0 =m(L,t) =n(0.*) =n(L,t) . 0during the free
flight stage. Two cases are considered.

2.5.2.1. Flexible beam in free flight The motion of the rod during appUca-

tion ofloading is shown in Figure 2.5.2.16. The stiffness ofthe rod is low enough

exhibit finite deformations. A close-up of the first two revolutions is shown in

Figure 2.5.1.3c, while the entire sequence of motion is depicted in Figure
2.5.2. Id.

2.5.2.2. Tne "flying spaghetti." The bending stiffness EI of the rod is

lowered by a factor of 5 relative to the simulation in 2.5.2.1. This dramatic

reduction in stiffness results in the in the sequence of motions depicted in Fig
ure 2.5.2.2.
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Exam-pie 2.5.3. Sfc>in-up maneuver. The flexible robot arm considered in

Example 2.5.1.1 is now subject to a "spin-up" maneuver byprescribing the angle

rit) mtf(0, t) for teR+ as foUows

6

15

15
12

2rr
(cos^lL-l) rod 0 •£ t £ 15 sec

tfO =
(6* -45) rod t >15

(2.67)
sec

This type of motion was proposed by Kane et al [1985] to demonstrate that the

"conventional" approach based on Unear beam theory may lead to grossly inac

curate results: instabiUty of a physicaUy stable system. As a result, one need to

call upon higher order theories to account for effects such as the centrifugal

stiffening in this example, even if the deformation remains small. This example

may also be of practical interest in appUcations such as heUcopter rotor blades

or aircraft propeUers. The material properties and time history of i/(t) are

shown in Figure 2.5.3a. Deflected shapes for several values of t during the first

revolution are depicted in Figure 2.5.3b. Also shown in this figure are the time

histories of the displacements ux(L,t), u2(L,t) relative to the shadow beam.

and the section rotation a(L, t). The results in Figure 2.5.36 clearly exhibit the

centrifugal stiffening effect: after an initial deflection during the acceleration

phase, t e[0,15], the centrifugal force straightens the robot arm in the constant

angular velocity phase, t > 15. The exact solution for the steady state extension

of a pinned-free beam with length L, axial stiffness EA and mass per unit length

pA, spinning with constant angular velocity u can be easily shown to be

&i(X,t) = L tan air

ajj
-1 ; where a =w-\J £jj- (2.6B)

For this particular example « = 6rod/sec, L = 10 and pA/EA = 2-x iq"7.
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Expression (2.68) then leads to a steady state extension at the free end of

wi(£.0 = 5.14X 10"4. This result is in complete agreement with the computed

solution (see Figure 2.5.36). The small periodic vibration of the beam about the

floating frame during this steady state phase is noted.

2.6. Concluding Remarks

We have presented in this chapter a new approach to the dynamics of a

plane beam under large overall motions. The essence of this approach is the

fuUy nonlinear plane beam theory that can account for finite rotations as weU as

finite strains. The appropriate strain measures in the beam theory are invariant

under superposed isometries; such invariance is the necessary ingredient to the

success of the present approach. The motion of the beam is completely

referred to the inertial frame. We thus obtain the expression of the inertia term

in the equations of motion simply as mass times acceleration. By contrast, in

the shadow beam approach, one obtains a nonlinear and highly coupled inertia

operator; hence a special computer code must be devised to solve the resulting

system. In our approach, the inherent nonlinear character of the problem is

transferred to the stiffness part of the equations ofmotion; this results in equa

tions of motion that arise typicaUy in nonlinear structural dynamics. Conse

quently, the dynamics of flexible beams under large overall motions can be

analyzed in any existing nonlinear finite element program.
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Reference*! Initial)

Configuration

Figure 2.2.1. Basic kinematics. Floating and inertial frames.
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1 +U,'

Figure 2.3.1. Physical interpretation of the strain components
of a beam in the finite strain case.
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Figure 2.5.1.2b. Force driven flexible robot arm. Sequence of
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Figure 2.5.1.2c. Force driven flexible robot arm. Sequence of
motion after removal of applied torque —completion of one revolu
tion. Time step size h = 0.5.
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Figure 2.5.2.1b. flexible beam in free flight. Sequence of
motions during application of loading. Time step size h = 0.1, plot
after each 5 time increments.
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4=3.0 t=8.0 4=13.0

Figure 2.5.2.1c. Flexible beam in free flight. Free flight of the
beam after removal of the loading —close-up on the first 2 revolu
tions. Time step size h = 0.1, plot after each 5 time increments.

Jlgure 2.5.2. Id. Flexible beam in free flight. Free flight
entire sequence.
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CHAPTERS

THE ROLE OF NONLINEAR THEORIES IN DYNAMIC ANALYSIS

OF ROTATING STRUCTURES

3.1. Introduction

In the previous chapter, we have advocated the use of nonlinear structural

theories based essentially on the linearity and uncoupling character of the iner

tia operator when the dynamics of the structure is referred to the inertial

frame. This formulation clearly encompasses a wide class of problems ranging

from very stiff to very flexible structures. However, in the case of stiff struc

tures undergoing a rotating motion —such as in the spin-up maneuver of exam

ple 2.5.3 —where the deformation is expected to remain infinitesimal, does one

really need to employ nonlinear structural theories? We shall now attempt to

answer this question.

Recently, it has been pointed out by Kane, Ryan & Banerjee [19B5] (KRB)

that existing approaches to the dynamics of flexible bodies necessitate funda

mental modification in order to capture the centrifugal stiffening effect in fast

rotating beams. We shall examine this claim, and in fact show that

(i) Accounting for the stiffening effect in fast rotating structures requires a

higher order (geometrically nonlinear) theories, hence necessarily nonlinear in

the strain measures. A hierarchy of beam theories, from the linear to a fully

nonlinear formulation, can be systematically developed by successive approxi

mations in terms of a small perturbation parameter.

(ii) Current approaches based on linearized strain measures are not con

ceived to capture such a stiffening effect, nor to account for any other nonlinear

phenomena involving change in stiffness due to axial loading. In fact, use of a

geometrically linear beam theory in the modeling of a rapidly rotating beam
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leads to a spurious loss of bending stiffness, which is quadratic with the angular

velocity. This effect was numerically documented in Kane, Ryan & Banerjee

[1985]. Herein, this phenomenon is quantified analytically by providing the

relevant partial differential equation of motion for the transverse vibration.

(iii) The KRB approach may be viewed as a reparametrization of a higher

order beam theory of the von Karman type, along with a subsequent truncation

of nonlinear terms. Specifically, in the case of a beam, the axial displacement

field is replaced by the elongation along the line of centroids, with the net result

of rendering the stiffness matrix identical to that of a linear Timoshenko beam.

Ihis approach, however, ignores the effect of axial forces other than those com

ing from inertia effects.

(iv) A set of linear partial differential equations of motion is derived as a

consistent first order linearization of the nonlinear theory. These linear PDE's

capture correctly the action of the centrifugal force on the bending stiffness,

and in fact, for the von Karman type model, are the exact counterpart of the

KRB discrete approach. However, by contrast with the KRB approach, the Galer

kin spatial discretization of these PDE's is straightforward. In addition, explicit

expressions of the linear semi-discrete equations of motion in the present con

text are given.

(v) In cases where modeling of the above nonlinear geometric effects is

desired, the use of a fully nonlinear beam or plate theory does not involve more

computational effort than the use of a higher order nonlinear theory. In fact, by

referring the dynamics of the beam directly to the inertial frame, the inertia

operator becomes linear, hence simplifying considerably the task of integrating

the equations of motion.

We shall also show that the conclusions obtained from the one-dimensional

case of a beam essentially carry over without modification to the more general
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case of a plate (Simo &Vu-Quoc [1966a]).

8.2. Consistent higher order theories

For simplicity in the exposition, but without loss of generality, we shall con

sider the model problem a rotating beam whose motion is restricted to a plane

with the same kinematic assumption as in Section 2.2.1. The result obtained,

however, can be generalized without difficulty to the three-dimensional motion.

Higher order beam theories, including geometrically linear theory, can be sys

tematically obtained by successive approximations of the strain measures

characterizing the fully linear theory.

8.2.1. Fully nonlinear theory

Throughout this chapter, the deformation of the beam will be expressed

relative to the floating frame (0;ai,OeJ; the superposed tilde used in Chapter 2

to denote quantities relative to the floating frame will thus be removed to sim

plify the notation:

K=io +Jr2te
•

(3.1a)

«o := [Xx + urfXt,*)] «i(0 + i*g(*i. 0 «z(0 . (3.1b)

ti

te ^A'

«9

, where A:=

• <

cos a —sin a 0

sin a cos a 0

0 0 1,
(3.1c)

In this model problem, the rotation of the floating frame (a^ e%\ relative to

the inertial frame \ex, e^ is completely prescribed apriort Recall from Remark

8.1 that the expression of kinetic energy is independent of the magnitude of the

•train field. For the planar motion considered herein, the system of partial

differential equations (2.34) governing the dynamics of the fully nonlinear beam
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can be easily derived using the expression for the kinetic energy (2.13) and for

the potential energy (2.28)

J,'ifMlffd

jTjpriia _j^
Djrmrtia /

n'-Jv

V' +a' N sO (3.2)

where Ap denotes the mass per unit reference length, and Ip the mass moment

of inertia of the cross section. The inertia operator is given by

Ap [it! -ifu2 - 2#u2 -iP (Xi +u{)]
Ap [u\ +•? (Xx +ux) +2# ili - -^ *u2]

7,(5 +*)
> •= > (3.3)

with.pf***" and f\nmrtia denote the inertia force along axes at and %, and Rip9***

the inertia torque about axis ag. In (3.2), (N. Vt M) represent the axial force,

shear force, and bending moment relative to the local frame \tXt tg, tgj, respec

tively, with (Ti, Tg, k) being their respective conjugate strain measures such that

N = EA Tx
V=GATZ, and

U-EIk

f '1t 1 1+Ui
1

r8 := U
t •

0

K 1 0
i <

r «
, i

(3.4)

where A is the orthogonal matrix defined earlier in (lb). Recall that, since the

function $ is prescribed, $ and $ are known functions. We note that the above

definition of the strain measures (Ti, Tz, k) is unique in the sense that the result

ing reduced expended power of the beam is identical to the exact stress power

of the three-dimensional continuum theory. Successive approximations to the

nonlinear theory (Truesdell k Noll [1965, p. 219]) can be constructed via stan

dard power series expansion in terms of a "small" parameter e > 0. Such

approximations have been employed to obtain consistent higher order plane
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beam theories in Simo [1982]. The series expansion of the strain measures

defined in (3.4) are given up to second order by

1- 1

f
1 + ruj

» '

f

la
:>A(ea)r

# >

1

0 = e

l
ttg -o ♦f

V I

ta

0
a

(u8')8-(«B'-a)e
f

-2a Uj

0

+0(e»).(3.5)

In what follows, we denote the first order (c) approximation to the nonlinear

•train measures by (T1( Tg, *), and the second order (e2) approximation by

•ffi.Pfr*); for example, I\ = t*! and T\ =ux +[(u2')2 - (ix2' - a)2]/2. Clearly,

CY If, E) are the usual strain measures employed in the linear Timoshenko

beam theory.

912.2. linear (first order) beam theory

The equations of motion corresponding to a geometrically linear beam

theory in (2.16) are obtained simply by retaining the first order approximation

in (3.5):

jplnutta

L'flMf f(B

n'

v'

+ v

= 0 (3.6a)

where the first colunm corresponds to the inertia operator, and the second

column to the stiffness operator. In (3.6a), the internal forces (Nt V, M) are

given by the usual linear constitutive law

N a EA?t = EAui

? = GA. T2 = GA. (uz$ - a)

S = EI It = EI a

(3.6b)
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To see the effect of centrifugal force on the bending deformation of the beam,

we differentiate (3.6a)3 and make use of (3.6a)2 to obtain the equation of motion

for the transverse displacement.

tin
ApU2 + EI u2 -Apy*uz = ~2Apr"ult (3.7)

in which, for simplicity, we have made the assumption of steady state revolution

(y> = 0), negligible shear deformation (u2 = a + 0(e)), as well as negligible sec

tion rotary inertia. The destabilizing effect due to the use of linear beam theory

mentioned earlier can now be clearly identified: The term (—Ap V*2 u2) induces a

loss of stiffness, which is quadratic in the angularvelocity of revolution $. This

observation is indeed corroborated by the numerical experiments in Kane et al

[1985, Figure 8]. Note that only the transverse component along ag of the cen

trifugal force in the shear equation (3.6)2, represented by the term (—$ u2), is

transferred to the bending equation (3.6a)3. The contribution of the axial com

ponent along ax of the centrifugal force, represented by the term [-J2 (Xi +ux)],

on the other hand, exerts no influence on the bending. It should be noted here

that this term is in fact of order 1, while the term (—V* uz) is of order e. Thus,

from a physical standpoint, the loss of stiffness results precisely from this par

tial transfer of the action of centrifugal force to the bending equation. More

over, there is a value of the angular velocity of revolution that renders the

stiffness matrix singular.

3.2.3. Second order beam theory

A second order theory can be consistently derived by retaining second

order terms in the approximation to the strain measures, according to

<
' '

/

r, «1

r.
< f

uz "a
<

+

E a
<

9 l eaut

0

(3.B)



§3.2 Role of Nonlinear Theories in Dynamic Analysis 60

In addition, the second order approximation to the equations of motion (3.2) now

takes the form

jrjpttia f_
fftprtia

B' + V

(«v)'

-?tV + VzN
= 0, (3.9)

where the inertia force components are as given in (3.3), N =EA f lt f = GA, f2

and Ji =EI a , To obtain the equation governing the transverse vibration ix2, we

proceed as follows: (i) Make use of (3.9)! to express N in terms of the e^ com

ponent of the inertia force, (ii) Substitute the result into (3.9)2 and solve for f* ,

and (iii) Differentiate (3.9)3 and make use the expression for P" obtained previ

ously in (ii). Observe that the procedure is analogous to that employed in the

first order approximation. The only crucial difference here is that the axial

component of the inertia force along the axis ax is now transferred to the bend

ing equation due to the presence of the term (aN) in (3.9)2. This term

accounts for the contribution to the transverse momentum of the axial (along

Ai) forces in the beam. Again, as in the previous section, neglecting higher

order terms 0(z2) in the final equation, considering constant angular velocity of

revolution, and assuming for simplicity negligible shear deformation and negligi

ble section rotary inertia, one obtains

Apu\ +EI Uz"" +Ap r2^ u2' - u2) =-2Ap $ux (3.10)

Note that equation (3.10), resulting from the foregoing second order approxima

tion, is substantially different from its counterpart equation (3.7), which results

from the first order approximation to the nonlinear theory. Now both com

ponents of the centrifugal force are completely transferred to the bending
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equation: the term (Apty Xxuz ) in (3.10) dominates the term {Ap^uz) —the

latter is the only term present in (3.7) —and appropriately accounts for the

Stiffening effect due to centrifugal force. Conceptually, the transferring of the

action of axial load to the bending equation is analogous to the effect of axial

force in the linearized buckling analysis (e.g., beam-column equation); the only

difference being the dynamic origin of the axial loading.

8.2.4. Consistent linear partial differential equations

We shall obtain the first order partial differential equations governing the

motion of the beam by consistent linearization of (3.9). Before truncating the

terms of order t2, it is crucial to note that the term (a N ) in (3.9)2 is actually of

first order (e), and not of second order (e2). It follows from the equation for

axial vibration (3.9)i that

aN* =-a(Apr-Xx) +0(e) (3.11)

and therefore must be retained in the first order approximation to the nonlinear

equations of motion (3.9). After regrouping terms according to their nature, we

obtain the following linear PDE's

Apux -&i,*ue
ApUB + 2Apiut +

I, a I ° ,

II

-6M. (u8'-o)' +Ap(¥ul-<r*ui +1fiXla)
II l

-El a - GA, (uB - a)

Apt*Xt
-ApfXl (3.12)

where the 4 columns correspond respectively to the inertia, gyroscopic,

material and geometric stiffness, and inertia force due to revolution effects.

The Galerkin spatial discretization of the linear PDE's (3.12) is standard.

For completeness, we shall simply give, without derivation, the expressions of

the matrices resulting from applying a Galerkin finite element method. Such a
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procedure has been applied to the spatial discretization of a fully nonlinear

beam model (Simo &Vu-Quoc [1985,86]). Upon defining the following quantities,

d:= (ulf ue, a), l:=Diag[Ap, Apt /p] , (3.13a)

g:=2Ap*
0-10

10 0. *:=

0 0 0

C:=Dijag[EA%GA.tEI]% ^ := A,

d

dXx

0

0

d

dXx

0

-1

d

dXx

-^2 -^ o

0 0 n

(3.13b)

(3.13c)

and introducing the discretization,

d(*i.O S£[Ni(Xx) U] q,(0 , with 13 := 2Xa0[l. 1. 1] (3.14)

the resulting linear semi-discrete equations of motion can be written as

Hq+ Dq + [S + G] q= P (3.15a)

where H designates the mass matrix. D the gyroscopic matrix, S the material

stiffness matrix, G the dynamic geometric stiffness matrix, and P the applied

force; q denotes the vector of all generalized coordinates. It is easy to verify

that the following expressions for the (3x3) submatrices coupling the general

ized coordinates q/ to q/ hold

H//= /AK*i)A>(*i)I«i.

Ifcr= f Ni(Xx)NJ{Xx)gaXx.

Bjj = / {* [tf/(*i) la]f C* [Nj(Xx) 13] dXx.
io.L]

(3.15b)

(3.15c)

(3.15d)
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Gat = / Nj(Xx) Nj(Xx) Bx dXx (3.15e)
till

Observe the non-symmetry of the matrices in (3.15), except for the mass matrix

H and the material stiffness matrix SI In addition, we note that the geometric

stiffness G is of purely dynamic origin.

In what follows, we shall interpret the KRB approach in the context of a

Similar setting.

8.3. The Kane-Ryan-Banerjee approach

We shall re-examine the discrete approach proposed in Kane, Ryan & Baner-

jee [1985] and, by deriving the appropriate PDE, showthat this approach essen

tially amounts to a re-parametrization of a nonlinear structural model of the von

Karman type. These authors consider a potential energy function

n := / [EA(s ')2 +GA,(uz - a)2 +EI(a)2] dXx (3.16a)

where s denotes the partial derivative of the elongation of the center line with

respect to XXt and is given by

*(*i. t) =fy/J{Xx. t) dXx -Xx. /(*!. t) := (1 +uxf +(u2')2 ,
o

and s'{Xx.t) =V(l +u/)2 +(u2')2 - 1 (3.16b)

The essential feature that distinguishes expression (3.16a) from its counterpart

in the linearized theory is the use of s instead of Tx = ux in the contribution of

the axial strain to the potential energy II of the system. By the change of vari

able, a = o%Xx) := Xx + ux{Xx% t), the elongation s(Xx, t) given by (3.16b) can be

recast into the form



§3.3 Role of Nonlinear Theories in Dynamic Analysis 64

0u2(3-*(*). 0
1 +

Off

^lJL
8

drj-JTi. (3.17)

where we have assumed the boundary condition ux(0, t) m0. Relation (3.17) is

the one essentially used in Kane et al [1985] with an additional assumption that

W2(a ~l(a),t) muz(ott), Le., these authors consider 7 as an identity map. Such

an assumption clearly contradicts the derivation of (3.17). On the other hand,

the kinetic energy of the system is given as in (2.13)

♦fc//#[«+*r,a'i Ola)

We recall that the same expression for K holds in the nonlinear theory. The

Lagrangian of the system is given by L := K - IL Note that \ux% u2, a) are the

independent variables in L. However, in place of ux, Kane et al choose to select

the elongation s(XXl t) of the line of centroids as independent variable. The

basic variables in the KRB approach are thus (s, uz, a), ux being implicitly

defined in terms of (s, u2) using the nonlinear relation s = *V7 —1, where / is

in turn defined in terms of (uXt Uz) by (3.16b). An explicit expression of the

resulting system of PDE's is difficult to obtain because of the complexity of the

inertia operator. These authors proceed numerically and derive linear semi-

discrete system of equations, llq+ Dq+ Kq = P by first introducing the discreti

zation

•C*i. 0 s £*ii(Xi)q u(0
"8(*i. 0 - jE*e/(*i)g «r(0". (3.1°)
«(*i.O =̂ a/Wg ar(0
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where Nu(Xi) are prescribed independent basis functions, such as the eigen-

functions of a cantilever beam, and then linearizing the resulting nonlinear iner

tia operator. Recall that in discretizing (3.17), the additional assumption that

bad? "l(ff). 0
da

•= £ Nzi (?)<l2i(t) is made.

To show that the KRB approach outlined above amounts to employing a

geometrically nonlinear theory, we obtain below the system of governing PDE's

In the variables (ult Ug, a). Making use of Hamilton's principle along with the

expression (3.16b) for s in terms of (ult u2) we obtain, after standard manipu

lation, the system

Rtptrtia

EAKi-j'ha+ui)]'
GA. (u2' - a)' - EA [(1 - /~B) u2']'

EI a -GA, (u2 - a)

= 0 (3.20)

where the inertia operator is defined in (3.3). It should be noted that equations

(3.20) are nxmLinear in the stiffness operator, and closely related to the von Kar-

man second order modeL Conceptually, by using relation (3.16b), one could

recast this system of equations in terms (s, u2. a). To see this, we introduce the

perturbation parameter e> 0. Assuming that \ult uz% a} are of order e, by

expanding s(Xlt t) in powers of e, we find

•/ := [(1 +eu/)* +(cUg')*]*"- l =eu/ +£(u2V +G^3) (3.21)

Thus s agrees with the consistent second order strain i1 only if shear deforma

tion is of second order, i.e., ue =o+ 0(c). In addition, we have the following

expansions

(1 - /,"*) (1 +e«,') =eu,' +̂ W)* +0(e*) (3.22a)
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EA [(1 - /7") «"bY =&EA u" u2 +0(ea) (3.22b)

The term (3.22b) is precisely the one responsible for transfer of the axial force

acting on the beam to the transverse equilibrium.

Since the direct contribution of the axial component along at of the centri

fugal force to the transverse equilibrium given by (EA ux a) is absent from the

discrete equations in the KRB approach —here (s, u2, a) are chosen as indepen

dent variables —the question arises as to how centrifugal stiffening is accounted

for in this formulation. This is accomplished through the inertia operator by

expressing Uj and ux in terms of (s, u2) and their derivatives with the aid of the

nonlinear relation (3.17). Upon introducing the discretization (3.19), the result

ing discrete nonlinear inertia operator is then linearized to obtain the linear

Semi-discrete equations of motion.

Remarkably enough, after some manipulation similar to that described in

Section 2.3, we obtain from equations (3.20) exactly the same PDE's for the

transverse vibration (3.10). This result shows that the use of the nonlinear von

Karman type model can also appropriately account for the action of the centri

fugal force on the transverse vibration as manifest in the expression for the first

order dynamic geometric stiffness in (3.10). From the expansion (3.22b) of the

term (EA [(1 —/ •) u2 ] ) in (3.20)2, and from the equation for axial vibration

(3.20) 1# we note that this term is in fact of first order (e), similar to (3.11), i.e..

EA [(1 - /J"*) t u8Y =-* A, jr Xx u2 +0(e2) . (3.23)

Note that instead of a in the consistent approximation from fully nonlinear

theory, we obtain u2 in this von Karman type modeL This is valid only when

•hear deformation is of second order. Le.. tig = a+ 0(e)* We then arrive at the
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following linear PDE's,

Apvt
Apuz ' +

0

II
-fi4ut -iipCv^Uj+fug)

-04, (uE' -a) +Ap (fttj —f* u8 +f5 JTt v8')
-fiT a - G4, (u8 - a)

67

(3.24)

as a first order consistent linearization of (3.20). This system is entirely

equivalent to the KRB discrete approach. The only difference, as noted above, is

that the dynamic geometric stiffness operator I^ in (3.13c) must now be

redefined as

Bt:=Ap (3.25)

and hence a slight change in the dynamic geometric stiffness matrix G in

(3.15e). The other matrices —mass, gyroscopic, material stiffness —remain the

same as obtained in Section 2.4. One can easily verify the correspondence of

the terms in the discrete equations of motion resulting from the linear PDE's

(3.24) to those given in Kane et al [1985]. In addition, when there are no

dynamic effects, the linear model governed by the PDE's (3.24) reduces exactly

to the Timoshenko beam theory. It should be pointed out, however, that the

choice of s and (u2 —a) as axial and shear strain measures does not agree

with the consistent second order strain measures T\ and F2 unless

u2 = a + 0(e) (negligible shear deformation).



|3.3 Role of Nonlinear Theories in Dynamic Analysis 68

8.4. Extension to plate formulation

As a direct application of the foregoing discussion, we shall extend the

results to the case of a plate undergoing three-dimensional rotating motion.

Again, for clarity, we assume that the axis of revolution of the plate passes

through an inertially fixed material point of the plate. The dynamics of this

revolution is completely prescribed a priori, the orientation of the axis of revo

lution, however, need not be fixed with respect to the inertial frame.

8.4.1. Model problem and notation

Consider the material frame (0\ Kj, Sfe. Eq\ with base point OeR3 and an

erthonormal basis (^J. Let the inertial frame be \0\ ei, e2, eg) such that

CfcH^b, for k =1,2,3. Coordinates with respect to |Efc) are denoted by

(Xit X2, X3): coordinates with respect to {e*} are denoted by (xh x2, xa). The

domain of the undeformed plate is defined to be B := 0x[£>, |-] with O€ B and

men that a point X e B has coordinates (Xlt X2) € Qc ]R8 and X3 e [%-, f-]. Con-

aider now a floating frame f0;ai. e^t agj, attached to the deformed plate, and

whose dynamics with respect to the inertial (material) frame f$j is completely

prescribed by an orthogonal matrix Q(0 such that aj(f) = Q(0 5- The map

'-•0(0 in fact describes the rigidbody rotation of the (undeformed) plate about

the origin 0. The deformation of the plate relative to the floating frame [ajj is

then given by

Z=Jb+Jfato (3.26a)

•b := E [X7 +uJXlt X2t f)l a, +u3(Xlt X2,t)e* 4 (3.26b)

te(*i. X2. 0 = A(A'l. X2. t) ag(0 , (3.26c)
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where (ult u2 , u3) are the displacement components of a point X e B; tg desig

nates the normal to the deformed plate, and A an orthogonal transformation.

8.4.2. Second order «*]"»H^nff of motion

Consistent second order strain measures. It can be shown that, up to

second order, the two-dimensional counterpart of the one-dimensional strain

measures in (3.8) is given by

?7fi =UM] +Fu3.7UW ~|-(ws.r " Oy) (uw - aa) . (3.27a)

ftis =fas* - *b) -^0,. (3.27b)

** = alrfi] • (3.27c)

tor 7, p = 1,2, where we have used the notation u^b] := jiuy^ +uB,7), and

Uyf := Jp'. Note that the strain measures in (3.27a) reduce exactly to the in-

plane strain measures of the von Karman plate model,

1*=ubfi\ +Fu3.7 u3^ . (3.28)

with the assumption7 of negligible shear deformation, uStB = <*a + 0(e). This is

entirely analogous to the one-dimensional case of the beam considered in previ

ous sections. Further, we recall that the first order strain measures are

1* =utr.«- ?W =u3j " «* and ^ • 8^.

Constitutive laws. The elastic material internal forces N7p, Vy% and

moments Hyp are related to the strain measures (3.27) by a functional relation

analogous to that of classical small deformation plate theory. That is, one

assumes

Lin what follows, subscripts in greek letters take values in (1,2). while subscripts in roman
lei " ' - - - -jrs take values in {1,2,3}.
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(3.29a)

(3.29b)

(3.29c)

Here, E represents the Young's modulus, v the Poisson's ratio, G the shear

modulus, and A, may be taken to be |-d. The same relationship holds for the

first order internal forces Nyp, VT and internal moments H7B in terms of the

first order strainmeasures (P7p, T^r Kyg).

Kgnations of motion. One can show that following system of partial

differential equations, analogous to (3.9), furnishes the consistent second order

approximation to the fully nonlinear equations of motion

jrtotrtia

'IVMICU

(a, V7).b
+j -(OyNfrlg J=0 (3.30)

where fbmtla := /**»*« a* denotes the inertia operator for the translational part

of the equations of motion, and •pngrtia := 7j"«**» a* the inertia operator for the

rotational part. A similar stiffness operator can be found in Simo [1982 , p. 112].

To evaluate &"**** and T*****, one proceed as follows. Let u:=Ui a*, thus

Tg := Xy a^ + u, and define the angular velocity of the floating frame {a*} relative

to the inertial frame as

:= v\ 8% , such that Q = Q w, (3.31a)

where wis a skew-symmetric tensor with components relative to {84) given by

W= wij at&a; , and[tx;^] =
0 -tua Mi2

tUg 0 -tUj

-Wg t«i 0

(3.31b)
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tet L be the linear momentum per unit of mid-surface area. Using the

kinematic assumption (3.26) it follows that

*-:= / [l0+^W^3 = ^[u +wXTfl] (3.32a)

where Ap now denotes the plate mass per unit of undeformed area, and a super

posed "V" represents time differentiation keeping fixed the floating frame fat).

The inertia force J*1"*** is then given by

f*1"*" = L • ^[u+wxxo +2wxu +wx(wxx0)]. (3.32b)

Similarly, the couple ^*miia is obtained from the angular momentum per unit of

mid-surface H:= f (x - x, ) x i dX9 as T?*"*8 =H. The expression for T*""*"
(4(i

is conveniently expressed in terms of the vector a := o\y a^ that defines the

infinitesimal rotation of the normal tg of the plate. Note that a3 m 0, i.e., there is

no rotational degree of freedom along the axis ag as in the classical Mindlin-

Reissner plate theory. In addition, let Jp denote the inertia dyadic of a

transverse (undeformed) fiber of the plate: r := Xq ag, where Xs € [-—-, j]. By

definition, we have

h:= / CM2 U- r®r] dX3 =̂ -[13 - aaOag] . (3.33b)

»

It can be shown that the rate of angular momentum H takes the form

T*"** = H- [Jp(a+wx J +w) +(S +w)xJp(S +w)]. (3.33a)

Hie Becond order equations of motion for the plate are now completely defined.
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3.4.3. Consistent linear partial differential equations

Next, we derive the counterpart of equation (3.10) that governs, to first

order approximation, the transverse vibration of the plate. This approximation

is systematically obtained exactly as in Section 2.3. We first note that the term

(ay J?eye) in the shearequations (3.30)2 is of first order as a result of the centri

fugal terms in the equations for in-plane forces (3.30)i. We recall that this term

allows an appropriate account for the action of the centrifugal force on the

bending of the plate. For steady state revolution and negligible shear, the

transverse vibration of the plate is governed, up to first order, by the linear PDE

Ap ug + D A8 u3 - [X7 w7 wB - ImfXp] u^

- Ap (ta? +tuf ) ix3 = -t«7 (*> •ay) w9 - 2(tUi u2 - w2ilj) , (3.34a)

D'-=wrw <334b>

with A denoting the Laplacian operator. A complete analogy with equation (3.10)

should be observed: The term [Ap (wf +w$) u3] gives rise to an unphysical loss

of stiffness, quadratic with the angular velocity, when linear plate theory is used;

a complete account for the action of the centrifugal force is realized up to the

first order with the additional term [X7 w7wB - Jwfjfy] uZB when second order

plate theory is employed. These two terms form the dynamic geometric

stiffness operator for the fast rotating plate.

The counterpart of equation (3.12) can be obtained in a straightforward

manner. The resulting equation is, however, lengthy and will not be given here.

The second order theory governed by (3.27),(3.29) and (3.30), with f*"**" and

T*1"*** given by (3.32) and (3.33) respectively, can be treated numerically by

standard finite element procedures. JVom a computational standpoint the main

issue concerns development of the appropriate spatial discretization.
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3.5. Concluding remarks

This chapter demonstrates the limited range ofapplication, and even inade

quacy, of linear structural theories to model certain physically relevant situa

tions. Our discussion shows that even for extremely stiff beams for whichlinear

theories are expected to be valid, a sufficiently high angular velocity of revolu

tion will predict a physically inadmissible destabilization effect. Fully nonlinear

models, on the other hand, are able to account for situations more general than

that discussed herein. Efficient computational procedures based on the use of

such theories have been developed in Chapter 2.

Conceptually, the approach proposed in Chapter 2 readily carries over to

the case of a flexible beam subject to three-dimensional motions. This extension

relies on a proper treatment of the finite rotation field, which is in general non-

commutative. Chapter 4 will address the formulation and computational

aspects of the fully nonlinear three-dimensional rod model without inertia

effects. The dynamic treatment of flexible rods undergoing three-dimensional

large overall motions of the type presented in this chapter will be postponed

until chapter 5.
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CHAPTER 4

ALGORITHMIC TREATMENT OF A 3-D FINITE-STRAIN ROD MODEL

4.1. Introduction

In this chapter, we shall be concerned with the variational formulation and

numerical implementation in the context of the finite element method of the

three-dimensional finite-strain rod model proposed by Simo [1985]. Only static

response of the rod will be considered here; the treatment of dynamic response

is deferred until the next chapter. We recall that this model is essentially a re-

parametrization of an extension to the classical Kirchhoff-Love model, developed

by Antman [1974,75] in a different context, which includes finite extension and

shearing of the rod. These formulations reduce to the classical Kirchhoff-Love

model for vanishing shearing and small axial strains. Other formulations of

three-dimensional finite-strain rod restricted primarily to static analysis may be

found in Reissner [1973,81] and Parker [1979]. The parametrization of the

deformed cross section employed here is based on the use of quaternion param

eters to describe orthogonal transformations in 1R8. From a computational

standpoint, an implementation based on the use of quaternion parameters

proves to be the optimal choice, avoiding the singularity of Euler angles and

minimizing storage requirements (Simo & Vu-Quoc [1985b]). In the context of

aircraft dynamics, issues concerning alternative parametrizations have been

addressed in de Veubeke [1976] and Kane et al [1983].

In the model considered herein, as in the classical Kirchoff-Love model,

rotations have the traditional meaning of orthogonal transformations in

Euclidean space. We recall that orthogonal transformations constitute a non-

commutatiue (lie) group referred to as the special orthogonal group S0(3). This

approach is at variance with Argyris and co-workers [1979,81,82] in which the
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standard notion of rotations is replaced by semi-tangential rotations. Thus, the

deformation map for this model takes values in the (nonlinear) differentiable

manifoldR3xS0(3), instead of a linear space R3as for the plane formulation.

The finite element procedure, discussed in Section 3.4, is based on a varia

tional formulation of the partial differential equations of motion summarized in

Section 3.2. Consistent linearization (Marsden & Hughes [1983]) is employed to

obtain the linearized weak form of momentum balance. The resulting global

tangent operator is characterized by possessing a non-symmetric geometric

stiffness. This lack of symmetry arises from the non-commutativity of the spe

cial rotation group S0(3). Argyris and co-workers [1979,82] pointed out that this

lack of symmetry inevitably arises at the element (local) level, although it is

stated that symmetry is recovered upon assembly at the global level. Such a

result is attributed by these authors to a deficiency in the classical definitions of

moment and rotation, and it motivated to a large extent their adoption of a

numerical formulation based on the concept of semi-tangential rotation intro

duced by Ziegler [1977]. On the other hand, in the context of a classical formu

lation of rotations, it is shown in Section 3.5 that

(i) The global geometric stiffness arising for the (consistently) linearized weak

form is nan symmetric, even for conservative loading, at a nan-equUiJbrium

configuration,

(ii) At an equilibrium configuration the linearized tangent operator is always

symmetric provided the loading is conservative. A condition for this then

follows, with a structure similar to that discussed by Schweizerhof & Ramm

[1984] and Buffer [1984] for pressure loading,

(iii) Upon discretization, from (ii) it follows that both the global and the local

(element) geometric stiffness matrices are symmetric at an equUiJbrium

configuration.
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Emphasis is placed throughout the formulation on a geometric approach

that enables one to formulate efficient algorithms. A configuration of the rod is

described by a vector field giving the position of the current centroidal line and

an orthogonal "moving" frame representing the orientation of the cross section.

The configuration update procedure for the rotation field becomes the algo

rithmic counterpart of the exponential map from so (3), the algebra of skew-

symmetric tensors, to S0(3). This procedure relies crucially on the closed-form

formula for the exponential of a skew-symmetric matrix, often ascribed to

Rodrigues (Goldstein [1980], p. 165). In addition, it is possible to obtain a simple

closed-form expression for the derivative of the exponential map, which plays a

crucial role in the evaluation of the curvatures of the rod. A detailed discussion

of the finite element formulation and the configuration update procedure is

presented in Section 4.6.

The effectiveness and generality of formulation discussed in this chapter is

illustrated in section 4.7 through a set of numerical simulations including plane

and three dimensional problems, and both conservative and non-conservative

loading. Results are compared with those in the existing literature, as in Argyris

[1981.82], and Bathe [1979].

4.2. A finite-strain rod modeL Summary and notation

Kinematic description. (See Figure 4.2.1) Consider a (fixed) material coor

dinate frame \0;Ei,Kz,EqI with base point OeR3 and a set of orthonormal basis

vectors (B1#^, ^{. Coordinates along those vectors are denoted respectively by

(Xi.X2,S). A beam of length L and cross section QcR2 occupies in its unde

formed configuration the domain B :- Dx[0, X] c R3 such that a point X € B has

coordinates (XltX2, S) with (X\tX2) e 0 and S e [0.X] parametrizes the length

of the beam. For simplicity, we assume that the beam is prismatic and initially
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straight such that point 0 is the centroid of the cross section at S = 0; (Bj, %)

coincide with the principal axes of inertia of the cross section, and E3 coincides

with the undeformed centroidal line. Let {0;ei,e2,ea) denote the fixed spatial

frame such that efc •£* , for A:=1,2,3. Consider the deformation map 0:i?-»R3

which maps a point XgB with coordinates (X\tX2tS) into a point

x = $(X) e R3. Let Xq denote a material point on the undeformed centroidal

line with coordinates (0,0, S) and x0 its image by 0.

Let [tj(5,0{j/=i.2.3j represent the orthonormal basis vector of a moving

frame attached to a typical cross section with t G ]R+ being a time parameter.

The origin of the moving frame is fixed at the centroid x0 of the cross-section.

Ine basis vector tg remains normal to the section at all times. Further, initially

at t = 0, let ti(S,0) m Si for I = 1,2,3. The basic kinematic assumption is based

on the following relation for the position vector of x, denoted by x,

X = X, +A>^ (4.1a)

with Xo denotes the position vector of point x0. Let us introduce the map

«)o«[0.£]"*R3 and the orthogonal transformation map A:lR3-»R3t with the follow

ing definition. A material frame \Xq;Blt82,B3) is mapped into the frame

f*o ;ti, te, tej such that

x, := +o(S.t) = ^(S,*)*. (4.1b)

t£Stt) = A(S.f)R; = AtfO?.*)*. (7=1.2.3). (4.1c)

where \j are components of A viewed as a two-point tensor

A(5.0 = Atf(5.f)ei0K/. (4.1d)

t &{S,t) can be regarded as a linear map from the tangent space 7V Rs, with basis vectors
flrf, to the tangent space Ts R3, with basis vectors |tj}. Recall that both of these tangent

0

spaces are isomorphic to R9, i.e., they are "copies" of Rs.
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Accordingly, the set C of all possible configurations of the rod is defined by

C:= {#=(f>0.A) | #0:[0.L]-R3. A:[O,Z]-50(3) J (4.1e)

Thus the deformation map $ takes values in the nonlinear differentiable mani

fold R3x50(3), where 50(3) is the special orthogonal (Lie) group. Before sum

marizing the rod model formulated by Simo [1985], we shall introduce some

notation concerning the manifold 50(3) that will be extensively used later, and

recall the relevant properties of exponential map and parallel transport in

S0(3). Detailed treatment of this subject may be found in a number of standard

textbooks such as Misner, Thorne & wheeler [1973], Spivak [1979], Bishop &

Goldberg [1980], or Karger & Novak [1985].

Notation for S0(3). Following standard usage, the Lie group of proper

orthogonal transformations is defined by

SO(3) := ( A:IR3-»IR3 | Alinear. ArA= 13 , and detA= 1 ( (4.2)

Physically, each orthogonal transformation A e 50(3) defines a finite rotation

about the eigenvector 0 associated with the only real eigenvalue 1 : At? = 4.$

The magnitude of the rotation angle is J*||. Euler angles or quaternion parame

ters can be used as coordinate charts covering 50(3).tt

Let so (3):= {4:R3-»R3 | £ linear. &+iT = Oj be the set of all skew-

symmetric tensors with either a single eigenvalue equal to zero or all three

eigenvalues each equal to zero (Chadwick [1976]). Eliminating the trivial case

where all three eigenvalues are zero, then physically, any i eso (3) represents

an infinitesimal rotation about the eigenvector tf e 1R3 associated with the only

% A has only one eigenvalue, which is equal to 1, if we eliminate the trivial case where A is
the identity, i.e., A « I3.
ft Due to the singularity associated with Euler angles, one needs two coordinate chart,
defined by two different sets of Euler angles, to cover 50(3).
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zero eigenvalue such that 4 £ =0. In coordinates, relative to a basis {et} in R3,
• V

we have tf = ify e< ®e;- and * = ty e< such that

ft* ]=
0 -tfa tfg

1*3 0 -tf3

H>2 *i 0
. hM =

*8

(4.3)

In fact, (4.3) defines the isomorphism between so (3) and R3. Further, in relation

with thecross product, we recall that4 h =4 x h, for any h e IR3. We shall often

use the notation 4 • [tf x] where tf e R3 is called the axial vector (Chadwick

[1976, p. 29]) of 4 e so (3).

Exponential map. Infinitesimal rotations are linearized finite rotations

about the identity. Mathematically, one says the so (3) is the tangent space of

50(3) at the identity 13 G50(3), andemploys the notation ^ 50(3) mso(3).f

Given any Ae 50(3), and any be so (3) one says that 4 Ais an infinitesimal

rotation superposed onto a finite rotation. The set of all superposed infinitesimal

rotations

7A50(3):={*A I 4eso(3)j. (4.4)

is referred to as the tangent space to 50(3) at A. Consider next the straight line

mjvAe 7a50(3), for e > 0. This line is mapped by the exponential map onto

the curve e -♦ A« e 50(3) according to

A, =«*p[t*]A-E[fjj-J»]A
**o

=[l3 +ei+£*+g-43+...]A (4.5a)

tv TJie Lfo group of sk^w-symmetric tensors so(3), equipped with the Lie bracket
["*• ♦]:= +t - f>*. for *, f e so(3), forms the lie algebra of the lie group of orthogonal
transformations S0(3).



§4.2 Treatment of a 3-D Finite-Strain Rod Model 80

Thus the exponential map, exp :so (3) -» 50(3), maps straight lines in so (3) onto

one-parameter subgroups of 50(3). It can be shown that these one parameter

subgroups are geodesic curves in 50(3) relative to an appropriate connection.

We saythat A is left-translated to A« by exp[e4], with the left-translation being

defined in (4.5a). On the other hand, the right-tranlation in 50(3) is defined by
v

Ac = Aexp[c8], with B = A7*. We finally recall the following explicit formula to

compute the exponential of a skew-symmetric tensor in so (3) (e.g., Argyris

[1982])

exp[i] =ls+Si^L* +i.sigM^.i8 (4.5b)

which, in vector form, is often credited to Rodrigues (Goldstein [1980], p. 165).

Another formula for the exponential map often found useful in the derivation is

given in Argyris [1982]

expt*] =l3+TTppf* +*2] (4-5o)
where 6 is defined as follows

* := tan(||*fl/2)|!jp (4.5d)

^ and * are sometimes referred to as rotation vectorf and pseudo rotation vec

tor, respectively. An alternative representation of an orthogonal transformation

A € 50(3) can be found in Chadwick [1976. p. 32]. A geometric interpretation of

the exponential map is given in Figure 4.2.2.

Parallel transport Consider A(1). A(2) e 50(3). Then an element

£(1)^(1) g 7^(1)50(3) is parallelly transported along the geodesic connecting A^

t Note that the word vector is used here to denote an object with a direction and a magni
tude associated with it, and does not carry the meaning of an element of a linear (or vector)
space.
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and A(2) to an element 4(2> A(2) e TA(qS0(3) if and only if

4<2> = A<2> AW *« A*1* A<2>r (4.6)

Note that since in component form we have A=Ai/ei®Rj and 4 =ifyei®e;,

8:= A7*4A belongs to the tangent space 7*j 50(3) =so (3) and has its com

ponents with respect to the material basis vector JE^

8 = (AutiQei) (luetQeJ (AjjejQEj)

= Atf5tf Aj/Efc®E& =: 9//3®5j (4.7)

Also from the relation tj = AE^, it can be seen that the components of 4 relative
v

to the basis tj®tj are actually identical to 0//. This result follows easily from the

= A0Ar and the identity Ate®5j)Ar - (AEi)®(AKj) = tj®tj. Thus,

4 = i^e^e, = e7/ti®tj (4.8)

To further elaborate, let B™ A™ e 7^)50(3) and B™ A<2> € 7^)50(3).

Relative to the moving bases (t/^j and {t£2)j one has the coordinate representa

tions 4<» = B}p t^fctj1* and 4<2> =QS] tf2)<8tj2\ According to (4.6). 4<D A™ is

paraUelly transported to 4(2> A(2) if and only if 4<2> = A<2> A™T 4^ A™ A™T. In

terms of coordinates relative to the moving frames {t^j and $t/z*j, since

tf2) = A& A™T til\ it follows that 0j2> m0j}>. In conclusion. 4 e so(3) is parai-
v

lelly transported by holding fixed its coordinates 0// relative to the moving

frame {tjj.

Finally, we note that the same conclusion applies to the axial vector. Since
V V m V

4 = &iei and B = 0/ q are respectively the axial vectors of * and of B := A7* A

and since A(a x b) = Aa x Ab. for all a, b e Rs. we obtain

Oh = 0 x h = Ar4Ah = (A7*) x h (4.9)
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Thus the axial vector of A74a is Artf, i.e., 0 = Artf or tf = A0. It follows that

the components of 0 with respect to the moving frame [tjj are identical to those

of 0 with respect to the material basis {${:

* = tfiei = 0/t!. (4.10)

Partial derivatives of A. The alternative expressions in the spatial and

material descriptions, of the derivatives of the orthogonal transformation

(5,0"*A(5,f) are summarized Box 4.1.

BOX4.1. Deriuatvues of A(5. t)

Spatial Material

**&&-= l(S.t)A(S.t) aA(5,f) =A(5t0^(5t0

["<?] =
0 ~6>3 «2

<Dg 0 -Wi

-«2 Wl 0
1 <

[Qij] =

0 "Rs 02

03 0 -Qi

»:= Wj ei + u2 eg + £?a eg

= Oi tx + Q2 te + Oa tg Q.^n^j + Oa^ + ngEg

aAffi')a*(*OA(g.O aA(5,f) =A(5t0^(5>0

w:= t^i ej + tw2 e£ + tw3 eg

= l^i ti + FKg tg + FKg tg W:= WiKi-r Wz^-r WqEq

Internal force and moment Denoting by P:=T/®E[ the non-symmetric

(first) Piola-Ku-chhoff stress tensor, the spatial internal force, n = n* e*, and the

spatial internal moment, m = m* e*, acting on the cross section 0 c IR2 in its

current configuration, are defined as

a := /T3dQ. m := f [x-Xo]xT3dO
"n a

(4.11)
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The material internal force, N = Nj $ and moment, H = Mj$, are obtained by

transforming n and m to the reference configuration (see previous section on

parallel transport)

n = AN, m = AM. (4.12)

Note that, by virtue of (4.10), the components of n and m in the moving

frame {tjj are identically the same as the components in the basis [3j of N and

M, respectively; Le., n = Nj tj and m = Mj tj. Similarly, the components of o in

the moving frame equal those of Q in the material frame, as shown in Box 4.1.

Conjugate strain measures. Appropriate strain measures conjugate to the

corresponding stress resultant and stress couple are obtained through the

stress power equivalence

v v./P:FdCM5= f [n>y +m>o]dS = f [N-f +M«Q]ef5 (4.
B [6.L] [£l]

13)

where F is the deformation gradient, and a superposed "dot" denotes time

v fl
differentiation (Simo [1985]). Here, (• ) := rr{.)-wx(.) denotes the co

ot

rotated rate; that is, the rate measured by an observer attached to the moving

frame. The expressions of the spatial and material conjugate strains are sum

marized in Box 4.2 below.

BOX 4.2. Strain measures

spatial

a»o(5,Q
7 es *

material

r-.jj^L.^

Q = Arei>

Equations of motion. The spatial form of the local balance laws is given by

an

3S
+ fi = A,ff0. (4.14a)
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dm 00o » • (4.14b)

where -4P denotes the mass per unit reference length and Ip the mass inertia

tensor of a typical cross section. In this chapter, we shall ignore the inertia

effects and focus on obtaining the solution for the left hand side of (4.14a) and

(4.14b).

Constitutive laws, the constitutive equations expressed in the spatial

descriptions take the form

by do

Alternatively, in the material description one has the expressions

N _ a*(5,r,Q) . v _ a*(5,r,Q)
N" ar "* H" ao •

(4.15)

(4.16)

The functions V and ^ are subjected to the invariance requirements under

superposed isometries (Naghdi [1972], Antman [1972]). Finally, one defines the

material elasticity tensor according to the expression

a* a*

C(5.r.Q)
ar ar ar ao

a* a*

ar ao an ao

(4.17)

The spatial form of the elasticity tensor can be also defined. In the development

that follows, C is often assumed constant and diagonal; hence given by

C = Diag [G4lt G42, EA.EIlt EI2, GJ] , (4.18a)

and the material internal force N and moment M are chosen to be linear with

respect to the strain measures

N
= C

r

Q
(4.18b)
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Here, GA\ and GA2 denote the shear stiffness along tx and tg, EA is the axial

stiffness, EI\ and EI2 are the principal bending stiffnesses relative to ti and t^

and CJ is the torsional stiffness of the rod.

This completes our summary of the rod model. The numerical treatment

developed in the next section hinges on the the variational form of the equations

summarized above, and considered in Section 3.4.

4.3. Admissible variations, linearization of strain measures

A distinct characteristic of the model problem summarized above is that

the deformation map belonging to the configuration space C defined in (4.1e)

takes values in the nonlinear differentiable manifold R3x50(3) and not in a

linear space. In this section we first consider the appropriate definition of

admissible variations which play an essential role in the variational formulation

of the governing equations. The consistent linearization of the strain measures

about an arbitrary configuration summarized in Box 4.2 is considered next.

These results are essential for the linearization of the variational equations dis

cussed later in Section 4.4.

4.3.1. Admissible variations

Consider an arbitrary configuration of the rod specified by the position of

its line of centroids and the orientation of the moving frame ftijj/=i,2(3j, that is,

*(5) . (*0(5).A(5))eC (4.19)

We construct the perturbed configuration relative to 0(5), denoted by

fc(5) • (0o«.Ac), as follows. Let n0(S) be a vector field interpreted, for e>0, as

a superposed infinitesimal displacement onto the line of centroids defined by

00 (5). In addition, let ^(5)eso(3) be a skew —symmetric tensor field
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interpreted, for e > 0, as a superposed infinitesimal rotation onto the moving

frame defined by A(5), with an axial vector e^(5). In components we have

i?o (5) =Voiei. $(S) =^(5)* ®e, (4.20)

The curve of perturbed configuration e-»0c(5) • (0oe(5),Ae(5)) €0 is then

obtained by setting

*oc(S) = *0(5) + tn0(S). Ae(5) =exp[e^(5)]A(5) (4.21)

Recall that finite rotations are defined by orthogonal transformations (elements

of 50(3)), whereas infinitesimal rotations are obtained through skew-symmetric

transformations (elements of so (3) m Tt 50(3)). A finite rotation of amplitude

M about the axis of vector if is represented by an orthogonal transformation

obtained via exponentiation of y. Thus, (4.21)2 is constructed so that A« remains

orthogonal and thus defines a possible orientation of the moving frame. Hence,

by construction, y^eC, for all egR

For simplicity, in what follows attention is focused on the boundary value

problem in which displacements and rotations are the prescribed boundary

data. Accordingly, the set of kinematically admissible variations about the

configuration $ • ($0, A) is the tangent space to the configuration space C at

the "base point" £ e C defined by

T+C := {i?(5)-(77o(5).f(5)A(5))GR8x7A50(3) | iy0 ^^ =*|5e|(Uj - 0j

(4.22)

A pair t/(5) • (ij0 (5), ^(5))eR3xR3 is referred to as an admissible variation.
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4.3.2. linearization of strain measures

We now consider the linearization of the strain measures summarized in

Box 4.2. The basic set-up is as above: Given a configuration 0 • (#0. A)eC\ we

consider an admissible variation 17 = (n0, ^) and the corresponding perturbed

configuration $e£0 defined in (4.21). First, note that by taking the directional

derivative one has

D+o mVo := de
*o.(5) = i?0(5)

e=0

DA-} := £- K(S) =ks)HS)
(4.23)

where we made use of the definition of the exponential map in (4.5a). It is not

surprising to note that the above linearized quantities lie in the tangent space of

C at $. Next, we proceed to linearize the strain measures in Box 4.2 about the

configuration $€0.

linearization of curvature tensors. Making use of the definition of o in Box

4.1, we have

£« =^-AT =(^E^e3q>[-e$] +exp[e$]£exp[-eft (4.24)
Making use of the definition of the exponential map (4.5a), it can be easily seen

that

d

de
e=0

(de^fr)exp[-gy-] =|f- (4.25)

Therefore, with the aid of (4.25), the linearized spatial curvature tensor may be

expressed as

**•* - £he=0

v d^b \v v x (4.26)
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• v r 8Ac
Similarly for the material curvature tensor 0, since Qe =A* •£«-. an analogous

calculation shows that

Dh'*-= 57rLS'=Ar^ (4-27)
linearization of curvature axial vectors. In order to obtain the lineariza

tion of o(5), one simply needs to express (4.26) in terms of axial vectors. For

this purpose, recall that the commutator (Lie bracket) of two skew-symmetric

matrices may be expressed as

[^,o]h := (^o-o^)h = (f X6>)xh. V heR3. (4.28)

Therefore, the linearized spatial curvature tensor in (4.26) can be written as

(Do*jr)h = (4¥"+f x»)xh. V heR3, (4.29a)

from which follows the linearized spatial curvature vector

D»'t = 3^+fx» (4.29b)
ao

The axial vector of the linearized material curvature tensor in (4.27) provides

directly the linearization of the material curvature vector D

DQ.ir = AT&- (4.30)

This follows from the relationship noted in (4.9) on parallel transport. Note that

the same result would be obtained from the definition Qe = A/cjc and using

(4.23)2 together with (4.29b).

linearization of strain measure r. Applying the directional derivative to

the expression of I"given in Box 4.2. we obtain

d

' de n1"' = deexO *""
(AjW-Bfe)

e=0

(4.31)

A CdS ** ^5^
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Remark 4.1. The linearized material curvature vector DO-jr and the

linearized material strain DT*n are material objects and have their components

expressed relative to the material basis ($j, even though 17 • (n0lf) are spatial

objects. Their spatial counterparts can be obtained by parallel transport using

the orthogonal transformation A, Le.,

A/7Q-V = ^JL,
r dS

hDv.n . ^-Tx^ (4.32)

The above procedure can be viewed as taking the Lie derivative: pull-bach a spa

tial object along the flow to the material setting, take the derivative, then push-

forward the differentiated object along the flow to the current position. •

For convenience, the linearization of the strain measures in the spatial and

material descriptions is summarized in Box 4.3, where a superposed "prime"

designates the spatial derivative d/dS.

BOX 4.3. linearized strain measures (n := (17,,, ^) e T*C)

spatial material

*lo'-fx*o' XT-vsAtq.'-**#.']

*' 2?Q.^ =aV

4.4. Tangent operator and symmetry condition

Weak form. Consider again any arbitrary admissible variation

17(5) - (i7o(5),f(5))e7T#C. Recall that in this chapter, we focus our attention

on the static response of the rod; Le., we shall consider only the left hand sides

of equations (4.14a-b), referred to as balance equations, and ignore the inertia

effects of the right hand side. Multiplying these balance equations by the
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admissible variation 17 and integrating over the interval [0, L], we obtain the

weak form

G{*,v):= Lt(^"+ B)'Vq+(®"+ ^~xn+m)'*]dS =°(433)
Integrating by parts (4.33) and making use of the boundary conditions

17(5) Ue fo.Lj • 0, we obtain the spatial weak form of the balance equations

expressed as

- f ( fi-i70 + ffi-f)d5 = 0 . V 17 e T4C . (4.34)
[fol T

Concerned mainly with the development of a displacement type finite element

formulation, we shall assume that constitutive equations (4.15-16) hold strongly,

or point-wise.

To perform the linearization of the weak form of momentum balance, it is

convenient to rephrase (4.34) in material form. Making use of relations (4.12)

we obtain the following alternative (material) expression of (4.34)

- f (n*i70 +m«f)d5. V 17 e TAC . (4.35)
16.L] F

4.4.1. Consistent linearization of weak form

A complete account of linearization procedures relevant to the problem at

hand is given in Marsden &Hughes [1983, Chap. 4]. Here, we proceed in the con

text discussed in Section 4.3. Denote by L[G($,n)] the linear part of the func

tional £($, 17) at the configuration $ = £ m (0O, A). By definition, we have
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£[G(#.i?)] = 0(4?. 17) + DG($,fi) •A* . (4.36a)

where A0 := (Au,A6) e 7^0 designates incremental displacements, and the

(Frechet) differential DG($, 17), linear in A$, is obtained through the directional

derivative formula

DG($trj).ty = ±- G(^etn) (4.36b)
de

e=0

where 0e denotes the curve of perturbed configuration about $ as given in

(4.21). Away from the equilibrium configuration, the term G($,n) in (4.36a) sup

plies the residual (or unbalanced) force at the configuration $e0 and the term

DG($,n)t a linear operator, is referred to as the tangent stiffness operator.

Searching for the equilibrium configuration $ e 0, Le.. the weak solution to the

balance equations characterized by 0(0,17) = 0, V17 € 7^0, the classical New

ton iterative solution procedure may be employed such that at iteration (i) we

solve for the incremental displacement A#W by setting

L\.G(^\ri)] =0(^i>.i7) +Z?0(^i>.r;).A#W - 0. V if €7^,0 (4.38c)

where #w e 0 is known. We then proceed to update the configuration 0(i) to a

new configuration $fr+1> using the incremental displacement Affi\ solution of

(4.36c). One of the salient features of the present formulation rests on an

update procedure that forces the iterated solutions 0*** to remain in the

configuration manifold 0, for all k. In fact, this update procedure is the

discrete counterpart of the curves of perturbed configuration defined in (4.21).

We shall nowproceed to obtain the expression for the tangent stiffness operator.

The weak form (4.35) may be rephrased in a more compact form by intro

ducing the following notation. Define material and spatial vectors of resultant

stresses and stress couples, R and r, by setting
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= IIR, where II :=R:-(;}. r :=
._

n

,m,

A O

O A

92

(4.37)

In addition, introduce a matrix differential operator H. similar to (2.46), defined

as

H(0O) :=
ih« [*-'x]

(4.38a)

dS

where a superposed prime, (•) , denotes differentiation with respect to 5, and

recall that 13:= Ding [1.1,1] is the identity matrix. In addition, [0O *] • #o

i , t
is the skew-symmetric matrix associated with the axial vector 90 = 9oi ©«• an<^

37rl3 is the block diagonal operator defined below,
do

,1,1
0 -9o3 9o2

[*. *] := * o3 -0ol dS•ls^i^f^aV'a^4-3^
•9o2 9oi 0

With this notation at hand, equation (4.35) may then be recast as

<?(*.*) = r[(Ei7)-(IlR) -i|.*]dS
[0.1]

where *r := [n, m]r. To obtain the linear part (4.36) of (4.39) we need to obtain

(4.39)

the expression for the linearized constitutive equations. First, note that with

the aid of H defined by (4.38a). the results in Box 2 may be expressed as

f/?r(0).Au| _ nr/txwiJ^'l/?Q(*).A*j ="'W^9;|A*J - TFW «f» A* .

Thus, on account of (4.16-17). the linearized internal force is given by

JRCft.A* =C(ft{j2ft".2) =C(#) D(S) E'tf) A* .

(4.40)

(4.41)
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where C($) is the material tangent elasticity tensor given by (4.17). Lineariza

tion of (4.39) leads to :

DG($. 17) •A# = Ds G($, 17) •A0 +DG G($, 17) •A# (4.42)

where the term DsG(^,rj) results from the linearization of the internal force R,

and corresponds to the material part of the tangent stiffness operator,

DsG(i,V)-£+ = / [E(#) 17] -[11(A) Cn^(A)H(*)A#]d5. (4.43)

The second term, DcG($,rj) is referred to as the tangent geometric stiffness

operator, and results from the linearization of the operator [HII] defined in

(4.37-38).

DqGG.ii) • A* = J [T17] • [B($) TA*]d5

where, T is a matrix differential operator,

d

TT :=

and B a matrix of the form

*« :=

dS

0

13

d

dS u

o

13

O O [-nx]
O O [-mx]

[nx] O [n®#o'-(n-0o')l3]

(4.44)

(4.45)

(4.46)

Recall that [( • ) x ] denotes the skew-symmetric matrix whose axial vector is

given by ( - ). Inspection of (4.46) reveals that the geometric stiffness B is gen

erally non-symmetric. Hence, it appears that the geometric tangent operator

given by (4.44) is non-symmetric. We show next that this is indeed the case only

if the configuration £e0 is not an equilibrium configuration.
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4.4.2. Existence condition for potential: Symmetry of tangent operator

To examine the nature of the lack in symmetry of the tangent DG($,n) •A$

we consider the skew-symmetric part given by

[DG($,n) •A#]' := D2G($tv) •A* - -020($,A#) •n

(4.47)
fill}

where B4 := UjB - B7*]. We have

[DG&.n) • A#]* = f im.[fxAV-Atfxf']+n.[Atfx(fx0o')-f x(AUxTi0']jd5

=/{m.^xA^'+n.^A^.Jo^-^-Jo'jA*])^
1&L]

= / {m.(fxA*)'-n.[(^xA*)x#0f](d5 (4.48)
tfol

Integration by parts of (4.48) finally yields

i <* i[DG(i,n)'£tf]A =- f [m ++0 xn +B]-(fxA*)d5

+ f ffi-(^xA*)d5 + [m-(fxA*)]#af (4.49)

It follows that for our choice of 7^0 given by (4.22) m»(^xA*) §*& m0. In addi

tion, the first term in (4.49) is simply the weighted form of the the static version

of the local balance of angular momentum equation (4.14b). Accordingly, this

term vanishes at an equilibrium configuration. Thus, (4.49) vanishes identically

provided that m • 0 and the configuration $ is in equilibrium.

Remark 4.1. The condition of no distributed moment m m 0, appears to be

in agreement with the fact pointed out by Ziegler [1977] and elaborated upon by

Argyris and co-workers [1978,1980,19B2], that loading by "moments with fixed

axes" is non-conservative. The boundary term m»(fxA*)fe =0 in (4.49)
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vanishes identically for most boundary conditions of practical interest, such as

simply supported, clamped, or free end. Other boundary conditions which result

in cancellation of this boundary term are possible. However, this term does not

vanish for the case of an applied end moment with "fixed spatial axis," and

thus this type of loading is non-conservative (see, e.g., Argyris and co-workers

[1978]). The condition of conservative loading expressed by

f ffi . (fxAtf)d5 +[m . (f xA*)]|#,r£ =0 (4.50)

is analogous in structure to that arising in pressure dependent loading (Bufler

[1984], Schweizerhof &Ramm [1984]). •

In view of expression (4.49) the following conclusion can be stated:

(i) At an equUiJbrium configuration, the symmetry of the tangent stiffness

depends solely upon external loading and boundary conditions; e.g.,

depends on whether the loading is conservative. The possible lack of sym

metry at an equilibrium configuration is not related in any way to the pres

ence of the classical rotation group S0(3) in the configuration space. The

fact that a potential exists if (4.49) vanishes is the result of a well-known

theorem due to Vainberg (see Marsden 8c Hughes [1983, Sec. 1.7] for a dis

cussion in the general context of manifolds).

(ii) At a non-equilibrated configuration, the tangent operator is non-symmetric

in general, even for conservative loading. The reason for this is again found

in the fact that the configuration space 0 is a nonlinear manifold.
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4.5. Treatment of follower force

Several practical applications require the ability to account for the action

of a follower force, which depends on the current configuration, in the formula

tion. Such a loading condition can be accommodated easily within the present

context. Consider, for instance, the case of a distributed load characterized by

fi«ic ._ 7ypeti( where Type m CONST. . (4.51)

which follows the deformation of the cross section determined by the frame (tjj,

and thus has constant components relative to this frame. The non-conservative

loading in (4.51) in fact falls into the category of follower load of the circulatory

type —that is, loading which is not derivable from a potential and not explicitly

dependent on time. By virtue of (4.1c), the loading fi"6 can be expressed in

terms of the spatial basis {ei J as

finc(A) = A* NT*. (4.52)

explicating its dependence on the configuration (specifically, the rotation field).

The contribution of 5* to the weak form of momentum balance is then

given in the standard manner as

G^ft.i?) = ' f i7o-nnc(A)d5 (4.53)
[6.L]

Previously, in the linearization of the weak form 0(0,17), we have assumed that

the external load is spatially fixed, and hence no contribution of the loading

term to the tangent stiffness operator results. Here, with the configuration

dependent loading defined above, such contribution to the tangent stiffness

operator can easily be computed by noting that, for any variation

A$ := (Au, A*) e 7^0, the moving frame t*iJlz=i.2.3j is "perturbed" according to

D\i - A* = A* x t,. (/ = 1.2.3) (4.54)
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Consequently, sinoe NT =CONST., it follows that W» -A* =A*xfi~. so that
the contribution to the tangent stiffness, referred to as the tangent load
stiffness, becomes

=- f „..[A«xa~(A)]dS = /,.-[a~(i)x]A*dS (4.55)
[Gil t8-il

where we reoall that [( .) *] denotes the skew-symmetric matrix whose axial
vector is (. ). The tangent stiffness operator in (4.43) now has an additional
term,

DG($. ,).«#-[ft+A. +ftl G&- ">'A* (456)
Remark 4.2. The case of pressure loading, characterized by the condition

that an applied distributed load remains normal to tne Kne of centroids in all
configurations, often arises in applications. This type of loading condition may
be easily characterized by introducing asecond moving frame (*..»•.{ such
that * is tangent to the deformed line of centroids. Accordingly, we may set

»'. fU-asSaJts =8BXaa (4.57)

e

Recall that [1, - a*®*] simply represents the projection operator onto aplane
with normal a* The pressure loading may then be expressed as B- pa, +qa2.
The contribuUon to the tangent stiflness may be computed with the aid of the
directional derivative: the derivation is straightforward but lengthy, and will not

be pursued further. •
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4.6. Spatial discretization and update procedure

We now consider the (spatial) discretization of the tangent stiffness opera

tor obtained in Section 4w4. The Galerkin discretization procedure follows steps

identical to those outlined in Section 2.4.3 for the plane case. However, from a

known configuration 0^ e 0 together with a given incremental displacement

AyV \ the basic problem is how to obtain an updated configuration that remains

in the configuration space, Le., #<<+1> e 0. In addition, it is essential that the

spatial curvature vector u be updated in a consistent manner with the update of

the orthogonal transformation A, which defines the orientation of the cross sec

tion.

We shall first obtain the spatial dicretization of the tangent operator, then

discuss in detail the update procedure in its conceptual form as well as the

practical consideration for its implementation.

4.6.1. Discrete tangent operator: Galerkin finite element method

tet the interval [0, L] be subdivided into subintervals with a total number of

N-i

nodes Nt that is, [0,L]= \J [5*,5j.+1] with Sj e[0.I], Vj =l....,AT such that
*=i

5;- < 5^+1. Consider the following standard finite element discretization of the

incremental displacement A$ := (Au,A0) G 7V0 from a known configuration

*e0.

Au(5) = Awi(5)ei e R3, A*(5) = Atf^)* e R3 . (4.58a)

Au(5) S £[^/(5)l3]Au/. A*(5) = £ [^/(5)13]A*/. (4.5Bb)
/=1 1=1

where Nj(S) denotes the global finite element shape functions,

lt:=Ding[l 1] the unit kxk matrix. Auj = Au(5j). and A*/=A*(5/). We

recall that 7^0 is isomorphic to R3xR3; this linear space is approximated by a
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finite dimensional subspace defined by the discretization (4.56b). Further, let

the admissible variations (weighting functions) 17 := (i?ot^) e 7^0 be discretized

in the same manner

l?o(5) S £[7V7(5)l3]i7o/. 1>(S) S £[Jv7(5)l3]f/ . (4.58c)
/si 7=1

with n0j := i?o(Sj) and f/ := f (5/). The linear part of the weak form about a

configuration $ e 0 as given in (4.36c) can then be written in the discretized

form

L[G(+.i,)] S £i?/*P/($)+ S[S//(#) +Gw(#) +Ly(A)]A0y J=0(4.59a)
/m /=i

V17/. where b$j := (Auy.Atfy). In (4.59a), P/ is the residual force at

configuration $ =$, the discrete counterpart of 0(9.17); S// and Gjj denote

respectively the tangent material stiffness matrix and the tangent geometric

stiffness matrix, the discrete version of the tangent operator .00(9,17); the

tangent load stiffness Iqj is only included in the case of follower loading of the

type given in (4.51). It follows from (4.59a) that the incremental displacement is

computed by solving the system of linear equations

P/(#)+ £ [S/^0) +G/7(#) +L7/(A) ]A^ =0. for 7=1 N (4.59b)
r=i

The expressions for the relevant matrices in (4.59b) are obtained as follows.

Residual force. Substitution of the discretization (4.5Bb-c) into the expres

sion for 0(0.17) yields

P/($) = / [{ Z(*o)[N(S)U]\Tr($) - {N(S)U]r I)*S (4.60)
[for '

Tangent material stiffness matrix. It follows from the expression for the

tangent material stiffness operator .05 0(4*. 17) in (4.43), upon introducing the



§4.6 Treatment of a 3-D Finite-Strain Rod Model 100

approximation (4.5Bb-c), that

S//($) = /{H^oit^K^ieiinnajcn^H^oJfN^^ieijdsf^ei)
[0.L]

Tangent geometric stiflness matrix. The discrete version of the tangent

geometric stiffness operator Dc($,n) in (4.44) is given by

G/,,($) = fmNASneWWfonNAsneVdS (4.62)
10.L)

Tangent load stiflness matrix. In the case where follower loading of the

type given in (4.51) is applied, the discrete counterpart of the tangent load

stiffness operator in (4.55) is given by

MA) = /
O NI(S)NJ(S)[nne(A)x]
o o

dS (4.63)

We recall that the components of ft™ (A) relative to the spatial frame JenJ is

given in (4.52).

Computationally, the above integrals are evaluated using a uniformly

reduced Gauss quadrature rule to avoid shear locking as mentioned in Section

2.4. The following approximation of the map #0(5) and its spatial derivative

0o'(5),

♦o(5) = £[Jv/(5)la]fc/ and #0'(5) = £[n/(S)U]*oI . (4.64a)
/=i /=i

are introduced to interpolate the values of $0 and of $0 at the Gauss points

from the nodal values 0oj := t*0(5j). On the other hand, there are two ways to

obtain the values of A at the Gauss points: (i) either allocate memories for the

components the A's at the Gauss points, and update these after each iteration,

or (ii) interpolate the rotation vectors associated with the A's at the nodal

points, then exponentiate to obtain the value of A at Gauss points as follows. At
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the nodal points, we have A/ := A(5/), and let Xi denote the nodal rotation vector

associated with A/such that A/ = exp[x/]. Then we can use the following interpo

lation to compute the value of A at Gauss points

MS) = exp( £[/V/(5)l3]i, ). (4.64b)
7=1

We shall next address the central issue concerning the update procedure

for (#0, A) and for the curvature vector a.

4.6.2. Configuration and stress update algorithm

In principle, the configuration update procedure has been addressed earlier

in Section 4.3.1 under the guise of the curves of perturbed configuration, which

play a crucial role in the linearization process. In fact, as mentioned earlier, the

configuration update is the discrete counterpart of the curves of perturbed

configuration. It is well known that quadratic rate of convergence, characteris

tic of the Newton iterative solution, can only be achieved by a linearization that

is consistent with respect to the update procedure.

Configuration update. Recall that at iteration (i), with known configuration

#^:= (#oi^^i0 € 0, we compute the incremental displacement

A0^ := (AuW.AtfW) by solving (4.59b). Tne updated configuration

0<t+D := ($<*+*>, A<i+1>) e 0 is then obtained from (4.21) by

*it+1) = #J° + AuW . AW = expfA^)] A<*> . (4.65)

Next, the updated internal force N(#*<+1*) and moment M(0*l+1*) are required to

evaluate the tangent geometric stiffness matrix G(4^<+1*) for the next iteration.

But before the internal force and moment can be updated, we need to address

the



§4.6 Treatment of a 3-D Finite-Strain Rod Model 102

Strain update. The strain measure r<i+1) can be easily obtained from its

expression in Box 4.2 and the updated configuration (4.65)i as

r<m> =A<i+1>r ^ * (4.66)

d*0(i+1)
where ———can be evaluated as in (4.64a)2. On the other hand, the updated

ao

spatial curvature tensor o^l\ as given in Box 4.1.

£««) =^ILA(i«)r , (4.67a)

requires the spatial derivative of A(4tl>. It follows from (4.65)2, and since

*«♦„ =dip^M] [.AfrO] +exp[AJ<0] £<«> eXp[-A*(«)] (4.67b)
ao

In fact, (4.67b) can be obtained directly from the curve of perturbed curvature
y

e-»fi>e given in (4.24). The geometric interpretation of (4.67b) is as follows: (i)

The point A^ G50(3) is left-translated to the point A*4*1) e 50(3) by the action

of the exponential map exp[Ai^] as given in (4.65)2;! (ii) This map paraUelly

transports the skew-symmetric curvature tensor o^ e 7*^)50(3) to the tangent

space 7'A«+i)50(3) as expressed in the second term of (4.67b); (iii) The first term

in (4.67b) actually represents the incremental curvature, expressed in the

tangent space 7*A(<+i)50(3), as a consequence of the incremental rotation field

Av^) (the addition operation here makes sense since both the curvature tensor

and its increment are in the same tangent space).

t Equivalent!*. A<*> is ngbt-tranlated to A<*+1> by expfAJW], where 6&M «AWaJW, aruch
thatV+»> =Atoexp[Ae%
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To proceed further, we need the following results.

Lemma 4.1. Derivative of the exponential map. Let 4(5) eso(3). V5.

such that 6:[0,£]-»R3 is continuously differentiable, then the axial vector of

} := dexP[*(S)1 exp[-*(5)] eso (3) is given by
dS

+= ^.isng [*' +(«*«)]. (4.68)

where *(5) := tan(||*||/2) j|p
Proof. Using the closed form formula for the exponential map (4.5c-d), and

taking the derivative with respect to 5, we obtain

dexpri(5)1 _ 2
dS i + 85(12 *'+$'* +tt'-2*-+& ++2)

i + m
. (4.69a)

jr _ V.

Next, upon noting the identity tf3 • -Jtf||2tf, a lengthy but straightforward mani

pulation yields the result

*=^^ e,cp[-*(S)] =_8_.fi'+«'_*'*+A](4iMb)

where A is given by

A = -*•* [tf-tf8]-tf* *+*-* *2. (4.69c)

It follows at once from the identities

*tf * • -(*•* )*, tf* S8 _ -(* •* J*2 (4.69d)

that in fact A_ 0. In addition, as noted in (4.28), the axial vector of (-d-tf - -d i>)

is given by (5 x ^ ). Hence, we obtain the expression for the axial vector ^ given

in (4.68). •
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It proves computationally more convenient to express ^ in (4.68) in terms

of the rotation vector 4 rather than in terms of the pseudo rotation vector tJ.

This can be found in

Lemma 4.2. The axial vector f of the skew-symmetric tensor

V= e*?g—*-exp[-4] can be obtained asfollows

. = ___

m
* + ! sinWi' • •*' * +-

1*11 8[ Ml J Ml
> •

j__ . l sinfll.Hl/2)
1*11/2

2

*xtf . (4.70)

Proof. This follows from (4.68) and the definition of the pseudo rotation

vector 4. The same result is obtained by using formula (4.5b) for the exponential

map instead of (4.5c) in the proof of Lemma 4.1. •

Remark 4.a Recall that SI_M -» 1 as M -» 0. Hence, for fl*|| small, we
Rll

obtain tf as the first order approximation of ^, from (4.70). This remark is in

fact confirmed by relation (4.25). •

Lemma 4.3. Thefollowing expression gives the updated spatial curvature

vector»(<+1) in terms of the incremental rotation A*W

o (i+i) = __I___l
8A*W| _*<*>' + x_ sinjA*__

|A*WI
Atf(<).AtfW'

l-#(i,i |A*«)[
(4.71)

^
sin(llA«W|l/2)

2

]A^>l/2
A^xAtf^' + exptA***]-^.

Proof. Using Lemma 4.2. and by noting that the axial vector of the second

termin (4.67b) is exp[_i(<)] o(<) by virtue of (4.9). we obtain (4.71). •

finally, the updated material curvature vector is simply

q(*«) = j^(i*i)T 0{i+i) -kg next gtep is to ODtain the updated internal force and

moment needed to compute the tangent geometric stiffness matrix for iteration
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(i+1) in the solution procedure.

Stress update. By assuming that the constitutive laws (4.15) and (4.16) hold

pointwise, we have

B«*,) . Wl»Wir) and m«*.) . Of(S.7^W">) , {4.72)

^♦o. B*iss^gtHL md *«*». 8*(sTly«">) (473)

In all numerical examples, we assume that relations (4.1Ba-b) hold pointwise,

thus

f igc**« 1 fi<i+i)1
U^)) =c1qc««)|- (474)

The update procedure thus far explored is summarized in its implementable ver

sion in Box 4.4.

Remark 4.4. On the Hughes-Winget update formula. By applying the gen-

eralized mid-point rule to the differential equation A = fc> A, for A €50(3),

Hughes & Winget [1980] derive an update formula which is essentially a second

order approximation to the formula (4.65) used herein:

A("i> - A*** = ^«(i+^ [A<i+1> +AW ] (4.75a)

hence

A<m> = QAM. (4.75b)

Q:= [1- |i(i+^ ]"» [1+|̂ (<+^ ] e 50(3) (4.75c)

Define * := =-t> E , then Q in the Hughes-Winget formula is the counterpart of

v

the exponential map exp[tf] in (4.65). To see that the Hughes-Winget formula
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BOX 4.4 Configuration and stress update: Implementable algorithm

106

• Data

f>W := (#W AM) e 0.

Af*(i> := (AuW. A*<*>) € R3 x R3 .

• Update configuration

*(<M) := (#o(iM). A<i+1>) e 0 such that
0(i*O = #W +Au(i) f A(i+i) = exp[A4«>] AW .

• Update strain measures

r<i+i> = A<m>rTyf<+1>'-E3.

A*W.A*M'„»«> « smM^L^i)' + _ sinjA^l
Ias^f

Atf<*>

+ 4-
sin(llAtfM||/2) 2

A*MxA*<«>' +exp[Ai(*)]a(«),2[ |Ad(*>|/2
Q(i+1) - A(i+1)7 ^(i+1)

• Update internal force and moment

I****] nl****] In(<+,)1 /A»♦|)1I»♦1),

(4.75b-c) furnishes only a second order approximation to the update formula

V ^°. V
(4.65), we first note that, by the Newman series, [13 - tf]~l = 2 **• hence

Q = l3 +2£**.
*=i

Moreover, from the identity i3 - -M2i. and thus i4 - -||4||2i2, is
one has

Q= i3+2[J +*!][i3-Mli! +MI4-IM8 + •••]

= ls +
i + MP

•[* +*]

(4.75d)

Ml4*

(4.75e)
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The above formula was obtained in Hughes [1984]. On the other hand, define the

incremental rotation ^ := 24 = A o e, then by (4.65), we have

AW = exptfOAW (4.75f)

where exp[y] is evaluated by (4.5c-d). It can be seen that since ?-= * approxi-

mates ^ := tan(|ff>||/2) "jjjjrup to second order, the Hughes-Winget formula is

therefore a second order approximation to (4.65). •

4.6.3. Practical implementation consideration

We discuss in detail practical considerations concerning the implementa

tion of the update of the components of the orthogonal transformation A given

in (4.65)2, based on the use of quaternion parameters. The update of the

deformed centroidal line poses no difficulty. Given an incremental rotation A4,

either formula (4.5b) or (4.5c) can be used to evaluate the components of

exponential map exp[A4]. Due to the singularity at [|Atf|| =(2n +l)rr in the

pseudo rotation vector Aitf in (4.5d), it is preferable not to use (4.5c) in actual

computation. Let A(i) := exp[i(t)]; then instead ofrepresenting A(i) by its 9 com

ponents An according to (4. lc), one can represent A by the rotation vector td^i\

However, an optimal parametrization of three-dimensional rotations that avoids

singularities, minimizes storage requirement, and involves the least possible

number of operations in the update procedure is the use of four (4) quaternion

parameters.I This also provides a third way of evaluating the components of the

exponential map.

t Sometimes referred to as Euler parameters, eg., Goldstein [I960] or Kane, Latins & Levin-
son [1963].
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Recall that quaternions are elements of the hypercomplex space expressed

as

5 = 9o + q; q = giei + g2e2 + g9es (4.76)

where q0 represents the scalar part, and q the vector part of q. A unit quatern

ion is defined such that Jj qf =1. In the definition (4.76), we have identified the

spatial basis (e1( eg, 63) with the imaginary basis of the hypercomplex space.

Recall that the (linear) space of quaternions equipped with the quaternion multi

plicative operation (composition of orthogonal transformations in R3) forms an

associative but non-commutative algebra. An orthogonal transformation can be

represented by the four parameters (90>9i*92>9s) of a umt quaternion instead

of the nine components of an orthogonal matrix. Quaternion parameters are

therefore kept in the data base to minimize storage requirements. The update

procedure for the rotation field is summarized in Box 4.5 below.

BOX 4.5. Update of quaternion describing section rotation.

(i) Retrieve qp\ and compute AW) from q^\

(ii) Compute q associated with Atf^.

(iii) Compute exp[Ai^] from q.

(iv) Perform A<i+1> = exp[A#4>] A«

(v) Extract q<iM> from A<i+1\ and store qf<+1>.

The unit quaternion corresponding to an incremental rotation vector

A6^ s AG/*' e* (see step (ii) in Box 4.5) can be evaluated by

* C0S 2 + |A*«>| Sln 2 (4.77)
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The pseudo-vector of rotation Atf^ is then the vector part of a unit quaternion

whose scalar part is normalized to one:

-SL- = i + J- = i + A5<*>
g0 ge

(4.78)

Clearly, a singularity occurs when JA*W|| = (2n +1)tt, i.e.. when

g0-cos(||A^J/2) = 0.

The components of the exponential map exp[Av(t)] in step (iii) can be

evaluated using the quaternion representation of A0(<) in (4.77) as follows. Let Q

be an orthogonal matrix associated with the unit quaternion q, then (Whittaker

[1937])

tf +gf-f
Q = 2

91^2- l&o gig3 + g2g0
g2gi +g3g0 g0B +g| - •% g2gg-gigo
gagi -g2g0 g3g2 + qiqo g* + q§ - L

(4.79)

The above relation also applies to step (i) in Box 4.5.

Conversely, given an orthogonal matrix Q, the associated quaternion param

eters can be obtained from (4.79) by

g»

9e

gs

±§vi+tk*»
±(^32-^23)/4g(
i(^i3-93i)/4g,
±(92i-9i2)/4g,

(4.80)

where Tr(Q) = (&. Note that we only need to determine the sign of q0, as the

sign of g i, g2, g3 will follow. Either a positive or negative sign for qQ is possible;

to fix the choice, we may choose g0 fe 0. However, relations (4.80) suffer from

round-off errors since the numerators and the denominators in gi, q2t g3 are

obtained from subtraction of nearly equal quantities in the vicinity of 0° and

180°. Moreover, the computation breaks down when the rotation is exactly 180°,
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e.g., in the case of Q = Diag(-1,-1,1). There are several proposed algorithms to

extract a quaternion from an orthogonal transformation matrix. Among them,

the algorithm proposed by Spurrier [1978] has been reported to be the fastest

(Lowrie [1979]), and is summarized in Box 4.6.

BOX 4.6. Spurrier's algorithm for quaternion extraction.

M := max(Tr(Q); Qn% Q22. QS3)

If M = Tr(Q). then:

q0 = WTTTrTQJ

9i = (Qy-C;Tb)/4g0. fori=1.2,3

Else:

Let i be such that M = Q{u) .

Ii =
Qm l-Tr(Q)

2 4

go = (Qkjf-%b)/4gi

g* = (& + fti)/4git fori=;.A:

There, (i,j,k) represents a cyclic permutation of 1,2,3, and Q{u) denotes the

component (U) of matrix Q (summation convention does not apply here). This

extraction algorithm can be used in step (v) of BOX 4.5. and will play a crucial

role in our treatment of the dynamics of three-dimensional flexible rods in
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Chapter 5.

4.7. Numerical examples

In this section, we consider a series of numerical simulations that illus

trates the performance of the formulation described above. These applications

show the quadratic rate of convergence obtained, even for very large load steps,

in well documented examples. In the first four examples, attention is focused on

the plane problem where the rotation field is easily described by means of a sin

gle rotation angle (Reissner [1972.B2], Simo et al [1984]). A basic objective then

is to show that the proposed three dimensional parametrization of the rotation

field exactly replicates the plane rotation. The last three examples, on the other

hand, are concerned with fully three-dimensional deformation, and have been

considered in previous work (Bathe [1979], Argyris and co-workers [1979,81]).

These examples demonstrate that symmetry of the tangent stiffness does not

hold in the iteration process but is attained at the converged solution.

Throughout all the examples discussed below, the constitutive model defined by

(2.10) is considered.

Convergence of the finite element solution is established on the basis of the

Euclidean norm of the out-of-balance force. A full Newton-Raphson iterative

solution procedure is employed in all the calculations reported herein. Tracing

of post-buckling diagrams throughout the simulations is accomplished by a gen

eralized form of the classical arc-length method, (Riks [1972], Wempner [1971])

to include an arbitrary linear combination of degrees of freedom as a constraint

condition. The basic implementation of this procedure proceeds in two steps

and is due to Schweizerhof; see Simo, Wriggers, Schweizerhof and Taylor [1984].

The first step involves the solution of the linearized problem under a unit load.

For the case of a follower load, this unit load must be properly updated. It is
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emphasized that no special effort is made to optimize the total number of load

ing steps for a given calculation.

Example 4.7.1. Pure bending of a cantilever beam. A straight rod of unit

length and bending stiffness EI -2. is subject to a concentrated end moment M.

The finite element mesh consists of five elements with linear interpolation shape

functions Nj. A one-point (uniformly reduced) quadrature is employed to com

pute the tangent stiffness matrix and residual. The exact solution to this prob

lem is a circular curve with radius p = EI/ M. An applied end moment, M - 477,

will force the rod to deform into a full closed circle. In this example a moment

twice this magnitude, i.e., M = Bfr, is applied in one load step, making the rod

wind around itself twice. Convergence to the exact solution is attained in two

iterations. The final shape of the rod is depicted in Figure 4.7.1. It is noted that

the same performance, Le., exact result in two iterations, is obtained for any

magnitude of the applied end moment. The values of the residual norm

throughout the iteration process are summarized in Box 4.7.

BOX 4.7. Example 4.7.1.: Iteration number vs. residual norm.

Iteration

Number

Euclidean Norm

of Residual

0

1

2

0.251 x I0+oe (Bit)
0.425 x 10+K
0.441 x 10"13

Example 4.7.2. Cantilever beam subject to follower end load The material

properties for this example, considered by Argyris k Symeonidis [1981], are

EI = 3.5 x 107 and GA = 1.61538 x 108, and the total length is L = 100. The finite

element mesh consists of five elements with quadratic shape functions. Two-

point (uniformly reduced) Gauss integration is used to compute all matrices.
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For the purpose of tracing the load-deflection curve reported by Argyris &

Symeonidis, a loading increment of 1000 was selected. The agreement found

with these results is complete (see Figures 4.7.2a and 4.7.2b). The characteris

tic quadratic convergence rate observed in a typical iteration of a load step is

illustrated in Box 4.8 for the first loading step. An Identical convergence rate

was observed in subsequent load steps.

BOX 4.8. Example 4.7.2.: Iteration number vs. residual norm.

Iteration

Number

Euclidean Norm

of Residual

0

1

2

3

4

5

0.100 x 10+0*

0.542 x 10+07
0.270 x 10*05
0.583 x 10*02
0.159 x lO"02
0.197 x 10_0fl

Example 4.7.3. Qamped-hinged deep circular arch subject to point load.

This example has been considered by a number of authors (e.g., Noor & Peters

[1981] and Simo et al [1984]), and the exact solution based on the Kirchhoff-Love

theory is given by DaDeppo and Schmidt [1975]. The solution shown in Figure

4.7.3a for various stages of deformation is obtained with 40 linear isoparametric

elements. The plot of the vertical and horizontal displacements under the

applied concentrated load is shown in Figure 4.7.3b. Load control is employed

in the first eight load steps, each of them of magnitude 100. Subsequently, a

combined displacement control/arch length control is employed. The calcula

tion was completed in a total number of 155 load steps. The analysis yields a

value for the buckling load of 905.28. The exact value reported by DaDeppo and

Schmidt [1975] is 697. A second limit point is found for a negative value of the

applied load of —77.07. The global computed solution is in complete agreement
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with the solution first obtained for the entire post-buckling range in Simo et al

[1984]. The convergence rate observed during a typical load step is shown in

Box 4.9 for the first load increment.

BOX 4.9. Example 4.7.3.: Iteration number vs. residual norm.

Iteration Euclidean Norm

Number of Residual

0 0.100 x 10*03

1 0.553 x 10+os
2 0.325 x 10+03
3 0.309 x 10+03

4 0.990 x 10*00
5 0.125 x 10'01
6 0.920 x lO"08

Example 4.7.4. Snap-through of a hinged right-angle frame under both

fixed and follower point load This example, also considered by Argyris and

Symeonidis [1981], is concerned with the loss of stability by divergence (as

opposed to flutter) of the right angle frame shown in Figure 4.7.4a. The length

of each leg is 120. The inertia and area of the cross section are respectively 2

and 6. The value of Young's modulus is 7.2 x 10fl; the value of Poisson's ratio is

0.3. The vertical point load is applied on the horizontal member at 24 units from

its left end. Ten quadratic elements, 5 on each leg, are employed in the calcula

tion. The deformed shapes are shown in Figures 4.7.4a and 4.7.46. The load-

deflection curves are shown in Figures 4.7.4c and 4.7.4a!. Note that the entire

post-buckling range is depicted in these figures, in contrast with the results

reported by Argyris & Symeonidis which are limited to the pre-buckling case. It

is interesting to observe that the load-deflection curves for both conservative

and non-conservative loading cross the zero-load axis at exactly the same

values, as shown in Figures 4.7.4c and 4.7.4d\ These curves were traced after 43
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load increments for the fixed load case, and 99 load increments for the follower

load case. As noted by Argyris & Symeonidis, the follower loading (non-

conservative) has a positive effect of stabilizing the system and leads to a value

of the buckling load of 35447 in contrast with the value of 18532 obtained for

fixed loading (conservative).

Example 4.7.5. Cantilever 45-degree bend subject to fixed and follower end

load This example has been considered by Bathe and Bolourchi [1979] under

fixed end load. The bend has a radius of 100 with a unit square cross section.

The material properties are E = 107 and G= 0.5xl07. These authors performed

the analysis for conservative loading only using 8 three-dimensional degenerated

beam elements. In the present calculation 8 linear elements are used. For

comparison purposes with the results reported in Bathe & Bolourchi the bend is

subject to a sequence of three load increments of magnitude 300, 150 and 150.

The results are summarized in Box 4.10.

BOX 4.10. Example 4.7.5.: Comparison of results by Bathe &Bolourchi [1979].

Load

level

Number of

Iterations

Tip displacement

Present Bathe & Bolourchi [1979]

u V w u V w

300 13 22.33 58.84 40.08 22.5 59.2 39.5

450 B 18.62 52.32 48.39 — — —

600 6 15.79 47.23 53.37 15.9 47.2 53.4

It should be noted that the final load of 600 was achieved in the present simula

tion in three load increments. This accounts for the large number of iterations

(13) required to attain convergence. By contrast, the results reported in Bathe

A Bolourchi were obtained after sixty equal load increments. Aperspective view
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and a projection view of the deformed bend at various load levels are shown in

Figures 4.7.5a and 4.7.5b. The tip displacement versus applied load curve,

shown in Figure 4.7.5c, is given up to a load level of 3000.

In addition to the loading discussed above, the bend also is analyzed for a

follower load. The deformed configurations of the bend at various follower load

levels are shown in Figures 4.7.54 and 4.7.5e — compare these with Figures

4.7.5a and 4.7.5b. The tip displacement versus applied load curve obtained for

this non-conservative loading is shown in Figure 4.7.5/. It should be noted from

Figures 4.7.5c and 4.7.5/ that the tip displacement increases monotonically

with the load for fixed loading, whereas in the case of follower load the tip dis

placement reaches a maximum and then decreases. This effect is a conse

quence of the twist experienced by the bend as a result of the follower load.

Finally, a similar simulation is performed with both the consistent (non-

symmetric) and the symmetrized element tangent stiffness matrices. The total

load of 600 is applied in 8 equal load increments of magnitude 75. The purpose

of the calculation is to show that no significant loss of asymptotic convergence

rate results from using the symmetrized tangent matrix. This follows from our

discussion in Section 4.4. The residual and energy norms shown in Box 4.11

below correspond to the fifth load increment

Example 4.7.6. Lateral buckling of a cantilever right-angle frame under

end load This problem also has been analyzed by Argyris et al [1979]. The

geometric characteristics of the frame are shown in Figure 4.7.6a. The value of

Young's modulus is 71240; and the value of Poisson's ratio is 0.31. The extreme

thiclcTLBss 1 —-
slenderness of the cross section, . . ..—= •£-, should be noted. The frame is

hetgth 50

subject to an in-plane fixed end load as shown in Figure 4.7.6a. Further, the

frame is driven to the buckling mode by a perturbation load initially applied at
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BOX 4.11. Example 4.7.5.: Performance ofsymmetrized tangent stiffness.

Iteration

number

Non-symmetric Symmetric

Residual norm. Residual Norm Energy Norm

0

1

2

3

4

5

6

0.750 x 10*°2
0.147 x 10*°8
0.426 x 10*°3
0.173 x 10*°*
0.299 x 10*01
0.177x10*°°
0.230 x 10"07

0.750 x 10*°2
0.147 x 10*°8
0.423 x 10*°3
0.140x10*°*
0.844 x 10*°°
0.661 x 10-01
0.190X10-0*

0.410 x 10*°3
0.228 x 10*°5
0.453 x 10*01
0.258 x 10*01
0.950 x lO"04
0.269 x lO"*8
0.275 x 10-18

the free end normal the plane of the frame. This perturbation is removed in a

neighborhood of the buckling load, as shown inFigure 4.7.6c. Avalue of * 1.09

is found for the critical load. The plot of end load versus lateral tip displace

ment of the frame shown in Figure 4.7.6c is in agreement with the result

reported by Argyris et al [1979]. The calculation is completed after a total

number of 25 loading steps employing displacement control. Perspective and

projection views of deformed centroidal line corresponding to the final value of

the applied end load are shown in Figures 4.7.6a and 4.7.66.

Example 4.7.7. Lateral buckling of a hinged right-angle frame subject to

fixed end moment. Our final example is concerned with the tracing of the com

plete post-buckling range of a hinged right-angle frame acted upon by in-plane

end moments, as shown in Figure 4.7.7a. The degrees of freedom at the hinged

ends are translation along the x direction and rotation about the z direction.

The apex of the frame is constrained to lie in the y-z plane. Due to the sym

metry of the problem, only half of the frame need be modeled. The problem at

hand involves truly large three dimensional rotations and poses a severe test on
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the performance of the three dimensional rod model. As the rotation of the

hinged end varies from 0° to 360°, the frame rotates out-of-plane about the axis

connecting its supports and returns to its initial configuration. During the

deformation process the legs of the frame experience significant amounts of

twist Tnis example was first proposed and analyzed by Argyris et al [1979]

within the framework of a natural formulation based on the notion of semi-

tangential rotation. Their analysis made use of 10 finite elements with cubic

interpolation for the displacement field.

Tne present analysis based on the formulation described above, employs 10

finite elements with quadratic isoparametric interpolation for both displace

ment and rotation fields. Perspective and projection views of deformed

configurations of the frame corresponding to various load levels are shown in

Figures 4.7.76 and 4.7.7c. Figure 4.7.7d shows the plot of the abscissa of the

left hinged end versus the load levels. The results of this analysis differ from

those reported by Argyris and co-workers in the following. Upon returning to

the initial configuration, the applied end moment must be identical in magni

tude, but with reverse sign, to the critical moment. Hence, the plot of the

applied end moment versus lateral displacement of the apex must intersect

symmetrically the moment axis. This is clearly the case for the curve shown in

Figure 4.7.7.e. The analogous curve reported in by Argyris et al [1979] violates

this condition. The analysis is further pursued past this (negative) critical point

and terminated upon completion of a second revolution of the frame about the

line connecting its hinged ends. This results in the post-buckling diagram, com

pletely symmetric relative to the moment axis, as depicted in Figure 4.7.7e. It

is emphasized that at the end of the second revolution, the exact positive criti

cal value of the applied end moment is recovered. Thus there no difficulty in

subjecting the frame to any number of revolutions about the line connecting its
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supports. This would lead to the repeated tracing of the bifurcation diagram

shown in Figure 4.7.7e.

Indeed after completion of the first revolution, the moment vs. lateral apex

displacement plot intersects the moment axis at « —626. A value of » +626 for

this intersection point is found after completing the second revolution. Initially,

a value of only 615.5 is obtained for the maximum moment due to the perturba

tion load. We recall that this perturbation load is removed subsequently.

The computational effort involved in the calculation for one revolution

amounts to 160 loading steps, performed with a combined arc-length and dis

placement control algorithm. It is noted that the number of loading steps was

not optimized.

The basic observation made in Section 4.4 concerning the lack of symmetry

away from equilibrium, and recovery of symmetry at an equilibrium

configuration, is numerically illustrated next. The table below shows the row

norms of the skew-symmetric part of the global tangent stiffness at an arbi

trarily selected load level. These results demonstrate lack of symmetry during

the equilibrium iteration process, and confirm symmetry at the equilibrium

configuration.

4.6. Concluding remarks

The proposed formulation is developed based on a fully nonlinear rod theory

that allows for three dimensional finite rotation, and accounts for finite exten

sion and shearing of the rod The rotation and moment fields possess the usual

physical meaning assigned in classical rod theories, such as the Kirchhoff-Love

model; Le.. generally non-commutative orthogonal transformations. As a result,

it has been shown that the consistent geometric tangent stiffness is non-

symmetric for any configuration away from equilibrium. This lack of symmetry
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BOX 4.12. Example 4.7.7.: Recovering of symmetry at equilibrium.

Iteration Skew-symmetric Out-of-Balance

number part: Row-Norm Norm

0 1.7 x 10"08 O.lOOx 10*°l

1 1.1 x 10*°* 0.784 x 10*°*

2 6.9 x 10*02 0.354 x 10*03

3 6.2 x 10*02 0.347 x 10*03

4 1.9 x 10*01 0.108 x 10*02

5 1.6 x 10*°° 0.807 x 10*°°

6 2.5 x 10"03 0.141 x 10"02

7 4.6 x lO"08 0.322 x 10"07

120

concerns solely the rotational degrees of freedom, and is absent in the plane

problem. It has also been proved that full symmetry always holds at equili

brium for conservative loading.

The practical implications of the lack of symmetry have been explored in

numerical simulations employing a Newton type of iterative solution scheme.

Due to the localized character of this non-symmetry, and the full symmetry at

equilibrium, it has been demonstrated that use of the symmetrized element

tangent stiffness results in no loss of asymptotic rate of quadratic convergence.

Based on geometric considerations, an exact configuration update pro

cedure has been developed To avoid the singularity typically associated with

parametrizations employing Euler angles or a pseudo-vector of rotation, use has

been made of quaternion parameters. This choice is optimal in the sense that

singularities are avoided and storage requirements are minimized. Particular

attention is given to practical aspects involved in the implementation of the

update procedure, such as the quaternion extraction from an orthogonal

transformation matrix.
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In addition, follower loading of the circulatory type is conveniently

accounted for in the present formulation as aconsequence of the representation

of the section rotation by means of amoving orthogonal frame.

Anumber of numerical simulations have been documented to demonstrate

the robustness of the proposed formulation. In particular, the performance of
the symmetrized stiffness, the effectiveness of the update procedure, and the
excellent rate of convergence have been illustrated throughout these Simula-

tions.
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Fig. 4.2.1. Kinematic description of the rod. Definition of vari
ous frames.

TtSOfr)

TA50(3)

Rg. 4.2.2. Geometric interpretation of the exponential map.

122
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• *)
M = 87T

figure 4.7.1. Pure bending of a cantilever beam subject to end
moment. One load step. Two iterations to convergence.

f=20kN

f=50kN

I ^*—f =IIOkN

f = !30kN

Figure 4.7.2a. Cantilever beam subject to follower end load.
Deformed shapes.
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Figure 4.7.2b. Cantilever beam subject to follower end load.
Vertical and horizontal tip displacement versus applied end load.

LOAD

— 0

— 400

— 700

-- 905.28

— -77.07

— 77.97

— 910

'*—"
/ \ 7 *** •' •

Figure 4.7.3a. CLamped-hinged deep circular arch subject to
point load. Deformed shapes.
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200

fieure 4,7.3b. Oamped-hxnged deep circular arch subject to
point^oad. Applied load versus vertical and horizontal displace
ments of the apex.

LOAD

Reference

14789

18532
-9409

23389

/

/

figure 4.7.4a. Snap-through of a hinged right-angle frame
under fixed point load. Deformed shapes.
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LOAD

Reference

24914

35447

-13913

35383

126

Figure 4.7.4b. Snap-through of a hinged right-angle frame
underfollower point load. Deformed shapes.

40

40 60 80

VERTICAL DISPLACEMENT

100 120

figure 4.7.4c. Snap-through of a hinged right-angle frame
under fixed and follower load. Load versus vertical displacement
under applied load.
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20 40 60 80

HORIZONTAL DISPLACEMENT

100 120

figure 4.7.4d. Snap-through of a hinged right-angle frame
under fixed and follower load. Load versus horizontal displace
ment under applied load.

x,u

figure 4.7.5a. Cantilever 45° bend subject to fixed end load.
Perspective view of deformed shapes.



§4.8 Treatment of a 3-D Finite-Strain Rod Model

0

200

— X

1000

1500
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2500

3000 '
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figure 4.7.5b. Cantilever 45° bend subject to fixed end load.
Projection of deformed shapes onto the x-y plane.

500 1000 1500

LOAD

2000 2500 3000

figure 4.7.5c. Cantilever 45° bend subject to fixed end load.
Components of tip displacement versus applied load.
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figure 4.7.5d. Cantilever 45° bend subject to follower end load.
Perspective view of deformed shapes.

3000

129

figure 4.7.5e. Cantilever 45° bend subject to follower end load.
Projection of deformed shapes onto the x-y plane.
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1500

LOAD

2000

130

3000

figure 4.7.5L Cantilever 45° bend subject to follower end load.
Components of tip displacement versus applied load.

figure 4.7.6a. Lateral buckling of a cantilever right-angle
frame under end load. Geometry and perspective view of final
deformed shape.
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figure 4.7.6b. Lateral buckling of a cantilever right-angle
frame under end load. Projection of final deformed shape onto the
x-z plane.

8

z

20 30 40

TIP DISPLACEMENT

figure 4.7.6c. Lateral buckling of a cantilever right-angle
frame under end load. Applied load versus lateral tip displace
ment of the free end.
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0.6-^

Section A-A

132

figure 4.7.7a. Lateral buckling of a hinged right-angle frame
subject to fixed end moment. Geometric characteristics.

432

218

235

figure 4.7.7b. Lateral buckling of a hinged right-angle frame
subject to fixed end moment. First revolution: perspective view of
deformed shapes at various load level.
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0 _ 432

-602

-370

133

210

235

figure 4.7.7c. Lateral buckling of a hinged right-angle frame
subject to fixed end moment. First revolution: projection of
deformed shapes onto the y-z plane.
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ABSCISSA OF LEFT HINGED END

50

figure 4.7.7dL Lateral buckling of a hinged right-angle frame
subject to fixed end moment. First revolution: applied end
moment versus abscissa of left hinged end.
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CHAPTER 5

THE DYNAMICS OF THREE-DMENaONAL FINITE-STRAIN RODS

6.1. Introduction

The dynamics of a fully nonlinear rod model capable of undergoing finite

bending, shearing and extension, whose governing set of nonlinear partial

differential equations was given in (4.14), is considered in detail in this chapter.

The numerical treatment of the left hand side of these equations, Le.. the static

problem, has been considered in the previous chapter. We note that the struc

ture of the inertia operator associated with the rotation field of this rod model is

Identical to the one that typically arises in rigid body mechanics. Previously

developed finite-strain rod models by Reissner [1972,73,B1,B2] and Parker [1979]

in a classical context, and by Antman [1974,75] in the context of a director type

of formulation, have been restricted to the static problem. Moreover, the

appropriate parametrization of the configuration space, a fundamental question

for computational significance, has not been addressed previously.

We recall that, from a computational standpoint, the central issue concerns

the treatment of the rotation field which, in the present formulation, has the

same physical meaning as in the classical Kirchhoff-Love model; that is, a one

parameter family of orthogonal transformations A :[0.L] -» SO(3) of the rotation

group 50(3). The basic difficulty lies in the nature of 50(3), a non-commutative

lie group and not a linear vector space. This difficulty is by-passed in the

numerical treatment of the dynamic rod model by Nordgren [1974] by restrict

ing the formulation to cross sections with equal principal moment of inertia and

by ignoring the effects of the section rotary inertia. The treatment advocated

by Argyris and co-workers [l979,81a-c,82] relies on an alternative characteriza

tion of the rotation field employing the notion of semi-tangential rotations.
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The numerical integration of the rotation field proposed in this chapter

employs an implicit transient algorithm that furnishes the canonical extension

of the Newmark formulae, classically stated in the linear space R9xRa, to the

nonlinear differential manifold R3xS0(3). In this extension, notions of

differential geometry, such as exponential mapping and parallel transport, play

a crucial role (Simo & Vu-Quoc [1986b]). The associated configuration update

procedure is amenable to a geometric interpretation consistent with that found

in the static treatment of the previous chapter. Proofs of the convergence and

second order accuracy of the algorithm are also given. In addition, exact linear

ization of the proposed algorithm and associated configuration update is

obtained in closed form, leading to a configuration dependent tangent inertia

matrix, which is non-symmetric in the rotational degrees of freedom. This exact

linearization results in a quadratic rate of asymptotic convergence in solution

strategies of the Newton type. Finally, the proposed time-stepping procedure

exactly reduces to the classical Newmark algorithm for the plane problem, as

illustrated in our first numerical example presented in section 5.5.

The spatial version of the proposed rotation update is related to the pro

cedure first proposed by Hughes & Winget [1980], subsequently rephrased in

Hughes [1984] (see Remark 4.4), and employed by a number of authors in

different contexts, including the recent comprehensive work of Stanley [1985].

Although both procedures are second order accurate, the update of the rotation

field set forth by Hughes & Winget [1980] does not reduce exactly to the plane

problem. In addition, the linearization of the latter update procedure was not

addressed by the authors. From a computational standpoint both approaches

involve essentially the same computational effort.

The formulation developed herein encompasses a general class of nonlinear

structural dynamics problems that includes elastic instability and non-
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conservative loading, such as follower loads of the circulatory type. A funda

mental property of the proposed formulation is that the proper requirements of

invariance of strain measures under superposed rigid body motions, satisfied by

the continuum rod model, are preserved exactly by the integration algorithm

and configuration update procedure. In fact, the appropriate invariance of the

strain measures along with the inherent conservation of global linear and angu

lar momenta of the formulation are the essential ingredients for the success of

the methodology proposed in Chapter 2 on the dynamics of flexible beams

undergoing large overall motions. We note that application of the present algo

rithm is also of interest in bioengineering (e.g., Mital & King [1979]).

5.2. Weak form of the governing equations

We first summarize in Box 5.1 the complete set of partial differential equa

tions governing the motion of the rod. The function tp(S, T, Q) corresponds to

the constitutive law relating the strain measures r and 0 to the internal forces n

and m. We often assume in practice

f(5,r.Q) =|- Q -C Q . (5.1)

with C defined in (4.18a). The mass per unit reference length of the beam is

denoted by Ap:= fpQ dO, where p0 represents the mass density. Let

Ip = EJ/^®3j be the inertia dyadic (constant with respect to time) of the cross

section in the reference configuration given by

*p(S) := W fo* *3 " *»®%d • M^ •= / Po (S) Xa XB d0| (5.2)

f Subscripts in greek letters take values in {1,2], while subscripts in roman letters take
values in {1,2,3).
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80X5.1. Partial differential equations of motion

2*^*1= %s.t)Ms.t). smjLsiiSit)Ms.t)
dS

r^ri*^.*.

_ A MS. r, 0)

Q = Ar6>

m - A dirts, r. Q)
m-A ao

On^-+B =i4p?J0

a5*+ ^n+mHw+wxHw]
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Further, we introduce the time dependent spatial tensor lp = Ia£ea®ep such that

\,(Stt) =A(S.t) 1^(5) KT(S,t).

Dynamic -week. form. Multiplying the equations of balance laws in spatial

local form by an arbitrary admissible variation f) := (rj0, ^) € T+C defined in

(4.22), one obtains the dynamic (spatial) weak form

<?*»(#. i?) := J \AP f0 -i?9 +fti +wx (Ipw)].f]dS - 0(0, ij) =0.(5.3a)

where 0(0, n) is the weak form of the local static equilibrium equations given in

spatial form in (4.34) and in material form in (4.35). The rotation part of the

inertia part can be rephrased in material form as follows

(*yn(*,V) := J \Ap f0 -i|0 +A[I, W+ Wx (I, W)].f\dS - 0(0.1?) =0. (5.3b)
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5.3. Implicit time-stepping algorithms

In this section we develop an implicit time-stepping algorithm for the time

integration of the weak form (5.3). The novelty of the proposed approach lies in

the treatment of the rotational pari, which relies crucially on the use of the

discrete counterparts of the exponential map and parallel transport in the

orthogonal group 50(3). The algorithm and associated configuration update

may be phrased in either a spatial or a material setting. In the language of rigid

body mechanics, the difference amounts to phrasing the formulation in either

spatial or body coordinates. The geometric interpretation of the proposed pro

cedure and its implementation are considered in detail.

6.3.1. Formulation

In line with standard usage, we employ the subscript n to denote the tem

poral discrete approximate of a time-varying quantity at time *n; thus for the

displacement field ^(5)2 0,(5,**). •«*(*) Mo(S.*»). «in(5) S #,(5.*n), and

for the rotation field K(S) = A(5,*n). wn(5) S w(5.*n). ^(5)3 a(Sttn). The

material version of the spatial angular velocity w and acceleration a are denoted

respectively by W and A such that W=Arw and A= Ara. The basic problem

concerning the discrete time-stepping update may be formulated as follows.

Given a configuration 0n := («^, A„) € C, its associated linear and angular velo

cities, (•», wn), and linear and angular accelerations (a,*. on), obtain the

updated configuration 0n+1 := (d„+1. A^) e C at time tn+l = tn+ h, the associ

ated updated linear and angular velocities (•»+!. wn+1), and the updated linear

and angular acceleration (afc+i, 0**1). in a manner that is (a) consistent and (b)

stable with the weak form (5.3a,b).

To this end, we proposed the algorithm summarized in Box 5.2 below. Note

that the algorithm for the translational part of the configuration, that is
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(5, t) -» 0o(5, t) eR9. is the classical Newmark algorithm of nonlinear elasto-

dynamics (see e.g.. Belytschko & Hughes [1983]). The proposed algorithm for

the rotational part (5, 0 "* A(5. 0 e 50(3), in its material version, furnishes

the canonical extension of the Newmark formulas to the orthogonal group

50(3).

BOX 5.2. Implicit time-stepping algorithm.

Momentum Balance at *„+1

J \Ap B*+i -q0 +ft*+1 an+l +Wn+1 Xflfen+j Wn+i)] 't\ dS +0(0n+i. If) =0

or

/ Up «n«**o +A«+1[H, An+i +Wn+1 x (^ WB+i)] -fJdS + 0(0B+l. n) =0

Translational Part (Classical Newmark)

4i+i = 4» + «n

On b h, Tn +fc8 [($-- 0) On +0 an+i]

•»+l = *n + h [(1 - T) 8„ + T «n+l]

Rotational Part

Spatial Setting Material Setting

A»*i = exp[Jn]An
4n =hin +K* [(|— 0) in +0in+1]
Wn+i = Wn + h [(1 - T) On + T a,»n+1

An+1 = An exp[ «n]

8n =h Wn +*B[(£— 0) An +0l»+i]
Wn+i = Wn + h [(1 - T) An + T An+i]

0 and r designate the Newmark parameters.

Remark 5.1. Since the inertia dyadic has constant components in the

material basis flfcj. it is more advantageous to write the time-stepping algorithm

for the rotation part in the material setting, as indicated in Box 5.2. Recall that

the update of the rotation field in the spatial setting is given by the left transla

tion in 50(3), while in the material setting it is given by the right translation.

The spatial setting of the time-stepping algorithm can be thought of as
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emanating from the system of differential equations

A = wA, Ae50(3).

w = a;

the material setting is, on the other hand, governed by

A = AW, Ae50(3).

W = A.

(5.4a)

(5.4b)

A precise consistency argument of the algorithm will be given in Lemma 5.2. •

Geometric interpretation. Further insight into the nature of the algorithm

summarized in Box 5.2 is gained by examining its geometric interpretation. For

the translational part, the time-stepping procedure is the standard Newmark

algorithm and takes place in IR3. Hence, the exponential map reduces to the

identity, and the parallel transport is simply a shift of the base point. Pictori-

ally, we have the situation depicted in Figure 5.3.1.

For the rotational part, the time-stepping procedure takes place in 50(3).

A given configuration An e 50(3) is updated forward in time by exponentiating

the incremental rotation in e so(3) to obtain A,>+1 = exp[4n] An (left transla

tion). Since 0n = A»vn A» (or in terms of axial vector Bn = A^^), it follows

from the properties of the exponential map (see definition (4.5a)) that
w

An+i = A„ exp [8n] (right translation), which is the update formula recorded in

Box 5.2. Such a procedure ensures that A^j remains in 50(3) in the natural

way by making use of the translation in 50(3). Note that the step forward in

time of the angular velocity and acceleration is performed in the same tangent

space 7^50(3). The result is then parallel transported to 7^ 50(3).
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5.3.2. Update procedure: Basic setup

The formulae contained in Box 5.2, define the velocity (vn+i, wn+1) and the

acceleration (an+i. On+i) in terms of the incremental field A0n := (un. &n) from

the base points (vn,wn) and (an. On), respectively. Thus, the weak form of

momentum balance at time tn+l, 6y^n(0(5. in+i), n(S)) = 0, depending on velo

city and acceleration becomes, by virtue of the time stepping-algorithm, a non

linear functional of the configuration 0n+i denoted by 0dyn(0n+i. ^?)- The solu

tion of this nonlinear variational equation is accomplished by an iterative

scheme of the Newton type, as follows.

Assume that 0n<l'i := (d&lu Anli) is known. By solving the linearized weak

form about 0ni+'i one obtains an incremental field A0ni+'i := (Au^i, Ai?^):). The

basic setup is: Given &$nli c T^iq C, update 0„<+i € Cto 0n+i^ cCina manner

consistent with the time-stepping algorithm in Box 5.2. Again the central issue

concerns the update of the incremental rotation. First, making use of the

exponential, one sets

i£li =e*p[*£>] *, . A&i" =e*p[4r»] A„ . (5.5)

Note that (5.5) makes sense since Bn^ An and ©i**1* An are both in the tangent

space at An. Next, making use of the incremental exponential map we have

Ai«A" =exp[t&l%] A$. (5.6)

Again we note that (5.6) makes geometric sense since Av^A^i is in the

tangent space at A^lv Combining (5.5) and (5.6) we obtain the update formula

in Box 5.3.

Remark 5.2. Initial guess. The update procedure in Box 5.3 applies for

< fc 1. As noted in Section 2.4.2 of Chapter 2, the best suitable starting scheme
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BOX 5.3. Update procedure given A0n<)i := (An&i, Art&i) GT^m C

Translation Rotation

*SW> = 4*2, + A«i$. Aft?) =exp [ftift,] A$.

<W-i«.+ jgrta»,. ezp [*£♦■>] =exp[aJjHj exp [ijtO]

tf# - *Mi +J^-Arfii wft,') =w$, +jj-W?"> - «lP]

jtftf) =Ai*ix +̂ -[Bi"1' - »£>]

(Le., for i = 0) in the Newton process is to initialize the displacement quantities

with the previously converged ones; that is, one sets 4$t = d* and Aj$i = An.

With this assumption, (Vn^i. «n2i) and (if^i, An%) are then computed by the

Newmark formulae given in Box 5.2,

•$i = Vn +h[ (1 -r)an +raJKi ] .

W$l = Wn+Zlta-TjAn+TAn^].

Recall that alternative starting procedures, such as (a,^, an°li) = (an, an),

often result in spurious behavior. •

Remark 5.3. Implementation. This remark is intended to discuss certain

practical aspects of implementing the update procedure for the rotation field as

delineated in Box 5.3. We recall that the exponentiation of a given rotation vec

tor can be obtained following the procedure outlined in Section 4.6.3. Similarly,

the extraction of the associated unit quaternion from an orthogonal matrix

could be carried out in a accurate manner employing Spurrier's algorithm

(5.7b)
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summarized in Box 4.6. The issue here is how to compute appropriately the

updated rotation vector tfJS**1* from from its unit quaternion representation.

Recall the relationship between a rotation vector tf = 1^6* and its associated

unit quaternion parameters

\ • 1o +9ie, +g8e2 +gaeg =cos(i|^ +sin(^ jjj- (5.8a)

Thus, given the four quaternion parameters (g0, g1§ g2, g3), the associated rota

tion vector ^ = tfiet can be theoretically computed by

W-8oo.-Hg.). « uW Ii********* (5.8b)
[L(gi)2]8
z=i

However, the above procedure does not yield accurate numerical results when

|^1 is small. The reason can be seen from the Taylor series expansions:

cosfl = (1 - —+ • • • ). sim? = (tf - —+ • • • ). Since the sine function is more

sensitive then the cosine function for ]*| small, it is computationally more accu

rate to evaluate ftf | from the given quaternion parameters using

Ml = 2 sin-Ktgf + gf +q§¥) (5.8c)

to avoid round-off error. To support this observation, consider the following

example with a given ^ =0.2380016xl0"7e2. We first compute the four quatern

ion parameters using (5.8a) to obtain

q0 = 1.0000000

qx = 0.0000000

q2 = 0.1190008X10"7 (5*Bd)
ga = 0.0000000

Next we compute the rotation vector * from the quaternion parameters in

(5.8d) using (5.8b)j and (5.8c) respectively
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* = fyei

(5.8b)! (5.8c)

0! = 0.0000000 i>! = 0.0000000

^2 = 0.2356080xl0"7 tfi = 0.2380016X10"7

4g = 0.0000000 tfa = 0.0000000

145

The result from using (5.8b)i is only correct up to two digits. This example is in

fact taken from the analysis of the closed-loop chain in the next chapter, in

which the above round-off error spoiled the desire asymptotic quadratic rate of

convergence in the Newton iterative solution. •

5.3.3. Exact linearization of the algorithm

We consider the linearization of the temporally discrete weak form

Qyn(0n*i. i?) about a configuration 0^1 = (d£4ii. A^i) e C in a manner that is

consistent with the update procedure summarized in Box 5.3. For this purpose,

given an incremental field A0n*ii =(Aufli. to*nli) in the tangent space at 0ni+\.

we construct a curve of perturbed configurations in C; that is, a map

t - 0$u =(4Mi... AJKU) e C. by setting

4Rm =4»i +*tnblx. AK,,,=exp[ t t&n%] exp[*£>] A„ (5.9)

We then define linearized quantities (<5dJ$lif, SAJfli^) at configuration 0^1 £ C,

as objects in the tangent space T^m C given in terms of the directional deriva

tive formula by the expressions
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oe |esO
(5.10)

To proceed further with the linearization of the rotation field, we make use of

representations for A^li,t and AjWi in terms of exponential maps starting at An-

As in (5.5), we have that

"Atfiu « expfJiUlAn. (5.11a)

where <££ and *£* (or more precisely v^An and in^An) are in the tangent

space 7^50(3) at An. Note that AtfJMi (or more precisely AS^Af-ii) belongs

to the tangent space 7*^ 50(3) at A^ii- Hence, from (5.11a) and (5.9)2> we

obtain

«?[*&] = exp[c tAn%] exp[*n<>] (5.11b)

Lemma 5.1. The Frechet derivative ofe:=4/|6||, with 0 e IR3, is given by

Is - e®e
De =

M

Proof. By the directional derivative formula

d^
de

9*0

= T3r-= e-h. VheE8.

Ihus, Dt&i =*/M = e. Therefore.

£e*h &
de

« + eh _ Mh-(e«h)« _ 13 - e®e

(5.12)

(5.13a)

(5.13b)

With this relation in mind, we record below the main result needed in the

exact linearization of the weak form in Box 5.2. This result is the mathematical
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statement of the linearization of the compound rotation n£)c, which is the axial

vector ofJiU in(5.11).

Proposition 5.1. The linear part of the compound rotation 4nx as given in

(5.11) is obtained according to

HP - # m = T(«J«>) A#$, (5.14a)
*«0

where the mapT. 7\«) 50(3) •* 7^50(3) is a linear mapdefined by

™:= «®e +ugfe-t U-^1-1" <514b)
with e being the unit vector defined by e:=4/

Proof. To simplify the notation, we shall omit the subscript n+1 and the

superscript (i); the relation (5.11) can then be written as

exp[4e] = exp[e A4] exp[4] (5.15a)

We first differentiate this expression with respect to e, at e = 0, to obtain

d

de

x Jt

exPAl = « mI*5 +si * - +6$] exp[£]. (5.15b)
««o 1 + 1*11

i

e=0 dc
where tf = *e _ and fltf := -;— tfe, using the proof of Lemma 4.1. Thus from

«=o

(4.68), the final result in terms of axial vectors leads to

A* = t *, [«+«x«] (5.15c)

Expressed in operator notation, the above equation reads

A« = ir*(?)09. where U"1^) := 2 |̂2 [13 +*] (5.15d)

Inversion of U"1(5) yields

U(5) = f [(1 +W) 13 - * +52] « l.[l3 - * +3*3] (5.15e)
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tan-1!*,!! -
In addition, by differentiating the expression 0e = 2 —5=-^ tfe with respect to

!*ell

e with the aid of Lemma 5.1, we obtain, at t = 0,

** = Y[5)<5*. (5.15f)

where Y(*) is given by

**> =TTWe8e+iif?SL[l8" e8e] • (5,15g)
Thus, from (5.15d) and (5.15f), it follows that

6* = V(3) U(5) Atf =: T(5) A* (5.15h)

Next, using the definition of* := CT * and after some manipulation, we
1*11

obtain the expression for T(i>) as given in (5.14b). •

Remark 5.4. The above proof can also be obtained by first expressing the

axial vector 4nU as a compound rotation vector of of6n+i and tbASlv Consider

two successive finite rotations 0(1) and 0(2) with q(1) = g0(1) + q(1) and

qf2) = qj® + <{® denoting their respective unit quaternion representation.

Further, let 0 denote the resulting compound rotation, and q = q0 + q its unit

quaternion representation. We have the following relation for the compound

quaternion q

$= 5(2)0#» = giV^-^-^J +giV^gi^ +rf^q^^-iea)

where "<>" denotes the quaternion multiplication (e.g., Karger &Novak [1985]).

Hie scalar part of q is thus g0 = gi1W - (a*1* •q(2)). From the relation between

rotation pseudo vector and quaternion representation given in (4.78), we obtain

rfi) q(g) q<g) q<i)

2 a, W* qiz) * qiz) * g0(1) . j(D +gtt »?(*> xjW ,. .

1" gj»gj»
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Now. let ?<» =*=iSSJgpL*. 9» =A3, =tan(^fl/2) ^ ^ ^ com.
pound rotation ^ =*e. We obtain from (5.16b)

*« = J A:5x[3 +A3c-3xA«t] (5.16c)
1 - (V • A*e)

The above expression could also be found in Argyris [1982]. First, note that

*t* =*•• (516d)
Then by differentiating (5.16d) with respect to c. at e =0. we obtain directly the

expression ofU(5) given in (5.15e) without the need ofmatrix inversion. •

Tangent inertia operator. From (5.14) and the time-stepping algorithm in

Box 5.3, we obtain the linearization of the angular velocity and acceleration

about the configuration 0^1

tlfti =^-AjT(^)A0«i. M»i =^^))A<?1. (5.17)
Consider now the linearization of the weak form ^(0. n) about the

configuration 0 • 0nii- Bydefinition, we have

i[ q^(0n*li. n) 1« q*-(#«i. *>+ «S*»(#«i- *>" A*n!l (5.18)

where G^n(0n*2i. *l) represents the dynamic out-of-balance force, and by using

the above results of linearization

«4fc.(*Ri.i>.«*Rt =[ifc +ft +ife +ft ]<**.»&• n)«A#iW&»«)

where Jfe corresponds to the linearization ofthe inertia operator given by

+/♦•I-[AJRiH*»i +««i*w**«iM (5.19b)
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Expressions for the tangent material stiflness operator DsGdyn, the tangent

geometric stiffness operator DqG^^, and the tangent follower load stiffness

DiG^ were obtained in Chapter 4 —see equations (4.43), (4.44). and (4.55). The

tangent inertia operator DyG^^, as obtained in (5.19b), possesses an unusual

characteristic with respect to standard structural dynamics formulations: It is

non-symmetric and configuration dependent. This lack of symmetry concerns

only the rotational degrees of freedom and follows from the fact that the defor

mation map 0 in the configuration space C takes values in the nonlinear

differentiable manifold R3x50(3) rather than in the linear space R3xR3. The

latter typically arises in standard structural dynamics formulations employing

the infinitesimal rotation field.

5.4. Spatial discretization: Galerkin finite element method

In this section, we shall be concerned with the spatial discretization of the

temporally discrete version of the dynamic weak form, given in (5.3), and its

linear part in (5.17) employing the finite element method. Section 4.1 focuses

on obtaining the tangent inertia matrix, which is a basic feature of the present

approach to nonlinear structural dynamics. Detailed expressions for the

tangent stiffness matrices can be found in Chapter 4. In section 4.2, we estab

lish the convergence property of the proposed time-stepping algorithm.

5.4.1. Tangent inertia matrix

Following the same discretization procedure employed in Section 4.6.1. con-

aider the partition [0,1] = \J [Skt Sk+x] with 0 • 5i< • • • <5jv • L. The incre-
fcsl
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mental field A0nVi •= (AU$1, AGjKi) and the admissible variation 1J := (ijo,0) are

approximated according to

tatfUS) S £ JV,(S) AuftU, , A*$,(S) S f Jv>(S)A«tt+i. (5.80a)

%(5) S J ty(S) u./ . f(S)SJS 7V/(5) */ . (5.20b)
/Si /*1

where Nj(S) denotes the finite element global function corresponding to node /

constructed in the standard manner from the element shape function.

(Au^jiUi. A6£n+i) are the values of (Au$i, Adi^i) at node /; similar notation is

used concerning the variation 17. Next, we recall that from a known

configuration 0n at time in, a Newton iterative scheme is employed to solve for

the configuration 0n+i at time tn+i- At iteration (i), substitution of the above

approximations into the linearized dynamic weak form about the configuration

0nli yields the following spatially discrete version of the linearized weak form

(5.16)

L[Q**(*)8li.l)] S t Ii- (P/(0#i)+ £*/(*». ftfJi) A0£n*i
/=1 [ /«! t/si

for any if/, thus

P/(0$i) +t **/(*». 0#i) A0^i+i =0 (5.21b)
/=i

for /sl,...,JV. where

In (5.21a), P/(0n<li) represents the residual or out-of-balance force at iteration

(i) of the Newton scheme,

= 0(5.21a)
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dS . (5.22)

Recall that the differential operator was defined in (4.38). The discrete dynamic

tangent operator a//(An. 0n)i) coupling the degrees of freedom of node / and of

node J is the sum of (i) the tangent inertia matrix H//(An. A^li), (ii) the tangent

material stiffness Sj/(0nf)i). (iii) the tangent geometric stiffness GijOnli), and

(iv) the tangent load stiffness due to follower load lij(A&li). The incremental dis

placement and rotation at node / is denoted by A05iJl+i := (Aujr'n+i* A*£n+i),

computed by solving the system of linear equations (5.21b).

From the expression for the tangent inertia operator Dm Gdyn m (5- 17b). we

obtain its discrete form

H/t,(An. A^ii) = mpHAn.Ai^i) € Rflxfl (5.23a)

with

hP [6X]

mFKAn.An^i) := ^ [-[*k% ID^li +w^x^W^ jx]

*aV^1 (*> "h7 W®**1 +hy CW^»X^ 1Af**#!> */(*) Nj(S) dS
(5.23c)

Both m^'1) and mff& are elements of R3*3. As noted in Section 5.3, the tangent

Inertia matrix is nan—symmetric and configuration dependent. This property

concerns only the rotational degrees of freedom as is manifest from the expres

sion for m0,z)(An. An*2i). The submatrix mf}-1* corresponds to the translational

degrees of freedom and is constant, as usually found in the expression for the
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consistent mass matrix when the deformation map takes values in a linear

space. We recall that the identical property, Le., the localized character of this

non-symmetry, was found as well in the tangent geometric stiffness Gjj.

5.4.2. Convergence and accuracy of time-stepping algorithm

Hie proposed time-stepping algorithm summarized in Box 5.2 can be shown

to be convergent with second order accuracy when p= j-andt = ^-. In the case

where the deformation map takes values in a linear space, these values of /? and

T correspond to the trapezoidal rule with an established convergence property

(Hughes [1976]). We shall first consider the extension of the Newmark algorithm

to solve the differential equations in (5.4a-b) whose accuracy is by the following

Lemma 5.2. Consider the differential equations (5.4b) and assume that W(f)

is twice continuously differentiable. Then the algorithm in material setting

given Box 5.2 is locally at most third order accurate regardless of the values

taken by p, le.,

A(*+fc) = A(0 exp[/iW(0 +A8 ((|— 0)5(0 +fikt+h) J]+0(/i3). (5.24)

where A(0 :* W(0-

Proof. Consider the Taylor series expansion of A(t +h),

Ht +*) = S jr jprW> (525a)

with

3jA(0 = AW (5.25b)

£*Mt) = A[5 +W8] (5.25c)
ett2

-2~A(0 = A[ W9 +2WA+ AW + ^-A] . (5.25d)
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On the other hand, A(f+A.) obtained from the time-stepping algorithm is given

by

A>) := A(t+h) =A(Oexp[/iW(O +/i8K|--«5(O +05(r+A)j](5.25e)

The consistency and local third order accuracy of algorithm (5.25e) are ascer

tained by the following identities

A(0) = A(0 (5.25f)

J-A(0) =AW (5.25g)

^A(0) =A[A+W2] (5.25h)

~^A(0) =A[W9 +§{AW+w5) +2/&2J-A] (5.25i)

It can be seen that (5.25f-h) are identically the same as (5.25a-c) regardless of

the value taken by fi. However, there is no value of /? that can render (5.25i)

identically the same as (5.25d). Hence the algorithm is at most of local third

order accuracy. •

With the above result, the convergence property of the algorithm with 0 = —

and t = jg-is established by

Proposition 5.2. Consider the system of differential equations A =A W,
d T T •
—W s f(W, A) with A e 50(3) and W€ R3. Assume that f(W, A) satisfies the

v

Mpschitz condition withrespect toW€ so (3) and A € S0(3). The algorithm

An« =An exp[ |-(Wn+i +Wn J]
v • n r v (5.26)
Wn+i s Wn + —{An+i + An)
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is convergent, i.e , Wn «* W(fn) and An -»A(*n) as A -» 0, and second order accu

rate, provided bothH(tn) and¥n are bounded.

Proof. Let the error measures on A and W be defined as (» := A(in) - An,
v •

«nd fn := Y(tn) - Wn. Moreover, the isomorphism between so(3) and Ra allows
•

the definition Iwl:« |w]. From Lemma 5.2, and the local third order accuracy of

the trapezoidal rule with respect to relation (5.26)2, i.e.,

W(*»+i)-W(*n) =J-[lAt„).A(t„)) +l(^^)iA{O)] +0(A>X5.27a)

we obtain the following recurrence relations for &+i and ft+i

tt+i =C* +[Afo)& +ife) - A*(Sfc +|fig) ]+0(A3) (5.27b)

fc+i =** +§-£ A('**i) - Ak+i +A('*) - Ak ]+0(/ia) (5.27c)

where we define It* and S* to be

k := f-fW(*fc+l) +W(*fc)i (5.27d)

%:= f-fW*+1+W*i (5.27e)

Note that in (5.27b), we have expanded the exponential exp[Ifc] and exp[Sfc] in

hseries and retained terms up to order A8; higher order terms of the form —
WW S

with bounded norm are lumped together in 0(A8). Next, sum up the relations

(5.27b) and (5.27c) for Jb = l,...,n to obtain

fe*i =11 Hh)(k +£?) - K(k +fl?) ]+CKA8) (5.27f)

t»*l = f"[ A(*n*i) - An+i ]+A]£ [A(«») - An ]+OfA2) (5.27g)

assuming that there is no initial error, i.e„ £0 = to =0. Since A=f(W, A)

satisfies the lipschitz condition with respect to its arguments, taking the norm
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of (5.27f,g), we have

lf»«l * £|A(*i) [k +£*? ]- A< [2* +±Sf]J+c,A8 (5.27h)

Itn+ll * *T<IK»*iI +K»+,D +U£(Iftl +|e«|> +C8A8 (5.27i)
i«i

where Ci and c8 are constants and L is the Iipschitz constant Nownote that

• v v

lA&JR, -A**!* |A(t,)B 1H - Si +% - Ar(t,)«A|

-IRi-SiS +|la-Ar(d)Atl6g

* §<kt«l +IM) +Wfilfc] (5.27J)

and similarly

|A&)R? - A*Sf5 * BR? - 5?B + lis - Ar(t4)A4B ISfl

*|Hf-aPll +fc8A'dfcO. (5.27k)

where K\, K2 are constants. Moreover, we have

IR?-5?D*iRi +hi tk -Ski +JRiSt -Skiifcl

^AJralCt+i + Cci + litKSkl

* (A/T3 + ±h*Kx) (|fc+l| +|C<|). (5.271)

which in fact follows from the inequality jRi * S^[] «s [Rj[]Ri - SJ

* g^idtt-H +-fil). In the above, we have used the assumption that ||W(01 and
_ V TV

|Wn| are bounded: fol^tCi and )$ + S*|| £ jr* There results

k»*il +KW*il* C,(A)A8 +Ce(h)£(Uii +|C<|) (5.27m)
fel

in which Cj(A) = (1 + P(A))~! is of order 1 when A-»0. and P(A) and Cz{h) are

•ome polynomials of A. From (5.27m), it follows that
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l£»*i!l + Kn+il * h*d(h) exp[C2(A)] (5.27n)

Thus. An-»A(tn) and Wn-»¥(fn) as A-»0 and the rate of convergence is of second

order. •

Note that this algorithm is a generalization of the trapezoidal rule to treat

the rotation field as expressed in (5.26). The proof of proposition 5.2 is readily

extended to the time-stepping algorithm for the dynamics of the three-

dimensional rod with p=j-and t =i Let d* denote the global vector that con

tains all the nodal displacement degrees of freedom, and similarly for v+, w+

concerning the linear and angular velocities. On the other hand, A* denotes the

block diagonal matrix constituted from the A's at the nodal points.

Proposition 5.3. Consider the discrete nonlinear structural dynamics prob

lem recast as follows

> «

d*

dt
*i(d*. A*)

f2or. d*. a+)

A* = (Al)+

(5.28)

Assume that ft and f2 satisfy the Lipschitz condition with respect to the argu

ments, then «•£ - d*(0. A* - A+(U. < - •*(*»). W* - **(*») as A - 0 with

second order accuracy, where d£, A£, v£. o^d* Vn arc obtained from the time-

stepping algorithm described in Box 5.2.

Proof. The proof is similar to the above and will not be repeated. •
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6.5. Numerical Examples

In this last section, numerical simulations are presented that involve (i)

finite vibration, (ii) fluttering (dynamic instability) due to follower loading, (iii)

dynamic snap-through, and (iv) large overall motions of flexible beam struc

tures. Owing to a linearization that is completely consistent with the update

procedure, as discussed above, all the numerical simulations exhibit a quadratic

rate of convergence. The geometric and material properties are selected so

that finite deformation occurs during the motion. It is emphasized that the

deformed shapes in all figures reported in this paper are given at the same scale

as the geometry of the structures, Le., there is no magnification of the deforma

tion.

Example 5.5.1. Right-angle cantilever beam subject to out-of-plane load

ing. The right-angle cantilever beam with material properties shown in Figure

5.5.1a is subjected to an out-of-plane concentrated load applied at the elbow.

The magnitude of this applied load follows the pattern of a hat function, as

shown in figure 5.5.1a. The cantilever undergoes finite free vibration with com

bined bending and torsion after removal of the applied load; the time histories of

out-of-plane displacements of the elbow and of the tip are given in Figure 5.5.1b.

We note that the amplitude of vibration is of the same order of magnitude as the

length of each leg of the cantilever. Figure 5.5.1c gives the perspective view of a

deformed shape. A linear mode shape analysis of the structure about the refer

ence configuration reveals that the second bending mode of the free-end leg

appears as the 10th mode of the structure, with period Tw = 1.6. This period

provides a reasonable estimate for the time step size. Throughout the calcula

tion, we employ a time step size of A =0.25, which is about J-th of 7*io. The

results obtained from a discretization of the cantilever using two elements with
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quadratic interpolation are in good agreement with those obtained from using

ten elements of the same type.

Example 5.5.2. fluttering of a 45-degree bend under follower load The

static response of the 45-degree bend depicted in figure 5.5.2a under follower

loading was analyzed in Example 4.7.5. In this example, we consider the inertia

effects on the response of the bend under follower load that ultimately leads to

fluttering (dynamic instability). A follower concentrated force of the circulatory

type described in (4.51) is applied at the tip of the bend with steady increase in

magnitude at the rate of 100 units of force per unit of time. Throughout the

analysis, we use a time step size of A = 0.1. Two perspective views of the

deformed shapes are given in Figures 5.5.2b and 5.5.2c to help visualize this

complex motion. In figure 5.5.2c, we also give the path of the tip in the static

loading for comparison with the response from dynamic loading. The static

loading path is obtained by increments of 50 in the magnitude of the follower

load up to a magnitude of 3000 (see Example 4.7.5). From Figure 5.5.2c, one can

see that initially the dynamic response follows closely the static response. The

inertia effects become gradually more pronounced, leading to the divergence of

the two paths; then subsequently, dynamic instability sets in to cause strong

vibrations of the bend with increasing amplitude and velocity.

Example 5.5.3. Out-of-plane dynamic snap-through of a right-angle frame.

The right-angle frame depicted in Figure 5.5.3a was analyzed statically in Exam

ple 4.7.7. Here we provide an analysis of this frame accounting for inertia

effects. The degrees of freedom at the hinged end are translation along the x

direction and rotation about the z direction. The apex of the frame is con

strained to lie in the y-z plane. Due to the symmetry of the problem, only half of

the frame is modeled employing 10 elements with quadratic interpolation for

both displacement and rotation fields. The value of Young's modulus is 71240,
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and the value of Poisson's ratio is 0.31. The magnitude of the applied moment at

the hinged end is chosen to have the same value as the time t. As the magni

tude of the applied moment increased, a perturbed concentrated force is

applied at the apex of the frame to induce a lateral motion of the apex. When

the moment reaches the critical value of about 615, the loading is removed and

the frame snaps through dynamically to the other side as shown in Figure

5.5.36. Figure 5.5.3c reports the time history of the lateral displacement of the

apex. In a static analysis, due to the presence of limit points, it is essential to

employ a judicious combination of arc-length and displacement control methods

in the numerical solution. In a dynamic analysis, such special techniques (con

tinuation methods) are avoided since the mass matrix, as opposed to the

tangent stiffness matrix, remains positive definite throughout the entire

analysis. The sienderness of the cross-section of the frame with ratio

'fySS,^'" 5° causes large amount of twist during the motion. To provide an esti

mate for the time step size, an eigenvalue analysis is performed at the reference

configuration. The first two modes that involve torsional deformation of the leg

are the Bth mode and the 11th mode of the structure with period TB = 0.07 and

7n = 0.03 respectively. Note that since the frame is very flexible in the out-of-

plane direction, frequency modes belowthe eighth mode are out-of-plane bend

ing modes. A time step size of A = 0.005 was selected in the numerical simula

tion of the dynamic snap-through of the frame.

Example 5.5.4. Free-free flexible beam undergoing large overall motions.

This problem was first analyzed in the plane case in Simo &Vu-Quoc [1985b].

The beam is initially at an inclined position in the plane (eltee) as depicted in

figure 5.5.4a. A spatially fixed force along ex is applied at the lower end

denoted by the letter A. Simultaneously, we apply a spatially fixed torque with
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components along ei and along eg at end A. The time histories of the magnitude

of these applied force and torque are given in figure 5.5.4a. The applied force

produces the translational motion; the component along ex of the applied torque

induces the forward tumbling while its component along eg causes the out-of-

plane motion of the beam. The resulting three-dimensional motion of the beam

follows a periodic "kayak-rowing" pattern. Figure 5.5.4b shows the motion of the

beam during the early tumbling stage; the entire sequence of motion is depicted

in figure 5.5.4c. The traces of end A and end B of the beam are shown by dotted

lines. A side view of the motion in the plane (eg, eg) is given in Figure 5.5.4d, and

a perspective view of the entire sequence of motion in Figure 5.5.4e. During the

loading stage, finite deformation of the beam is clearly discernible. An eigen

value analysis at the reference configuration of the free-free beam yields a

period of vibration of 1.06 for the second bending mode (the first two torsional

modes appear at lower frequencies). A time step size of A = 0.1 is subsequently

chosen for the entire analysis.

6.6. Concluding Remarks

Within the context of a general nonlinear finite-strain rod model, we have

developed an implicit, second order accurate transient algorithm that furnishes

a canonical extension of the classical Newmark algorithm to the rotation group

50(3). The exact linearization of the algorithm and associated configuration

update has been obtained in closed form, with accuracy and convergence

characteristics precisely stated.

We have demonstrated the generality and effectiveness of the present for

mulation in several numerical examples involvingvibration with finite amplitude,

dynamic instability due to follower load, dynamic snap-through of a thin right-

angle frame, and a free-free flexible beam subject to large overall motions and
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undergoing infinitesimal or large deformation. The latter example illustrates

the applicability of the proposed formulation to the transient analysis of free-

free flexible beam structures undergoing large overall motions. Since the

dynamics of the motion is referred directly to the inertial frame, this methodol

ogy represents a radical departure from traditional formulations in which small

deformation is assumed at the outset, and the use of a floating frame that moves

along with the deformed structure is necessary. In the present approach, the

dynamic coupling in the inertia terms that appears in the use of the floating

frame is exactly accounted for, and nonlinear geometric effects leading to insta

bility are automatically included.
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Exponential map

X co sow

Figure 5.3.1 Geometric interpretation of the time-stepping
algorithm, (a) Translational part takes place in R3. (b) Rotational
part takes place in S0(3). Velocity and acceleration update takes
place in the scone tangent space.
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Figure 5.5.3a. Out-of-plane dynamic snap-through of a right-
angle frame. Problem data.
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CHAPTER 6

THEDnrNAMreOFFLEXiBlZEAKra^

AND lfULTIBODY SYSTEMS

6.1. Introduction

In previous chapters, we presented a methodology to analyze the dynamic

response of flexible structures undergoing large overall motions based on a

finite-strain approach. Restricting our attention to one-dimensional structural

elements, we demonstrated the generality of the proposed methodology,

employing a finite-strain rod model, through several examples of flexible beams

subjected to complex motions and a wide range of structural deformations.

These analyses were performed using efficient algorithms which were developed

from concepts in differential geometry.

In this concluding chapter, we shall present an important application of the

methodology developed throughout this dissertation: an application to the

dynamics of flexible earth-orbiting satellites and of multibody systems. Recall

that our formulation essentially makes use of the property of invariance under

superposed rigid body motion of fully nonlinear structural theories. This pro

perty enables us to refer the dynamics of the satellite directly to the inertial

frame. In addition, geometric instability effects are automatically accounted for

in the formulation. To avoid numerical ill-conditioning, the deformation map is

additively decomposed into the far field, which describes the orbit of the satel

lite, and the near field, which describes the structural deformations as seen by

an observer in a close neighborhood of the satellite (Vu-Quoc & Simo [1986]).

Hie dynamics of the far field and of the near field are treated separately by

introducing a rotationally-fixed floating frame which in fact can be conveniently

chosen to be a parallel translate of the inertial frame with origin placed at the
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Instantaneous center of mass of the satellite. Constraints to determine the

orientation of the floating frame that typically arise in standard treatments are

thus entirely by-passed. The proposed formulation can accommodate an unres

tricted class of maneuvers under the action of follower actuator forces and grav

ity force, and is particularly well suited for the dynamics of flexible multibody

systems undergoing a broad range of structural deformations.

8.2. Dynamics of flexible satellites

Ihe configuration of earth-orbiting satellites has evolved markedly from

rigid vehicles (spinners, dual spinners), hybrid rigid-elastic systems (dual

spinners with flexible appendages), towards future generation of flexible large

space structures (space antennae, solar power satellites); see Kline [1979]. The

size of space antennae may vary from 50 to 300 meters, even to one kilometer in

diameter; the projected solar power satellite measures 5 kilometers in width by

10 kilometers in length. Spacecrafts of this size, constructed using light weight

materials, are therefore highly flexible. These structures can no longer be pre

fabricated on earth, but must be assembled directly in space.

It was recognized that flexibility significantly influences the behavior of

satellites early in the start of the space program^ thus posing serious difficulty

in the stabilization of their attitude. In fact, Ukins [1971] identified the

influence of spacecraft flexibility to the spacecraft attitude control problem.

Even though the proposed methodology is applicable to a large class of

structural elements, —rods, plates, shells, 3-D continua —we shall limit our dis

cussion to the case of a flexible satellites composed of beam elements. In

f For example, the instability ofExplorer I. the first U.S. satellite, was caused bythe flexibil
ity of its small wire turnstile antennae.
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Section 6.2.1, we introduce the concept of a rotationally-fixed floating frame

that permits additive decomposition of the deformation map into the far field

(Section 6.2.2) and the near field (Section 6.2.3). Acomputational procedure to

solve for the dynamics of the far field and of the near field, coupled through the

presence of gravity force, is proposed in Section 6.3.

6.2.1. Rotationally-fixed floating frame

Some traditional floating frames. Current approaches to the dynamics of

flexible structures in orbit are largely based on the assumption of small defor

mation, and rely on the use of a floating reference frame to describe the struc

tural displacements; that is, a frame that floats with the structure and such

that, relative to this frame, infinitesimal structural deformations are observed.

To prevent the rigid body motions relative to the floating frame, one imposes

constraints on the displacement field of the entire body. There are typically five

types of floating reference frames: (l) a locally attached frame, (2) a principal

axis frame, (3) Tlsserand's frame, (4) Buckens* frame, and (5) a rigid body mode

frame (Canavin k likins [1977]). When the structure has a central rigid body

with attached flexible appendages, the frame is attached to the rigid body (the

locally attached frame) and no constraint equation is needed. For structures

with distributed flexibility, other types of floating frame should be used. In

these frames, the origin is fixed at the center of mass of the deformed struc

ture, Le., one seeks to annihilate the linear momentum relative to the floating

frame. Its orientation is then defined by adding constraints concerning the rela

tive angular momentum. When small structural deformation is assumed, the

Buckens frame is the most widely used since one can either use the free-free

elastic modes to eliminate these (holonomic) constraints from the equations of

motion (Canavin &Ukins [1977]), or apply the Gram-Schmidt orthogonalization
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procedure on an independent set of basis functions to eliminate the Buckens

constraints (Benson &Hallquist [1985]).

For the type of highly flexible large space structures described above, what

would guarantee that the deformations remain small? Clearly, traditional

approaches employing the small strain assumption would yield only a first order

approximation to the fully nonlinear theory. The methodology proposed in pre

vious chapters represents a departure from traditional approaches in that, by

employing fully nonlinear structural theories, we refer the dynamics of the

structure directly to the inertial frame, and thus completely by-pass the use of

a floating reference frame. The inertia term for the translation part then

becomes linear simply as mass times acceleration; the rotational part has the

structure of the equations of motion of a rigid body. Moreover, the role of non

linear theories in the dynamic analysis of rotating flexible structures, where

linear theories are inadequate to capture certain phenomena, has been explored

in Chapter 3.

Rotationally-fixed floating frame. Mathematically, the system of partial

differential equations summarized in Box 5.1 completelydescribes the dynamics

of a flexible satellite constituted of beam elements. However, when gravitational

force is accounted for, it is computationally unwarranted to refer the dynamics

of flexible satellites directly to the inertial frame using finite precision

mathematics. The reason clearly stems from the large difference in magnitude

of structural deformations and the distance from the center of the earth to the

satellite. Owing to the property of invariance with respect to superposed rigid

body motion of the rod model, we can refer the dynamics of the satellite to a

parallel translate of the inertial frame. As a result, when this floating frame is

placed in the neighborhood of the satellite, the structural deformations, will be

properly described.



{6.2 Dynamics of Flexible Satellites and Multibody Systems 181

Let us introduce the frame {Z;ai. 6*. agj. as shown in Figure 6.2.1. with base

point ZcF? whose position relative to origin 0 of the inertial frame is given by

the position vector

*>"*(*)•». (6.1)

and such that the orthonormal basis vectors (8%) have constant components

relative to the inertial basis {ej}. This frame is thus rotationaily fixed with

respect to the inertial frame, and will be henceforth referred to as the

rotationally-fixed floating frame. For convenience, we choose a* • e* m^,

which makes (Z;eA. Cfe, eg) simply a parallel translate of the inertial frame

{0;ei, eg, eg). Let f)f:[0. £]-»]R3 denote the deformation map of the line of cen-

troids of the beam relative to this frame. The position vector of the centroid Xo

defined in (4.1b) cannow be restated in terms of #/ as follows

* mf>o(S.t) =Z(0 +*?(S.t) =[Zi(t) +#5(5.0] «* (6.2)

Note that the relation (4. lc) for the rotation field remains identically the same

for the rotationally-fixed floating frame. We shall refer to the map t-*2(t) as the

far-field dynamics which will be used later to describe the position of the satel

lite relative to the inertial frame. By the dynamics of the near field, we refer to

the map t -*f>fi[S,r) whichdescribes the structural deformation.

6.2.2. loading conditions and far-field dynamics

loading conditions. Three types of loading are considered. The simplest

loading is the spatially fixed type with (possibly time varying) components rela

tive to the inertial basis vectors given by n/(r) =n/(r) ej. Most relevant to

flexible satellites is loading which is dependent on the deformation of the struc

tures such as actuator control forces —coming, for example, from gas jets or

ion thrusters —used for the pointing maneuver and vibration suppression. The
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actuator control force considered herein falls into the category of follower load

ing of the circulatory type —that is, loading which is not derivable from a poten

tial and not explicitly dependent on time —defined as follows

*•<*>:= WO «0- (6.3a)

The applied load in (6.3a) thus follows the change in orientation of the cross sec

tion, represented by the basis Jt|J, and may have time varying magnitude. By

virtue of (4.1c), relation (6.3a) can be rewritten as

B°(A)=iW^c4. (6.3b)

thus explicating the dependence of the actuator loading on the configuration.

Finally, gravity loading derived from a spherical potential applied to a material

point of mass Ap located at a distance $0 from the source, here the origin 0, of

the form

»»(♦.)=-^^~ (6.4)
'O

is also configuration dependent In (6.4). fi denotes the gravitational constant.

For the rod model, using (6.4) implies the reasonable assumption that the mass

of the rod is concentrated on the line of centroids. Even though more complex

models of the gravitation field could be considered, our purpose here is to show

how the formulation could accommodate configuration dependent loading. For

this reason, within the confines of this chapter, we shall consider only the follow

ing type of loading

B = n/ +liB(A) +H* (f>0 ) (6.5)

Far-field dynamics. To determine the far field dynamics t •* Z(t). we shall

employ the following equation which defines the motion of the center of mass of

the satellite,
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%<) =I(S A) := g2-+1-^ t^+fi«(A)]dS. (6.6a)

2
where p is the unit vector defined as p := -r=p and M the total mass of the satel

lite.

Jf:= fAJS)dS (6.6b)
tfII

The first term on the right-hand side of (6.6a) gives the acceleration due to the

gravitational field, whereas the second term represents the acceleration pro

duced by the spatially fixed and actuator follower forces applied to the satellite.

6.2.3. Near-field dynamics and weak formulation

Near-field dynamics. In treating the dynamics of the near field one can

always assume that the far field t -» Z(f) is known. The equations of motion for

the near field are in fact valid for any known function 2(t). Noting that

-g^-« -jr^-and using the decomposition (6.2). Le„ $0(S,0 =Z(t) +#/(5.t),

we obtain

f§-+ [B^ +H«(A) +H»(Z. #*) - Ap Z] =A, tf

The strain measure T is now evaluated by

T^V^f-* (6.7b)
It is noted that equations concerning the dynamics of the rotation field of the

rod and its curvature in Box 5.1 remain identically the same in the above formu

lation.
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In all applications of interest, the origin Z of the rotationally-fixed floating

frame, with position vector Z(0. is located ina small neighborhood of the center

of mass. Thus, in the present situation, we have t := *g-p « 1. To avoid

numerical ill-conditioning of the gravitational force field n*(£ #f), one employs

the following standard Taylor series expansion that retains terms up to order
0(e*)

B?(S *!)m-A,n+*+* =- &£+
l#/+z|8" |zp

1- 3P*#o
n

Apfip
- 2£.

m
1- 3P*** 3 Wff , 15 (Z-0O*)2

in 2 |Z||8 2 |Zf

The complete system ofpartial differential equations describing the dynam

ics of the far field and of the near field is summarized in Box 6.1.

Remark 6.1. It should be noted that the far-field dynamics and the near-

field dynamics are coupled through the presence of the follower actuator force

BB(A). dependent on the rotation field A of the rod. in equation (6.6) and the

presence of the forcing term A/Zas well as the gravity force ti?(Z +?). which

depends on the far field Z(f), in equation (6.7). •

Dynamic weak form of the near field. The weak formulation of the local

equations (6.7) governing the dynamics of the near field is the cornerstone of

the finite element numerical solution procedure discussed in the next section.

Consider a configuration of the satellite defined by f>0(5. t) = Z(0 + #f(S. t)

and A(5, t). We shall denote by 5 -• q(S) := (ih(S). f (S)) an admissible varia

tion of the configuration «) :=(«)f. A). Physically. S •+ t)0 (5) represents a super

posed infinitesimal displacement field, and S •+ f(S) a superposed infinitesimal

rotation field onto the satellite. By multiplying (6.7) by i|(5) and integrating

z

+ 0(c3). (6.8)
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BOX 6.1. The far-field and the near-field dynamics

Far field

*>• jS-b-^+'wi-s

Near field

2A£|^= ks.t) ns.t).
dS

es *•

n =A^(5r.Q)
dr

^ii-=w<5.0A(5,0

Q = Aro

0n^-+[fi-i4pZ] = i4p
dS V

am . 8#o
z

fl5"+ "^-xn +fii = Vw +wx[IpW]

185

over [0, L] we obtain, after integration by parts, the following dynamic weak

form

5*n(*. i?) := / Up #f•Vo +Rp w+wx(^w)] •*}dS - G($.17) (6.9a)
BUI

Here, G($t n) denotes the static weak form ofequilibrium given by

c(*,}:= il!n'[^"*x^+ m'31-5-**<*•*> {69b)
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where £%*(f). if) is the weak form ofthe externally applied loading; that is

*%*(#. 17):= /{[fi/+lSg»#oVfi<l(AM/>Z].i|0 +m.f{dS. (6.10)

It is noted that in (6.10). the far field Z(f) is assumed to be known, and the

acceleration term A^Zis regarded as an additional forcing term.

6.3. Computational solution strategy

In this section, we shall discuss in detail the numerical integration pro

cedure to solve the system of equations in Box 6.1. The proposed treatment

relies on an essential property of our formulation: The motion of the

rotationally-fixed floating frame relative to the satellite (the map t -* Z(f)), in

strict mathematical consideration, has absolutely no influence on the mechani

cal behavior of the satellite (the deformation map t •* #/(S,r)). Its role in the

formulation can be thought of simply as a "zooming device," and serves the sole

practical purpose of avoiding numerical ill-conditioning resulting from the large

difference in magnitude between the structural deformation and the distance

from the satellite to the center of the earth. This ill-conditioning of course

arises only when gravitational force is taken into account in the formulation.

Conceptually, the coupled problem to be solved may be stated as

Find 2(f), f*(St t), andA(5, t) such that:

Z= f(Z. A), and

Gu*n(0. *?) = 0, for any 17 admissible,

where 0) := (0o. A), and 0O = Z+f*. The single-step solution procedure can be

summarized as follows:
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Assume that at tune t = tn, the solution is known, t.e., we have solved for

(Z(tn). f)/(£.*n). A(S,*n)j. Find the solution at time f,^ = ** + /i denoted

by lZ(in+i), *)oG£t*n+i)> A(5,in+1)j, inhere A represents the time step size,

based only on the known solution at time tn.

We propose a single-step explicit/implicit transient algorithm to solve the above

coupled far-field/near-field satellite dynamics problem. Consider the time

interval of interest [0, T] to be discretized into subintervals such that

[0, T] = u [tn, tn+x], where f^i := ** + h, and h is the time-step size. The fol-

lowing steps are performed over the interval [*,». f»+i]:

(i) Solve the initial value problem Z= / (Z. A), with initial condition Z(tn) = Zn,

by assuming that A remains unchanged within this time interval, i.e.,

A(S,t) mA(5, tn), for t e[tn, tn+i\. The numerical integration is performed

by an explicit integration method.

(ii) Solve the nonlinear structural dynamics problem Gty„($, 17) = 0 by a gen

eralized Newmark implicit time-stepping algorithm and the spatial Galerkin

finite element method. This discretization procedure results in a system of

nonlinear algebraic equations that can be solved by Newton's method.

We shall first discuss in Section 6.3.1 the temporal discretization in steps (i)

and (ii), followed by the spatial Galerkin finite element discretization of the weak

form for the near-field in Section 6.3.2.

6.3.1. Temporal discretization

In line with standard usage, we employ the subscript n to denote the tem

poral discrete approximate of a time-varying quantity at time tni thus for the

far field ^ S Z(fn). for the near field *(S) * #.*($.*»). vn(S) =*i(S.tn),
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•n(S) S ff(S.tn), and for the rotation field An(5) S A(5,tn), wn(5) S w(S,*n).

«n(5) =1^(5,^). Also denote the configuration at time *» as $n(S)

:= (dn(S). An(5)).

Far-field dynamics' Explicit scheme. The ordinary differential equation

(ODE) describing the motion of the center of mass of the satellite given in (6.8)

is easily solved by employing any of the classical explicit single-step algorithms

for ODE'S (e.g., Gear [1971]) if the function f(£ A) is explicitly known. However,

the dynamics of the rotation field t -»A(5,f) for t fc tn is not known until we

have solved the equations of motion (6.7). Hence, to solve for 2V»+1, with known

solution \Zn. An(5)j. we assume that A(S,f) • An(5), for all time t in the xrder-

wzl [*n. *n+i] In the implementation, we employ the explicit Runge-Kutta 4th

order method.

Remark 6.2. In fact, a wide choice of numerical algorithms for ODE's —

explicit or implicit, single-step or multi-step —could be considered to solve for

the far field with the above assumption. We note that in general, due to struc

tural vibration, the time step size of the whole numerical integration scheme is

rather governed by the near-field dynamics. •

Remark 6.3. Numerical integration of the far-field dynamics is only neces

sary when external forces from other than the (spherical) gravitational field are

applied on the satellite. In the absence of these applied forces, one can use

well-known analytical solutions in orbital mechanics (the two-body problem) to

obtain directly the solution for the far field Tit). •

Remark 6.4. Because of the assumption that the follower load remains con

stant in the interval [tn, *n*i] for the integration of the far-field, the origin Z of

the rotationally-fixed floating frame will not exactly follow the path of the center

of mass of the satellite, and could gradually drift away from the latter. We note
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that the assumption of piecewise constant applied follower loading used in the

integration of the far field is closely related to the rectangular integration rule.

This assumption can therefore be viewed as a convenient interpolation of the fol

lower actuator load; the role of this interpolation is to allow a decoupling in the

numerical treatment of the coupled far field/near field problem. However, first

due to the small time step size to accommodate structural vibration as noted in

Remark 6.2, the drift of origin Z from the center of mass would be insignificant.

Second, since one could always arbitrarily re-position the floating frame relative

to the satellite as will be shown later, the drift of Z from the center of mass is

therefore inconsequential as far as the structural response of the satellite is

concerned. •

Near-field dynamics: Implicit scheme. The basic problem concerning the

discrete time-stepping algorithm for the near field may be formulated as follows.

With Zn+i known from solving the far-field dynamics as described above, and

given the configuration f)n := (d^, An) eRsxS0(3) at time tn. its associated

linear and angular velocities, (•„. wn), and linear and angular accelerations

(«n. «n). obtain the configuration f>nM := (dn+i. An*i) ^ T&*SO(3) at time fn+1,

the associated linear and angular velocities (•»+!. wn+1). and the linear and

angular acceleration («*+], On+i). To this end, we employ the generalized impli

cit Newmark algorithm summarized in Box 5.2.

Remark 6.5. The accuracy of the implicit integration scheme for the near

field is independent of the accuracy of the integration scheme for the far field in

the sense that we shall always obtain the structural displacement and rotation

fields of the rod up to second order accuracy (see the analysis in Chapter 5)

regardless of the choice of integration scheme for the far field. •



{6.3 Dynamics of Flexible Satellites and Multibody Systems 190

We shall now proceed to the spatial discretization procedure of

ft^n(#n+1.1?).

6.3.2. Linearization and spatial discretization

We recall that as a result of introducing the generalized Newmark time

stepping algorithm in Box 5.2, the weak form £tyn(#n+i. V) = 0 governing the

dynamics of the near field becomes a nonlinear functional depending on

f)n-n(S) := (dn+i(5). An+i(5)). In what follows, we shall be concerned with the

spatial discretization of this nonlinear functional by a Galerkin procedure.

Tangent gravity load stiffness operator. The solution of the nonlinear varia

tional problem 5tyn(0n+i. i|) = 0 by Newton's method —step (ii) of the solution

strategy outlined above —involves the solution of a sequence of linearized prob

lems, denoted by L[ G(#n2i. v) ]=0 where the superscript (i) designates the

iteration number. These linear problems are obtained by consistent lineariza

tion of Gdynia, i?) = 0. at the current configuration S -»^li(S)

:= (dn*2i(5). An^i(5)), in the direction of an incremental field 5 -»tyn%(S)

:= (Aui<)1(5), 6t&nlli(^)) according to the directional derivative formula

*[ <<*»(#$i. «i) ]:= q«.(#fti. v) + jr 0*»(#$i +eA##i.ij) =0 (6.11)
*e0

A detailed account of the linearization process for the static weak form

G($nl\. 17) defined in (6.9b) that includes consideration of follower loading is

contained in Chapter 4. Extension of this methodology to the dynamic problem

governed by the weak form Gtynlfnii* 1?) in (6.9a) is given in Chapter 5. Thus,

within the present context, it only remains to address the linearization of the

contribution to Gfat (#n2i> *?) defined by (6.10) of the gravity force field. This

contribution will be denoted by Gfzti^nli* V) in what follows. By making use of
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the Taylor series expansion (6.8) in (6.10). use of the directional derivative for

mula yields the expression

5pn+i-4$id_
dt *<#tfli+tA*Ki.*>«- / %T-' 3 1

16.L] ftt*lD I

Pn+1 ® *k% +
^Dn^-d^V

|Zn + 1^+1

K»+il

AUn4)itlS (6.12)

Pn+1 ® Pn+l

Note that the above tangent gravity load stiffness operator is non-symmetric

and concerns only the translational degrees of freedom. This result will be used

in the computation of the load stiffness matrix upon introducing the spatial

discretization.

Galerkin finite element discretization. Following the same procedure as in

Section 4.6.1, we begin by introducing a partition of the interval [0, L] into non-

N-l
overlapping subintervals according to [0, L] = u [Sk, S*+i], where

0 • Sx < 52 < • • < Sjt m L. Consider the following approximation for the

translational field

*n+i(S) S^tfi(S)<Wj. where dn+u =dn+1(S» . (6.13a)
Here, Nj(S) is a set of global functions which are either prescribed or con

structed from local finite element approximations in the standard manner. An

Interpolation for the rotation field S -»An+i(£) is constructed by noting that

An+i(£) = exp U6»+i(5)], where x(£) is the skew-symmetric matrix associated

with the rotation vector X- We then consider the approximation for the rotation

field

Xn+i(S) S 2 #i(S) Xn+U . where Xn+u s Xn*i(S» .

and An*i(S) S exp [x»+i(S)] . <6'13b)
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Note that the approximation scheme for the rotation field preserves exactly the

orthogonality property of A. By substitution of the interpolation in (6.13a-b)

into the the weak form Qtyn(f)n+i* *l) = 0, and assuming that the admissible vari

ations 1} := (rj0, f) are approximated in the same manner according to

n(5) " /£ */(5)l7/ with^ S^*>- (6.13c)

after application of standard results in variational calculus, we arrive at a sys

tem of nonlinear algebraic equations whose linearized form is given by

P/(#$i) +jE*r(*» #Wi) AftfJu • O. (6.14a)
for /=1,...,JV. In (6.14a), P/ represents the residual force, and K// the dynamic

tangent stiffness matrix obtained from

K//(An. fftl) « H/y(An. A»|) +&b/(#fti) +Qulttii)

+Ift(4Ki) +!*«»«. 4S9i) • (6.14b)

Expressions for the tangent inertia matrix H//, the material tangent stiffness

matrix Sjj, the tangent geometric stiffness matrix G//, and the tangent foLlower

load stiffness L& have been obtained in Chapters 4 and 5 —see equations (5.23),

(4.61), (4.62), and (4.63), respectively. The expression for the tangent gravity

load stiffness results from the introduction of the approximations (6.13a,c) into

(6.12).

Apu , 5*W4fli(S))_ -
fc»*iB

*k^t*" •4W,(5)+11 _3PhVw'(5)]l8 "/(5) NAS) d*514c)
The incremental displacement and rotation A$$i ^an De obtained easily by solv

ing (6.14a). The update procedure to obtain the solution $n+P at iteration (i+l)
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such that the solution always remains in the configuration manifold is, however,

non-trivial; we refer to Chapters 4 and 5 for the detailed discussion.

6.3.3. Re-positioning of the rotationally-fixed floating frame

One of the salient features of our formulation is that the rotationally-fixed

floating frame could be arbitrarily re-positioned and its velocity in the inertial

frame reset at any time. Thus in case of a drift of the origin Z of the floating

frame from the center of mass, one could easily re-position the floating frame to

the center of mass by first computing the current position of the center of mass

relative to Z, denoted by r,

KO =±r J Ap(S) #0z(5.f) dS (6.15a)
m [0.1]

with velocity and acceleration relative to the floating frame given by,

KO =jr J Ap{S) 4>f(S,t) dS . (6.15b)

8(0 =jr J AP(S) tf(S.t )dS. (6.15b)
M lax]

Only when ]Z| and [r] are of comparable magnitude to threaten the loss of preci

sion on the structural deformation due to round-off error that the re-positioning

procedure need be performed. In this case, suppose that we wish to re-position

the floating frame at time t = F, we simplyrestart the integration of the far-field

dynamics with initial conditions reset as follows:

Z(F)-[Z(F) +r(F)]
Z(F)«-[Z(F) +r(0] (

Also the near-field dynamics is reset according to

#M)*[#«0-i(0]
if(i) <• [i?(t) - f(f) ] (6.16b)
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It is clear that the above re-positioning procedure leaves strictly unchanged the

value at time t of f)0 (F) = Z(F) + #f(F). and hence the values of the velocity

f)o(F), and acceleration f0(t). Further, this re-positioning procedure is most

conveniently employed when a single-step integration algorithm for ODE's is

used to solve for the far field.

6.3.4. Numerical examples

We shall give two numerical examples of application of the concept

rotationally-fixed floating frame in the dynamics of flexible rods undergoing

large overall motions with and without the effects of gravitational force. All

figures of the deformed shapes reported herein are given at the same scale as

the geometry of the structure. There is no artificial magnification of the struc

tural deformation for visualization purpose.

Example 6.3.1. free-free flexible beam undergoing large overall motions

(revisited). Consider a free-free flexible beam initially placed at an inclined

position and subjected to applied force and torques at the lower free end as in

Example 5.5.4. Since the gravitational field is not considered in this example,

and since only spatially fixed loading is applied on the beam, the dynamics of the

far field and the dynamics of the near field are completely decoupled:

S=^/fif(5)d5. (6.17)

g.+ [tf-^]«4flf. (6.18)

Substitution of (6.17) into (6.18) yields the equation of motion for the near field

f§-+ [B^ - ^T *?&)<& \=A^i. (6.19)
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Thus, in this example, one does not need to solve for the far field if only the

near-field dynamics is of prime interest The result is shown in figure 6.3.1 with

a clear physical meaning: The motion given in figure 5.5.4e as perceived by an

inertial observer is now seen by an observer, attached to the rotationally-fixed

floating frame and moving with the center of mass. A time step size of h = 0.1 is

used in both analyses (with and without the rotationally-fixed floating frame). A

Justification of the time step size chosen was given in Example 5.5.4.

Example 6.3.2. Satellite dynamics: libration and orbit transfer. To illus

trate the proposed methodology for solving the coupled far-field/near-field prob

lem in the presence of gravitational force, we consider in this example a beam of

length 100>/§ completely contained in the plane |elf 62) and placed at 45° with

respect to axis ej. The center of mass of the beam is initially located at a dis

tance of 7xlOe from the center of the earth, Le., Z(0) =7x10^ e^ For the center

of mass to describe a circular orbit, an initial velocity of Z= 7544.1557 eg is

chosen; the gravitational constant being (j, = 3.984X1014. We are interested here

in capturing the well known librational motion, due to the effect of gravity gra

dient, of orbiting satellite when the geometric configuration of the latter departs

from spherical symmetry. Hence, for simplicity we choose the initial conditions

for the near field to be f)/(5.0) = $f(S.Q) =$?(S,0) m0. For the rotation field

of the beam. A(S,0) = 13. w(5,0) = a(S.O) - 0. Let X be the (libration) angle

between the beam and the unit vector p:= |^pknown as the local vertical, see

Figure 6.3.2a. The dynamics of libration of a uniform bar on circular orbit

(lH = constant) is governedby the differential equation

« _ 3 u sin2X ,_ _ _NX= gi^a— (6-20)
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The initial conditions for (6.20) that correspond to the above chosen initial con

ditions for the far field and the near field are given by X(0) = ~ and

£(0) =- [£L( j• Figure 6.3.26 shows the evolution of the libration angle Xas

obtained from the proposed approach to finite deformation satellite dynamics

and from using the 4th order Runge-Kutta method to integrate (6.20); both

curves are obtained with a time step size of h s 100 which in fact covers a com

plete circular orbit in about 60 steps —the orbital period for the above initial

conditions of the far field is 5830 sec. With a smaller time step size, for example

h = 10, we can exactly achieve the result as obtained from solving (6.20). In

addition to the second order accuracy of the algorithm summarized in Box 5.2

as compared to the fourth order accuracy in the integration of (6.20), we note

that the need for a smaller step size stems from the fact that the semi-discrete

equations (ODE's) of the PDE's in Box 6.1 are actually much stiffer than (6.20).

Next, to demonstrate how a combination of loading given by (6.15) could be

applied on the satellite, we consider an orbit transfer from the current circular

orbit to a higher circular orbit by passing through an intermediate elliptic orbit.

This orbit transfer is achieved by activating the satellite thrusters under the

form of impulsive loading in two stages, first, when the satellite completes the

first revolution in the low circular orbit, impulse loading with resultant in the

direction of axis eg is applied to induce an increase in magnitude of the velocity
•

Z, and thus put the satellite into a transitory elliptic orbit as depicted in Figure

6.3.2c. The time history of the libration angle (in degree) is given in Figure

6.3.24. Next, when the satellite reaches the apogee of this transitory orbit,

impulsive thruster force, with resultant in the negative direction of axis eg, is

again applied to put the satellite on a higher circular orbit with the radius

defined as the distance from O, the center of the earth, to the apogee of the
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elliptic orbit. Since the satellite tumbles on the transitory orbit, as can be seen

from figure 6.3.24, an impulsive couple is also applied at the same time to stop

the tumbling; it therefore subsequently induces the satellite into a librational

motion in the higher circular orbit. The radius of the higher orbit is about

L643X107 with an amplitude of libration about 70° over a h«if librational period

of about 9610sec. This result can be easily verified using (6.20).

6.4. Dynamics of multibody systems

A robot manipulator arm consisting of human-like links connected by joints

is an example of a multibody system. Today's commercial robots are designed

to be rigid because of the limitation of currently available analytical tools —

mainly in the active control design of these mechanical systems (Bubowsky

[1985]). As a result, they are heavy and slow. Future robots will be light weight,

thus very flexible, and operating at high speed. Robot arms also play an impor

tant role in space technology: for instance, the Canadarm on the Space Shuttle

assists in launching and retrieving satellites. | Future space stations assembled

from several modules with different degree of flexibility —habitation module,

solar array, radiator, universal interface —provide another example of multi-

body systems. In the construction phase of these space stations, the versatile

robot manipulator arm will find its role increased even more. In the envisioned

Automated Space Manufacturing Facility, robotics are essential for efficient

manufacturing, repair, and for building newgenerations of equipment.

There exists a vast body of literature on multibody dynamics starting with

the pioneering work by Hooker &Margulies [1985] and Roberson &Wittenburg

t The Canadarm alsohelped closing balkyhatchesandknocking off a block of ice that accu
mulated an the liquid-wastevent of the Space Shuttle.
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[1967]. Most of the research in this areawas focused on systems of rigid bodies;

attention has been, however, directed to the study of flexible multibody systems.

An overview of several approaches to the dynamics of n-body systems can be

found in Jerkovsky [1977]. An extensive reference list is contained in Huston

[1981]. Ho k Herber [1985] classify multibodysystems into several categories in

the order of increasing difficulty in the formulation as follows: (l) two-rigid-body

system, (2) all-rigid topological tree multibody system.^ (3) cluster of flexible

appendages around a central rigid body, (4) topological tree multibody system

with rigid interconnected bodies and flexible terminal bodies, (5) all-flexible

chain system, and (6) all-flexible topological tree multibody system. There are

basically two points of view to treat the dynamics of multibody systems (Hughes

[1979]): (i) the formalism developed by Roberson k Wittenburg [1967] known as

the Augmented Body Approach, and (ii) the Direct Path Method propounded by

Ho [1977]. In these approaches, one first transforms the individual body dynam

ics into a common set of dynamic variables, then eliminates the interacting

forces and couples at the connecting binges. Treatment of the fiexible chain

system (5) may be found for example in Hughes [1979] with some restriction in

the speed of motion of the angles at the joints, while treatment of the more

complex topological tree multibody system is explored in Huston [1981]. In gen

eral, with the presence of closed-loops, additional non-holonomic constraints

have to be included in the equations of motion (e.g., Kane & Levinson [1983]),

and thus require special care in the numerical integration procedure.

It is emphasized that as a direct by-product of our formulation, one can

easily analyze fiexible multibody configurations of classes (5) and (6) of the Ho-

% That is a set of (n+1) bodies interconnected by n points, each of which is common to two
bodies. The tree topology thus implies the absence of closed loops.



(6.4 Dynamics of Flexible Satellites and Multibody Systems 199

Herber classification, and even with the presence of closed loops. This is

achieved without alteration of the formulation and without any additional con

straints since hinge conditions are accounted for in a straightforward manner

using the spatial Galerkin finite element discretization of the equations of

motion.

We shall first consider the case of a fiexible beam attached to a rigid block

in Section 6.4.1, and show how the present approach could be easily applied to

analyze this system. Also, we will discuss how to treat systems constutituted

from a rigid body with several attached flexible appendages including closed-

loop links —this class of multibody systems in fact encompasses class (3) of the

Ho-Herber classification as a subset. In Section 6.4.2, we shall present several

examples that involve flexible chains undergoing large overall motions. Further,

owing to the full nonlinearity of our formulation, should the chain be made more

flexible, large deformations in these links would be obtained. Also, no limitation

on the speed of evolution of the system is imposed.

6.4.1. Rigid body with attached flexible appendages

For simplicity in the exposition and without loss of generality, consider the

free plane motion of a flexible beam attached to a rigid block of mass Ap and

inertia /* with respect to the connection point. We then use the same notation

as in Section 2.3 of Chapter 2. The kinetic energy of the system is given by

expression (2.24) augmented by the kinetic energy of the rigid block,

* = f/ C^pI*oB8 +/P^2]^i +^|*0(o.OF +/^*2(o.O. (6.2i)

The expression for the potential energy remains the same as in (2.28),

11= f / [EATf +GA.r§ +EI(#')2]dS- /[fi'*, +fn#]dXl (6.22)
* &I) [0.L]
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where the expression for the strain measures Vi and Ig in terms of the displace

ment components (uuu2) and rotation 15 is given in (2.27b). Application of

Hamilton's principle yields the following system of PDE's

nx + Hx = ApUx

n8 «•• K2 = Apu\ (6.23a)

in + [(1 +Ui )nz-u2 rij] + m = J 5

with boundary conditions

ni(0.0 = Aju^O.f). n^I.O-O
n8(0. r) = A* ug(0, f), n8(Z. 0-0 (6.23b)
m(0.0 = lg9(0tt). m(X.f)s.O

where (nltn2) represent the internal forces and m the internal moment defined

in (2.33).

Weak form. The weak form of the above set of PDE's and boundary condi

tions is obtained from expression (2.42) augmented by the terms corresponding

to the boundary conditions

Q*n(#.i7) = fvifdXi +1,(0). i**(o.O -17(0).
tin

ni(0.f)
n2(0.i)
m(0.f)

+ G(*.f)) = 0.

(6.24)

for all admissible variations n e (Hl(0,L))3. All quantities such as I, $, G($,n)

have been defined in (2.41) and (2.43) of Section 2.4.1, except

I* := Diag[Ap,Ap,Ip]. Upon integrating by parts the first term in £($,tj) of

(2.43), and from the cancellation of the boundary terms, the dynamic weak form

In (6.24) becomes

G^n(#.i?) = /f|-I*c«r1+f,(0).IR#(0.f) + G(#.T,). (6.25)
[0.L]
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where G(+,n) is now given in (2.45). The temporal and spatial discretization of

the above weak form, as discussed in Section 2.4, leads to the same mass matrix

as in (2.64) with the exception that

Mn • J^-i fL l[Nl(Xl)]idX1 +I* i (6.26)

as a result of the choice of the global shape functions Nj(X) such that

Nj(Xj) = £//-t *^e other tangent matrices are the same as givenin Section 2.4.3.

It thus follows that the case of a flexible beam attached to a rigid block and sub

ject to large overall motions can be accomodated easily within the proposed

methodology.

Satellites often have the configuration of a cluster of flexible beams (e.g.,

antennae) attached to a central rigid block (e.g., main body of the satellite). In

this case, one can choose, as a basic structural component, the rigid block and

one of the attached flexible beams; thus the model for this basic component has

been discussed previously. The remaining flexible beams are then tied to the

basic component by means of algebraic constraint equations expressing that the

distance between the points of connection of the beams to the rigid body

remains constant at all time. We are thus led to a constrained nonlinear prob

lem. Further, treatment of the three-dimensional case is identically the same.

6.4.2. Numerical examples of flexible hinge-connected multibody systems

As a direct application of the proposed methodology, one can treat the

dynamics of flexible beams interconnected by hinges without alteration in the

formulation. This is possible since the hinge conditions can be easily accounted

for in the finite element formulation by simply identifying the displacement
t d//denotes the Kronecker delta.
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degrees of freedom of the hinged ends, leaving free the rotational degrees of

freedom. The case of a closed-loop chain attached to a rigid body presents in

principle no difficulty, except that the treatment must include possible alge

braic constraints.

Example 6.4.1. Multi-component robot arm. The robot arm considered in

Example 2.5.1 is in this example stiffer by a factor of 100, and now consists of

two fiexible components connected together by a hinge at mid-length. The two-

component robot arm is subjected to the same prescribe rotation V(') • tf(0, t)

as in Example 2.5.1. The problem data are summarized in Figure 6.4.1a. The

sequence of motions is shown in Figures 6.4.1b and 6.4.1c. Note that while the

first component vibrates about the stop angle if(t) = 1.5rod for t fc 2.5, the

second one undergoes a complete revolution about the connecting hinge at

mid-length.

Example 6.4.2. Articulated beam in free flight. A two-body system consist

ing of two flexible links connected by a hinge, is initially at an inclined position.

The system is set into motion by applying a force and a torque at one end of the

lower link, as shown in Figure 6.4.2. The applied loads are subsequently

removed at time t = 0.5, so that subsequently the articulated beam undergoes

free flight. The lower link, indicated by the letter A in the figure, then moves in

the same clockwise direction as the applied torque, whereas the upper link, indi

cated by the letter B, moves in the opposite counter-clockwise direction.

Example 6.4.3. Closed-loop chain in free-flight. To demonstrate the capa

bility of the present approach to model the dynamics of flexible multibody sys

tems, we consider a closed-loop chain constituted of 4 flexible links intercon

nected by hinges as shown in Figure 6.4.3a. One of the links is 500 times stiffer

than the other three: link AB in Figure 6.4.3a has a bending stiffness of

EI = 10°, while the remaining links have a bending stiffness of EI = 200. The
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other material properties are chosen to be identical for the four links, and are

listed in Figure 6.4.3a. Initially, the closed-loop chain forms a square of length

10 for each side. The whole system has no prescribed displacement boundary

condition. To create a forward motion, a force is applied at end A of the stiff link

AB; the overall tumbling motion of the chain is induced by a torque applied at

the same end as shown together withthe time history of their magnitude in Fig

ure 6.4.3a. Figure 6.4.3b depicts the entire sequence of motion with three

close-ups given in Figures 6.4.3c-e. A time step size of h =0.1 is used

throughout the analysis.

6.5. Conclusion

We have presented a methodology to treat the dynamics of flexible struc

tures performing large complex motions. The essence of the proposed approach

is largely based on the use of fully nonlinear strain measures. These strain

measures together with the stressTesultants and constitutive laws are required

to satisfy the property of invariance with respect to superposed isometries

(rigid body motions). This property allows the dynamics of flexible structures be

referred directly to the inertial frame, and thus simplifies considerably the iner

tia operator in the equations of motion.

In addition to the above advantage, the centrifugal stiffening effect in rotat

ing structures is properly accounted for when using nonlinear theory. Further,

the proposed methodology is suitable to treat the dynamics of flexible struc

tures subjected to large overall motions and undergoing a wide range of struc

tural deformations.

We have focused our attention only on one-dimensional structural elements,

Le., flexible rods. Since the rotation field in the rod is represented by orthogo

nal, generally non-commutative transformations, the deformation map takes
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values in the nonlinear differentiable manifold R3xS0(3), instead of the linear

space R9xR3 usually encountered in nonlinear structural dynamics. Concepts

from modern differential geometry proved to be useful in the numerical treat

ment of the nonlinear PDE's governing the motion of the rod. An efficient com

putational algorithm has been developed; its convergence and accuracy is also

established Quadratic rate of convergence of the Newton iterative procedure in

the integration algorithm results from the exact linearization process. More

over, the update procedure is stable in the sense that the solution be required

to remain in the configuration manifold, andthat the property of invariance with

respect to superposed isometries be preserved.

The dynamics of earth-orbiting flexible satellites is completely described by

the same system of equations of motion for the fully nonlinear rod model. How

ever, to avoid numerical ill-conditioning due to the large difference in magnitude

between the distance from the earth to the satellite and the structural deforma

tions, we introduce an additive decomposition of the displacement field of the

rod into the far field and the near field. This decomposition led to the concept of

rotationally-fixed floating frame to treat satellite dynamics. To integrate the

coupled far-field/near-field problem, an algorithm has been proposed such that,

for the near-field dynamics, all of the properties concerning convergence and

accuracy mentioned above are preserved. In other words, the accuracy of the

integration of the near-field dynamics is unspoiled by the integration of the cou

pled far-field dynamics. Further, the proposed methodology can be applied to

the dynamics of flexible multibody systems (rigid body with flexible appendages,

all flexible chain system, fiexible closed-loop chain) without alteration in the for

mulation.
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Figure 6.3.1. Free-free flexible beam undergoing large overall
motions. Perspective of deformed shapes as seen by an observer
attached to the rotationally-fixed floating frame.
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Figure 6.3.2b. Satellite dynamics: Libration and orbit
transfer. Time history of libration angle Aon lower circular orbit.
Line A:present formulation; line B: "exact" solution.
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Figure 6.3.2c. Satellite dynamics: Libration and orbit
transfer. Transfer from lower circular orbit to higher orbit
through a transitory elliptic orbit.
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t*0.5

Figure 6.4.1b. Multi-component robot arm. Repositioning
sequence to stop angle tp = l.5rad. Time step size h = 0.1.
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Figure 6.4.1c. Multi-component robot arm. Vibration of robot
arm about stop angle, and revolution of flexible appendage about
connecting hinge. Time step size h = 0.01, plot after each 10 time
increments.
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Figure 6.4.3b. Closed-loop chain in free flight.
sequence of motion.
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Figure 6.4.3d. Closed-loop chain in free flight. Deformed
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shape at time * = 14.4.
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