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ABSTRACT

This dissertation is concerned with the modeling of flexible structures sub-
jected to large overall motions. Applications span diverse disciplines: from
robotics and machine design to aircraft and spacecraft dynamics.

Traditional approaches to this class of problems are based on the assump-
tion of small deformations, thus relying crucially on the use of a floating refer-
ence frame. The resulting ‘set of equations of motion is nonlinear and highly
coupled in the inertia terms. By contrast, an alternative approach is proposed
in which fully nonlinear structural theories, which are properly invariant with
respect to superposed rigid body motions, are employed. Owing to this property,
the dynamics of motion can be referred directly to the inertial frame, leading to
a drastic simplification of the inertia operator (with a structure identical to that
found in rigid body mechanics).

Even though the methodology applies to a general class of structural ele-
ments, only a one-dimensional type (flexible rod) is considered. Since the rota-
tion field for a rod is represented by orthogonal, generally non-commutative
transformations, the deformation map takes values in the nonlinear
differentiable manifold R®xS0O(3), instead of the linear space R® (for the plane
case) usually encountered in nonlinear structural dynamics. Concepts of
modern differential geometry and covariant linearization procedures prove use-
ful in the numerical treatment of the nonlinear PDE’s governing the motion of
the rod.

The dynamics of earth-orbiting flexible satellites is completely described by
the same system of equations of motion as for the fully nonlinear red model.
However, to avoid numerical ill-conditioning due to t.hé large difference in mag-
nitude between the distance from the earth to the satellite and the structural

deformations, an additive decomposition of the displacement field of the rod



into the far field and the near field is introduced. Follower loading is con-
veniently accounted for in the formulation. Applications of the proposed metho-
dology to the dynamics of flexible multibody systems (rigid bodies with flexible

appendages, all flexible chain systems, flexible closed-loop chains) are also con-

sidered.
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CHAPTER 1
INTRODUCTION AND OVERVIEW

Scope and fundamental aspects. In recent years, considerable attention
has been devoted to the study of dynamic response and control of flexible struc-
tures performing large overall motions.} This type of structure is widely used in
applications encompassing diverse disciplines such as machine design, robotics,
aircraft dynamics and spacecraft dynamics. Elastic linkages, rotating
machinery, robot manipulator arms, aircraft propellers, helicopter or turbine
rotor blades, flexible satellites and earth-orbiting large space structures furnish
some specific examples of these applications.

A common characteristic shared by these structures is their flexibility as
one attempts to push the design to the limit of resistance of the material in
order to minimize weight. This flexibility often renders inappropriate the
assumption of "linearized strains"” that has been popularly employed in analysis.
The pointing maneuver in many of the above applications is typically an essen-
tial phase for these structures to successfully carry out their intended func-
tions. Examples are: a flexible robot arm in high precision welding task to zero-
in accurately on a micro spot, a solar array for collecting energy to face the sun,
an antenna for data communication to point at control stations, a space-based
telescope to focus on a star. It has been proposed to decompose the accurate
pointing control of these flexible structures into two stages. In the first stage,
an open-loop controller is assigned the task of quickly slewing the referential
axis of these structures to a desired direction. As the maneuver nears the end

of this stage, structural deformations must be considerably reduced, and the

t See for example the proceedings of the 28h Structures, Structural Dynamics and Materi-

al segmfemncc sponsared by the AIAA, ASME, ASCE, AHS, at Orlando, Florida, April 15-17,
1885.




g1 Introduction and Overview 2

referential axis must fall within a "“cone” of pointing error tolerance. In the
second stage, the control is transferred to a closed-loop controller, which may
be assigned several tasks: vibration reduction, disturbance suppression, point-
ing error refinement.

In the design process and in the synthesis of optimal controls for flexible
structures undergoing large motions, accurate mathematical modeling and
effective simulation of the motion of the structure play a crucial role. These
tasks involve: (i) formulation of a physically relevant mathematical model which
in turn often includes modeling of eflfects such as large strains, inelastic consti-
tutive behavior and appropriate, possibly nonlinear, damping mechanisms; and
(ii) numerical solution of the resulting initial boundary value problem governing
tpe evolution of the system. For flexible structures, nonlinear effects are partic-
ularly important in the first stage of the pointing control. Here, the fast slewing
maneuver induces non-negligible transient loading resulting from the effects of
Coriolis and centrifugal forces, as well as the inertia effect due to rotation.
Moreover, large deformations in the structure relative to its rigid body local
equilibriurn configuration may occur during this stage. Finally, an integrated
design approach should account for worst case designs, for example the possibil-
ity of catastrophic failure of the control system, so that an analyst could detect
weaknesses in the structure for further reinforcements in the cycle of design-
analysis-redesign. These cases may lead to bifurcation and instability, with sub-
sequent large structural displacements, or may even result in structural dam-
age. A unified treatment of these effects can only be accomplished through the
use of finite-strain structural theories capable of accommodating general consti-
tutive behavior in the general three-dimensional setting.

Traditional approaches. The dynamics of a flexible structure undergoing

large overall motions is typically formulated relative to a coordinate system that
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follows the deformed structure. This coordinate system is often referred to as
the floating frame (Canavin & likins [1977]). The introduction of a floating
frame, relative to which the strains in the structure are measured, is motivated
by the assumption of small strains (e.g., Ashley [1867], de Veubeke [1976], Cana-
vin & Likins [1977], Kane & Levinson [1881]). With the assumption of small
strains, the use of a floating frame allows a simple expression for the total
potential energy of the structure. By contrast, the expression of the kinetic
energy of the system takes a rather cumbersome form. The resulting equations
of motion, although restricted to small strains, are nonlinear and highly coupled
tn the inertia terms due to the presence of Coriolis and centrifugal effects as
well as inertia due to rotation of the floating frame.

Galerkin discretization of the equations of motion in the space variables
leads to a system of implicit, coupled nonlinear differential equations in time of
the form &y, y.t) = 0, referred to as differential-algebraic equations (DAE). An
essential characteristic of this system is that it cannot be transformed to a
standard explicit form 'y = g(y.t), without appending an algebraic constraint.t
The structural mode shapes, obtained from solving the vibration eigenvalue
problem at the reference configuration, may be employed as a Galerkin basis
(e.g.. Likins [1974]). But unlike the case of linear structural systems, the result-
ing semi-discrete system of equations remains extensively coupled.

The solution of DAE's requires the use of a special class of numerical
integration algorithms first initiated by Gear [1971b]. Recently, follow-up work
by many researchers has emerged in the literature (Brenan [1983], Lotstedt

[1983,84], Petzold [1982,84]). DAE's are difficult to treat because they are

t One can always set y = x, and append the algebraic constraint g(x,y,¢) = 0. This is a DAE
system, and not a standard ODE system (Petzold [1882]).
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usually stiff differential equations. Ill-conditioning may arise when the time step
size is decreased to zero. The design of numerically robust algorithms to solve
DAE's, as well as the assessment of their stability and accuracy characteristics,
is one of the areas of current active research in numerical analysis.

The complex nature of these equations has often led to simplifying assump-
tions based on linear superposition theory, in which the elastic deformations are
analyzed assuming known rigid body motion. These deformations are then
superposed onto the rigid body motion to obtain the overall motion (e.g.. Grotte
et al [1971]). Selective truncation of nonlinear terms to render the equations of
motion linear is another avenue often taken in the past. Such truncation
reduces considerably the complexity of the problem; the design of controller
based on linear partial differential equations (PDE’s) is thus more tractable
using established analytical tools in the reaﬁn of linear theory (Burns [1985]).
For a review of several approaches in the dynamic analysis of mechanisms and
machines, we refer to Erdman & Sandor [1972] and to Song & Haug [1980].

A new approach. We propose a methodology which represents a complete
departure from traditional approaches where the use of a floating frame is
necessary because of the ab-initio assumption of small deformations. The philo-
sophy adopted here is opposite to that outlined above: The kinetic energy of the
system is reduced to a quadratic uncoupled form simply by referring the motion
of the system to the inertial frame. This results in a drastic simplification of
the inertia operator, which now becomes linear and uncoupled, while the
stiffness operator emanating from the potential energy functional becomes non-
linear. Conceptually, the essential step needed in developing this alternative
approach is the use of finite-deformation structural theories — rods, plates,
shells, three-dimensional continua — whose appropriate strain measures possess

the required property of invariance with respect to superposed isometries (rigid



81 Introduction and Overview 5

body motions).

From a computational standpoint, the substantial advantage of the pro-
posed approach over traditional approaches lies in a much simpler structure of
the resulting equations. By introducing a Galerkin semi-discretization in the
space variables, one obtains, for the plane formulation, the standard nonlinear
system of ordinary differential equations (ODE's) that typically arises in non-
linear structural dynamics. The Newmnark implicit algorithm is widely used to
discretize the time variable of this semi-discrete system of ODE's, and leads to a
nonlinear algebraic system of equations whose solution may be obtained by
employing the Newton-Raphson iterative procedure. Stability considerations
often dictate the choice of an implicit over an explicit algorithm due to severe
restriction on the time step size associated with the explicit schemes. There
have been extensive investigations in error analysis and stability of integration
algorithms for structural dynamics. In the linear case, we refer, for example, to
Goudreau & Taylor [1973] and Hilber [1976,78]; the analysis for the nonlinear
case —when the deformation map takes value in a linear space —is contained in,
e.g.. Hughes [1978] (see also Belytchsko & Hughes [1883] and references
therein).

The role of nonlinear structural theories. So far, we have mentioned two
aspects that render the use of a finite-strain formulation attractive: (i) First, we
are able to account for the state of large deformation in flexible structures, a
feature clearly desirable for analysis of safe designs; (ii) Second, the mathemati-
cal structure of the equations of motion, when the dynamics is referred to the
inertial frame, is much simpler as compared to the equations resulting from the
small deformation assumption and the use of a floating frame. For cases where
infinitesimal deformation in the structure is insured by physical considerations,

such as the case of a stiff beamn undergoing a rotating motion, it seems obvious
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that linear theories should be sufficient to model the behavior of the structure.
Surprisingly enough, however this is not the case: It can be shown that the use of
linear theory leads to an unphysical destabilizing effect characterized by the
loss of stifIness, which is quadratic with the angular velocity of revolution. Such
a phenomenon arises precisely because of a partial transfer of the centrifugal
force to the equation governing the bending of the beam. On the other hand,
higher order structural theories provide a remedy to this situation since they
allow a correct transfer of the action of centrifugal force. Recently, Kane, Ryan
& Banerjee [1985] have been able to account for such stiffening eflect using
their discrete approach together with a particular parametrization of the beam..
It should be noted that their approach only applies to the case of a flexible beam
attached to a rigid body with prescribed motions. Since the dynamics of the
beam must be referred to a frame locally attached to the rigid body, the result-
ing equations of motion, in the general case where the base motion is not known,
are nonlinear and highly coupled in the inertia term. Hence, within the context
of the proposed finite-strain approach, there is little to be gained by introducing
at the outset the additional small strain assumption.

A three-dimensional finite-strain rod model. When the motion of the rod is
restricted to a plane, the deformation map, for the model considered herein,
take values in the linear space R®. In three-dimensional motions, appropriate
treitment of the rotation field in the rod — with shear deformation accounted
for in the model — plays an important role. Nordgren [1974] considers a res-
tricted nonlinear model whereby the cross section is assumed to possess equal
principal moments of inertia. Since shear deformation is not accounted for, the
deformation map of the rod is entirely described in terms of displacements, and
thus takes values in R%. The model considered by Argyris and co-workers

[1979,81,82], on the other hand, does include shear deformation. However,
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motivated mainly for a desire for a symmetric stiffness operator, these authors
employ the notion of semi-tangential rotation introduced by Ziegler [1977] to
treat the rotation field in the rod. This concept of rotation possesses a property
crucial to their approach: commutativity of two successive semi-tangential rota-
tions, a characteristic not shared by the standard notion of finite rotations with
direct physical interpretation. While the derivation of finite element matrices in
Argyris et al [1979] is based on the concept of *‘natural formulation,” the beam
element by Bathe & Bolourchi [1979] is obtained, within the framework of the
‘“‘total and updated lagrangian' formulation, from employing Hermitian interpo-
lation of the displacements — as in the linear Bernoulli-Euler beam theory —
expressed in convected coordinates. The range of application of such an ele-
ment is restricted to motions that involve large rotations but only small strains.
Rigorous error analysis of the spatial discretization requires that the equations
of motion be described by PDE's —see Strang & Fix [1973] and Ciarlet [1978] for
the analysis of the finite element method in the general context, and Arnold
[1981] on the error estimate for the plane beam. In the previously cited work,
only Nordgren formulates a model based on PDE's.

The models proposed by Antman [1974] and Simo [1985], as in the classical
Kirchofl-Love model in Love [1944], érnploy a standard notion of rotations —
which are elements of the special orthogonal group SO(3), a non-commautative
Lie group. Computationally, we propose a parametrization based on quaternion
parameters that avoids the use of Euler angles (Love [1944], Antman [1974]) and
their associated singularity (e.g.. Goldstein [1980], Kane et al [1883]); this
parametrization plays a basic role in the algorithmic implementation. The
configuration maps of the rod thus take values on the nonlinear differentiable
manifold R3x SO(3), which no longer has the structure of a linear space. The

dynamics of rotation of a rigid body furnishes another example of a classical
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dynamical system with a nonlinear differentiable manifold (essentially SO(3)) as
configuration space (Arnold [1980]).

We have developed an extension of the Newmark time-stepping algorithm of
the classical structural dynamics formulation (where the deformation map
takes value in the linear space R3xR®) to the present case where the deforma-
tion map takes values in the nonlinear differentiable manifold R®xS0(3). This
extended Newmark algorithm furnishes a discretization of the time variable, and
leads to the temporally discrete dynamic weak form of the equations of motion.
Upon linearizing this semi-discrete dynamic weak form with respect to the
space variable, numerical solutions are constructed by projection of the tangent
space at each configuration onto a finite dimensional subspacé. This lineariza-
tion procedure is a basic step in iterative solution methods of the Newton type.
Concepts of modern differential geometry (Spivak [1978]), and covariant lineari-
zation procedures (Marsden & Hughes [1983]) prove to be particularly useful in
our algorithmic treatment. As an example, the conflguration update in the
iterative solution process becomes the algorithmic counterpart of the exponen-
tial map.

The organization of the dissertation is as follows. Chapter 2 will focus on
the dynamics of planar motions of flexible rods to set the stage for the proposed
methodology in dealing with flexible structures undergoing large overall
motions. Chapter 3 reinforces the role of nonlinear theories in the dynamic
analysis of flexible structures. The algorithmic treatment of the stiffness opera-
tor of a three-dimensional rod model constitutes the objective of Chapter 4,
while its dynamic treatment is the focus of Chapter 5. Finally, in the concluding
Chapter 8, we present two important applications of the present approach;

namely the dynamics of flexible earth-orbiting satellites and multibody systems.



CHAPTER 2
DYNAMICS OF FLEXIBLE STRUCTURES PERFORMING LARGE MOTIONS

2.1. Introduction

To establish the methodology, we shall focus on the dynamics of a flexible
beam subject to large planar motions. The essential ingredient in the proposed
approach is the use of the finite-strain beam theory formulated independently
by Reissner [1872] and Simo et al [1885]. This beamn model can accommodate
finite deformation in stretch-shear-bending, as well as account for large rota-
tions in the cross section. For small deformations, the model reduces to the
well-known Timoshenko beamn theory. Moreover, the strain measures satisfy the
requirement of invariance with respect to superposed isometries. The floating
frame that follows the deformed beam performing large overall motions is some-
times referred to as the shadow beam (Laskin et al [1983]). The reason for the
restriction to plane formulation to expound the essence of the proposed metho-
dology lies in the simpler structure of the partial differential equations in plane
motion as compared to the three-dimensional motion: the deformation map
here takes values in the linear space R® instead of the differentiable manifold
R3xS0(3) (Simo & Vu-Quoc [1985a]). In subsequent chapters, we shall address
the three-dimensional motion of flexible rods whose formulation follows essen-
tially the same basic steps set forth in this chapter. The appropriate treatment
of the three-dimensional finite rotation field is, however, non-trivial.

As a basis for our discussion, we choose a specific problem to introduce the
formulation: the dynamics of a flexible robot arm. This model problem consists
of a flexible beam with one end at the origin E of the inertial frame {E;e,, e;, es}
as shown in Figure 2.2.1. The robot arm is allowed to rotate about the axis eg,

but the motion of the arm is restrained to the plane {e,, ez]. It will become
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clear, however, that our formulation can be applied to a more general setting of
flexible plane beams subject to large overall motions.

In section 2.2, we review the traditional approach based on the assumption
of small strains and the use of a floating frame. The equations of motion here
are nonlinear and extensively coupled, and result in a system of differential-
algebraic equations upon introducing a Galerkin discretization in the space vari-
ables. A novel approach is presented in section 2.3, based on a finite-strain rod

~model in which the dynamics of motion is referred directly to the inertial frame.
This approach leads to equations of motion with a linear uncoupled inertia term.
The inherent nonlinearity of the problem, on the other hand, appears in the
stiffness operator. Section 2.4 will focus on the temporal discretization of the
weak form based on the Newmark implicit algorithm and the Galerkin finite ele-
ment discretization, in the space variable, of the consistently linearized weak
form. For the plane formulation of the rod model considered herein, the struc-
ture of the resulting discrete equations is typical of nonlinear structural dynam-
ics. Section 2.5 gives some numerical examples to demonstrate the applicabil-

ity of our formulation.

2.2. Classical approach based on small strains: Floating frame

In this section, we summarize the equations of motion for a rotating flexible
beam using the shadow beam approach and assuming small strains superposed
onto large rigid body rotations. Our purpose is to exhibit the main drawback of
this approach. The basic kinematic assumption is reviewed in section 2.2.1, fol-
lowed by the expressions of the potential energy in section 2.2.2 and the kinetic
energy in section 2.2.3. Use of the floating frame, although allowing a simple
expression for the potential energy, leads to a cumbersome expression for the

kinetic energy of the system. The equations of motion, obtained via Hamilton's
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principle, are given in section 2.2.4. From a computational standpoint, the

numerical integration of these equations is a non-trivial task.

2.2.1. Basic kinematic assumption

Consider the rotating beamn shown in Figure 2.2.1. Let {0; e, ez} be the iner-
tial frame with base point O € IR? and orthonormal basis vectors (e, ez). Let
(X1.Xz) denote the coordinates along e, and e;. The domain of the undeformed
beam with length L and depth d is B := [0, L]x[-g-, g—] C R2. A material point
X € B, in the undeformed (reference) configuration, initially located at
X = X, e, + Xze; is mapped into the point = ${X) € R? by the deformation map
¢: B-R% X designates the position vector of point X relative to the base point
0. Similarly, the position vector of z relative to the base point O is denoted by
x } In addition, we introduce a floating frame {0;a,, &} that follows the rigid body
motion of the beam, i.e., the shadow beamn. In the literature, this type of float-
ing frame, which is attached to a point vnthm the deformable body, is often
called the locally attached frame (Canavin & Likins [1977]). Components of vec-
tors relative to this floating frame will be denoted by a superposed tilde. The

basic kinematic assumption is that plane sections remain plane after deforma-

tion. Accordingly, we set

X=X + Xot (2.1a)
where
X m o (X1, t) 1= [Xy + Ty(Xpt)]ag(t) + Ta(Xn t)aelt),
ti(X).t) := cosB(X,,t)a(t) + sin®(X, t)ax(t), (2.1b)

t Light face letters denote points. Bold face letters denote position wvectors of the
corresponding points.
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te(X).t) := —sin®&(X,,t)ay(t) + cosA(X,,t)ag(t).

For notational simplicity, explicit indication of the arguments X;, X; and ¢ will
often be omitted. Since the motion is planar, e3 = tg = ag. Note that {t,, t;}
defines a moving frame that follows the deformation of the beam with t; always
contained in the deformed cross section and t; perpendicular to the cross sec-

tion. 'Using matrix notation, relations (2.1b)z 3§ may be expressed as

:} = KT{:;]. where A := [cos'& -sinﬁ] . (2.2)

L, ~
Sln&X cos&

Although it is possible to develop the formulation without introducing any res-
triction on the size of the strain field, the assumption of small strains is typically

introduced abd-initio, as discussed below.

2.2.2. Motivation: Total potential energy
By introducing the floating frame {a,, ;) one can enforce at the outset the

following infinitesimal strains assumption:
~ L ~4 1 —a
% small (10) <> A2 [3 1 ].

with %, and U, small. (2.3)

The strains ¥ and the curvature % relative to the floating frame {a,, 82} are then

defined as

~ ! ~!
Fi=9 —-t., &:=3tg, (2.4a)

where ( . )' :=d( . )/ dX,. Incomponent form, ¥ is expressed as

¥ = %ha + Fea, (2.4b)

where
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' N ~ !

h=t, o= -7, (2.4c)

One refers to %, and % as the arial strain and the shearing strain, respectively.
Denoting by £4, G4, and EI the axial, shear and flexural stiffnesses of the beam,

the potential energy is expressed as
:= -;—m/;][EA'-}‘? + GAYE + EI (3)?)dS - Tlgyr — T(t)¥(t) (2.5)

where Ilgyr is the potential energy of the external loading acting on the beam
and T(t)eg is an applied torque at the axis of rotation es of the robot arm.

2.2.3. Kinetic energy

The kinetic energy of the system takes a rather cumbersome form com-
pared with the simplicity of (2.5). To obtain the appropriate expression, we
introduce the time derivative relative to an observer attached to the floating

frame. Accordingly, we define

v _ 83.,
X:= B_thfbod . (2.6)

The following expression for the material time derivative, denoted by a super-
posed "dot", is standard in rigid body mechanics (Goldstein [1980])

N
X=X+ wXx (2.7)

where w is the angular velocity of the floating frame. For the plane case under

consideration, the angular velocity w is given as
d
w = %ﬂa = ‘elae (2.8)

where &g := 8; X 8; m e3 is fized. Since the time derivative of the floating basis is

al = e’az- :k = -'Jlal- (2°9)
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it follows from expressions (2.1b) that

b=@G+Pte. t=-GE+Pty (2.10)

Thus, we arrive at the following expression for the time derivative of the position

vector x

x = (i;,-9Uz)a + [+ P(X +1))] e — X G+, (2.11)

The kinetic energy of the system is obtained from the expression

K := ;—_{P(xx-xz) bl dx, dx; (2.12)

where p(X,,X) is the mass density of the beam material. By substituting (2.11)

into (2.12) we obtain

K = ';-[dj;‘]Api [@, - Yl + [ + P(X, +2 )]} dX,
+ é—[dj;]lp[& + PP dx, (2.13)

Here, the inertia constants 4, and J, are defined as

A, := X, Xp)dX,, I, := (X,. Xp) X3 dX, (2.14)
p [—g{-g-]p(l 2) dXz P [-{%]P e 42 E 2

2.2.4. Equations of motion: Coupled inertia terms
The equations of motion may be systematically derived by means of

Hamilton's principle. Accordingly, we require that the action

L:= [ (kK -1II)dt be stationary, (2.15)
[¢5.¢p)

for arbitrary paths connecting two points at time ¢, and t2 in the configuration
space. Substituting expressions (2.5) and (2.13) into (2.15) and making use of

standard arguments involving integration by parts, we arrive at the following



§2.2 Flezible structures performing large motions 15

equations governing the extensional and flexural motion of the beamn
S ~ ) ~ ~ I
A [ - ¥ - 298, -2 (X, +2))] - EAZ, =0
~~ ~ ~ ~ ! !
Al + PO +80,) + 298, V2] - G4 (8. -®) =0  (216)

~lt ~ ~
I,(§+$) - EIa -GA.(‘u.z'-a)=0
Appropriate boundary conditions automatically follow from the stationarity con-

dition. In addition to equations (2.18), one obtains the following constraint equa-

tion expressing the overall balance of angular momentum of the system

ild[L]sAp[(x,w,)ﬂ“’zz"] + 1, dX, + zﬂ’m./;f” (X, + 88, + T8, ] dX,
+[6[L]A,t(X.+1‘1'.)52-&‘gﬁ,;dx,+[6[L]1,’&dx, = T(t) (2.17)

The highly nonlinear nature of the coupled system (2.18)-(2.17) involving the
variables {&,, tig, &, ¥} should be noted. A Galerkin discretization in the space
‘variable X y of (2.168) and (2.17) leads to a system of implicit differential-
algebraic equations in time of the form &y.y.t) = 0.

Remark 2.1. The Euler-Bernoulli formulation is obtained from the above

equations by assurning that shear deformation is negligible. Accordingly, we let

(1'1'3' = &) -+ 0, and G4, - % s0 that G4, (1.7.'2' — Q) » V where V is the shear force
acting on the cross section of the beam. Equations (2.16);3 governing the

transverse and flexural vibrations of the bearn may be combined, to obtain

-~ e

A+ EIE " - L% + 4, [000+R) + 298, -] = 0 (2.18)

The first two terms in (2.18) correspond to the standard linear Euler-Bernoulli
beamn theory. This equation is, however, attributed to Rayleigh who accounted

for the contribution of section rotary inertia to the transverse vibration of the
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beamn. This contribution is represented by the third term, and is often
neglected in structural applications. The last three terms within brackets arise
as a result of coupling between deformation and rigid body motion. These terms
represent the inertia due to rotation of the shadow beam, the Coriolis and the

centrifugal effects, respectively. We shall further discuss in Chapter 3 the effect

of the centrifugal term $2&, appeared in (2.18). =

2.3. Proposed approach based on finite strains: Inertial frame

By contrast with the formulation outlined above, we propose an alternative
approach in which the structure of the inertia operator becomes linear and
uncoupled. This is achieved by referring the basic equations of motion to the
tnertial frame. As a result, drastic simplification of the inertia (temporal) part is
obtained by shifting the nonlinearity of the problem to the stiffness (spatial)
part of the equations of motion. Conceptually, the essential step needed to
develop this approach is the use of finite-strain rod theories capable of account-
ing for large rotations. Section 2.3.3 summarizes from a physical standpoint the
appropriate finite strain measures. We refer to Reissner [1972] for the plane
case, and to Antman [1974] and Simo [1985] for the three-dimensional case. An
essential characteristic of these strain measures is their invariance under
superposed isometries.

From a computational perspective, the substantial advantage of the pro-
posed approach over the shadow beam approach discussed in section 2.2.2 lies
in a much simpler structure of the resulting equations. This structure
corresponds to the standard nonlinear system of ODE's that typically arises in

structural dynamics. In addition, we automatically account for large strains.
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2.3.1. Basic kinematic assumption
As in section 2.2.1, the basic kinematic assumption is the condition that
plane sections normal to the axis of the beam in the undeformed configuration

remain plane; i.e.,
X=X + Xot (2.1&)

The difference from the previous approach based on the use of the floating
frame is that the position vector x, and the basis vectors {t;, tz} now have their
components expressed relative to the inertial frame {e,, e;}. Accordingly, we

set
X =@ (X1.t) := [Xy +uy(X1t)]e + ua(Xyt)e
(X1, t) := cosB(X,.t)e, + sind(X, t)e; (2.19)
te(X1.t) ;= —sind(X,.t)e, + cosB(Xp.t)ep

As in (2.2), we shall use matrix notation and express relations (2.19),3 as

t e cos?¥ —sin¥
[te} = AT }. where A := [sin‘ﬂ cosﬁ] (2.20)

Note that the floating basis {a,, 8} plays no role in the present formulation.

2.3.2. Motivation: Kinetic energy
The kinetic energy of the system relative to the inertial basis reduces to
the standard quadratic uncoupled form. To see this, note that from (2.20) the

rate of change of the basis vectors {t,, tp} is given by
L =3k, = -3y (2.21)
Hence, the time derivative of the position vector x is obtained as

i = $° - Xg?’tl, éo = 'u.-lel + dzez (2.22)
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It follows from (2.22) that [x]? has the expression

Ix? = [uf+uf] + X33 - 28 Xz[cos¥u, + sinvu,) (2.23)
Upon integrating p(X,, Xg) [X{® over the body B = [0, L]X[-%-, %-]. we arrive at
the following expression for the kinetic energy of the system

K = ;—[ s/; ][.4,(12,2 +ud) + I,9%dx, (2.24)

Here, as in (2.13), the inertia coefficients 4, and J, are given by (2.14).

Remark 2.1. 1t is noted that expression (2.13) for the kinetic energy in the
shadow beam approach may be exactly recovered from (2.24) simple by employ-
ing the coordinate transformation

[Xr'""vx] _ lcosvl —siny

uz siny cosy

X, +1U,
[ 2, ] (2.25a)

That is, the expression for the kinetic energy of the system is independent of
any particular assumption on the magnitude of the strain field. In fact, the time
derivative of (2.25a),

4] et it

Up siny cosy | |8z + P(X,+2)) (2.25b)

simply expresses the transformation of the components of 'x,, relative to the

floating basis {a,, 8z} back to the inertial basis {e,, e3}:

X = ue +uze = [ﬁ’x-i'ﬁ‘z]ax + [ﬁz*-@(XxHTn)]ae (2.25¢)

This remark would become evident if we express the kinetic energy using

coordinate-free notation

K = {p Ix?dx, = { plx, ~ Xo3t,[Pdx, = me R AJX, [P + I,8° } dX¢2.254)
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2.3.3. Potential energy and invariance of strain measures
Potential energy. Within the context of large strains, a definition of the
strain fleld in the beam is provided by

7 = ’g' -t. £ = ‘ls'te (2.263)

The physical interpretation of ¥ is clear as shown in Figure 2.3.1. 9 measures
the difference between the slope of the deformed axis of the beam and the nor-
mal to the cross section defined by t;, and & is the rate of rotation of the cross
section along the undeformed length of the beam. In component form, relative

to the inertial frame we have from (2.19) the following expression for ¥

Y = e + yeep = [(l-l-u,')-cost?]e, + [uz' —sinvle; (2.26b)

Alternatively, relative to the basis vectors {t,, to}, from relation (2.20) we have

the following expression

7 =Nt + et (2.27a)
where
r 1+, cos® 1+u, 1
- cos
[I‘l} = AT ! = AT ' -[] (2.27b)
] ! . ! 0
Uz - sind Up

The analogy between expressions (2.4a,b,c) and (2.26a)-(2.26b) should be noted.
We now assume the same expression for the potential energy, relative to the
moving frameft,, tz!, as the one considered in the small strain shadow beam

approach discussed in section 22. Accordingly, we set

I := ’—df [EATE + GA T} + EI (8')?)dS - gy — T(£)9(0,t) (2.28)
2161
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Invariant strain measures. The components of the strain ¥ in the basis
{ti. te} denoted by (I'), ) are invariant under superposed isometries on the
beam. One can see this by considering the isometry composed of a supefposed
translation c{t), and a superposed rotation () represented by the orthogonal

transformation matrix

Qt) := [:fn,sf -:;25 (2.29)

The transformed quantities in the expression of I; in (2.27) above are as follows

HXut) = oft) + Q) B (Xpt): @ = O e +85 e = QP, . (2.302)

P 1' | 1+ un'
ie., R 1 (2.30b)
Po2 Uy
A* = QA (2.30c)
Since t{ = cos(f+3) e, + sin(f+9)e,, it follows that
=Ty + Ty = ¢ -t (2.31a)
where
rf oy os(ﬁﬂi) Iy
T = A = lsin(8 +1,) =Ir, (2.31b)

The invariance under superposed isometries of the curvature « follows at once
in the plane case fron'l expression (2.26a). This property of invariance of the
strain measures is essential for the success of the proposed approach.

Remark 2.2. It can be shown that deﬁnition‘ (2.26a) and expressions
(2.26b), (2.27) follow from a rigorous argument based on the equivalence of the

stress power for the general three dimensional theory with the reduced stress
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power of the finite-strain beam theory (Simo [1985]). =

Remark 2.3. In this chapter, we shall be concerned only with spatially fixed
loads, which do not depend on the deformed configuration, as opposed to fol-
lower loads that are configuration dependent. A treatment of follower loads in
the general context of the three-dimensional finite-strain beam will be given in

chapter 8. Accordingly, the potential of the distributed loading is given by
n""’sz (f-des+ AP, ]dX; " (2.32a)
L)

where
ﬁ(X,.t) = ﬁ.(x,. t)e, +‘h'2(X1. t)ez. ﬁ(Xl,t) = 'ﬁ'b'(Xl. t)es (2.32b)
are the external force and torgque per unit of reference length acting on the

beam. =

2.3.4. Equations of motion: Uncoupled inertia terms

We introduce 'the following notation
[n,] [E’A () - 1+u’,-cos‘6 '

ng| 1= A 0 GA A u'g-Sim’ . m := EId (2.33)

Here, n(X;.t) =n;(X,.t)e, + na(X,.t)e; and m(X,.t) = m(X,.t)es represent
the internal force and internal moment acting on a deformed cross section of
the beam.

As in section 2.2, the equations of motion governing the evolution of the sys-
tem may be systematically obtained from Hamilton's principle. Standard mani-
pulations yield the final result

n !

L. l

p u,

Ap 123] - nz' - [ o (2-34)
I’ ‘8 m' + (1 + ‘u.l')‘ng —uz"n.,

33
n
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Equations (2.34) represents the system of nonlinear partial differential equa-
tions governing the response of the system. Note that these equations are linear
in the term involving time derivative.

For the robot arm in Figure 2.2.1 we have the following natural boundary

conditions
m(0,t) = T(t)es, m(L,t)mn(L,t)m0 (2.35)

These boundary conditions follow automatically from Hamilton's principle and

the appropriate expression for Ilgyr.

2.3.5. Conservation of global momenta

VWithin the proposed approach global linear and angular momenta are
automatically satisfied, and do not provide any additional constraint. This is in
contrast with the shadow beam approach in which the basic equations of motion
(2.16) must be supplemented by the global angular momentum condition (2.17)
for the evolution of the system to be completely determined. To verify conser-
vation of global linear and angular momenta, we rewrite (2.34) with the aid of
(2.33) as

L-n-85=0, A-m'-¢ xn-m=0 (2.36a)

Here 1{X),t) denotes the linear momentum per unit length, and H(X,,t) the
angular momentum per unit length relative to the centroid of the deformed

cross section. Using (2.19) we have

L:= {pidX2=Ap$,. H:= p[x-x,,]x'xd]i(z=1,,‘|3‘t (2.36b)
["lg'l ['s%;

The global linear and angular momentum of the system denoted by L{t) and
H(t). respectively, are defined as
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L{t):= _{pi dx,dX,, H(t):= {pxxi dX, dX, (2.37)

Making use of the identity XXX m (x-X,)XX + X, XX, the global angular momen-

tum is expressed as
H(t) = af [H+ @, x L]dX, (2.38)
(0.1}

where I{X,,t) and H(X), t) are given in (2.36b). Differentiating (2.38) and using
(2.36a), we obtain the following condition involving the applied load and boun-
dary conditions

K= [m+¢,xn]l::::+[6/;l[iﬁ+ $o X 1] dX, (2.39)

Condition (2.39) states that the resultant torque of the applied loading equals
the rate of change of the total angular momentum. Similarly, for the global
linear momentum we obtain

L= n|,’{!:§ + [ 6dx, (2.40)
! [6.L]

which states that the resultant force of the applied loads equals the rate of
change of the global linear momentum. Equations of motion (2.36a) along with
definitions (2.36b) are general, and remain valid in the three dimensional
theory. Thus, the foregoing discussion leading to expressions (2.39) and (2.40) is

not restricted to the plane case.

2.4. Numerical approximation: Galerkin finite-element method

In this section, we discuss the numerical treatment of the nonlinear partial
differential equations developed in Section 2.3. The basic strategy is to perform
the temporal discretization employing standard implicit time-stepping algo-

rithms and a Galerkin discretization of the space variable. The finite element
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method provides an established technique for constructing the (spatial) basis
functions necessary to perform the Galerkin discretization. This procedure will
lead to a discrete system of nonlinear algebraic equations characteristic of non-
linear structural dynamics. Expressions for the matrices resulting from the

application of this procedure are given in detail.

2.4.1. Temporal discretization of weak form
Weak form. Define the following quantities

I := Diag[A, A, I,]

3 (2.41)
Xy +uy(Xy, t) 73Xy t)
S(Xut) == § wax(Xyt) . HXpt) = (T(X)t)
3(X), t) m(Xy,t)

The weak form of the equations of motion (2.34) is obtained as the scalar pro-

duct of (2.34) with an arbitrary weighting function = 7, e
Gam($.7) := ldl;]n-lﬁdXMG(#n) =0, V9 (2.42)

where G(¢.7m) denotes the weak form of the PDE's when inertia effects are not

taken into account

'
n,

]
G(¢. = - . n dX, - «f dX, (2.43
(é.m) [Qll:]ﬂ 2 1 [d./;]" 1 ( )

' '
m +(1+u; )ng—uzn,

Recall that equation (2.34) is linear in the term involving the time derivative,
i.e., the acceleration . The inherent nonlinearity of the problem, which results
from the coupling between large overall motions and (possibly finite) deforma-
tions in the beam, is contained in the second term and included in the weak

form (2.43). For simplicity of exposition, let 7 be a member of the function
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space

= {ne(HY0.L))’ | n(0) =n(L)mO} 1 (2.44)

and integrating by parts the first term in (2.43) with respect to the spatial

derivative, we obtain

n,

G($m) = [6.1;1 E(P)n-{ne dXx-[d[L]n-f dX, (2.45)

m

where Z(@) denotes the differential operator defined by

d [
dX, 0 wu;
E(p):=1| 0 Xm (1+u,) (2.48)
d
0 0 Fl

Note that in (2.45), we made use of the identity 9(0) = 9(L) = 0. Strictly speak-
ing, the function space V in (2.44) represents the space of admissible variations
corresponding to zero displacement boundary conditions for the PDE's (2.34),
ie., a beam with clamped ends. The choice of the boundary conditions for the

space of admissible variations should account for the essential boundary condi-

=L
tions for the PDE's. In general, the following condition 5« {n,, nz.m}TIX_o =0

determines the choice of boundary conditions for the admissible variations.
Time-stepping scheme. A standard system of nonlinear ODE's, y = g(y. t)
can be integrated by employing a variety of time-stepping algorithms. 1t is

desirable to use algorithms that prove to be consistent with the ODE's and stable

t H'(0,L) denotes the Hilbert space of functions defined on the interval (0, L) whose ele-
ments and their first derivatives are square integrable, i.e., elements o! the functian space

L2. The inner product of a pair (f,g) € H(0, L) is given by d.f(fy +.f g )¢=
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for some range of the time step size. We refer to standard textbooks such as

Richtmyer & Morton [1967] and Gear [1971] for precise definitions of these con-

cepts. Two basic strategies in devising time-stepping algorithms may be

adopted:

(a) Explicit schemes: Typicaily. high accuracy may be achieved by employing
high order methods. A classical example is furnished by the family of
Runge-Kutta methods. The main drawback of explicit schemes is the severe
limitation on the time step size imposed by their restrictive stability
characteristics.

(b) Implicit schemes: These typically possess very robust stability characteris-
tics. Classical examples are the trapezoidal rule, which is the highest order
(second order) A-stable implicit multistep method with smallest truncation
error (Dahlquist [1983), Park [1975]), the stiffly stable methods of Gear
[1971], and the family of algorithms devised by Newmark [1959] which are
widely used in nonlinear structural dynamics (see, e.g., Belytschko &
Hughes [1980]).

Here, motivated by stability considerations, attention is focused on the
Newmark family of algorithms, which includes the trapezoidal rule as a special
case. The error analysis and the stability characteristics of the Newmark algo-
rithm applied to linear problems is well established; we refer to the work of
Goudreau & Taylor [1973] and Hilber [1978,78].

Let $,(X,) denote the approximate solution to $(X1.t,) at time ¢,. Simi-
larly, v,(X,) = i(Xl.t,.) and an(X;) = $(X..£,) represent respectively the
approximate velocity and acceleration at time t,. Assume that (@,,V,,a,) com-

pletely satisfy the temporally discrete version of the weak form (2.42) at time ¢,

Gayn ($n.m) = M&}n-lﬂXﬁ G($nm) =0, Wn (2.47)
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We search for the solution ($n+1. Vn+1, 8 +1) at time £, 4, such that

Gon(Pns1.m) = me ]n-ladex+ G(én+1m) =0, V19 (2.48)

The Newmark time-stepping scheme defines the relationship between

(’n-vn- an) and (‘nﬂ-vnﬂ- an+l) according to

1
+1 = Pn n —“ﬁ
Bnsy = ‘",:2'3" - Zﬂ - zﬁ —a, (2.49a)

Vet =V +h[(1=-T)a, + Tap4 ], (2.49b)

where h :=tn,, — 1, denotes the time step size, and (8, 7) are the parameters of
the Newmark algorithm. We note that B=0.25 and 7=0.5 correspond to the tra-
pezoidal rule; this choice of the parameters # and T renders the algorithm
unconditionally stable (in the sense of continuity with respect to initial condi-
tions) and second order accurate (Hughes [1978]).

The notion of stability in general corresponds to the well-posedness of the
temporally discrete system. In nonlinear structural dynamics, with the presence
of certain constants of the motion, a stronger concept of stability is desirable.
Ve refer to Gear [1871], Chorin et al [1978], and Belytschko & Hughes [1983] for
several notions of stability that have been proposed, such as A-stability, spectral
stability, stability in the energy sense, stiffly-stable methods, etc... The
appropriate concept of stability for integration algorithms in nonlinear struc-
tural dynamics remains, however, unsettled.

Substitution of (2.49a) into (2.48) yields a temporally discrete nonlinear
system in the unknown @, ,,(X,). One may employ the classical Newton iterative
scheme to solve this system by first obtaining its linearization with respect to

the space variable X,.
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24.2. Consistent linearization. Tangent operators

Let A¢ := (Au,, Aup A¥) denote the incremental displacement field. Con-
sider a known configuration ${),(X,) € RS, and let (X)) e R® represents
the curve of perturbed configuration in the direction of Aﬁ,.(.‘l, defined as follows

$Me = M) + e, (2.50)

The superscript (i) designates the ith iteration in the Newton iterative solution
process to search for the unknown configuration @,,,. The linearization of the
weak form Ggn($, 1) about the configuration ¢ = ¢, can be put in the follow-
ing form

L[Gun($$)h.7)] = Gagn ($:01.) + DGan ($51.m) 88, = O, (2.51a)
for all p € V. Gyn(dY1.m) represents the dynamic residual at configuration

$),. The linear operator DGyn (${1.m) can be obtained by taking the direc-
tional derivative of Gyn ($.%) about ¢ = ¢!, and in the direction AdSY,,

DGyn (91 n) - 88, = d%—‘ oom(os,‘.‘lz.,.n) (2.51b)

We shall proceed to give the linearization of each term in the weak form Giyn
given in (2.48) and (2.45).

Tangent inertia operator. Consider the first term in (2.48), which involves
the acceleration &,,,(X;). Its linearized form is easily obtained from the New-

mark algorithm (2.49a) and the perturbed configuration (2.50) as
“ . (i - —1-— Y (‘
DuGam ($ihom) - 888D = 152 o aeiha, (2.52)

We now introduce some quantities and their linearized forms that prove to
be convenient for the linearization of (2.45). Rewrite the spatial internal forces
defined in (2.33) as
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n,($) Ni(9)
ne(@) | = A(S) {N(P) ], (2.53)
m(9) HM(g)

where {N,, Ng, M} represent the material internal forces defined by

Ni($) 1+u, 1
Na(@)} := C|AT(®) 0 (2.54a)
HM(p) 0
with
cos¥ -sind O
C := Diag[FA, G4, EI], A(Y) := |sin® cosd 0 (2.54b)
0 0 1
The following linearized quantities are needed:
) ) 0 -a3 o] _
DA(3)- A8 = d"—[ A +ea8) = 0 Oo|A@). (2.55a)
€ le=o0 0 0 0O
N, N, .
D{Ne}(3)-08 = %I‘ Ne[($+e0d) = CAB)Z(@B)0g, (2550)
M =M
00 Aug
di-[‘ E(P+ead)n = [0 0 —A'u.,' n. (2.55¢)
£ Lo
00 O

Recall that the differential operator = has been defined in (2.48). Using the
above relations, we obtain the linear part of weak form G(¢{"),.n) in (2.45) as
the sum of the tangent material stiffness operator and the tangent geometric
stifIness operator given below.

Tangent material stiffness operator. It follows from the definition of the

material internal force (2.54a) and its linearized form (2.55b) that one part of
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the linearization of (2.45) is given by

Ds Gan ($1)1.m) - 588, = NIL ]sw.‘,‘lon - A(3{),) CAT(3{),) E( M) A Y, dX,

(2.56)

Tangent geometric stiffness operator. The remainder of the linearization of
(2.45) corresponds to the linearization of E and A keeping the material internal
force fixed, and constitutes the tangent geometric stiffness operator. Making

use of (2.55a) and (2.55c) with some rearrangement, we arrive at the expression

Do Gy (981, m) - 1), := [ afz ]‘rn - Bo{))TAgl), dx,  (2.57a)

where T and B are defined as follows

' q ]
-dTl 0 O
T:=| 0 dxi,'o (2.57b)
o o0 1]
. 0 0 mz(})
B(¢) := 0 0 ny(¢) (2.57c)

—ng(@) ny@) -[(1+3, my() + G2 'na()]

Finally, the linear part of Gy, at ¢ = ¢}, is the sum of the above opera-

tors

DGm(Wmhﬂ) <Al = [Dy + Ds + Da]Gdyn(ﬂilx-ﬂ) -adf),  (258)

Upon discretization of the Space variable X), the tangent inertia operator (2.52)
leads to the typical mass matrix in linear structural dynamics. The tangent
stiffness operators (2.56) and (2.57) were first obtained by Simo et al [1985]; the
derivation given above is, however, more amenable to an extension to the three-

dimensional formulation. In fact, it will be seen that the three-dimensional
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finite-strain beam in Chapter 4 reduces exactly to the above plane formulation.
Sarting values for Newton scheme. There are various ways to select the
starting values as an "initial guess"” for the Newton solution procedure by letting
e.{% = a,, or v,@; =V, or ‘,‘,"2, = @,. Numerical experiments indicate the last
choice of the above three starting schemes to be the best in avoiding spurious
behavior in the results (Taylor [1985]). Accordingly, the starting values are set

to be
o = $n (2.592)
vo 76
ah = - |+ Fp—a (2.59b)
vih = v +h[(1-T)a, + T2 ] (2.59¢)

where (2.59b) and (2.59c) follow from the choice (2.59a) and the Newmark
scheme (2.49).

Other types of starting schemes has been suggested, such as using the
explicit central difference scheme (Newmark with 8 = 0) as initial guess (or
predictor stage). However, as reported in Sander et al [1979], this starting
scheme yields computational effort comparable to the one in (2.59a-c), but with
a smaller time step size for stability consideration. Hence, the starting scheme
given in (2.59a-c) seems to be the most suitable one.

Update procedure. Once the incremental displacement field Al is
known, the updated configuration ¢4, velocity w{i#}) and acceleration aliry

are obtained from
S = ¢ + g, (2.60a)

i = v, + %Aa‘.‘l, (2.60b)
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aly) = aff, + -h._:ﬂ- &, (2.60c)

We shall next consider the spatial discretization of the residual force and
tangent operator.

2.4.3. Spatial discretization: finite-element matrices
Following standard finite element discretization, let the interval [0,L] be
the union of a finite number of subintervals with N being the total number of

nodes, ie., [0,L] =IG[X*.X',=“] with X{ €[0,L]. W j=1....N, and X{ < Xx{*'.
=1

Consider the approximation of the incremental displacement field AgS{H,(X,)

with respect to the space variable X,
a8 (x,) = lﬁ1 Nr(X)Af., . with Af,, = AdS(X]). (2.61a)

where Ny(X,) designates the global interpolating function corresponding to node

I. Further, let the weighting function 5(X,) be interpolated in the same manner
) = B NG, ity ¥ a(x). (2.61b)

We refer to classical textbooks such as Strang & Fix [1973] and Zienkiewics
[1978] for the choice of the appropriate interpolating function. Note that the
above discretization employs continuous piecewise polynomial subspaces of
equal degree for both the displacement field and the rotation field. This stan-
dard procedure is shown to produces quasi-optimal approximation in H![0, L]
and optimal order of approximation in L¥0, L] for a given beam thickness d

(Arnold [1981]).1 It should be noted however that, for the control of distributed

t The rate of convergenge, with respect to the element size, of the displacement ¢ in Hl-
narm is af the same order as the degree of the interpalating polynomial; it is of higher order
when using the L&norm.
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parameter systems, care must be taken in choosing appropriate basis functions
to insure that certain system properties (controllability, observability, stabiliza-
bility, detectability,...) are preserved (Burns, Cliff & Powers [1985]).

Introducing the above approximations into the expressions for Gdl,,.(#,(fl,.n)
and for the tangent operators derived in the previous section, we obtain their
spatially discrete counterparts. First recall that from a known configuration
‘,(.‘21 at iteration (i) of the Newton solution procedure, we linearize the weak

form Gyn (9. 7) about ¢ = @),
LGy ($M1m)] = g nr-[Pr($) + gmm&*},)wﬁ&ﬂ] = 0,(2.62a)

for all n;, and solve for the incremental displacement field Aﬁ,(.‘ - In (2.82a),
P;(¢Y,) denotes the dynamic residual (or out-of-balance) force at iteration (i),
and K (¢1),) the discrete dynamics tangent operator coupling node I and node
J such that

Ku(35) = My + Sp(ef) + Gy (85)) (2.62b)

where M, is the tangent inertia matrix, Sy, (¢,(,‘2,) the tangent material stiffness
matrix, and Gz ($),) the tangent geometric stiffness matrix.

Dynamic residual force. The expressions (2.42) and (2.45). together with
the discretization (2.61a-b), yield

Pi(i))) = df Ni(X))1a}), dX,
{o.L]

‘"-1(¢r(;‘21)
+ df 23(#,‘,‘2,)[1\11(){,)13]!7 na ()} dX, - ofNI(Xx)f(tnﬂ) dX, (2.63)
A meiy) O

where each term corresponds, respectively, to the inertia, material stiﬁneés.

and external applied force with Z defined in (2.46) and 13 := Diag[1,1,1].
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Tangent inertia matrix Substituting approximations (2.61a-b) for
A¢9,(X,) and n(X,) in the expression of Dy Ggm in (2.52), we obtain

M, = hzﬂ o TN () (2.64)

Note that in the plane formulation M;; is symmetric and constant; hence, it need
be evaluated only once throughout the computation. However, in a more gen-
eral setting of three-dimensional motion, it will be shown in chapter 4 that M;,
actually depends on the current configuration, and is in general unsymmetric.

Tangent material stiffness matrix. It follows from (2.56) and (2.61a-b) that

Sy(e8) = df E2(S8) [NH(X1) 13137 A(B{),) CAT(8{),) E(80) [N, (X,) 15] dX,

(2.65)

Tangent geometric stiffness matrix. Substitution of (2.61a-b) into (2.57a)
yields

G (88),) 6[ STIN (X)) 15337 B($H,) TIN; (X;)15] dX, (2.68)

with T being the differential operator defined in (2.57b) and B(g) is as defined in
(2.57c). Note that both the tangent material stiffness and the tangent geometric
stiflness matrices in the plane formulation are symmetric. For the three-
dimensional rod formulation, the tangent geometric stiffness operator will be
shown to be unsymmetric due to the non-commutativity of three-dimensional
finite rotations.

Numerical integration. It is well known that using the standard discretiza-
tion (2.80) the order of approximation deteriorates as the thickness of the beam
decreases — the rate of convergence is not uniform in the thickness d. This
phenomenon, often referred to as shear locking, is remedied by employing a

reduced/selective Gauss quadrature rule first proposed by Zienkiewics et al
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[1871] and Pawsey & Clough [1871]. This procedure consists of lowering uni-
formly or selectively the order of the integration rule used to evaluate the
tangent stiffness matrix to achieve a better order of approximation. In fact, it
can be shown that the order of approximation thus obtained is optimal for (2.60)
regardless of the beam thickness (Arnold [1981]). The analysis of Arnold is
based on the equivalence between the mixed finite element method and the
reduced/selective integration shceme first introduced by Malkus & Hughes
[1978]; it is this equivalence property that elevates the reduced/selective
integration procedure from a mere numerical trick to a legitimate methodology.
For a curved planar beam using a mixed finite element method, we refer to Noor
& Peters [1981] and Reddy & Singh [1981]. In all computation, we use a uni-
formly reduced, one-point Gauss quadrature rule to integrate both the tangent
stiffness matrix and the residual force. Noor, Peters & Andersen [1984]
employed a mixed finite element method to discretize the fully nonlinear plane
beam theory of Reissner [1972], and is therefore equivalent to the finite element
displacement model with reduced integration used herein.

The mass matrix, however, is integrated exactly with two-point Gauss qua-
drature to ensure its positive-definiteness, an essential property for the use of
implicit time-stepping (2.48). Note that the positive-definiteness of the dynamic
tangent stiffness K in (2.62b) depends on the positive-definiteness of the mass
matrix M since the tangent stiffness matrix (S+G) is positive semi-definite.
When a diagonal mass matrix is desired, care should be taken in choosing a
diagonalizing procedure such that the global momenta are preserved. For
instance, the usual *‘row lumping” procedure preserves only the global linear
momentum but not the global angular momentumn. The Gauss-Lobatto quadra-
ture rule, sometimes referred to as nodal quadrature rule, is recommended for

this purpose.
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2.5. Numerical examples
In this section, we present a series of numerical simulations that illustrate

the formulation and numerical procedure discussed in sections 2.3 and 2.4. Our

purpose is to exhibit:

(a) The simplicity of the numerical procedure. Essentially any existing non-
linear structural finite element dynamics code could be employed. Here an
extended version of the the computer program FEAP developed by R.L. Tay-
lor and documented in chapter 24 of Zienkiewics [1978] is employed.

(b) The capability of the proposed formulation to automatically handle finite
strains superposed onto large overall rigid body motions. This includes
flexible bodies in free flight.

It is emphasized that no simplification is made in the simulations that follow
in the sense that Coriolis and centrifugal eflects as well as the inertia effect due
to rotation are automatically accounted for. The deformed shapes in all figures
reported in this chapter are given at the same scale as the geometry of the
beam, i.e., there is no magnification of the structural deformations.

In all simulations reported herein, the trapezoidal rule — Newmark algo-
rithm with 7=0.5 and §=0.25 — was employed. Numerical operations were per-
formed in double precision on a VAX 11/780 under the Berkeley UNIX 4.2 BSD
operating system.

Example 2.5.1. Flexible robot arm. This simulation is concerned with the
re-positioning of a flexible beam rotating horizontally about a vertical axis pass-
ing through one end. The finite element mesh consists of 10 elements with
linear isoparametric interpolation functions for both displacement and rotation.
Two cases are considered.

2.5.1.1. Displacement driven. The geometry, material properties, finite

element mesh, as well as the time step size used in the integration are given in
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Figure 2.5.1.1a. The robot arm is first repositioned to an angle of 1.5 radians
from its initial position. This is achieved by prescribing the rotation angle
¥(t) m (0, t) as a linear function of time, as shown in Figure 2.5.1.1a; the
sequence of motion during this repositioning stage is depicted in Figure
2.5.1.1b. Once the rotation angle ¥(t) is fixed at 1.5 rad for all time £ > 2.5, the
robot arm then undergoes finite vibrations as shown in Figure 2.5.1.1c.

2.5.1.2. Force driven. The robot arm is now driven by a prescribed torque
T(t) applied at the exis of rotation e, as shown in Figure 2.5.1.2a. The applied
torque is removed at time ¢ = 2.5; the robot arm then undergoes a torque-free
motion. The simulation is terminated after completion of one revolution, as
shown in Figures 2.5.1.2b and 2.5.1.2c.

Example 2.5.2. Flying flexible rod A flexible rod with free ends, initially
Placed in an inclined position, is subject to a force and a torque applied simul-
taneously at one end, see Figure 2.5.2.1a. The applied force and torque are
removed at the same time ¢ = 2.5, so that the subsequent free flight of the rod
exhibits a periodic tumbling pattern. It should be noted here that the boundary
conditions (3.18) becomes m(0,¢) = m(L,t) = n(0,¢) = n(L,t) = 0 during the free
flight stage. Two cases are considered.

2.5.2.1. Flexible beam in free flight. The motion of the rod during applica-
tion of loading is shown in Figure 2.5.2.15. The stiffness of the rod is low enough
exhibit finite deformations. A close-up of the first two revolutions is shown in
Figure 2.5.1.3c, while the entire sequence of motion is depicted in Figure
25.2.1d.

2.5.2.2. The "flying spaghetti." The bending stiffness EJ/ of the rod is
lowered by a factor of 5 relative to the simulation in 2.5.2.1. This dramatic
reduction in stiffness results in the in the sequence of motions depicted in Fig-

ure 2.5.2.2.
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Example 2.5.3. Spin-up maneuver. The flexible robot arm considered in
Example 2.5.1.1 is now subject to a "spin-up” maneuver by prescribing the angle
¥(t) = 8(0, t) for t€R, as follows

15 [tz [—-] (cos Z"t —_— l)lru.d 0<£<15 sec
¥(t) = (2.67)

6t — 45) rad t>15 sec
This type of motion was proposed by Kane et al [1985] to demonstrate that the
**conventional’’ 2appz-n:mch based on linear beam theory may lead to grossly inac-
curate resuits: instability of a physically stable system. As a result, one need to
call upon higher order theories to account for effects such as the centirifugal
stiffening in this example, even if the deformation remains small. This example
may also be of practical interest in applications such as helicopter rotor blades
or aircraft propellers. The material properties and time'history of Y(t) are
shown in Figure 2.5.3a. Deflected shapes for several values of ¢ during the first
revolution are depicted in Figure 2.5.3b. Also shown in this figure are the time
histories of the displacements @,(L,t), ¥s(L,t) relative to the shadow beam,
and the section rotation %(L,t). The results in Figure 2.5.3b clearly exhibit the
centrifugal stiffening effect: after an initial deflection during the acceleration
phase, £€[0, 15], the centrifugal force straightens the robot arm in the constant
angular velocity phase, ¢ > 15. The exact solution for the steady state extension
of a pinned-free beam with length L, axial stiffness £4 and mass per unit length

P A, spinning with constant angular velocity @ can be easily shown to be
~ — tanal . -
U, (X, t)=1L IT- 1] i where a'= o\/% (2.88)

For this particular example w=687ad/sec., L =10 and pA/EA = 2x 107"
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Expression (2.88) then leads to a steady state extension at the free end of
#,(L,t) = 5.14x107%. This result is in complete agreement with the computed
solution (see Figure 2.5.3b). The small periodic vibration of the beam about the

floating frame during this steady state phase is noted.

2.8. Concluding Remarks

We have presented in this chapter a new approach to the dynamics of a
plane beam under large overall motions. The essence of this approach is the
fully nonlinear plane beam theory that can account for finite rotations as well as
finite strains. The appropriate strain measures in the beam theory are invariant
under superposed isometries; such invariance is the necessary ingredient to the
success of the present approach. The motion of the beam is completely
referred to the inertial frame. We thus obtain the expression of the inertia term
in the equations of motion simply as mass times acceleration. By contrast, in
the shadow beamn approach, one obtains a nonlinear and highly coupled inertia
operator; hence a special computer code must be devised to solve the resulting
system. In our approach, the inherent nonlinear character of the problem is
transferred to the stiffness part of the equations of motion; this resuits in equa-
tions of motion that arise typically in nonlinear structural dynamics. Conse-
quently, the dynamics of flexible beams under large overall motions can be

analyzed in any existing nonlinear finite element program.
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T(t) ~ Reference(Initial)
Configuration

2 X'J

Figure 2.2.1. Basic kinematics. Floating and inertial frames.
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Figure 2.3.1. Physical interpretation of the strain components
of a beam in the finite strain case.
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Figure 2.5.1.1a. Displacement driven flexible robot arm. Prob-
lem data.
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" Figure 2.5.1.1c. Displacement driven flexible robot arm. Free
vibration about ¥ = 1.5 rad. Time step size h = 0.5.
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Figure 2.5.1.2a. Force driven flexible robot arm. Problem data.
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Figure 2.5.1.2b. Force driven flexible robot arm. Sequence of
motion during application of torque. Time step size h = 0.5.
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Figure 2.5.1.2c. Force driven flexible robol arm. Sequence of
motion after removal of applied torque —completion of one revolu-
tion. Time step size h = 0.5.
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Figure 2.5.2.1a. Flexible beam in free flight. Problem data.
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Figure 2.5.2.1b. Flerible beam in free flight. Sequence of
motions during application of loading. Time step size h = 0.1, plot
after each 5 time increments.
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Figure 2.5.2.1c. Flezible beam in Jree flight. Free flight of the
beam after removal of the loading — close-up on the first 2 revolu-
tions. Time step size h = 0.1, plot after each 5 time increments.

Figure 25.2.1d Flexible beam in free Jlight. Free flight —
entire sequence.
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CHAPTER 3
THE ROLE OF NONLINEAR THEORIES IN DYNAMIC ANALYSIS
OF ROTATING STRUCTURES

3.1. Introduction

In the previous chapter, we have advocated the use of nonlinear structural
theories based essentially on the linearity and uncoupling character of the iner-
tia operator when the dynamics of the structure is referred to the inertial
frame. This formulation clearly encompasses a wide class of problems ranging
from very stiff to very flexible structures. However, in the case of stiff struc-
tures undergoing a rotating motion —such as in the spin-up maneuver of exam-
ple 2.5.3 —where the deformation is expected to remain infinitesimal, does one
really need to employ nonlinear structural theories? We shall now attempt to
answer this question.

Recently, it bas been pointed out by Kane, Ryan & Banerjee [1985] (KRB)
that existing approaches to the dynamics of flexible bodies necessitate funda-
mental modification in order to capture the centrifugal stiffening effect in fast
rotating beamns. We shall examine this claim, and in fact show that

(i) Accounting for the stiffening effect in fast rotating structures requires a
higher order (geometrically nonlinear) theories, hence necessarily nonlinear in
the strain measures. A hierarchy of beam theories, from the linear to a fully
nonlinear formulation, can be systematically developed by successive approxi-
mations in terms of a small perturbation parameter.

(ii) Current approaches based on linearized strain measures are not con-
ceived to capture such a stiffening eflect, nor to account for any other nonlinear
phenomena involving change in stiffness due to axial loading. In fact, use of a

geometrically linear beamn theory in the modeling of a rapidly rotating beam
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leads to a spurious loss of bending stiffness, which is quadratic with the angular
velocity. This eflect was numerically documented in Kane, Ryan & Banerjee
[1985). Herein, this phenomenon is quantified analytically by providing the
relevant partial differential equation of motion for the transverse vibration.

(iii) The KRB approach may be viewed as a reparametrization of a higher
order beam theory of the von Karman type, along with a subsequent truncation
of nonlinear terms. Specifically, in the case of a beam, the axial displacement
field is replaced by the elongation along the line of centroids, with the net result
of rendering the stiffness matrix identical to that of a linear Timoshenko beam.
This approach, however, ignores the eflect of axial forces other than those com-
ing from inertia effects.

(iv) A set of linear partial differential equations of motion is derived as a
consistent first order linearization of the nonlinear theory. These linear PDE's
capture correctly the action of the centrifugal force on the bending stiffness,
and in fact, for the von Karman type model, are the exact counterpart of the
KRB discrete approach. However, by contrast with the KRB approach, the Galer-
kin spatial discretization of these PDE's is straightforward. In addition, explicit
expressions of the linear semi-discrete equations of motion in the present con-
text are given.

(v) In cases where modeling of the above nonlinear geometric effects is
desired, the use of a fully nonlinear beam or plate theory does not involve more
computational effort than the use of a higher order nonlinear theory. In fact, by
referring the dynamics of the beam directly to the inertial frame, the inertia
operator becomes linear, hence simplifying considerably the task of integrating
the equations of motion.

We shall also show that the conclusions obtained from the one-dimensional

case of a beamn essentially carry over without modification to the more general
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case of a plate (Simo & Vu-Quoc [1988a]).

S.2. Consistent higher order theories

For simplicity in the exposition, but without loss of generality, we shall con-
gider the model problem a rotating beam whose motion is restricted to a plane
with the same kinematic assumption as in Section 2.2.1. The result obtained,
however, can be generalized without difficulty to the three-dimensional motion.
Higher order beam theories, including geometrically linear theory, can be sys-
tematically obtained by successive approximations of the strain measures

characterizing the fully linear theory.

8.2.1. Fully nonlinear theory

Throughout this chapter, the deformation of the beam will be expressed
relative to the floating frame {0;a,, &g; the superposed tilde used in Chapter 2
to denote quantities relative to the floating frame will thus be removed to sim-
plify the notation:

E=x + X b, | (3.1a)
% = [X; + u (X)) a)(t) + u(X), £) ax(t), (3.1b)

t a cosa —sina 0
te}=AT{a}. where A:=|sina cosa O]. (3.1¢)

o lte ag 0 0 1

In this model problem, the rotation of the floating frame {a,, ap} relative to
the inertial frame {e,, ez} is completely prescribed a priori. Recall from Remark
&1 that the expression of kinetic energy is independent of the magnitude of the
strain field. For the planar motion considered herein, the system of partial

differential equations (2.34) governing the dynamics of the fully nonlinear beam
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can be easily derived using the expression for the kinetic energy (2.13) and for
the potential energy (2.28)

-a Vv
{ ] Vead N =0 (3.2)
R§ H +IMV-Te N

where A, denotes the mass per unit reference length, and /, the mass moment
of inertia of the cross section. The inertia operator is given by

Fierta Ap [y = Yug - 29 up - P2 (X, + w))]

Fiperad o= (4 [up + (X +u)) + 294, —FPug] |, (3.3)

| Rferita I(a+¥)

with F{*™@ and FP*m@ denote the inertia force along axes a, and a, and RE*rtis
the inertia torque about axis ag. In (3.2), (N, V, M) represent the axial force,
shear force, and bending moment relative to the local frame {t,, t,, ts}, respec-

tively, with (T',, I'p, £) being their respective conjugate strain measures such that

!
N=EAT, T, 1+ “
V=GA Pg , and Pg = Ar Uz -

[y

(3.4)

oo

M=Elc

where A is the orthogonal matrix defined earlier in (1b). Recall that, since the
function ¥ is prescribed, ¥ and ¥ are known functions. We note that the above
definition of the strain measures (Th.Te, &) is unique in the sense that the result-
ing reduced expended power of the beam is identical to the exact stress power
of the three-dimensional continuum theory. Successive approximations to the
nonlinear theory (Truesdell & Noll [1965, p. 219]) can be constructed via stan-
dard power series expansion in terms of a ‘““small” parameter £ > 0. Such

epproximations have been employed to obtain consistent higher order plane
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beam theories in Simo [1982]. The series expansion of the strain measures

deflned in (3.4) are given up to second order by

1+ew, (ue )°-(u= -ap
{ ltl(:u)" cu.' —lol=¢ ug —-a +—- -2au, +0(3) . (3.5)

In what follows, we denote the first order (£) approximation to the nonlinear
strain measures by (T, I';, €), and the second order (¢%) approximation by

.1 ®); for example, T, = ‘u,' and T, = 'u.,' + [('u.z')’a - (uz' - a)2]/2. Clearly,
(. Ts. B) are the usual strain measures employed in the linear Timoshenko

beam theory.

3.2.2 Linear (first order) beam theory
The equations of motion corresponding to a geometrically linear beam

theory in (2.16) are obtained simply by retaining the first order approximation
in (3.5}

vf

Fiperta ) — =0 (3.8a)
Ree| |a'+v

where the first column corresponds to the inertia operator, and the second
column to the stiffness operator. In (3.8a), the internal forces (N, V, M) are

given by the usual linear constitutive law

N= EAP‘ =E'Au1'

V= GA TS
M = EI®

GA, (uz' - ) (3.6b)

El a
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To see the eflect of centrifugal force on the bending deformation of the beam,
we differentiate (3.8a)3 and make use of (3.8a); to obtain the equation of motion

for the transverse displacement,

i1t

Ap'l.l:g"'EIug —A,'Vug = -2.4,'3/111. (3.7)
in which, for simplicity, we have made the assumption of steady state revolution

(¥ = 0), negligible shear deformation (u.g' = a + O(t)), as well as negligible sec-
tion rotary inertia. The destabilizing effect due to the use of linear beam theory
mentioned earlier can now be clearly identified: The term (—Ap @2 u3) induces a
loss of stiffness, which is quadratic in the angular velocity of revolution ¥. This
observation is indeed corroborated by the numerical experiments in Kane et al
[1985, Figure 8]. Note that only the transverse component along a;z of the cen-
trifugal force in the shear equation (3.6)z, represented by the term (—y up), is
trensferred to the bending equation (3.6a)s. The contribution of the axial com-
ponent along a, of the centrifugal force, represented by the term [2 (X, + u,)],
on the other hand, exerts no influence on the bending. It should be noted here
that this term is in fact of order 1, while the term (=¥ u;) is of order £. Thus,
from a physical standpoint, the loss of stiffness results precisely from this par-
tial transfer of the action of centrifugal force to the bending equation. More-
over, there is a value of the angular velocity of revolution that renders the

stiffness matrix singular.

3.2.3. Second order beam theory
A second order theory can be consistently derived by retaining second

order terms in the approximation to the strain measures, according to



§3.2 Role of Nonlinear Theories in Dynamic Analysis 60

In addition, the second order approximation to the equations of motion (3.2) now

takes the form

—— 5 | (a ﬁl
Fprst -l ¥ (+] —@F) [=o0, (3.9)
}?g"”‘*' 17' +V "Tx V+ T} N

where the inertia force components are as given in (3.3), N=EA fl. V= GA, fg
and ¥ = EI a'. To obtain the equation governing the transverse vibration u,, we
proceed as follows: (i) Make use of (3.9), to express N ' in terms of the a, com-
ponent of the inertia force, (ii) Substitute the result into (3.9), and solve for v .

and (iii) Differentiate (3.9)5 and make use the expression for ¥ obtained previ-
ously in (ii). Observe that the procedure is analogous to that employed in the
first order approximation. The only crucial difference here is that the axial

component of the inertia force along the axis a, is now transferred to the bend-

ing equation due t;:: the presence of the term (a N)' in (3.9),. This term
accounts for the contribution to the transverse momentum of the axial (along
8,) forces in the beam. Again, as in the previous section, neglecting higher
order terms O(e?) in the final equation, considering constant angular velocity of
revolution, and assuming for simplicity negligible shear deformation and negligi-

ble section rotary inertia, one obtains

nn

A + Elug  + A, PP(X, ua' -ug)=-24,%u, (3.10)

Note that equation (3.10), resulting from the foregoing second order approxima-
tion, is substantially different from its counterpart equation (3.7), which results
from the first order approximation to the nonlinear theory. Now both com-

ponents of the centrifugal force are completely transferred to the bending
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equation: the term (4,92 X, ‘u.g') in (3.10) dominates the term (4, ¥* uz) —the
latter is the only term present in (3.7) — and appropriately accounts for the
stiffening effect due to centrifugal force. Conceptually, the transferring of the
action of axial load to the bending equation is analogous to the effect of axial
force in the linearized buckling analysis (e.g., beam-column equation); the only
difference being the dynamic origin of the axial loading.

8.2.4. Consistent linear partial differential equations
We shall obtain the first order partial differential equations governing the

motion of the beam by consistent linearization of (3.9). Before truncating the

terms of order &%, it is crucial to note that the term (a N ') in (3.9)z is actually of
first order (e), and not of second order (). It follows from the equation for

axial vibration (3.9), that

aN' = —a(4, ¥ X))+ 0(c) . (3.11)

and therefore must be retained in the first order approximation to the nonlinear
equations of motion (3.9). After regrouping terms according to their nature, we
obtain the following linear PDE's

Apuy =24, i ug
[Ap "ll zAp 2

.E'Au,"-A,(Vu,-l-;ug) AX
1
] y (3.12)

-GA, (ua' -ﬂ)' + A, (Yuy -PPupg+¥2 X a) | = I-Ap ¢§1
-1,

" '
~Ela =G4 (upg —a)

where the 4 columns correspond respectively to the inertia, gyroscopic,
material and geometric stiffness, and inertia force due to revolution effects.

The Galerkin spatial discretization of the linear PDE's (3.12) is standard.
For completeness, we shall simply give, without derivation, the expressions of

the matrices resulting from applying a Galerkin finite element method. Such a
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procedure has been applied to the spatial discretization of a fully nonlinear
beam model (Simo & Vu-Quoc [1985,86]). Upon defining the following quantities,

a:=(u,,up a), 1:=Diag[4, 4, 1,]. (3.13a)
d 9
—— 0 0
0-10 X, 4
g:=24,v|1 0 0|, ¥:=] 0 - ! (3.13b)
00O 1
o o -2—
dX;
- ¥ 0
C:=Diag[EA, GALEI1l. By:=4,| ¥ = (#*X)]. (3.13c)
0 0 0

and introducing the discretization,
&X,.t) = l[Nz(Xx) 1s] @(t). with 13:=Diag[1, 1, 1] (3.14)

the resulting linear semi-discrete equations of motion can be written as
Mg+Dq+[S+G]q=P (3.15a)

where M designates the mass matrix, D the gyroscopic matrix, S the material
stiffness matrix, G the dynamic geometric stiffness matrix, and P the applied
force; q denotes the vector of all generalized coordinates. It is easy to verify
that the following expressions for the (3x3) submatrices coupling the general-
ized coordinates q; to gy hold

Ny = ml; ]N;(xl) N;(X,) 1dX,, (3.15b)
Dy = me lNI(Xx) Ny(X)) g dX; , (3.15¢c)

By = [ ¥ [Nr(X1) 15137 C ¥ [Ny(X,) 1) dX, , (3.15d)
6.z}



§3.2 Role of Nonlinear Theories in Dynamic Analysis 63

Gy = [ Ni(X,) N;(X,) B, dX, (3.15€)
(0.2}

Observe the non-symmetry of the matrices in (3.15), except for the mass matrix
M and the mﬁterial stiffness matrix S In addition, we note that the geometric
stiffness G is of purely dynamic origin.

In what follows, we shall interpret the KRB approach in the context of a
gimilar setting.

8.3. The Kane-Ryan-Banerjee approach

We shall re-examine the discrete approach proposed in Kane, Ryan & Baner-
jee [1985] and, by deriving the appropriate PDE, show that this approach essen-
tially amounts to a re-parametrization of a nonlinear structural model of the von

Karman type. These authors consider a potential energy function

M:= J [EA(s')® + Ghe(uz' ~ )2 + El{a')?) dX, (3.16a)
(6.1

'
where s denotes the partial derivative of the elongation of the center line with

respect to X, and is given by

x, '
&(X,, t) ={V7(71- Hdx, -X,, J(X.t):=(1+ 'U-x')z + (uz )?,

'
and s'(06) = V(1 +u,)2+ ()2 -1 (3.16b)
The essential feature that distinguishes expression (3.16a) from its counterpart
in the linearized theory is the use of s ' instead of T, = u,' in the contribution of
the axial strain to the potential energy II of the system. By the change of vari-

able, o = (X)) := X, + u,(X,, t), the elongation s(X,, £) given by (3.16b) can be

recast into the form
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X, ]
l*'l(x‘ ,[1 . [ 8“2(?

s(Xy t)= da -X. (3.17)

where we have assumed the boundary condition ©,(0, ¢£) = 0. Relation (3.17) is
the one essentially used in Kane et al [1885] with an additional assumption that
ug(? ~}(0).t) m ug(o,t), ie., these authors consider # as an identity map. Such
an assumption clearly contradicts the derivation of (3.17). On the other hand,
the kinetic energy of the system is given as in (2.13)

x-—ofLA,t[u.—iu:]’*«[uzw(xwul)]z;um

3 UIL e [a + 917 X, (3.18)

We recall that the same expression for K holds in the nonlinear theory. The
Lagrangian of the system is given by L := K —IL Note that {u,, u, a} are the
independent variables in L. However, in place of v,, Kane ef al choose to select
the elongation s(X,, t) of the line of centroids as independent variable. The

basic variables in the KRB approach are thus (s, ug, @), %, being implicitly

defined in terms of (s, u) using the nonlinear relation s' = VT -1, where J is
in turn defined in terms of (u,, ug) by (3.16b). An explicit expression of the
resulting system of PDE's is difficult to obtain because of the complexity of the
inertia operator. These authors proceed numerically and derive linear semi-
discrete system of equations, Ha+ Dl'.l-i- Kq = P by first introducing the discreti-

zation

s(X,, £) 2 f;nu(xoq (£
oy, £) ¥ gzvu(x.)q a(t) (3.19)

alXy, t) = gwm(xoq a(t)
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where N;;(X,) are prescribed independent basis functions, such as the eigen-
functions of a cantilever beam, and then linearizing the resulting nonlinear iner-
tia operator. Recall that in discretizing (3.17), the additional assumption that

WB(U;;(U)- t) = ﬁl Nu'(U)QzJ(t) is made.

To show that the KRB approach outlined above amounts to employing a
geometrically nonlinear theory, we obtain below the system of governing PDE's
in the variables (u,, up, a). Making use of Hamilton's principle along with the

expression (3.18b) for s' in terms of (u,, uz) we obtain, after standard manipu-

lation, the system

j— EALG -8 14wy

Fsm} ~loa (we' — o) —EAL(1 - B w1} =0 (3.20)

Ryeme Ela'' - GA, (uz' -a)
where the inertia operator is defined in (3.3). It should be noted that equations
(3.20) are nonlinear in the stiflness operator, and closely related to the von Kar-
man second order model. Conceptually, by using relation {3.18b), one could
recast this system of equations in terms (s, u, ). To see this, we introduce the
perturbation parameter £ > 0. Assuming that {u,, 4z, a] are of order &, by
expanding s(X,, t) in powers of ¢, we find

c,’ =[(1+¢ ul')‘ + (e ug')’]%- 1=¢ 'u.,' + aai('u.a')’a + 0(e%) (3.21)

'
Thus s agrees with the consistent second order strain ﬁ only if shear deforma-

tion is of second order, i.e., ug' =a + O(e). In addition, we have the following

expansions

(1- J:i-) (1+¢ u,') =¢ u,' + -%z—(uz')z + O(e%) (3.22a)



§3.3 Role of Nonlinear Theories in Dynamic Analysis 86

EA[(1 - ) eug') = Ean,' we' + 0() (3.22b)

The term (3.22b) is precisely the one responsible for transfer of the axial force
ecting on the beam to the transverse equilibrium.

Since the direct contribution of the axial component along a; of the centri-

fugal force to the transverse equilibrium given by (E4 ulu a) is absent from the
discrete equations in the KRB approach —here (s, %, a) are chosen as'indepen-
dent variables —the question arises as to how centrifugal stiffening is accounted
for in this formulation. This is accomplished through the inertia operator by
expressing ¥, and U, in terms of (s, ug) and their derivatives with the aid of the
nonlinear relation (3.17). Upon introducing the discretization (3.19), the resuit-
ing discrete nonlinear inertia operator is then linearized to obtain the linear
semi-discrete equations of motion.

Remarkably enough, after some manipulation similar to that described in
Section 2.3, we obtain from equations (3.20) exactly the same PDE's for the
transverse vibration (3.10). This result shows that the use of the nonlinear von
Karman type model can also appropriately account for the action of the centri-
fugal force on the transverse vibration as manifest in the expression for the first

order dynamic geometric stiffness in (3.10). From the expansion (3.22b) of the
term (EA[(1 - J-g-) 'u.g']') in (3.20)2, and from the equation for axial vibration
(3.20),, we note that this term is in fact of first order (¢), similar to (3.11), i.e.,
EAL -7 ) ew'T = —e 4, 9 X, ug' + O(e?) . (3.23)
Note that instead of a in the consistent approximation from fully nonlinear
theary, we obtain ug' in this von Karman type model. This is valid only when

'
shear deformation is of second order, ie., 43 =a + O(¢). We then arrive at the
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following linear PDE's,
’EA "4 Py, +yup)
- w - 13 u
Ap“! zAp'i"‘x -G (up =) +4, Fu; - Vup+ X up )= -4, ¥ Xy
" ' -,y
-Ela - GA (up —a)
(3.24)

as a first order consistent linearization of (3.20). This system is entirely
equivalent to the KRB discrete approach. The only difference, as noted above, is
that the dynamic geometric stiffness operator B, in (3.13c) must now be
redefined as

Vv -V 0
Be:=4y | § [ +920 o (3.25)
0 0 0

and hence a slight change in the dynamic geometric stiffness matrix G in
(3.15¢). The other matrices —mass, gyroscopic, material stiffness —remain the
same as obtained in Section 2.4. One can easily verify the correspondence of
the terms in the discrete equations of motion resulting from the linear PDE's
(3.24) to those given in Kane et al [1985]. In addition, when there are no
dynamic effects, the linear model governed by the PDE’s (3.24) reduces exactly
to the Timoshenko beam theory. It should be pointed out, however, that the

choice of s' and (‘I.Lz' —a) as axial and shear strain measures does not agree

with the consistent second order strain measures f, and Fz unless

'
uz = a + O(e) (negligible shear deformation).
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8.4. Extension to plate formulation

As a direct application of the foregoing discussion, we shall extend the
results to the case of a plate undergoing three-dimensional rotating motion.
Again, for clarity, we assume that the axis of revolution of the plate passes
through an inertially fixed material point of the plate. The dynamics of this
revolution is completely prescribed a priori; the orientation of the axis of revo-

lution, however, need not be fixed with respect to the inertial frame.

8.4.1. Model problem and notation

Consider the material frame {0; B, K, B3} with base point 0 € R® and an
orthonormal basis {B]. Let the inertial frame be {O; e, ez €3} such that
& mF, for £=123. Coordinates with respect to {B] are denoted by
(X1, Xz, X3): coordinates with respect to {e;] are denoted by (z,, s z3). The

domain of the undeformed plate is defined to be B := Qx[g—, g—] with 0 € B and
such that a point X € B has coordinates (X;, Xz) € ) c R® and X3 € [%—. g—]. Con-

sider now a floating frame {0:a,. &, &g}, attached to the deformed plate, and
whose dynamics with respect to the inertial (material) frame {B) is completely
prescribed by an orthogonal matrix Q(t) such that &(t) = Q(t) B. The map
¢-+Q(t) in fact describes the rigid body rotation of the (undeformed) plate about
the origin 0. The deformation of the plate relative to the floating frame {ay} is

then given by
X=x + X3t (3.28a)

X = ’§J[X., + w (X, X, t)] &, + ug(X), Xz, t) a3, (3.26b)

to(X1. X, t) = A(X), Xo, £) ag(t), (3.28c)
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where (u,, ug, us) are the displacement components of a point X € B; t3 desig-

nates the normal to the deformed plate, and A an orthogonal transformation.

8.4.2. Second order equations of motion
Consistent second order strain measures. It can be shown that, up to
second order, the two-dimensional counterpart of the‘ one-dimensional strain

measures in (3.8) is given by

Top = upp + Fusyusp = §(usy - &) (usp — ). (3.27a)
Toe = (uap—ap) ~uyg 0y, (3.27b)
Bp=apg. (3:27¢)

for 7.8= 12, where we have used the notation wu[,g:= %(u,,g +ug,), and
Uy g = %— Note that the strain measures in (3.27a) reduce exactly to the in-
plane strain measures of the von Karman plate model,

f” TUpgt ;-“3.7 Ugg, (3.28)

with the assumption’ of negligible shear deformation, ugg = ag + O(¢). This is
entirely analogous to the one-dimensional case of the beam considered in previ-
ous sections. Further, we recall that the first order strain measures are
Ty =upp Ty =usp - ap end By m By,

Constitutive laws. The elastic material internal forces N,z V, and
moments ﬁ-" are related to the strain measures (3.27) by a functional relation

enalogous to that of classical small deformation plate theory. That is, one

i In what follows, subscripts in greek letters take values in {1,2], while subscripts in roman
rs take values in {1,2,3}.
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Ny = 1—%‘7[11 P 6 + (1-v) Bg) (3.292)
V,=Ga T, (3.29b)
g, = -1-2(—51"-_’-;,)—[:: Fp 6pp + (1= v) Bl (3.29¢)

Here, £ represents the Young's modulus, v the Poisson’s ratio, G the shear

modulus, and 4, may be taken to be %d. The same relationship holds for the

first order internal forces N.,,. V.,. and internal moments H.,p in terms of the
first order strain measures (T, s Kyg).

Equations of motion. One can show that following system of partial
differential equations, analogous to (3.9), furnishes the consistent second order

approximation to the fully nonlinear equations of motion

W N h'r (“7 V?)-p
Fg“"“ +{ —a,Ng)ps }=0 (3.30)

M”-"l' Vp —P,, T’?'i'f'a,ﬁh

where F™6 .= fjnemia o denotes the inertia operator for the translational part
of the equations of motion, and T®¥™® .= T}*™@ g, the inertia operator for the
rotational part. A similar stiffness operator can be found in Simo [1982, p. 112].
To evaluate F™™@ and T¥*™@ one proceed as follows. Let u:= 1 a;, thus

% := X, a, + u, and define the angular velocity of the floating frame {a;} relative
to the inertial frame as '

w:=w 8, suchthat Q=Qw, (3.312)
where wis a skew-symmetric tensor with components relative to {a;} given by

0 -Wg Wp
wy N@lj . and [‘J)q]: ws 0 -—w, (3.31b)
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let L be the linear momentum per unit of mid-surface area Using the

kinematic assumption (3.26) it follows that

L:= [-1,[54& +X3Y)dXy = A [u+wxx] (3.32a)

where A, now denotes the plate mass per unit of undeformed area, and a super-
posed “V" represents time differentiation keeping fixed the floating frame {a;}.
The inertia force F**™*® s then given by
. . v
Frota = | o Ap[vl:+wxx, +2wxu+wx(wxx,)]. (3.32b)

Similarly, the couple T®™® 5 obtained from the angular momentum per unit of
mid-surface H:= { (x - x,) X xdXg as T™"™S = | The expression for T&¥rts
-8

is conveniently expressed in terms of the vector a:= a,a, that defines the
infinitesimal rotation of the normal tg of the plate. Note that agm 0, i.e., there is
no rotational degree of freedom along the axis ag as in the classical Mindlin-
Reissner plate theory. In addition, let J, denote the inertia dyadic of a

transverse (undeformed) fiber of the plate: r:= X3 ag, where Xs € [—g—. %]. By

definition, we have
]
J,:= _{ [frl? 15 — r@r] dXs = ~“’1%[13 - ag®ag] . (3.33b)
8
It can be shown that the rate of angular momentum H takes the form

Trtis = [ [J,(a +wxa+w+(@+wxd,(@a+w]. (3.33)

The second order equations of motion for the plate are now completely defined.
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8.4.3. Consistent linear partial differential equations

Next, we derive the counterpart of equation (3.10) that go&ems, to first
order approximation, the transverse vibration of the plate. This approximation
is systematically obtained exactly as in Section 2.3. We first note that the term
(oy Nppp) in the shear equations (3.30); is of first order as a result of the centri-
fugal terms in the equations for in-plane forces (3.30);. We recall that this term
allows an appropriate account for the action of the centrifugal force on the
bending of the plate. For steady state revolution and negligible shear, the

transverse vibration of the plate is governed, up to first order, by the linear PDE
A‘, !.l:s +DA® Ug - [X,W-’Wp - "'ﬂzx’] Uggs
=4y (w} + wf) us = —w, (% - 8) wg —2(w, Uz —weu,y), (3.34a)

9
D: Ed

= m. (3. 34b)

with A denoting the Laplacian operator. A complete analogy with equation (3.10)
should be observed: The term [4, (w} + w§) ug] gives rise to an unphysical loss
of stiffness, quadratic with the angular velocity, when linear plate theory is used;
a complete account for the action of the centrifugal force is realized up to the
first order with the additional term [X, w, ws — }w{EX,] u34 when second order
plate theory is employed. These two terms form the dynamic geometric
stiflness operator for the fast rotating plate.

The counterpart of equation (3.12) can be obtained in a straightforward
manner. The resulting equation is, however, lengthy and will not be given here.
The second order theory governed by (3.27),(3.29) and (3.30), with F&**™8 and
Tt given by (3.32) and (3.33) respectively, can be treated numerically by
standard finite element procedures. From a computational standpoint the main

issue concerns development of the appropriate spatial discretization.
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3.5. Concluding remarks

This chapter demonstrates the limited range of application, and even inade-
quacy, of linear structural theories to model certain physically relevant situa-
tions. Our discussion shows that even for extremely stiff beams for which linear
theories are expected to be valid, a sufficiently high angular velocity of revolu-
tion will predict a physically inadmissible destabilization effect. Fully nonlinear
models, on the other hand, are able to account for situations more general than
that discussed herein. Efficient computational procedures based on the use of
such theories have been developed in Chapter 2.

Conceptually, the approach proposed in Chapter 2 readily carries over to
the case of a flexible bearn subject to three-dimensional motions. This extensi;n
relies on a proper treatment of the finite rotation field, which is in general non-
commutative. Chapter 4 will address the formulation and computational
aspects of the fully nonlinear three-dimensional rod mode! without inertia
effects. The dynamic treatment of flexible rods undergoing three-dimensional
large overall motions of the type presented in this chapter will be postponed
until chapter 5.
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CHAPTER 4
ALGORITHMIC TREATMENT OF A 3-D FINITE-STRAIN ROD MODEL

4.1. Introduction

In this chapter, we shall be concerned with the variational formulation and
numerical implementation in the context of the finite element method of the
three-dimensional finite-strain rod model proposed by Simo [1985]. Only static
response of the rod will be considered here; the treatment of dynamic response
is deferred until the next chapter. We recall that this model is essentially a re-
parametrization of an extension to the classical Kirchhoff-Love model, developed
by Antman [1974,75] in a different context, which includes finite extension and
shearing of the rod. These formulations reduce to the classical Kirchhoff-Love
model for vanishing shearing and small axial strains. Other formulations of
three-dimensional finite-strain rod restricted primarily to static analysis may be
found in Reissner [1973,81] and Parker [1979]. The parametrization of the
deformed cross section employed here is based on the use of quaternion param-
eters to describe orthogonal transformations in R®. From a computational
standpoint, an implementation based on the use of quaternion parameters
proves to be the optimal choice, avoiding the singularity of Euler angles and
minimizing storage requirements (Simo & Vu-Quoc [1985b]). In the context of
aircraft dynamics, issues concerning alternative parametrizations have been
addressed in de Veubeke [1976] and Kane et al [1983].

In the model considered herein, as in the classical Kirchoff-Love model,
rotations have the traditional meaning of orthogonal transformations in
Euclidean space. We recall that orthogonal transformations constitute a non-
cormmutative (Lie) group referred to as the special orthogonal group SO(3). This

approach is at variance with Argyris and co-workers [1979,81,82] in which the
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standard notion of rotations is replaced by semi-tangential rotations. Thus, the

deformation map for this model takes values in the (nonlinear) differentiable

manifold R®xS0(3), instead of a linear space R as for the plane formulation.

The finite element procedure, discussed in Section 3.4, is based on a varia-
tional formulation of the partial differential equations of motion summarized in
Section 3.2. Consistent linearization (Marsden & Hughes [1983]) is employed to
obtain the linearized weak form of momentumn balance. The resulting global
tangent operator is characterized by possessing a non-symmetric geometric
stiffness. This lack of symmetry arises from the non-commutativity of the spe-
cial rotation group SO(3). Argyris and co-workers [1979,82] pointed out that this
lack of symmetry inevitably arises at the element (local) level, although it is
stated that symmetry is recovered upon assembly at the global level. Such a
result is attributed by these authors to a deficiency in the classical definitions of
moment and rotation, and it motivated to a large extent their adoption of a
numerical formulation based on the concept of semi-tangential rotation intro-
duced by Ziegler [1977]. On the other hand, in the context of a classical formu-
lation of rotations, it is shown in Section 3.5 that
(i) The global geometric stiffness arising for the (consistently) linearized weak

form is non symmetric, even for conservative loading, at a non-equilibrium

configuration.

(ii) At an equilibrium configuration the linearized tangent operator is always
symmetric provided the loading is conservative. A condition for this then
follows, with a structure similar to that discussed by Schweizerhof & Ramm
[1984] and Bufler [1984] for pressure loading.

(iii) Upon discretization, from (ii) it follows that both the global and the local
(element) geometric stiffness matrices are symmetric at an egquilibrium

configuration.
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Emphasis is placed throughout the formulation on a geometric approach
that enables one to formulate efficient algorithms. A configuration of the rod is
described by a vector fleld giving the position of the current centroidal line and
an orthogonal "moving" frame representing the orientation of the cross section.
The configuration update procedure for the rotation field becomes the algo-
rithmic counterpart of the exponential map from so(3). the algebra of skew-
symmetric tensors, to SO(3). This procedure relies crucially on the closed-form
formula for the exponential of a skew-symmetric matrix, often ascribed to
Rodrigues (Goldstein [1980], p. 165). In addition, it is possible to obtain a simple
closed-form expression for the derivative of the exponential map, which plays a
crucial role in the evaluation of the curvatures of the rod. A detailed discussion
of the finite element formulation and the configuration update procedure is
presented in Section 4.6.

The eflectiveness and generality of formulation discussed in this chapter is
illustrated in section 4.7 through a set of numerical simulations including plane
and three dimensional problems, and both conservative and non-conservative
loading. Results are compared with those in the existing literature, as in Argyris
[1981,82], and Bathe [1979].

4.2. Afinite-strain rod model: Summary and notation

Kinematic description. (See Figure 4.2.1) Consider a (fixed) material coor-
dinate frame {O;R,, B, Bg} with base point O € R® and a set of orthonormal basis
vectors {EB,, B, Bs}. Coordinates along those vectors are denoted respectively by
(X1.X2.S). A beam of length L and cross section 1 € R? occupies in its unde-
formed configuration the domain B := (x[0, L] c R?® such that a point X € B has
coordinates (X, Xz, S) with (X, Xz) €  and S € [0, L] parametrizes the length

of the bearn. For simplicity, we assume that the beam is prismatic and initially
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straight such that point O is the centroid of the cross section at S = 0; (B;, &)
coincide with the principal axes of inertia of the cross section, and Es coincides
with the undeformed centroidal line. Let {0;e,, ez, €3} denote the fixed spatial
frame such that e; m B, , for £=1,2,3. Consider the deformation map ¢:5-+R°®
which maps a point X € P with coordinates (X, Xz S) into a point
z = ¢(X) € R%. Let X, denote a material point on the undeformed centroidal
line with coordinates (0,0, S) and z, its image by ¢.

Let {4(S.t)}r=1.29) represent the orthonormal basis vector of a moving
frame attached to a typical cross section with £ € IR, being a time parameter.
The origin of the moving frame is fixed at the centroid z, of the cross-section.
The basis vector g remains normal to the section at all times. Further, initially
at £ =0, let t;(.?.O) = B for / = 1,2,3. The basic kinematic assumption is based

on the following relation for the position vector of z, denoted by x,
X=X +XrYy (4.1a)

with x, denotes the position vector of point z,. Let us introduce the map
@.:[0.L]»R® and the orthogonal transformation map A:R®+R%} with the follow-
ing definition. A material frame {X;:B;, B, B} is mapped into the frame
2,1, to, tg) such that

X = $o(Sit) = Pu(S.t)e, (4.1b)
t(S.t) = A(S.t)R = Ay(S.t)e;, (/=123). (4.1c)
where Ay are components of A viewed as a two-point tensor

A(S.t) = Ay(S.t)e; ®E;. (4.14)

t A(S.t) can be regarded as a linear map from the tangent space TxaRa. with basis vectors
fml, to the tangemnt space T,ofRs. with bagis vectors {t;}. Recall that both of these tangent
spaces are isomorphic to R3, i.e., they are “'copies” of R3,
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Accordingly, the set C of all possible configurations of‘the rod is defined by
C:={¢=(4,.A) | $:[0.L]+R3, A:[0,L]~S5S0(3)} (4.1e)

Thus the deformation map ¢ takes values in the nonlinear differentiable mani-
fold R*xS0(3), where SO(3) is the special orthogonal (Lie) group. Before sum-
marizing the rod model formulated by Simo [1985], we shall introduce some
notation concerning the manifold SO(3) that will be extensively used later, and
recall the relevant properties of exponential map and parallel transport in
SO(3). Detailed treatment of this subject may be found in a number of standard
textbooks such as Misner, Thorne & Wheeler [1973], Spivak [1979], Bishop &
Goldberg [1980], or Karger & Novak [1985]. ]

Notation for SO(3). Following standard usage, the Lie group of proper
orthogonal transformations is defined by

SO(3) := {A:R?-+R® | Alinear, ATA=13, and detA=1] (4.2)

Physically, each orthogonal transformation A € SO(3) defines a finite rotation
about the eigenvector 4 associated with the only real eigenvalue 1 : A% =¥9.}
The magnitude of the rotation angle is 8]. Euler angles or quaternion parame-
ters can be used as coordinate charts covering SO(3).1}

Let so(3):= {8:R°+R® | Blinear, 9 + 87 =0} be the set of all skew-
symmetric tensors with either a single eigenvalue equal to zero or all three
eigenvalues each equal to zero (Chadwick [1976]). Eliminating the trivial case
where all three eigenvalues are zero, then physically, any deso (3) represents

an infinitesimal rotation about the eigenvector ¥ € R® associated with the only

% A has only one eigenvalue, which is equal to 1, if we eliminate the trivial case where A is
the identity, i.e., A= 15,

tt Due to the singularity associated with Euler angles, one needs two cocrdinate chart,
defined by two different sets of Euler angles, to cover SO(3).
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zero eigenvalue such that 36=0 In coordinates, relative to a basis {e;} in RS,
we have 8 = {M e;®e; and 4 = VY; ¢; such that

. 0 =93 % Y
[Psl=]¥ 0 =v¥3]|, (¥9)=1{5 (4.3)
%, %, 0 Y3

In fact, (4.3) defines the isomorphism between so(3) and R®. Further, in relation
with the cross product, we recall that % h =49 x h, for any h € R®. We shall often
use the notation ¥ m [® x] where ¥ € R? is called the azial vector (Chadwick
[1976, p. 29]) of B € s0(3).

Exponential map. Infinitesimal rotations are linearized finite rotations
about the identity. Mathematically, one says the so(3) is the tangent space of
S0(3) at the identity 13 € SO(3), and employs the notation T3, SO(3) = s0(3).t
Given any A € SO(3), and any ¥ € so (3) one says that 3 A is an infinitesimal
rotation superposed onto a finite rotation. The set of all superposed infinitesimal

rotations
TASO(3) := {‘5 A | 3eso 3)3. (4.4)

is referred to as the tangent space to SO(3) at A. Consider next the straight line
e+tBAc TaSO(3), for € > 0. This line is mapped by the ezponential map onto
the curve £ -+ A, € SO(3) according to

A =exled]Aa T L3N
k=0 ¢

=[13+55+§52+%‘53+~-]A (4.5a)

1, ?e Lis, grgyp of gkqw-symmetric tensors so(3), equipped with the Lie bracket
(9. 9] =0y — 99, for 4, ¢ €50(3), forms the Lie algebra of the Lie group of orthogonal
transformations SO(3).



§4.2 Treatment of a 3-D Finite-Strain Rod Model 80

Thus the exponential map, exp :s0(3) » SO(3), maps st.raight lines in s0(3) onto
one-parameter subgroups of SO(3). It can be shown that these one parameter
subgroups are geodesic curves in S0(3) relative to an appropriate connection.
We say that A is left-translated to A, by exp[s&]. with the left-translation being
defined in (4.5a). On the other hand, the right-tranlation in SO(3) is defined by
A = Aexp[sa]. with ® = A7 8. We finally recall the following explicit formula to

compute the exponential of a skew-symmetric tensor in so(3) (e.g., Argyris

[1982))
_ sin [0 in? (j8)/ 2
wd] = tov Sl PR (e.50)

which, in vector form, is often credited to Rodrigues (Goldstein [1980], p. 165).

Another formula for the exponential map often found useful in the derivation is

given in Argyris [1982]
¥y x
exp[8] = 1+ —2—{ ¥ + ] (4.5¢)
1+fd]
where 9 is defined as follows
3 := tan(jo|/2) u:_ll (4.5)

¥ and 9 are sometimes referred to as rotation vector{ and pseudo rotation vec-
tor, respectively. An alternative representation of an orthogonal transformation
A € SO(3) can be found in Chadwick [1978, p. 32]. A geometric interpretation of
the exponential map is given in Figure 4.2.2.

Parallel transport Consider A(), A® € SO(3). Then an element
SWAM T,nS0(3) is parallelly transported along the geodesic connecting A"

t Note that the word wector is used here to denote an object with a direction and a magni-
tude associated with it, and does not carry the meaning of an element of a linear (or vector)
space.



§4.2 Treatment of a 3-D Finite-Strain Rod Model 81
and A® to an element 3@ A® € T,@®SO0(3) if and only if

3@ = AR AT J(1) A() AT (4.6)
Note that since in component form we have A = Ay ¢;®E; and 3= ‘Z’g e;Re;,
®:=AT3A belongs to the tangent space T; S0(3) = so(3) and has its com-
ponenis with respect to the material basis vector {E}

8 = (AE®e) (Bue.Be) (A ¢;®R)

= Ay Ay BOE =: 8, BOE, (4.7)

Also from the relation t; = AE, it can be seen that the components of @ relative

to the basis {;®t; are actually identical to (viy. This result follows easily from the
fact that 8 = Aa AT and the identity A(R®R)A7 = (AR)®(AR) = {®t. Thus,
9 = 3;e8e = 8y Lt (4.8)
To further elaborate, let 8 A € T,(;,S0O(3) and 8® A® € T,S0(3).
Relative to the moving bases {t{!)} and {t{?)} one has the coordinate representa-
tions 9 = 6}}) tiV@tfV and 9@ = 5}5) t{2@tf?. According to (4.6), @AM js
parallelly transported to 3@ A® if and only if 9@ = A® AT ) A AT 1
terms of coordinates relative to the moving frames {t{} and {t{?}, since
2 = AR AT ¢f1) it follows that 6}3) = 5})). In conclusion, ¥ € so(3) is paral-

lelly transported by holding fixed its coordinates 611 relative to the moving
frame §t;].

Finally, we note that the same conclusion applies to the axial vector. Since
0 = 9; ¢; and ® = O; § are respectively the axial vectors of @ and of 5 = ATaA.

and since A(ax b) = Aa x Ab, for all a, b € R, we obtain

v v
®h = 8xh = AT9Ah = (A7T¥)xh (4.9)
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Thus the axial vector of AT®A is A’ 9, i.e, 8 =ATd or 8 = A®. It follows that
the components of ¥ with respect to the moving frame {t;] are identical to those

of ® with respect to the material basis {B]:
9 = Ve = Ot (4.10)

Partial derivatives of A. The alternative expressions in the spatial and
material descriptions, of the derivatives of the orthogonal transformation

(S.t)-+A(S.,t) are summarized Box 4.1.

BOX 4.1. Derivatives of A(S,t)

Spatial Material
M%i)._-_ &(S.t)A(S.¢) %aiu)a A(S.£)0(S.t)
. 0 -ws o v 0 -0s 0
[ogl=]| ws 0 - [Oy]=| 0 o0 -0

-0, W) 0 - 0 0

= 0181*’0202"'0393
= L +Dt+tg D=0+ K+ (3K

M) - os.yns.t) | MSL o pseyws.0)

W= w; e +wye; + wg ey
Wxtl*’"'zte*'wsts ':=W131+W2&+W3&

Internal force and moment. Denoting by P:= T; ® §; the non-symmetric
(first) Piola-Kirchhof stress tensor, the spatial internal force, n = n; e;, and the
spatial internal moment, m = m; ;, acting on the cross section Q € IR? in its

current configuration, are defined as

n:= .‘I;'l'adﬂ. m := jo'[x-x.]x‘l'ado (4.11)



§4.2 Treatment of a 3-D Finite-Strain Rod Model 83

The material internal force, N = N; B and moment, M = M; B, are obtained by
transforming n and m to the reference configuration (see previous section on

parallel transport)
n = AN, m= AM. (4.12)

Note that, by virtue of (4.10), the components of n and m in the moving
frame {t;] are identically the same as the components in the basis {§} of N and
M, respectively; ie., n= N;Y; and m = M;t;. Similarly, the components of @ in
the moving frame equal those of {1 in the material frame, as shown in Box 4.1.

Conjugate strain measures. Appropriate strain measures conjugate to the
corresponding stress resultant and stress couple are obtained through the

stress power equivalence

[P:Fdads = ![n-‘;+m-av>]d5' = d[[n-i-+no6]ds (4.13)
B (6] ‘ [6.L)

where F is the deformation gradient, and a superposed ‘‘dot" denotes time
differentiation (Simo [1985]). Here, (Y ):= -:T(-) —wx (.) denotes the co-
rofated rate; that is, the rate measured by an observer attached to the moving

frame. The expressions of the spatial and material conjugate strains are sum-

marized in Box 4.2 below.

BOX 4.2. Strain measures

spatial material

_ 9¢,(S.t) _ a7 89.(S.t)
- es r=A—"%s -

@ 0=AT0

Equations of motion. The spatial form of the local balance laws is given by

%g—+ 6=4,8,. (4.14a)
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Om 8’0 —_ .
3s * 35 xn+m=Lw+wxLw, (4.14b)

where 4, denotes the mass per unit reference length and I, the mass inertia
tensor of a typical cross section. In this chapter, we shall ignore the inertia
effects and focus on obtaining the solution for the left hand side of (4.14a) and
(4.14b).

Constitutive laws. the constitutive equations expressed in the spatial

descriptions take the form

n= W20 4 g By (4.15)
8y b

Alternatively, in the material description one has the expressions

N=ZUSED oy y- SBHELO) (4.16)

The functions ¥ and ¥ are subjected to the invariance requirements under
superposed isometries (Naghdi [1972], Antman [1972]). Finally, one defines the
material elasticity tensor according to the expression

8y av |
dror oroQ
C(srn) = PYs av_| (4.17)
oroQ a0 oN)

The spatial form of the elasticity tensor can be also defined. In the development

that follows, Cis often assumed constant and diagonal; hence given by
C = Diag [GA,, GAz, EA.EIL, EI;, GJ] , (4.18a)

and the material internal force N and moment M are chosen to be linear with

respect to the strain measures

£)-<fe)
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Here, GA; and GA4; denote the shear stiflness along t, and tp, EA is the axial
stiffness, E/, and E/; are the principal bending stiffnesses relative to t; and tp,
and &V is the torsional stiffness of the rod.

This completes our summary of the rod model. The numerical treatment
developed in the next section hinges on the the variational form of the equations

summarized above, and considered in Section 3.4.

4.3. Admissible variations. Linearization of strain measures

A distinct characteristic of the model problem summarized above is that
the deformation map belonging to the configuration space C defined in (4.1e)
takes values in the nonlinear differentiable manifold R3xS0(3) and not in a
linear space. In this section we first consider the appropriate definition of
admissible variations which play an essential role in the variational formulation
of the governing equations. The consistent linearization of the strain measures
about an arbitrary configuration summarized in Box 4.2 is considered next.
These results are essential for the linearization of the variational equations dis-

cussed later in Section 4.4.

4.3.1. Admissible variations
Consider an arbitrary configuration of the rod specified by the position of

its line of centroids and the orientation of the moving frame {t;}{;=1.23). that is,

$(S) = (.(5).A(S))eC (4.19)

We construct the perturbed configuration relative to ¢(S), denoted by
$:(S) m (Po.. A,). as follows. Let ,(S) be a vector field interpreted, for £ >0, as
a superposed infinitesimal displacement onto the line of centroids defined by
$.(S). In addition, let Y(S)€s0(3) be a skew-symmetric tensor field
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interpreted, for € > 0, as a superposed infinitesimal rotation onto the moving
frame defined by A(S), with an axial vector £ ¢¥(S). In components we have

N(S) =nae.  P(S)=Yy(S)e®e (4.20)

The curve of perturbed configuration £-+¢.(S) = ($,.(S).A(S)) €C is then

obtained by setting

$oc(S) = $o(S) +£ms(S).  A(S) = exp[e ¥(S)IA(S) (4.21)

Recall that finite rotations are defined by orthogonal transformations (elements
of SO(3)), whereas infinitesimal rotations are obtained through skew-symmetric

transformations (elements of so(3) = T, SO(3)). A finite rotation of amplitude
35

fy| about the axis of vector ¢ is represented by an orthogonal transformation
obtained via exponentiation of ; Thus, (4.21); is constructed so that A, remains
orthogonal and thus defines a possible orientation of the moving frame. Hence,
by construction, ¢.€C, for all eER.

For simplicity, in what follows attention is focused on the boundary value
problem in which displacements and rotations are the prescribed boundary
data. Accordingly, the set of kinematically admissible variations about the
configuration ¢ = ($,.A) is the tangent space to the configuration space C at
the “base point’’ ¢ € C defined by

TeC := {n(S) m (ne(S)US)AGSNERNTASOB) | ey, = ¥lseroz =m0

(4.22)

A pair 9(S) = (1, (S), ¥(S))eR®x R is referred to as an admissible variation.
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4.3.2. Linearization of strain measures

We now consider the linearization of the strain measures summarized in
Box 4.2. The basic set-up is as above: Given a configuration ¢ = ($,,A)cC, we
consider an admissible variation ) = (1,.¥) and the corresponding perturbed
configuration ¢.€C defined in (4.21). First, note that by taking the directional

derivative one has

d -
D@, -, := a?l¢=°¢oe(s) = ﬂo(s) (4 2
DA-¥ := S A(S) = $(S)AS)

e=0
where we made use of the definition of the exponential map in (4.5a). It is not
surprising to note that the above linearized quantities lie in the tangent space of
C at ¢. Next, we proceed to linearize the strain measures in Box 4.2 about the
configuration ¢<C.
Linearization of curvature tensors. Making use of the definition of @ in Box

4.1, we have

v

So= Shear = (2ol ¥yoni o) v expledIbeml-cY] (429

Making use of the definition of the exponential map (4.5a), it can be easily seen
that

;‘;L;—M“z; exp[-e9] = 3L (4.25)

Therefore, with the aid of (4.25), the linearized spatial curvature tensor may be

expressed as

Dheyp= B & = d¥ 55 _xs (4.26)
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Similarly for the material curvature tensor Q since 0, B?S" ; an analogous
calculation shows that
Sy = L & =arlY
DQ-y := ds LOQ, =A 4S A (4.27)

Linearization of curvature axial vectors. In order to obtain the lineariza-
tion of @(S), one simply needs to express (4.26) in terms of axial vectors. For
this purpose, recall that the commutator (Lie bracket) of two skew-symmetric

matrices may be expressed as
[$.6]h := (§6-0¥)h = (¥xw)xh, V heR. (4.28)

Therefore, the linearized spatial curvature tensor in (4.268) can be written as
(DS-$)h = (%+¢xa)xh. Vv heR®, (4.29a)
from which follows the linearized spatial curvature vector
Do.y = %St"' ¥yxo (4.29b)

The axial vector of the linearized material curvature tensor in (4.27) provides

directly the linearization of the material curvature vector Q2
DQ-y = AT % (4.30)

This follows from the relationship noted in (4.9) on parallel transport. Note that
the same result would be obtained from the definition @, = A7@, and using
(4.23); together with (4.29b).

Linearization of strain measure I'. Applying the directional derivative to

the expression of I given in Box 4.2, we obtain
'
(A¢T¢u - B'e)

: : ds Itﬂ:o de =0

dn,
= AT(Gs-¥x 550
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Remark 4.1. The linearized material curvature vector DQ-y and the
linearized material strain DI are material objects and have their components
expressed relative to the material basis {B], even though 1 m (n,,¥) are spatial
objects. Their spatial counterparts can be obtained by parallel transport using
the orthogonal transformation A, ie.,

dy_
a5

dn, __ 2%

ADQ-y = 25 *XF

renp = 4.32
AD (4.32)

The above procedure can be viewed as taking the Lie derivative: pull-back a spa-
tial object along the flow to the material setting, take the derivative, then push-

Jorward the differentiated object along the flow to the current position. =
For convenience, the linearization of the strain measures in the spatial and
material descriptions is summarized in Box 4.3, where a superposed “prime"

designates the spatial derivative d/ dS.

BOX 4.3. Linearized strain measures (n := (.. 9)€T4C)

spatial material

N0 —¥xP, Dren=ATn, -¥x, ]

¥ DQ-y = ATy

4.4. Tangent operator and symmetry condition

Weak form. Consider again any arbitrary admissible variation
n(S) = (7, (S).¥(S))ET4C. Recall that in this chapter, we focus our attention
on the static response of the rod; i.e., we shall consider only the left hand sides
of equations (4.14a-b), referred to as balance equations, and ignore the inertia

effects of the right band side. Multiplying these balance equations by the
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admissible variation 9 and integrating over the interval [0, L], we obtain the

weak form
G($.m) := ‘[[(ﬂ‘-ua)-q s (o "° 2% p+m)-yldS = 0 (4.33)
(6.2) dS o dS

Integrating by parts (4.33) and making use of the boundary conditions
ﬂ(s)lsqo. Ly = 0, we obtain the spatial weak form of the balance equations

expressed as

G(¢.n) = ofin- 8% __yx %—]4-1!1-%;:15

- df (ii-\n° +HMW-9)dS =0, W€ TyC . (4.34)
fo.L)

Concerned mainly with the development of a displacement type finite element
formulation, we shall assume that constitutive equations (4.15-16) hold strongly,
or point-wise.

To perform the linearization of the weak form of momentum balance, it is
convenient to rephrase (4.34) in material form. Making use of relations (4.12)

we obtain the following alternative (material) expression of (4.34)
d d
G(¢.m) = dfl{N.AT[ d'.,S? -yx _¢£_]+n AT _t]

- 6{ (fem, +W-9)dS, V neT4C. (4.35)
[6.L)

4.4.1. Consistent Linearization of weak form

A complete account of linearization procedures relevant to the problem at
band is given in Marsden & Hughes [1983, Chap. 4]. Hére. we proceed in the con-
text discussed in Section 4.3. Denote by L[G($,%)] the linear part of the func-
tional G(g, ) at the configuration ¢ = @ = ($,. A). By definition, we have
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L[G($.n)] = G(.n) + DG(.m)+ A . (4.36a)

where Ag := (Au,Ad) € T4C designates incremental displacements, and the
(Frechet) differential DG($. %), linear in A@, is obtained through the directional

derivative formula

DG(§.m)+ b9 = ;";{ _Gem) (4.36b)

where ¢, denotes the curve of perturbed configuration about a as given in
(4.21). Away from the equilibrium configuration, the term G($,7) in (4.38a) sup-
plies the residual (or unbalanced) force at the configuration $ec and the term
DG($.7)). a linear operator, is referred to as the tangent stiffness operator.
Searching for the equilibrium configuration ¢ € C, i.e., the weak solution to the
balance equations characterized by G(¢.71) =0, v 1 € TyC, the classical New-
ton iterative solution procedure may be employed such that at iteration (i) we

solve for the incremental displacement A¢(*) by setting
LIG#“\m)] = G($").n) + DG($*).7)- 0" m 0, W 7€ Ty (4.36¢)

where ¢® € C is known. We then proceed to update the configuration ¢ to a
new configuration ¢&*+ using the incremental displacement A¢®), solution of
(4.36c). One of the salient features of the present formulation rests on an
update procedure that forces the iterated solutions ¢(") to remain in the
configuration manifold C, for all k. In fact, this update procedure is the
discrete counterpart of the curves of perturbed configuration defined in (4.21).
We shall now proceed to obtain the expression for the tangent stiffness operator.

The weak form (4.35) may be rephrased in a more compact form by intro-
ducing the following notation. Define material and spatial vectors of resultant

stresses and stress couples, R and r, by setting
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R := {2]. r:= {;}=HR. where II := [3 :] (4.37)

In addition, introduce a matrix differential operator E, similar to (2.48), defined

d '
=1s (¢, x]
ds
E(P,) := o d 1, (4.38a)

dS

where a superposed prime, (. )’. denotes differentiation with respect to S, and
{4 v

recall that 1g:= Diag[1,1,1] is the identity matrix. In addition, [¢, X] = ¢°'

is the skew-symmetric matrix associated with the axial vector ¢,' = ¢,¢'eg. and

j:?la is the block diagonal operator defined below,

]
0 '¢os' ¢oz’
(o' x]:= | dos 0 g1 |. {5.—13 .= m[%—.%—.j—fg—k.sab)

,-¢02' %o l' 0

With this notation at hand, equation (4.35) may then be recast as
G($.n) = d/' [(En)-(TIR) - n-F]dS (4.39)
(6.L]

where ¥’ := [0, m]7. To obtain the linear part (4.36) of (4.39) we need to obtain
the expression for the linearized constitutive equations. First, note that with

the aid of £ defined by (4.38a), the results in Box 2 may be expressed as

Dr(¢)-4 o fa .
[D;g;-l;;} = IF(a) 5(4’)[133} = II7(A) Z(¢) Ad . (4.40)

Thus, on account of (4.16-17), the linearized internal force is given by

or)-ap = ci| 5B ) - cpmmz@as. @
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where C(@) is the material tangent elasticity tensor given by (4.17). Lineariza-
tion of (4.39) leads to :

DG($.m) -8 = DsG($.1)+A¢ + DeG($.n) - AP (4.42)

where the term Ds G($,n) results from the linearization of the internal force R,

and corresponds to the material part of the tangent stiflness operator,
DsG($.m) -0 = [a,;. ][3(3) n] - [I(R) CII7(R) Z($) AP]dS .  (4.43)

The second term, DcG(i. 7) is referred to as the tangent geometric stiffness
operator, and results from the linearization of the operator [£ II] defined in

(4.37-38),

DeG($.m) « AP = 6[ [Tn]-[B(@) TAd)dS, (4.44)
[0.L]

where, T is a matrix differential operator,

-——1gq (0 0
dS
T7 := d . (4.45)
0 -1 1
dS 3 3
and B a matrix of the form
0 O [-nx]
B(¢$) := 0 O [-mx] . (4.48)

[0x] O [0®@,' - (n+ @, )1s]

Recall that [( . ) x] denotes the skew-symmetric matrix whose axial vector is
given by (- ). Inspection of (4.46) reveals that the geometric stiffness Bis gen- A
erally non-symmetric. Hence, it appears that the geometric tangent operator
given by (4.44) is non-symmetric. We show next that this is indeed the case only

if the configuration ;eC is not an equilibrium configuration.
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4.4.2. Existence condition for potential: Symmetry of tangent operator
To examine the nature of the lack in symmetry of the tangent DG(s.n) AP

we consider the skew-symmetric part given by
[DG($.n) - 8$14 := DeG($.1) - A — DoG($.89) 1

- N[L ][Tn] - [BY($) T Ad]dS (4.47)

where B! := 1[B—B"]. We have
[DG($.n) - AP]A = mfmim. [yxas’ —A8xy'] +n. [Adx(¥xP,') —¥x(A0x, |} dS
= [ m. (¥x40) +n.[(48.8, )9 - (¥- 8, ) a8]}dS
[6.L)

=/ fm . (9x48) —n. [(yxs8)x$, }ds (4.48)
.2}
Integration by parts of (4.48) finally yields

[06@.m)-s81 =~ [ [m'+ @, xn+m] (9xa0)ds
(6.1]

+ !ﬁ-(ﬁxAd)dS+[m-('¢/xA1!)]|§;"& (4.49)
[6.L)

It follows that for our choice of TyC given by (4.22) m« (¢ xA8) |§5f = 0. In addi-
tion, the first term in (4.49) is simply the weighted form of the the static version
of the local balance of angular momentum equation (4.14b). Accordingly, this
term vanishes at an equilibrium configuration. Thus, (4.48) vanishes identically
provided that m = 0 and the configuration a is in equilibrium.

Remark 4.1. The condition of no distributed moment i = 0, appears to be
in agreement with the fact pointed out by Ziegler [1977] and elaborated upon by

Argyris and co-workers [1978,1980,1982], that loading by ‘‘moments with fixed

axes” is non-conservative. The boundary term m-(¢xA8)|§3f =0 in (4.49)
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vanishes identically for most boundary conditions of practical interest, such as
simply supported, clamped, or free end. Other boundary conditions which result
in cancellation of this boundary term are possible. However, this term does not
vanish for the case of an applied end moment with ''fized spatial azis,” and
thus this type of loading is non-conservative (see, e.g., Argyris and co-workers

[1978]). The condition of conservative loading expressed by

dfﬁ-(ma)dsar [m. (yx80)]|§5% = 0 (4.50)
[0.L]

is analogous in structure to that arising in pressure dependent loading (Bufler

[1984], Schweizerhof & Ramnm [1984]). =
In view of expression (4.49) the following conclusion can be stated:

(i) At an equilibrium configuration, the symmetry of the tangent stiffness
depends solely upon external loading and boundary conditions; e.g.,
depends on whether the loading is conservative. The possible lack of sym-
metry at an equilibrium configuration is not related in any way to the pres-
ence of the classical rotation group SO(3) in the configuration space. The
fact that a potential exists if (4.49) vanishes is the result of a well-known
theorem due to Vainberg (see Marsden & Hughes [1983, Sec. 1.7] for a dis-
cussion in the general context of manifolds).

(ii) At a non-equilibrafed configuration, the tangent operator is non-symmetric
in general, even for conservative loading. The reason for this is again found

in the fact that the configuration space C is a nonlinear manifold.
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4.5. Treatment of follower force

Several practical applications require the ability to account for the action
of a follower force, which depends on the current configuration, in the formula-
tion. Such a loading condition can be accornmodated easily within the present

context. Consider, for instance, the case of a distributed load characterized by
B™ := NF¥t;, where NI = CONST., (4.51)

which follows the deformation of the cross section determined by the frame {],
and thus has constant components relative to this frame. The non-conservative
loading in (4.51) in fact falls into the category of follower load of the circulatory
type —that is, loading which is not derivable from a potential and not explicitly
dependent on time. By virtue of (4.1c), the loading ™ can be expressed in

terms of the spatial basis {e;} as

B™(A) = Ay NI e, (4.52)

expliciting its dependence on the configuration (specifically, the rotation field).
The contribution of ™ to the weak form of momentum balance is then

given in the standard manner as
Ge($.m) = = [ 7o-B%(A)dS (4.53)
[o.L]

Previously, in the linearization of the weak form G($.%), we have assumed that
the external load is spatially fixed, and hence no contribution of the loading
term to the tangent stiffness operator results. Here, with the configuration
dependent loading defined above, such contribution to the tangent stiffness
operator can easily be computed by noting that, for any variation

Ag := (Au,A0) € T¢C. the moving frame {ti}j/=) 25 is "perturbed” according to

Dy-Ad = M8 xYy, (I=123) (4.54)
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Consequently, since NJ© = CONST., it follows that DO™ - A¢ = A9 XT™, so that
the contribution to the tangent stiffness, referred to as the tangent load

stiffness, becomes
D.G($.m) A := DC™($.n)- b9

= — [ n,-[p0xE™(A)]dS = a[ n, - [0 (R)x] A8 dS (4.55)
(6.2 (6.2)

where we recall that [( - ) x] denotes the skew-symmetric matrix whose . axial

vector is (- ). The tangent stiffness operator in (4.42) now has an additional

term,

DG($.n) -0 = [ Ds + Do + D1 1G($.n) b . (4.56)

Remark 4.2. The case of pressure loading, characterized by the condition
that an applied distributed load remains normal to the line of centroids in all '
configurations, often arises in applications. This type of loading condition may
be easily characterized by introducing a second moving frame {a,, 8z, g} such

that ag is tangent to the deformed line of centroids. Accordingly, we may set

!
8y := $o _ [13-as®aglte

oy 82°= J[1s - s ®agltel

8, := 82 X &g (4.57)

Recall that [13 — ag®ag] simply represents the projection operator onto a plane
with normal ag. The pressure loading may then be expressed as i = p a; + g &z
The contribution to the tangent stiffness may be computed with the aid of the

directional derivative; the derivation is straightforward but lengthy, and will not

be pursued further. ®
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4.6. Spatial discretization and update procedure

We now consider the (spatial) discretization of the tangent stiffness opera-
tor obtained in Section 4.4. The Galerkin discretization procedure follows steps
identical to those outlined in Section 2.4.3 for the plane case. However, from a
known configuration ¢*) € ¢ together with a given incremental displacement
M(‘). the ba§ic problem is how to obtain an updated configuration that remains
in the configuration space, ie., Q(‘“) € C. In addition, it is essential that the
spatial curvature vector w be updated in a consistent manner with the update of
the orthogonal transformation A, which defines the orientation of the cross sec-
tion. 7

We shall first obtain the spatial dicretization of the tangent operator, then
discuss in detail the update procedure in its conceptual form as well as the

practical consideration for its implementation.

4.6.1. Discrete tangent operator: Galerkin finite element method
Let the interval [0, L] be subdivided into subintervals with a total number of

N=-1

nodes N, that is, [0,L] = U [Se,Sk+1] with S; €[0,L], W j=1.....N such that
k=1

S5 < Sj+1- Consider the following standard finite element discretization of the

incremental displacement A := (Au,49) € T4C from a known configuration
$cC,

Au(S) = AMuy(S)e; e R}, AW(S) = A%(S)e; € RS, (4.58a)

Au(S) = g[n,(sn,]zm,. A8(S) Igw,(sns]m,. (4.58b)

where N;(S) denotes the global finite element shape functions,
1, := Diag[1,...,1] the unit kxk matrix, Au; = Au(S;), and Ad; = AS(S;). We

recall that T4C is isomorphic to R¥IR®, this linear space is approximated by a
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finite dimensional subspace defined by the discretization (4.58b). Further, let
the admissible variations (weighting functions)  := (n,,¥) € T¢C be discretized

in the same manner

n.(S) = gl[NI(S)ls]')aI- ¥(s) = g[NI(s)ls]‘h- (4.58c)

with 1, := 7, (S;) and ¥;:= ¥(S;). The linear part of the weak form about a

configuration 6 € C as given in (4.36c) can then be written in the discretized

form
LIG($.m)] = ,i,"” P($) + gtsu(i) + Gy (P) + Lu®)]29, } = €4.5%)

V ;. where A, :=(Au;,A9;). In (4.59a), P; is the residual force at
configuration § = @, the discrete counterpart of G($.m); Sy and Gy denote
respectively the tangent material stifiness matrix and the tangent geometric
stiffness matrix, the discrete version of the tangent operator DG($.7m); the
tangent load stiffness Ly, is only included in the case of follower loading of the
t;ype given in (4.51). It follows from (4.59a) that the incremental displacement is

computed by solving the system of linear equations
P($) + ﬁl[ Sy (@) + Gu(@) + Ly(A) 1a¢, = 0, for I=1,....N (4.59b)

The expressions for the relevant matrices in (4.59b) are obtained as follows.
Residual force. Substitution of the discretization (4.58b-c) into the expres-

sion for G($,n) yields
ZORMRIECSIUOIDEEOMUCIRLE Jas  (s60)

Tangent material stiffness matrix. It follows from the expression for the

tangent material stifflness operator DsG($,%) in (4.43), upon introducing the
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approximation (4.58b-c), that

Sy($) = [ch ]tz(ﬁ.)[Nl(sne]V {TI(R) CIIT(R) Z(@,) [N;(S)16] 3dS (4.81)

Tangent geometric stifiness matrix. The discrete version of the tangent

geometric stiffness operator D¢($.m) in (4.44) is given by

Gy(P) = wa ]iT[Nz(S)le]IT {B(P) T[N,(S)16]} dS (4.62)

Tangent load stiffness matrix. In the case where follower loading of the
type given in (4.51) is applied, the discrete counterpart of the tangent load

stiffness operator in (4.55) is given by

o = [ [g BL(S) Ro(3) [ (A)x] ]ds 59
[0.1)
We recall that the components of ™ (A) relative to the spatial frame {e;} is
given in (4.52).
Computationally, the above integrals are evaluated using a uniformly
reduced Gauss quadrature rule to avoid shear locking as mentioned in Section

2.4. The following approximation of the map ¢,(S) and its spatial derivative

. (S).

$.(S) = g[!vz(sna]w and @, (S) = ng'(sns]osa. (4.642)

are introduced to interpolate the values of ¢, and of ¢,' at the Gauss points
from the nodal values §;; := $,(S;). On the other hand, there are two ways to
obtain the values of A at the Gauss points: (i) either allocate memories for the
components the A’s at the Gauss points, and update these after each iteration,
or (ii) interpolate the rotation vectors associated with the A’'s at the nodal

points, then exponentiate to obtain the value of A at Gauss points as follows. At
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the nodal points, we have A; := A(S;), and let L denote the nodal rotation vector
associated with A;such that A; = em&;]. Then we can use the following interpo-

lation to compute the value of A at Gauss points
A(S) = exp( RIN(S)Lali) (4.64b)

We shall next address the central issue concerning the update procedure

for (@,. A) and for the curvature vector .

4.6.2. Configuration and stress update algorithm

In principle, the configuration update procedure has been addressed earlier
in Section 4.3.1 under the guise of the curves of perturbed configuration, which
play a crucial role in the linearization process. In fact, as mentioned earlier, the
configuration update is the discrete counterpart of the curves of perturbed
configuration. It is well known that quadratic rate of convergence, characteris-
tic of the Newton iterative solution, can only be achieved by a linearization that
is consistent with respect to the update procedure.

Configuration update. Recall that at iteration (i), with known configuration
¢V := (A e, we compute the incremental displacement
Ag® := (Aul), A0()) by solving (4.59b). The updated configuration

P+ .= ($S+1 At+1) € C is then obtained from (4.21) by
S = ¢ + put),  AGHD = exp[a3®)] AG) (4.65)

Next, the updated internal force N(¢®**") and moment M(¢**?)) are required to
evaluate the tangent geometric stiffness matrix G(#““’) for the next iteration.
But before the internal force and moment can be updated, we need to address

the
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Strain update. The strain measure IX'*!) can be easily obtained from its

expression in Box 4.2 and the updated configuration (4.65), as

(i+1)
[is) = AWsDT %—-ne (4.66)

(t+1)

where —d"s—-can be evaluated as in (4.64a);. On the other hand, the updated

spatial curvature tensor @#*Y), as given in Box 4.1,

Teen) = %;"A(m)r , " (4.87a)

requires the spatial derivative of Af*1). 1t follows from (4.85); and since

& = ":;) A®)T, that

®) :
o+ = !ﬂg‘[gi]_exp[.ﬁml + exp[A91)] o® exp[-A3(¢)] (4.67b)

In fact, (4.87b) can be obtained directly from the curve of perturbed curvature
a-’z), given in (4.24). The geometric interpretation of (4.67b) is as follows: (i)
The point A®) € SO(3) is left-translated to the point A®*!) € SO(3) by the action
of the exponential map exp[A%m] as given in (4.65);t (ii) This map parallelly
transports the skew-symmetric curvature tensor o® € T,SO(3) to the tangent
space T,«+)SO(3) as expressed in the second term of (4.87b); (iii) The first term
in (4.87b) actually represents the incremental curvature, expressed in the
tangent space T,«+)SO(3), as a consequence of the incremental rotation field
A3® (the addition operation here makes sense since both the curvature tensor

and its increment are in the same tangent space).

Ihf A(rf.};:nﬂ (‘ )A(" is%l ~tranlated to AW+ by exp[A‘(‘)]. where A8(%) = AT AS®), such
t = At exp[AB*)],
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To proceed further, we need the following results.
Lemma 4.1. Derivative of the exponential map. Let 5(8) €so(3), Vv S,
such that ¥:[0, L]+R? is continuously differentiable, then the azial vector of

$:= ﬁ%‘%@llexp[—&sn € 50(3) is given by

¥ = uz[o +('6xd)] (4.88)

1+ Hﬁ
where B(S) := tan([8]/ 2) u:'_u'

Proof. Using the closed form formula for the exponential map (4.5c-d), and
taking the derivative with respect to S, we obtain

P | A4
o3 . _2 |3, 35,55 28949 |
ds 1+ P 1+ P | *5%)

4 — X
Next, upon noting the identity 9° m ~[8]249, a lengthy but straightforward mani-
pulation yields the result

v = _xali(.%l].exp[-&(sn —2 3 +33' - 3'3 + Al (a500)

where Ais given by

Y, YV Y YV¥
A= BB [0-0%)-50 0 +35 02, (4.69¢)
It follows at once from the identities
.!1: Yy A 4
850 = —(3-3)8, 699 m —(3.3)F (4.694)
. . Yy, MY
that in fact Awm 0. In addition, as noted in (4.28), the axial vector of (49 —93 9)

=t
is given by (¥ x 8 ). Hence, we obtain the expression for the axial vector ¢ given

in (4.88). =
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It proves computationally more convenient to express ¢ in (4.88) in terms
of the rotation vector ¥ rather than in terms of the pseudo rotation vector 4.
This can be found in

lemma 4.2. The azial vector §y of the skew-symmetric tensor

9= g%&]—exp[—é] can be obtained as follows

] 2
_ sinj8] i 2.9 | @ in([d]/ 2 '
v: Tt [" glﬂ%ﬂ o for 2 My ] P - @

Proof. This follows from (4.88) and the definition of the pseudo rotation

vector ¥. The same result is obtained by using formula (4.5b) for the exponential
map instead of (4.5¢) in the proof of Lemma 4.1. =

Remark 4.3. Recall that —Toﬂr“-- 1 as [#] » 0. Hence, for [8] small, we

obtain @' as the first order approximation of ¢, from (4.70). This remark is in
fact confirmed by relation (4.25). =

Lemma 4.3. The following ezpression gives the updated spatial curvature
vector w(#*1) in terms of the incremental rotation A9

. !
@e1) = sinfao® oy sinnAo“)ﬂ] A1) . A(®) ] At
@ jpey o] || lae©] |jaeey 7Y
()
‘e suﬁ:&g;‘? caf 2480x40%)" + exp[ABW] ) .

Proof. Using Lemma 4.2, and by noting that the axial vector of the second

term in (4.67b) is exp[A3®]w®) by virtue of (4.9), we obtain (4.71). =
Finally, the updated material curvature vector is simply
U+ = A+DT (¢+1) The next step is to obtain the updated internal force and

moment needed to compute the tangent geometric stiffness matrix for iteration
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(i+1) in the solution procedure.
Stress update. By assuming that the constitutive laws (4.15) and (4.16) hold

pointwise, we have

p(ee = BY(S.yE et oY(S 40 ) oy

and mi*) =

v 4 ow
(- l 3 ‘ 1
N = DUST0.0 M) g R = aw(s.ﬁ;;).n‘ 2 (a7

In all numerical examples, we assume that relations (4.18a-b) hold pointwise,

thus
N+ ri+1)
{n(ux)] = C[Q(u-x)}- (4.74)

The update procedure thus far explored is summarized in its implementable ver-

sion in Box 4.4.

Remark 4.4. On the Hughes-Winget update formula. By applying the gen-
eralized mid-point rule to the differential equation A=oA, for A€ SO(3),
Hughes & Winget [1980] derive an update formula which is essentially a second

order approximation to the formula (4.85) used herein:

A+ - A = .g_x,(“é') [ AC+D) 4+ AW ] (4.75a)

hence
AG+) = QAW (4.75b)
Q= [1-28“P 114 B3P ¢ so(s) (4.75¢)

Define @ := h—o(“é-)

) ., then Q in the Hughes-Winget formula is the counterpart of

the exponential map exp[';] in (4.85). To see that the Hughes-Winget formula
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BOX 4.4 Configuration and stress update: Implementable algorithm

¢ Data
’(0 = (*éi). A(i)) ecC,
Ag®) := (Au®, A0)) e R x RS,

e Update configuration
Pt = (N, AG+D) € C such that
S8 = ¢ 4 Au®,  AWHD = exp[ABH)] AW
» Update strain measures

i+1) = AlE+)T ’é“l)' -Es,

!
(+1) - Sin AS) ' +11= sinJ]A@(‘)Jl] A0, A“O“’ l As()
® po@] 0 * 1T Tpae® || iae®] | a0

1 | sin((a8®¥)]/ 2 (i '
+ J—N—)—] xpAet) 4+ Bl
[ 16097/ 2 ABtIxAD exp[Av*]

n(in) = A(iu)r o(ifl) .

e Update internal force and moment

N(G+1) i+1) nli+1) A+ NG+
Me+D | = c QE+D) [+ lpen | T ] AG+D) Jli+1)

106

(4.75b-¢) furnishes only a second order approximation to the update formula

(4.85), we first note that, by the Newman series, [13 — 5]“ =) ?*, hence

k=0

Q=1,+233. (4.754)

k=1

Moreover, from the identity 9° m —[9[?}, and thus ¥* = —[SR D2 ¥ = 943, ...

one has

Q= 13+2[8 +¥][15- [0+ o] - S + - - -]

=1+ 1+[]-02[$

+92]. (4.75¢)
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The above formula was obtained in Hughes [1984]. On the other hand, define the

incremental rotationy:=28=h o(“%). then by (4.65), we have

AG+) = exp[y] AW (4.75¢)
where exp[i] is evaluated by (4.5c-d). It can be seen that since 21= ¥ approxi-
mates ¥ := tan(y|/2) ﬁup to second order, the Hughes-Winget formula is

therefore a second order approximation to (4.65). =

4.8.3. Practical implementation consideration

We discuss in detail practical considerations concerning the implementa-
tion of the update of the components of the orthogonal transformation A, given
in (4.85);, based on the use of quaternion parameters. The update of the
deformed centroidal line poses no difficulty. Given an incremental rotation A9,
either formula (4.5b) or (4.5¢) can be used to evaluate the components of
exponential map exp[A8]. Due to the singularity at A% = (2n + 1)m in the
pseudo rotation vector A® in (4.5d), it is preferable not to use (4.5¢) in actual
computation. Let A% := exp[3(")]; then instead of representing A®") by its 9 com-
ponents Ay according to (4.1c), one can represent A by the rotation vector 4.
However, an optimal parametrization of three-dimensional rotations that avoids
singularities, minimizes storage requirement, and involves the least possible
number of operations in the update procedure is the use of four (4) quaternion
parameters.} This also provides a third way of evaluating the components of the

exponential map.

t Stimetiines referred to as Euler parameters, e.g., Goldstein [1680] or Kane, Likins & Levin-
son | 1683].
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Recall that quaternions are elements of the hypercomplex space expressed

G4=9 +q: q=g,e+qgze;+gsey (4.76)
where g, represents the scalar part, and q the vector part of §. A unit quatern-

ion is defined such that i g2 = 1. In the definition (4.76), we have identified the
<=0

spatial basis (e,, e,, eg) with the imaginary basis of the hypercomplex space.
Recall that the (linear) space of quaternions equipped with the quaternion multi-
plicative operation (composition of orthogonal transformations in R3) forms an
associative but non-cornmutative algebra. An orthogonal transformation can be
represented by the four parameters (g,.9,.92 gs) of a unit quaternion instead
of the nine components of an orthogonal matrix. Quaternion parameters are
therefore kept in the data base to minimize storage requirements. The update

procedure for the rotation fleld is summarized in Box 4.5 below.

BOX 4.5. Update of quaternion describing section rotation.

(i) Retrieve ¥, and compute A®) from §*.
(ii) Compute g associated with A8®),

(iii) Compute exp[A8®] from §.

(iv) Perform A®*) = exp[A®(®)] A®),

(v) Extract §** from A%+, and store §*+Y.

The unit quaternion corresponding to an incremental rotation vector

A0 = A3fY e; (see step (ii) in Box 4.5) can be evaluated by

- _ jAe®)] . Ae®) . naeW)
q = cos™5 + 18000 sin =5

(4.77)
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The pseudo-vector of rotation A8 is then the vector part of a unit quaternion

whose scalar part is normalized to one:

8 149 - 4890 (4.78)
9o 9o

Clearly, a singularity occurs when JA®Y)|=(2n+1)m, ie.. when
go w cos(JA3®]/2) = 0.

The components of the exponential map exp[A8®)] in step (iii) can be
evaluated using the quaternion representation of A8 in (4.77) es follows. Let Q
be an orthogonal matrix associated with the unit quaternion §, then (Whittaker

[1937])

g +qf - ;_— 9192 =939 g,93+ g29,
Q=2|g:9,+9s% 95+9% 3 g295-919 (4.79)
9391 = 929 gs9z2 + 919 g + 9§ - ;_

The above relation also applies to step (i) in Box 4.5.
Conversely, given an orthogonal matrix Q the associated quaternion param-

eters can be obtained from (4.79) by

Qo = :I:;—\,l—'l-m

g1 = +(Qse — @23)/ 49,

gz = +(@1s — Qu)/ 49, (4.80)
gs = (@2 — @12)/ 49,

where Tr(Q) = @;. Note that we only need to determine the sign of g,, as the
sign of g,, g2, ¢s will follow. Either a positive or negative sign for g, is possible;
to fix the choice, we may choose g, = 0. However, relations (4.80) suffer from
round-off errors since the numerators and the denominators in gq,, g2, g3 are
obtained from subtraction of nearly equal quantities in the vicinity of 0° and

180°. Moreover, the computation breaks down when the rotation is exactly 180°,
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e.g.. in the case of Q = Diag(—1,-1,1). There are several proposed algorithms to
extract a quaternion from an orthogonal transformation matrix. Among them,
the algorithm proposed by Spurrier [1978] has been reported to be the fastest

(Lowrie [1979]), and is summarized in Box 4.8.

BOX 4.6.

Spurrier 's algorithm for quaternion eztraction.

M := max(Tr(Q); @11, Q22 @s3)

It M = Tr(Q). then:

o ; 1+ 17
g = (@j — @)/ 49,, fori=1,23
Flse:

Leti besuchthat M = Q).

. _ 1+
g = Q(z“) + 1 Zr(Q)iz

go = (@j — @)/ 4q;

@ = (@ + Qu)/4gqy, forl=j.k

There, (i.j.k) represents a cyclic permutation of 1,2,3, and @) denotes the
component (ii) of matrix Q (summation convention does not apply here). This
extraction algorithm can be used in step (v) of BOX 4.5, and will play a crucial

role in our treatment of the dynamics of three-dimensional flexible rods in
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Chapter 5.

4.7. Numerical examples

In this section, we consider a series of numerical simulations that illus-
trates the performance of the formulation described above. These applications
show the quadratic rate of convergence obtained, even for very large load steps,
in well documented examples. In the first four examples, attention is focused on
the plane problemn where the rotation field is easily described by means of a sin-
gle rotation angle (Reissner [1972,82], Simo et al [1984]). A basic objective then
is to show that the proposed three dimensional parametrization of the rotation
field exactly replicates the plane rotation. The last three examples, on the other
bhand, are concerned with fully three-dimensional deformation, and have been
considered in previous work (Bathe [1979], Argyris and co-workers [1979,81]).
These examples demonstrate that symmetry of the thngent. stiffness does not
hold in the iteration process but is attained at the converged solution.
Throughout all the examples discussed below, the constitutive model defined by
(2.10) is considered.

Convergence of the finite element solution is established on the basis of the
Euclidean norm of the out-of-balance force. A full Newton-Raphson iterative
solution procedure is employed in all the calculations reported herein. Tracing
of post-buckling diagrams throughout the simulations is accomplished by a gen-
eralized form of the classical arc-length method, (Riks [1972)], Wempner [1971])
to include an arbitrary linear combination of degrees of freedom as a constraint
condition. The basic implementation of this procedure proceeds in two steps
and is due to Schweizerhof; see Simo, Wriggers, Schweizerhof and Taylor [1984].
The first step involves the solution of the linearized problem under a unit load.

For the case of a follower load, this unit load must be properly updated. It is
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emphasized that no special effort is made to optimize the total number of load-
ing steps for a given calculation.

Example 4.7.1. Pure bending of a cantilever beam. A straight rod of unit
length and bending stiffness E/ = 2. is subject to a concentrated end moment 4.
The finite element mesh consists of five elements with linear interpolation shape
functions N;. A one-point (uniformly reduced) quadrature is employed to com-
pute the tangent stiffness matrix and residual. The exact solution to this prob-
lem is a circular curve with radius p = E// M. An applied end moment, ¥ = 4,
will force the rod to deform into a full closed circle. In this example a moment
twice this magnitude, i.e., M = B, is applied in one load step, making the rod
wind around itself twice. Convergence to the exact solution is attained in two
iterations. The final shape of the rod is depicted in Figure 4.7.1. It is noted that
the same performance, i.e., exact result in two iterations, is obtained for any
magnitude of the applied end moment. The values of the residual norm

throughout the iteration process are surnmarized in Box 4.7.

BOX 4.7. Example 4.7.1.: Iteration number vs. residual norm.,

Iteration Fuclidean Norm
Number of Residual

L
0 0.251 x 10*® (87)
1 0.425 x 10+®
2 0.441 x 10718

Example 4.7.2. Cantilever beam subject to follower end load. The material
properties for this example, considered by Argyris & Symeonidis [1981], are
EI =3.5%x107 and GA = 1.81538x 10%, and the total length is L = 100. The finite
element mesh consists of five elements with quadratic shape functions. Two-

point (uniformly reduced) Gauss integration is used to compute all matrices.
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For the purpose of tracing the load-deflection curve reported by Argyris &
Symeonidis, a loading increment of 1000 was selected. The agreement found
with these results is complete (see Figures 4.7.2a and 4.7.2b). The characteris-
tic quadratic convergence rate observed in a typical iteration of a load step is
illustrated in Box 4.8 for the first loading step. An Identical convergence rate

was observed in subsequent load steps.

BOX 4.8. Example 4.7.2.: Jteration number vs. residual norm.

Iteration Fuclidean Norm

Number of Residual
—_ 4%

0.100 x 10*0¢
0.542 x 10*%7
0.270 x 10+%
0.583 x 10*®
0.159 x 10-%
0.197 x 107%

N WN = O

Example 4.7.3. Clamped-hinged deep circular arch subject to point load
This example has been considered by a number of authors (e.g., Noor & Peters
[1981] and Simo et al [1984]), and the exact solution based on the Kirchhoff-Love
theory is given by DaDeppo and Schmidt [1975]. The solution shown in Figure
4.7.3a for various stages of deformation is obtained with 40 linear isoparametric
elements. The plot of the vertical and horizontal displacements under the
applied concentrated load is shown in Figure 4.7.3b. Load control is employed
in the first eight load steps, each of them of magnitude 100. Subsequently, a
combined displacement control/arch length control is employed. The calcula-
tion was completed in a total number of 155 load steps. The analysis yields a
value for the buckling load of 805.28. The exact value reported by DaDeppo and
Schmidt [1975] is B97. A second limit point is found for a negative value of the

applied load of =77.07. The global computed solution is in complete agreement
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with the solution first obtained for the entire post-buckling range in Simo et al
[1984]. The convergence rate observed during a typical load step is shown in

Box 4.9 for the first load increment.

BOX 4.9. Example 4.7.3.: /ieration number vs. residual norm.

Iteration Euclidean Norm
Number of Residual

0.100 x 10*%8
0.553 x 10*%
0.325 x 10*%3
0.309 x 10+%
0.890 x 10*%
0.125 x 10~
0.920 x 10-98

DU dWN = O

Example 4.7.4. Snap-through of a hinged right-angle frame under both
fixed and follower point load This example, also considered by Argyris and
Symeonidis [1981], is concerned with the loss of stability by divergence (as
opposed to flutter) of the right angle frame shown in Figure 4.7.4a. The length
of each leg is 120. The inertia and area of the cross section are respectively 2
and 6. The value of Young's modulus is 7.2 x 10% the value of Poisson’s ratio is
0.3. The vertical point load is applied on the horizontal member at 24 units from
its left end. Ten quadratic elements, 5 on each leg, are employed in the calcula-
tion. The deformed shapes are shown in Figures 4.7.4a and 4.7.4b. The load-
deflection curves are shown in Figures 4.7.4c and 4.7.4d. Note that the entire
post-buckling range is depicted in these figures, in contrast with the results
reported by Argyris & Symeonidis which are limited to the pre-buckling case. It
is interesting to observe that the load-deflection curves for both conservative
and non-conservative loading cross the zero-load axis at exactly the same

values, as shown in Figures 4.7.4c and 4.7.4d. These curves were traced after 43
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load increments for the fixed load case, and 99 load increments for the follower
load case. As noted by Argyris & Symeonidis, the follower loading (non-
conservative) has a positive effect of stabilizing the system and leads to a value
of the‘ buckling load of 35447 in contrast with the value of 18532 obtained for
fixed loading (conservative).

Example 4.7.5. Cantilever 45-degree bend subject to fixed and follower end
load This example has been considered by Bathe and Bolourchi [1979] under
fixed end load. The bend has a radius of 100 with a unit square cross section.
The material properties are E = 10”7 and G = 0.5x10”. These authors performed
the analysis for conservative loading only using 8 three-dimensional degenerated
beamn elements. In the present calculation B linear elements are used. For
comparison purposes with the results reported in Bathe & Bolourchi the bend is
subject to a sequence of three load increments of magnitude 300, 150 and 150.

The results are summarized in Box 4.10.

BOX 4.10. Example 4.7.5.: Comparison of results by Bathe & Bolourchi [1979].

Tip displacement
Load | Number of Present Bathe & Bolourchi [1979]
level | Iterations u© v w u v w

It should be noted that the final load of 800 was achieved in the present simula-
tion in three load increments. This accounts for the large number of iterations
(13) required to attain convergence. By contrast, the results reported in Bathe

& Bolourchi were obtained after sizty equal load increments. A perspective view
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.and a projection view of the deformed bend at various load levels are shown in
Figures 4.7.5a2 and 4.7.5b. The tip displacement versus applied load curve,
shown in Figure 4.7.5¢, is given up to a load level of 3000.

In addition to the loading discussed above, the bend also is analyzed for a
Jolower load. The deformed configurations of the bend at various follower load
levels are shown in Figures 4.7.5d and 4.7.5¢ — compare these with Figures
4.7.5a and 4.7.5b. The tip displacement versus applied load curve obtained for
this non-conservative loading is shown in Figure 4.7.5f . It should be noted from
Figures 4.7.5c and 4.7.5f that the tip displacement increases monotonically
with the load for fixed loading, whereas in the case of follower load the tip dis-
placement reaches a maximum and then decreases. This effect is a conse-
quence of the twist experienced by the bend as a result of the follower load.

Finally, a similar simulation is performed with both the consistent (non-
symmetric) and the symmetrized element tangent stiffness matrices. The total
load of 800 is applied in 8 equal load increments of magnitude 75. The purpose
of the calculation is to show that no significant loss of asymptotic convergence
rate results from using the symmetrized tangent matrix. This follows from our
discussion in Section 4.4. The residual and energy norms shown in Box 4.11
below correspond to the fifth load increment.

Example 4.7.6. Lateral buckling of a cantilever right-angle frame under
end load This problem also has been analyzed by Argyris et al [1979]. The
geometric characteristics of the frame are shown in Figure 4.7.6a. The value of

Young’s modulus is 71240; and the value of Poisson's ratio is 0.31. The extreme

thickness _ 1

slenderness of the cross section, - = —— should be noted. The frame is
heigth 50

subject to an in-plane fixed end load as shown in Figure 4.7.8a. Further, the

frame is driven to the buckling mode by a perturbation load initially applied at
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BOX 4.11. Example 4.7.5.: Performance of symmetrized tangent stiffness.

Iteration | Non-symmetric Symmetric

Residual norm Residual Norm Energy Norm

number

O WON=-O

0.750 x 10*02
0.147 x 10*08
0.428 x 10%03

0.173 x 10*%4 0.140 x 10*%¢ 0.258 x 10*0!
0.299 x 10*%! 0.844 x 10*%° 0.950 x 107%4
0.177 x 10+°0 0.861 x 10791 0.269 x 1078
0.230 x 10797 0.190 x 107 0.275 x 10718

0.750 x 10+92
0.147 x 10+98
0.423 x 10+03

0.410 x 10%08
0.228 x 10*95
0.453 x 10*0!

the free end normal the plane of the frame. This perturbation is removed in a
neighborhood of the buckling load, as shown in Figure 4.7.6¢c. A value of ~ 1.09
is found for the critical load. The plot of end load versus lateral tip displace-
ment of the frame shown in Figure 4.7.8¢c is in agreement with the result
reported by Argyris et al [1978]. The celculation is completed after a total
number of 25 loading steps employing displacement control. Perspective and
projection views of deformed centroidal line corresponding to the final value of
the applied end load are shown in Figures 4.7.6a and 4.7.6b.

Example 4.7.7. Lateral buckling of a hinged right-angle frame subject to
fixed end moment. Our final example is concerned with the tracing of the com-
plete post-buckling range of a hinged right-angle frame acted upon by in-plane
end moments, as shown in Figure 4.7.7a. The degrees of freedom at the hinged
ends are translation along the x direction and rotation about the z direction.
The apex of the frame is constrained to lie in the y-z plane. Due to the sym-
metry of the problem, only half of the frame need be modeled. The problem at

hand involves truly large three dimensional rotations and poses a severe test on
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the performance of the three dimensional rod model. As the rotation of the
hinged end varies from 0° to 360°, the frame rotates out-of-plane about the axis
connecting its supports and returns to its initial configuration. During the
deformation process the legs of the frame experience significant amounts of
twist. This example was first proposed and analyzed by Argyris et al [1979]
within the framework of a natural formulation based on the notion of semi-
tangential rotation. Their analysis made use of 10 finite elements with cubic
interpolation for the displacement field.

The present analysis based on the formulation described above, employs 10
finite elements with quadratic isoparametric interpolation for both displace-
ment and rotation ﬂel&s. Perspective and projection views of deformed
configurations of the frame corresponding to various load levels are shown in
Figures 4.7.7b and 4.7.7c. Figure 4.7.7d shows the plot of the abscissa of the
left hinged end versus the load levels. The results of this analysis differ from
those reported by Argyris and co-workers in the following. Upon returning to
the initial configuration, the applied end moment must be identical in magni-
tude, but with reverse sign, to the critical moment. Hence, the plot of the

"applied end moment versus lateral displacement of the apex must intersect
symmetrically the moment axis. This is clearly the case for the curve shown in
Figure 4.7.7.e. The analogous curve reported in by Argyris et al [1979] violates
this condition. The analysis is further pursued past this (negative) critical point
and terminated upon completion of a second revolution of the frame about the
line connecting its hinged ends. This results in the post-buckling diagram, com-
Pletely symmetric relative to the moment axis, as depicted in Figure 4.7.7e. It
is emphasized that at the end of the second revolution, the exact positive criti-
cal value of the applied end moment is recovered. Thus there no difficulty in

subjecting the frame to any number of revolutions about the line connecting its
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supports. This would lead to the repeated tracing of the bifurcation diagram
shown in Figure 4.7.7e.

Indeed after completion of the first revolution, the moment vs. lateral apex
displacement plot intersects the moment axis at ® —626. A value of & +626 for
this intersection point is found after completing the second revolution. Initially,
a value of only 615.5 is obtained for the maximum moment due to the perturba-
tion load. We recall that this perturbation load is removed subsequently.

The computational effort involved in the calculation for one revolution
amounts to 160 loading steps, performed with a combined arc-length and dis-
placement control algorithm. It is noted that the number of loading steps was
not optimized.

The basic observation made in Section 4.4 concerning the lack of symmetry
away from equilibrium, and recovery of symmetry at an equilibrium
configuration, is numerically illustrated next. The table below shows the row
norms of the skew-symnmetric part of the global tangent stiffness at an arbi-
trarily selected load level. These results demonstrate lack of symmetry during
the equilibrium iteration process, and confirm symmetry at the equilibrium

configuration.

4.8. Concluding remarks

The proposed formulation is developed based on a fully nonlinear rod theory
that allows for three dimensional finite rotation, and accounts for finite exten-
sion and shearing of the rod. The rotation and moment fields possess the usual
physical meaning assigned in classical rod theories, such as the Kirchhoff-Love
meodel; i.e., generally mn—cbmmutative orthogonal transformations. As a result,
it has been shown that the consistent geometric tangent stiffness is non-

symmetric for any configuration away from equilibrium. This lack of symmetry
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BOX 4.12. Example 4.7.7.: Recovering of symmetry at equilibrium.

Iteration Out-of-Balance

number Norm
0 1.7 x 10798 0.100 x 10*9!
1 1.1 x 10%0¢ 0.784 x 10*04
2 6.9 x 10*® 0.354 x 10+%
3 8.2 x 10*® 0.347 x 10*%
4 1.9 x 10+0 0.108 x 10*®
5 1.8 x 10+ 0.807 x 10+%°
6 2.5x 10™% 0.141 x 107%
7 4.8 x 10798 0.322 x 10~

concerns solely the rotational degrees of freedom, and is absent in the plane
problem. It has also been proved that full symmetry always holds at equili-
brium for conservative loading.

The practical implications of the lack of symmetry have been explored in
numerical simulations employing a Newton type of iterative solution scheme.
Due to the localized character of this non-symmetry, and the full symmetry at
equilibrium, it has been demonstrated that use of the symmetrized element
tangent stiflness results in no loss of asymptotic rate of quadratic convergence.

Based on geometric considerations, an ezact configuration update pro-
cedure has been developed. To avoid the singularity typically associated with
parametrizations employing Euler angles or a pseudo-vector of rotation, use has
been made of quaternion parameters. This choice is optimal in the sense that
singularities are avoided and storage requirements are minimized. Particular
attention is given to practical aspects involved in the implementation of the
update procedure, such as the quaternion extraction from an orthogonal

transformation matrix
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In eddition, follower loading of the circulatory type is conveniently
accounted for in the present formulation as a consequence of the representation
of the section rotation by means of a moving orthogonal frame.

A number of numerical simulations have been documented to demonstrate
the robustness of the proposed formulation. In particular, the performance of
the symmetrized stiffness, the eflectiveness of the update procedure, and the
excellent rate of convergence have been illustrated throughout these simula-

tions.
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Fig. 4.2.1. Kinematic description of the rod. Definition of vari-
ous frames. -

Fig. 4.2.2. Geometric interpretation of the exponential map.
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Figure 4.7.1. Pure bending of a cantilever beam subject to end
moment. One load step. Two iterations to convergence.
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Figure 4.7.2a. Cantilever beam subject to follower end load,
Deformed shapes.
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4.7.2b. - Cantilever beam subject to follower end load.
Vertical and horizontal tip displacement versus applied end load.

Figure 4.7.3a. CQamped-hinged deep circular arch subject to
point load. Deformed shapes.
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4.7.3b. CQamped-hinged deep circular arch subject to
point load. Applied load versus vertical and horizontal displace-

ments of the apex.

LOAD A . \

—— Reference
—-=- |4789
—_—— 18532
- == =-9409
— 23389

Figure 4.7.4a. Snap-through of a hinged right-angle frame
under fized point load. Deformed shapes.
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Figure 4.7.4b. Snap-through of a hinged right-angle frame
under follower point load. Deformed shapes.
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Figure 4.7.4c. Snap-through of a hinged right-angle frame
under fized and follower load. Load versus vertical displacement
under applied load.
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Figure 4.7.4d. Snap-through of a hinged right-angle frame
under fized and follower load. Load versus horizontal displace-
ment under applied load.

Figure 4.7.5a. Cantilever 45° bend subject to fixed end load.
Perspective view of deformed shapes.
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Figure 4.7.5b. Cantilever 45° bend subject to fixed end load.

Projection of deformed shapes onto the x-y plane.
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4.7.5c. Cantilever 45° bend subject to fixed end load.

Components of tip displacement versus applied load.
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Figure 4.7.6d. Cantilever 45° bend subject to follower end load.
Perspective view of deformed shapes.

Figure 4.7.5e. Cantilever 45° bend subject to follower end load.
Projection of deformed shapes onto the x-y plane.



Treatment of a 3-D Finite-Strain Rod Model

130

TIP DISPLACEMENT

20} \ u
. —_—y
-40r N\ —_——w ]
-60 \\ .f’M’f”
\.\._.-—_’./,/
(0] 500 |OOQ 1500 2000 2500 3000
LOAD

Figure 4.7.5f. Cantilever 45° bend subject to follower end load.
Components of tip displacement versus applied load.
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Figure 4.7.6a lLateral buckling of a cantilever right-angle
frame under end load. Geometry and perspective view of final

deformed shape.
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Figure 4.7.6b. Lateral buckling of a cantilever right-angle
Jrame under end load. Projection of final deformed shape onto the
x-z plane.
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Figure 4.7.6¢c. Lateral buckling of a cantilever right-angle
Jrame under end load. Applied load versus lateral tip displace-
ment of the free end.



§4.8 Treatment of a 3-D Finite-Strain Rod Model 132

06-| |=-

Section A-A

Figure 4.7.7a. Lateral buckling of a hinged right-angle frame
subject to fized end moment. Geometric characteristics.

Figure 4.7.7b. Lateral buckling of a hinged right-angle frame
subject to fized end moment. First revolution: perspective view of
deformed shapes at various load level.
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4.7.7c. Lateral buckling of a hinged right-angle frame
subject to fized end moment. First revolution: projection of

deformed shapes onto the y-z plane.
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Figure 4.7.7d. Lateral buckling of a hinged right-angle frame
subject to fized end moment. First revolution: applied end
moment versus abscissa of left hinged end.
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CHAPTER 5
THE DYNAMICS OF THREE-DIMENSIONAL FINITE-STRAIN RODS

5.1. Introduction

The dynamics of a fully nonlinear rod model cépable of undergoing finite
bending, shearing and extension, whose governing set of nonlinear partial
differential equations was given in (4.14), is considered in detail in this chapter.
The numerical treatment of the left hand side of these equations, i.e., the static
problem, has been considered in the previous chapter. We note that the struc-
ture of the inertia operator associated with the rotation field of this rod model is
identical to the one that typically arises in rigid body mechanics. Previously
developed finite-strain rod models by Reissner [1972,73,81,82] and Parker [1879]
in a classical context, and by Antman [1974,75] in the context of a director type
of formulation, have been restricted to the static problem. Moreover, the
appropriate parametrization of the configuration space, a fundamental question
for computational significance, has not been addressed previously.

We recall that, from a computational standpoint, the central issue concerns
the treatment of the rotation fleld which, in the present forfnulat.ion. has the
same physical meaning as in the classical Kirchhoff-Love model; that is, a one
parameter family of orthogonal transformations A :[0,L] -+ SO(3) of the rotation
group SO(3). The basic difficulty lies in the nature of SO(3), a non-commutative
Lie group and not a linear vector space. This difficulty is by-passed in the
numerical treatment of the dynamic rod model by Nordgren [1974] by restrict-
ing the formulation to cross sections with equal principal moment of inertia and
by ignoring the effects of the section rotary inertia. The treatment advocated
by Argyris and co-workers [1979,81a-c,82] relies on an alternative characteriza-

tion of the rotation field employing the notion of semi-tangential rotations.
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The numerical integration of the rotation fleld proposed in this chapter
employs an implicit transient algorithm that furnishes the canonical extension
of the Newmark formulae, classically stated in the linear space R*R?, to the
nonlinear differential manifold R®xSO(3). In this extension, notions of
differential geometry, such as exponential mapping and parallel transport, play
a crucial role (Simo & Vu-Quoc [1886b]). The associated configuration update
procedure is amenable to a geometric interpretation consistent with that found
in the static treatment of the previous chapter. Proofs of the convergence and
second order accuracy of the algorithm are also given. In addition, ezact linear-
ization of the proposed algorithm and associated configuration update is
obtained in closed form, iead.ing to a configuration dependent tangent inertia
matrix, which is non-symmetric in the rotational degrees of freedom. This exact
linearization results in a quadratic rate of asymptotic convergence in solution
strategies of the Newton type. Finally, the proposed time-stepping procedure
exactly reduces to the classical Newmark algorithm for the plane problem, as
illustrated in our first numerical example presented in section 5.5.

The spatial version of the proposed rotation update is related to the pro-
cedure first proposed by Hughes & Winget [1980], subsequently rephrased in
Hughes [1984] (see Remark 4.4), and employed by a number of authors in
different contexts, including the recent comprehensive work of Stanley [1985].
Although both procedures are second order accurate, the update of the rotation
fleld set forth by Hughes & Winget [1880] does not reduce exactly to the plane
problem. In addition, the linearization of the latter update procedure was not
addressed by the authors. From a computational standpoint both approaches
involve essentially the same computational effort.

The formulation developed herein encompasses a general class of nonlinear

structural dynamics problems that includes elastic instability and non-



§5.1 Dynamics of 3D Finite-Strain Rods 137

conservative loading, such as follower loads of the circulatory type. A funda-
mental property of the propc;sed formulation is that the proper requirements of
invariance of strain measures under superposed rigid body motions, satisfied by
the continuum rod model, are preserved exactly by the integration algorithm
and configuration update procedure. In fact, the appropriate invariance of the
strain measures along with the inherent conservation of global linear and angu-
lar momenta of the formulation are the essential ingredients for the success of
the methodology proposed in Chapter 2 on the dynamics of flexible beams
undergoing large overall motions. We note that application of the present algo-
rithm is also of interest in bioengineering (e.g., Mital & King [1979]).

6.2. Weak form of the governing equations

We first summarize in Box 5.1 the complete set of partial differential equa-
tions governing the motion of the rod. The function ¥(S, I’ ) corresponds to
the constitutive law relating the strain measures I and @ to the internal forces n

and m. We often assume in practice

r r
-1
1/(5. l'. 0)-?[0}-0{0}. (5.1)
with C defined in (4.1B8a). The mass per unit reference length of the beam is

denoted by 4,:= _[ Po dQ), where p, represents the mass density. Let

K, =1 ;B®K be the inertia dyadic (constant with respect to time) of the cross

section in the reference configuration given by

E(S) :=Hp(S) [6ap 13 —Ra®Bg],  Lop(S) := d[s)p" (S) Xa Xpdt (5.2)

t Subacripts in greek letters take values in {1,2], while subscripts in roman letters take
values in {1,2,31.
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BOX 5.1. Partial differential equations of motion

M) =iy Ase), MDD o sy agsie)
r=A1-0¢oa(g-t) CE. 0=AT o
n=Ag;g(Sa.rr.n)' m=A 5;-01'-0
%g—+ﬁ=A,¥.
%‘75,'3-4- B:S‘,’ xn+m=Lw+wx[]w]

Further, we introduce the time dependent spatial tensor I, = I,se,®es such that
L(5.t) = A(S.t) L,(S) AT(S.t).

Dynamic weak form. Multiplying the equations of balance laws in spatial
local form by an arbitrary admissible variation 7 := (.. ¥) € T4C defined in

(4.22), one obtains the dynamic (spatial) weak form
Gayn ($. 1) := w& o oo + [ ¥+ wx (I, w]-9}dS - G($. 9) = 0.(5.32)
where G($, 1) is the weak form of the local static equilibrium equations given in

spatial form in (4.34) and in material form in (4.35). The rotation part of the

inertia part can be rephrased in material form as follows

G‘wt(’u") = [J;]iAp ‘o °n, + A[lpi+ Wx (lp W]-¢}dS — G($.n) =0. (5.3b)
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6.3. Implicit time-stepping algorithms

In this section we develop an implicit time-stepping algorithm for the time
integration of the weak form (5.3). The novelty of the proposed approach lies in
the treatment of the rotational pari, which relies crucially on the use of the
discrete counterparts of the ezponential map and parallel transport in the
orthogonal group SO(3). The algorithm and associated configuration update
may be phrased in either a spatial or a material setting. In the language of rigid
body mechanics, the difference amounts to phrasing the formulation in either
spatial or body coordinates. The geometric interpretation of the proposed pro-

cedure and its implementation are considered in detail.

5.3.1. Formulation

In line with stanc'lard usage, we employ the subscript n to denote the tem-
poral discrete approximate of a time-varying quantity at time #,; thus for the
displacement fleld du(S) ¥ $(S.tn). Va(S) = $o(S.tn). 8n(S) T §,(S.ta). and
for the rotation fleld A,(S) = A(S.t;), wa(S) = w(S.t,), 8.(S) = a(S.t,). The
material version of the spatial angular velocity w and acceleration & are denoted
respectively by W and A such that W=ATw and A= AT a. The basic problem
concerning the discrete time-stepping update may be formulated as follows.
Given a configuration @, := (d,, A,) € C, its associated linear and angular velo-
cities, (V5. W,), and linear and angular accelerations (8. @), obtain the
updated configuration @n,; := (dn+), Ansy) € C at time £, = £, + R, the associ-
ated updated linear and angular velocities (Vn4+), Wa41), and the updated linear
and angular acceleration (8n+1, @n+1), in a manner that is (a) consistent and (b)
stable with the weak form (5.3a,b).

To this end, we proposed the algorithm summarized in Box 5.2 below. Note

that the algorithm for the translational! part of the configuration, that is
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(S.t) » §,(S.t) ER’, is the classical Newmark algorithm of nonlinear elasto-
dynamics (see e.g., Belytschko & Hughes [1983]). The proposed algorithm for
the rotational part (S, t) -+ A(S, t) € SO(3). in its material version, furnishes
the canonical extension of the Newmark formulas to the orthogonal group

SO0(3).

BOX 5.2. Implicit time-stepping algorithm

Momentum Balance at ¢,
mfb 810 + [onat Gnss + Waes X nos Wao)] 93 &5 + Glhns, ) =0
or

IJI.-I!A’ Bns1°%o + Ansa [I Ansy + Woyy X (M, Wi )] <91 dS + G(Pns1,m) =0

Translational Part (Classical Newmark)
Gy = dy + Uy
s =hw, +h’[(£--ﬂ)q, + 8 ans]

V41 =V +h [(1=7) 8y + 7 8n]

Rotational Part
Spatial Setting Material Setting
Ansi = exp[ 9] A, . 'A.m = A, exp[va.] .
Jn=hw +hE[(L= B an +Bann] | 8n=h Wo +hE[(1=F) A +6 Avui]
;mbl=;u +h [(1 -T) &n + 'l’l'lvﬁl] *n+1=i“ +h [(1 -'I')L. + TVAN!]

g and T designate the Newmark parameters.

Remark 5.1. Since the inertia dyadic has constant components in the
material basis {B], it is more advantageous to write the time-stepping algorithm
for the rotation part in the material setting, as indicated in Box 5.2. Recall that
the update of the rotation fleld in the spatial setting is given by the left transla-
tion in SO(8), while in the material setting it is given by the right translation.
The spatial setting of the time-stepping algorithm can be thought of as
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emanating from the system of differential equations

A =wA, Ac5S0(3).

. (5.4a)
w=a;
the material setting is, on the other hand, governed by
A = AW, Ac50(3),
(5.4b)

W=A.

A precise consistency argument of the algorithm will be given in Lemma 5.2. =

Geometric interpretation. Further insight into the nature of the algorithm
summarized in Box 5.2 is gained by examining its geometric interpretation. For
the translational part, the time-stepping procedure is the standard Newmark
algorithm and takes place in IR%. Hence, the exponential map reduces to the
identity, and the parallel transport is simply a shift of the base point. Pictori-
ally, we have the situation depicted in Figure 5.3.1.

For the rotational part, the time-stepping procedure takes place in SO(3).
A given configuration A, € SO(3) is updated forward in time by exponentiating
the incremental rotation %,, € so(3) to obtain A,,, = exp [3,,] A, (left transla-
tion). Since 6,, =AT®, A, (or in terms of axial vector 8, = AT4d,), it follows
from the properties of the exponential map (see «£efinition (4.5a)) that
Aniy = A, exp [6,.] (right translation), which is the update formula recorded in
Box 5.2. Such a procedure ensures that A,,; remains in SO(3) in the natural
way by making use of the translation in SO(3). Note that the step forward in
time of the angular velocity and acceleration is performed in the same tangent

space 7, SO(3). The result is then parallel transported to Ta,,4SO(3).
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8.3.2. Update procedure: Basic setup

The formulae contained in Box 5.2, define the velocity (Vp+1, Wy +1) and the
acceleration (8n+1, @n+1) in terms of the incremental field Agy := (Un. B, ) from
the base points (v,,w,) and (a,;, @,), respectively. Thus, the weak form of
momentum balance at time #p 41, Gyn ($(S. ta+1), 9(S)) = 0, depending on velo-
city and acceleration becomes, by virtue of the time stepping-algorithm, a non-
linear functional of the configuration $,,; denoted by Ggm($n+1. 7). The solu-
tion of this nonlinear variational equation is accomplished by an iterative
scheme of the Newton type, as follows.

Assume that ¢, := (a{,, A},) is known. By solving the linearized weak
form about ¢, one obtains an incremental field A$S], := (Aufd,, A8,). The
basic setup is: Given A, € T“Q‘C. update ¢, € C to &Y € C in a manner

consistent with the time-stepping algorithm in Box 5.2. Again the central issue
concerns the update of the incremental rotation. First, making use of the

exponential, one sets
Al = exp[30 A, AL = exp[B{ V] A, . (5.5)

Note that (5.5) makes sense since 8f) A, and 8{*! A, are both in the tangent

space at A,. Next, meking use of the incremental exponential map we have

Al = eXP[AM‘h] A, (5.6)

Again we note that (5.8) makes geometric sense since AB{),A{); is in the
tangent space at A{Y,. Combining (5.5) and (5.6) we obtain the update formula
in Box 5.3.

Remark 5.2. Initial guess. The update procedure in Box 5.3 applies for
f = 1. As noted in Section 24.2 of Chapter 2, the best suitable starting scheme
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BOX 5.3. Update procedure given A¢S], := (dull),, A8),) e T +0,C

. Translation | Rotation
dt(t‘:ll) = dmn + A“v?h Av? W= exp [A%r(fll] A.{‘lx

i = vi), + ,.’TAu&‘lx. exp [8{*1)] = exp [A3{),] exp [8{V]

o) = alfl + 1

th ul)y Wi = Wi, + h—;?[er(s‘ *) - 8]

Akq-l) = Ar?ll + ,Ti'ﬁ-[ef(l“l) -8/Y]

(i.e., for ¢ = 0) in the Newton process is to initialize the displacement quantities
with the previously converged ones; that is, one sets d®, = d, and AP, = A,.
With this assumption, (v{%),, a{?,) and (W%,. A{Q,) are then computed by the

Newmark formulae given in Box 5.2,
2
o = b - El-pa. A= -Rw-Ed-pa. )
v"):

W =W +h[(1-7)A + TAD, ].

Vo +h[(1~-7)a, + T2l ]
(5.7b)

Recall that alternative starting procedures, such as (&%, a{®,) = (a,, @n).

often result in spurious behavior. =

Remark 5.3. Implementation. This remark is intended to discuss certain
practical aspects of implementing the update procedure for the rotation field as
delineated in Box 5.3. We recall that the exponentiation of a given rotation vec-
tor can be obtained following the procedure outlined in Section 4.8.3. Similarly,
the extraction of the associated unit quaternion from an orthogonal matrix

could be carried out in a accurate manner employing Spurrier's algorithm
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summarized in Box 4.8. The issue here is how to compute appropriately the
updated rotation vector ¥§*" from from its unit quaternion representation.
Recall the relationship between a rotation vector ¥ = ¥;e; and its associated

unit quaternion parameters
Q=g + 18 + gL+ ggey = cos(ué + sm(M-) o (682

Thus, given the four quaternion parameters (g,, ;. g2, gs), the associated rota-

tion vector 4 = ¥;¢; can be theoretically computed by

e, + +
I9] = 2cosg,), o = poj L%’ 5% (5.8b)
PNCAGE
i=1
However, the above procedure does not yield accurate numerical results when

8] is small. The reason can be seen from the Taylor series expansions:

2
cos® = (1 - ‘02—“‘ ver ), simd = (8 - ‘gT"' - -+ ). Since the sine function is more

sensitive then the cosine function for [8] small, it is computationally more accu-

rate to evaluate [4] from the given quaternion parameters using

1] = 2sin"Y([q? + gF + 315) (5.8¢)

to avoid round-off error. To support this observation, consider the following
example with a given ¥ = 0.2380018x10 "e;. We first compute the four quatern-

ion parameters using (5.8a) to obtain

go = 1.0000000
g: = 0.0000000
ge = 0.1180008x10~" (5.8)
gs = 0.0000000

Next we compute the rotation vector 4 from the quaternion parameters in

(5.8d) using (5.8b), and (5.8c) respectively
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(5.8b), (5.8¢)

9, = 0.0000000 ¥, = 0.0000000
¥, = 0.2356080x10~7 | %, = 0.2380016x10~7
93 = 0.0000000 B3 = 0.0000000

The result from using (5.8b), is only correct up to two digits. This example is in
fact t.akén from the analysis of the closed-loop chain in the next chapter, in

which the above round-off error spoiled the desire asymptotic quadratic rate of

convergence in the Newton iterative solution. ®

6.3.3. Exact linearization of the algorithm

We consider the linearization of the temporally discrete weak form
Gayn ($n+1. 1) about a configuration @), = (d%);, A{Y,) € C in a manner that is
consistent with the update procedure summarized in Box 5.3. For this purpose,
given an incremental field Ag, = (AufY,, A88),) in the tangent space at ¢f¥),,
we construct a curve of perturbed configurations in C; that is, a map

[ g ¢:(;‘ 1= (dmu- A, .) € C, by setting
de=ai +etul)y, AR =exp[e A3l exp[8P]A,  (5.9)

We then define linearized quantities (6d{?;.. 6AfY,.) at configuration ¢, € C,

as objects in the tangent space T‘m’c given in terms of the directional deriva-

tive formula by the expressions
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salh= g alth. = suld,

. (5.10)
6AY, = .E.Lso AY, . = A&,‘ﬂl Af),

To proceed further with the linearization of the rotation fleld, we make use of
representations for A,{‘ll ¢ and A,(fll in terms of exponential maps starting at A,.
As in (5.5), we have that

Al = exp[8f)] An . (5.11a)
where 9!} and 8 (or more precisely #{1A, and 8{A,) are in the tangent
space Ta SO(3) at A,. Note that Ad{), (or more precisely A35),Af),) belongs
to the tangent space T“Q‘SO(S) at A{Y;. Hence, from (5.11a) and (5.9)s, we
obtain

exp[8{{)] = exp[s 43{%] exp[3{"] (5.11b)
Lemma 5.1. The Frechet derivative of e := 8/ [0], with ¥ € RS, is given by

De = -l—s-l'—éfhi@i (5.12)

Proof. By the directional derivative formula

%Lold-rahﬂ = -é-iil—éu—dla-l‘w(d-l-eh)-(i-l-eh)

o:h
tol

Thus, D8] = 8/ 8] = e. Therefore,

= ech, VheRS. (5.13a)

De-h = d| @+zh _ [lh-(e-h)® _ 15-eBe

ac ], O+ ebl = ofF = =@ bk - (5.13b)

¥ith this relation in mind, we record below the main result needed in the

exact linearization of the weak form in Box 5.2. This result is the mathematical
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statement of the linearization of the compound rotation 8}, which is the axial
vector of 8§} in (5.11).

Proposition 5.1. The lineer part of the compound rotation 9, . as given in
(5.11) is obtained according to

o) = f‘" ol = T(e{) Avf), (5.14a)
£ e=0
where the map T: TA‘Q‘SO(B) -+ Ty, SO(3) is a linear map defined by

T(d) := e®e + En%[ 1, -e®e] - %— (5.14b)

with e being the unit vector defined by e := 9/ [8|.
Proof. To simplify the notation, we shall omit the subscript n+1 and the

superscript (i); the relation (5.11) can then be written as
exp[3,] = exple A3] exp[d] | (5.15a)

We first differentiate this expression with respect to ¢, at £ = 0, to obtain
d 6 2 y Yy vy 3 v
= ———=—[60+06090-9000 3], 5.15b
chso exp[9J,] 1+ OF [ ] exp[9] ( )

X Y
where 9 = 94,

R4 ¥
and 69 := d ¥, using the proof of Lemma 4.1. Thus from
e=0 de =0

(4.88), the final result in terms of axial vectors leads to

Ao = [6 + B x 69) (5.15¢)

—2
1+ o
Expressed in operator notation, the above equation reads

A® = UY(P) 68, where UY9) := [13+%] (5.15d)

—2
1+ 0P
Inversion of U™}(¥) yields

U@) = LI+ PP 15-8+77) m L[1,-8+383]  (5.15¢)
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In addition, by differentiating the expression 9, = 2 %{I’L{l-ﬂ, with respect to
¢ with the aid of Lemma 5.1, we obtain, at £ = 0,
¢ = V(9) 69, (5.15f)
where V() is given by
V@) = 2@ —2 ___e®e+ —M-[ls —e®e] . (5.15g)
Thus, from (5.15d) and (5.15f), it follows that
60 = V(9) U(¥) A8 =: T(9) Ao (5.15h)

Next, using the definition of ¥ := MMQMS and after some manipulation, we

obtain the expression for T(¥) as given in (5.14b). =

Remark 5.4. The above proof can also be obtained by first expressing the
axial vector 6,{‘} as a compound rotation vector of of 9,,; and eA0{!),. Consider
two successive finite rotations ¢ and ¢¥® with GV =g +q" and
§® =g + ¢® denoting their respective unit gquaternion representation.
Further, let 9 denote the resﬁlting compound rotation, and § =g + q its unit
quaternion representation. We have the following relation for the compound

quaternion §

§ = 33" = ¢/ - (¢ q*) + 3¢V + g{q® + ¢?xq"") (5.16a)

where * o” denotes the quaternion multiplication (e.g., Karger & Novak [1985]).
.The scalar part of § is thus g, = q.-,(‘)q,m - (q(‘) . q(z)). From the relation between

rotation pseudo vector and quaternion representation given in {4.78), we obtain

) ) @ gg'n |
=9 = a0 " gt @ gy TN + 3 + FO x O

g0 1 - il) o 9(2) = 1 - 1,(!) . 1,(2)
o

5.16b)
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Now, let V=9 = w/—z)—d. ¥ =49, = tan(c1A8]/2) rg ang the com-
| jao]

pound rotation § = ¥,. We obtain from (5.16b)

_ 1 3 A NG .
3, = 1_(3.&‘)[64-&0. Bx A3, ] (5.16¢)

The above expression could also be found in Argyris [1982). First, note that

d 3 = A0
o Lo“‘ = 5 (5.18d)

Then by differentiating (5.18d) with respect to ¢, at £ = 0. we obtain directly the

expression of U(¥) given in (5.15e) without the need of matrix inversion. ®
Tangent inertia operator. From (5.14) and the time-stepping algorithm in
Box 5.3, we obtain the linearization of the angular velocity and acceleration

about the configuration ¢,
oW = L-ATT) sy, OAM = h—‘;u T(0{) A8, (5.17)

Consider now the linearization of the weak form Gq,,.(¢. n) about the

configuration ¢ = ${,. By definition, we have

L[ Gan($01. M) ] = Gan($8h. 1) + DGy (@S ) - 885Y  (5.18)

where de,.(é,(.‘ll. n) represents the dynamic out-of-balance force, and by using

the above results of linearization

DGy (1. m) + 88, = [ Dy + Ds + D¢ + D; 1 Gam (981, m) - 85)(5.192)

where Dy corresponds to the linearization of the inertia operator given by

Du Can ($11.7)- 881 = 3= [ 1o < Aol a5

¢ L o[- 1A LT AL+ Wi < T, W, 1) (5.195)
6.1}
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+ #M‘ll tE, = At W), x] + Ay [WE,x]L, } | AT T(8(),) A0, dS .

Expressions for the tangent material stiffness operator Ds Gamn. the tangent
geometric stiffness operator D;Gym. and the tangent follower load stiffness
Dy Gy4ym were obtained in Chapter 4 —see equations (4.43), (4.44), and (4.55). The
- tangent inertia operator DyGg,. as obtained in (5.19b), possesses an unusual
characteristic with respect to standard structural.dynamics formulations: 1t is
non-symmetric and configuration dependent. This lack of symmetry concerns
only the rotational degrees of freedom and follows from the fact that the defor-
mation map ¢$ in the configuration space C takes values in the nonlinear
differentiable manifbld R3xS0(3) rather than in the linear space R3xR3. The
latter typically arises in standard structural dynamics formulations employing

the infinitesimal rotation field.

5.4. Spatial discretization: Galerkin finite element method

In this section, we shall be concerned with the spatial discretization of the
temporally discrete version of the dynamic weak form, given in (5.3), and its
linear part in (5.17) employing the finite element method. Section 4.1 focuses
on obtaining the tangent inertia matrix, which is a basic feature of the present
approach to nonlinear structural dynamics. Detailed expressions for the
tangent stiffness matrices can be found in Chapter 4. In section 4.2, we estab-

lish the convergence property of the proposed time-stepping algorithm.

6.4.1. Tangent inertia matrix

Following the same discretization procedure employed in Section 4.6.1, con-

N-1
sider the partition [0,L] = U [Sk.Si+1] with Om S,<- - - <Sy w L. The incre-
b=l
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mental field A}, := (Auf!),. 40{),) and the admissible variation 9 := (5,.¥) are

epproximated according to

suf)y(S) = IgNJ(S) Bufly . BB{(S) = ﬁlNz(s) 80f3.1 . (5.20a)

- I
7 (5) & gNJ(S) Mor.  WS) = gNAS) V. (5.20b)

where Ny(S) denotes the finite element global function corresponding to node [/
constructed in the standard manner from the element shape function.
(Auff,1. AB),,) are the values of (Auf,, 40{Y),) at node I; similar notation is
used concerning the variation ®. Next, we recall that from a known
;':onﬂguration $, at time £,, a Newton iterative scheme is employed to solve for
the configuration @+ at time £,,,. At iteration (i), substitution of the above
approximations into the linearized dynamic weak form about the configuration
‘,(.‘ll yields the following spatially discrete version of the linearized weak form
(5.18)

L[ Gy (30 m)] = gm : [P,w,(:z,) + gm,m,.. $1,) 85 = 0(5.210)
for any ;. thus

(o) + gxumn. $,) A¢f,1 = 0 (5.21b)

for I=1,...,N, where

Ku(A,. 98)) := My (A, Af)) + Sy () + G ($iD)) + Ly (AR,) (5.21¢)

In (5.21a), P;($.Y,) represents the residual or out-of-balance force at iteration
(1) of the Newton scheme,

Ayl
Pr(#it) = ld.,;l[Nl(S)l"] {1}%:«&‘2: + v,(‘i,x[léf)m]] i
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ONE .
«f llis(i,‘.*h)[m(s)h];f [::2‘1:]‘[”‘(5)“] ﬁ((tt':,,,l,)) ds. (5.22)

‘Recall that the differential operator was defined in (4.38). The discr;zte dynamic
tangent operator Ky (A,. ${4,) coupling the degrees of freedom of node / and of
node J is the sum of (i) the tangent inertia matrix My (A,, AfY,). (ii) the tangent
material stiffiness Sy (${Y,). (iii) the tangent geometric stiffness Gy ($,), and
(iv) the tangent load stiffness due to follower load h;kA,S‘ll). The incremental dis-
placement and rotation at node J is denoted by A$Sh.; := (Aufher. ABFh40),
computed by solving the system of linear equations (5.21b).

From the expression for the tangent inertia operator Dy Ggm in (5.17b), we

pobtain its discrete form

g
My, (A, Af)Y) = [m m]}'z’(:. FYON) € R (5.23a)
with
mf}) := ;z;i 6[ A, N{(S) Ny(5) dS } 15 (5.23b)

A, AL 1= [ [-[AQ () + womwil, ix]

nzp ——AN (L, - Ry [LW, “’,xl+h~/ﬁ“2,xllpclamoml) Ni(S) Ny(S) dS

(5.23c)

Both mf}-") and mf§? are elements of R™3, As noted in Section 5.3, the tangent
inertia matrix is non—symmetric and configuration dependent. This property
concerns only the rotational degrees of freedom as is manifest from the expres-
sion for mf§?(A,. Af),). The submatrix mf}-!) corresponds to the translational

degrees of freedomn and is constant, as usually found in the expression for the
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consistent mass matrix when the deformation map takes values in a linear
space. We recall that the identical property, i.e., the localized character of this
non-symmetry, was found as well in the tangent geometric stiflness Gy;.

6.4.2. Convergence and accuracy of time-stepping algorithm
The proposed time-stepping algorithm summarized in Box 5.2 can be shown

to be convergent with second order accuracy when 8 = i—and T= %— In the case

where the deformation map takes values in a linear space, these values of 8 and
T correspond to the trapezoidal rule with an established convergence property
(Hughes [1976]). ‘We shall first consider the extension of the Newmark algorithm
to solve the differential equations in (5.4a-b) whose accuracy is by the following

Lemma 5.2. Consider the differential equations (5.4b) and assume that W(t)
is twice continuously differentiable. Then the algorithm in wmaterial setting
given Bozx 5.2 is locally at most third order accurafe regardless of the values
taken by B, i.e.,

At+h) = A(t) expl AW(t) + K2 { (1-- HA(t) + BA(E +h) } 1+ O(A?) , (5.24)

where A(t) := W(¢).

Proof. Consider the Taylor series expansion of A(t +h),

At+n) = T -’-E--:%A(t) (5.25a)
with
-:—tA(t) = AW (5.25b)
;";-A(t) = A[A+W] (5.25¢)
ds _ v LA A4 av
a—;s-ﬁ(t) = A[W+2WA+ AW + Et-A] . (5.254d)
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On the other hand, A(t+h) obtained from the time-stepping algorithm is given
by

R(r) := A(t+h) = A(t) expl hW(E) + K2 (4~ F)ALE) + BACt +h)} (5.25¢)

The consistency and local third order accuracy of algorithm (5.25€¢) are ascer-
tained by the following identities

A(0) = A(t) (5.25¢)

-gt—i(o) =AW (5.25g)

7:%3(0) = A[A+ W] (5.25h)

g:TK(O) = A[W + %(fﬁ +WA) + 2p%f\] (5.251)

It can be seen that (5.25f-h) are identically the same as (5.25a-c) regardless of
the value taken by . However, there is no value of § that can render (5.251)
identically the same as (5.25d). Hence the algorithm is at most of local third

order accuracy. =
Vith the above result, the convergence property of the algorithm with 8 = 1—

end 7= Lis established by

Proposition 5.2 Consider the system of differential equations A =AW,

LW=t(W. A) with A< 50(3) and We R, Assume that I(W, A) satisfies the

Lipschitz condition with respect to i € s0(3) and A € SO(3). The algorithm

‘nﬂ = As exp[ g—i*uﬂ + ;n; ]

v v h.Y v (5.26)
Warr = Wy + E‘Mm-l + Ay
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is convergent, ie., W, - W(t,) and A, + A{t,) as h -+ 0, and second order accu-
rate, provided both W(t,) and W, are bounded. '

Proof. Let the error measures on A and W be defined as £, := A(t,) — A,
and {j, := ;(t,,) - i.. Moreover, the isomorphism between so0(3) and R? allows
the definition ﬁu := |W|. From Lemma 5.2, and the local third order accuracy of
the trapezoidal rule with respect to relation (5.26), i.e.,

Wits)) = W(ta) = 2L 80N(tn 1), Altnsr)) + HW(tn). Altn)) ] + O(h3)5.272)

we obtain the following recurrence relations for £;.1 and &4,
b = 6 + (AR + 1RO - A + 15 1+ 009 (5.270)
Ceor = &+ BLAG) - R+ AB) -R 1+ 0ORY)  (5.270)

v v
where we define R, and S to be

R = RiWe.) + We) (5.274)
t& = ’2‘_( iu-x + ik ! (5.27¢)

v v
Note that in (5.27b), we have expanded the exponential exp[R,] and exp[S; ] in
v

series and retained terms up to order A% higher order terms of the form l:"f—|
with bounded norm aré lumped together in O(h%). Next, sum up the relations

(5.27b) and (5.27c) for k = 1.....n to obtain
boor = DIAGIR + 1R -AG+ 301+ 009 (s2m)
tor = FLAED -Au)+nB [ME) =R 1+00)  (5270)

v v
essuming that there is no initial error, ie., £ =¢o=0. Since A=f(W, A)

satisfies the Lipschitz condition with respect to its arguments, taking the norm
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of (5.271,g), we have

Kool = SIMG) (R + IRE1-ALE + 3811+ cn®  (s2m)

Kool & el + lneid) + LB Qe + 16D +0h® (527

where ¢, and c; are constants and L is the Lipschitz constant. Now note that
v v v v v v
IA(G)R — ASi] = JA(L)E IR - 5 + S — AT(8)AS]
v v v
£ R - S + 115 - AT(t)A] IS
= 2l + Kal) + AEGJE (5.27)
and similarly
JA(t)R? ~ ASE] = [R? - 5P + 15 - AT(8)A] 1571
< Iﬁ’" - §?ll + h2K6| . (5.27k)
where X, K, are constants. Moreover, we have
v v v v v v vyvv v
IR - S¥ s [R + S| IR - S[ + RS - SR
< hKglisr + &l + IR x S
= (hKs + 3h?K,) (el + i) (5.27)
which in fact follows from the inequality [R; x &[] < [R[IR -S|
< -;-I(,(k“., + ¢). In the above, we have used the assumption that [W(¢,)] and

IW, ] are boundead: Il'?;ﬂ < K, and EI'Q + ‘éﬂ < K3. There results
n ol + Kl = Co(RIAZ + Coln) }; (16l + B) (5.27m)

in which Cy(k) = (1 + P(h))™! is of order 1 when h-+0, and P(h) and Cp(h) are

some polynomials of h. From (5.27m), it follows that
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Wnnall + Knerll s R2Cy(R) exp[Ce(R )] (5.27n)
Thus, Aq+A(t,) and W, -W(¢,) as h+0 and the rate of convergence is of second

order. =

Note that this algorithm is a generalization of the trapezoidal rule to treat
the rotation field as expressed in (5.28). The proof of proposition 5.2 is readily
extended to the time-stepping algorithm for the dynamics of the three-

dimensional rod with g = :—and T= ;— Let d* denote the global vector that con-

tains all the nodal displacement dégrees of freedom, and similarly for v*, w*
concerning the linear and angular velocities. On the other hand, A* denotes the
block diagonal matrix constituted from the A's at the nodal points.

Proposition 5.3. Consider the discrete nonlinear structural dynamics prob-
lemn recast as follows
4 d* v
ry vt = f£,(d*, AY) (5.28)
w (W, @*, A*)
\4
A'f - (A')*
Assume that f, and f, satisfy the Lipschitz condition with respect to the argu-
ments, then dy - d*(t,), Af = A*(t,), va - v¥*(t,). W -~ W*(t,) as h - 0 with
second order accuracy, where di, A}, vq, and ';t are obtained from the time-

stepping algorithm described in Boz 5.2.

Proof. The proof is similar to the above and will not be repeated. =
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5.5. Numerical Examples

In this last section, numerical simulations are presented that involve (i)
finite vibration, (ii) fluttering (dynamic instability) due to follower loading, (iii)
dynamic snap-through, and (iv) large overall motions of flexible beam struc-
tures. Owing to a linearization that is completely consistent with the update
procedure, as discussed above, all the numerical simulations exhibit a quadratic
rate of convergence. The geometric and material properties are selected so
that finite deformation occurs during the motion. It is emphasized that the
deformed shapes in all ﬁgui-es reported in this paper are given at the same scale
as the geometry of the structures, i.e., there is no magnification of the deforma-
tion.

Example 5.5.1. Right-angle cantilever beam subject to out-of-plane load-
ing. The right-angle cantilever beam with material properties shown in Figure
6.5.1a is subjected to an out-of-plane concentrated load applied at the elbow.
The magnitude of this applied load follows the pattern of a hat function, as
shown in Figure 5.5.1a. The cantilever undergoes finite free vibration with com-
bined bending and torsion after removal of the applied load; the time histories of
out-of-plane displacements of the elbow and of the tip are given in Figure 5.5.1b.
We note that the amplitude of vibration is of the same order of magnitude as the
length of each leg of the cantilever. Figure 5.5.1c gives the perspective view of a
deformed shape. A linear mode shape analysis of the structure about the refer-
ence configuration reveals that the second bending mode of the free-end leg
appears as the 10th mode of the structure, with period T)g = 1.8. This period
provides a reasonable estimate for the time step size. Throughout the calcula-

tion, we employ a time step size of h = 0.25, which is about -g-th of Tyo. The

results obtained from a discretization of the cantilever using fwo elements with
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quadratic interpolation are in good egreement with those obtained from using
ten elements of the same type.

Example 5.5.2. Fluttering of a 45-degree bend under follower load The
static response of the 45-degree bend depicted in Figure 5.5.2a under follower
loading was analyzed in Example 4.7.5. In this example, we consider the inertia
eflects on the response of the bend under follower load that ultimately leads to
fluttering (dynamic instability). A follower concentrated force of the circulatory
type described in (4.51) is applied at the tip of the bend with steady increase in
magnitude at the rate of 100 units of force per unit of time. Throughout the
analysis, we use a time step size of R =0.1. Two perspective views of the
deformed shapes are given in Figures §.5.2b and 5.5.2c to help visualize this
complex motion. In Figure 5.5.2c, we also give the path of the tip in the static
loading for comparison with the response from dynamic loading. The static
loading path is obtained by increments of 50 in the magnitude of the follower
load up to a magnitude of 3000 (see Example 4.7.5). From Figure 5.5.2c, one can
see that initially the dynamic response follows closely the static response. The
inertia effects become gradually more pronounced, leading to the divergence of
the two paths; then subsequently, dynamic instability sets in to cause strong
vibrations of the bend with increasing amplitude and velocity.

Example 5.5.3. Out-of-plane dynamic snap-through of a right-angle frame.
The right-angle frame depicted in Figure 5.5.3a was analyzed statically in Exam-
ple 4.7.7. Here we provide an analysis of this frame accounting for inertia

effects. The degrees of freedom at the hinged end are translation along the x
direction and rotation about the z direction. The apex of the frame is con-
strained to lie in the y-z plane. Due to the symmetry of the problem, only half of

't.he frame is modeled employing 10 elements with quadratic interpolation for
both displacement and rotation fields. The value of Young's modulus is 71240,
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and the value of Poisson's ratio is 0.31. The magnitude of the applied moment at
the hinged end is chosen to have the same value as the time £. As the magni-
tude of the applied moment increased, a perturbed concentrated force is
epplied at the apex of the frame to induce a lateral motion of the apex. When
the moment reaches the critical value of about 615, the loading is removed and
the frame snaps through dynamically to the other side as shown in Figure
§.5.3b. Figure 5.5.3c reports the time history of the lateral displacement of the
apex. In a static analysis, due to the presence of limit points, it is essential to
employ a judicious combination of arc-length and displacement control methods
in the numerical soiution. In a dynamic analysis, such special techniques (con-
tinuation methods) are avoided since the mass matrix, as opposed to the
tangent stiffness matrix, remains positive definite throughout the entire
analysis. The slenderness of the cross-section of the frame with ratio

—""‘9—". ."" = 50 causes large amount of twist during the motion. To provide an esti-

mate for the time step size, an eigenvalue analysis is performed at the reference
configuration. The first two modes that involve torsional deformation of the leg
are the 8th mode and the 11th mode of the structure with period T = 0.07 and
Ty, = 0.03 respectively. Note that since the frame is very flexible in the out-of-
plane direction, frequency modes below the eighth mode are out-of-plane bend-
ing modes. A time step size of A = 0.005 was selected in the numerical simula-
tion of the dynamic snap-through of the frame.

Example 5.5.4. Freefree flexible beam undergoing large overall motions.
This problem was first analyzed in the plane case in Simo & Vu-Quoc [1985b].
The beam is initially at an inclined position in the plane (e,, e;) as depicted in
Figure 5.5.4a. A spatially fixed force along e, is applied at the lower end
denoted by the letter A. Simultaneously, we apply a spatially fixed torque with
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components along e, and along e at end A. The time histories of the magnitude
of these applied force and torque are given in Figure 5.5.4a. The applied force
produces the translational motion; the component along e, of the applied torque
induces the forward tumbling while its component along ez causes the out-of-
plane motion of the bearn. The resulting three-dimensional motion of the beam
follows a periodic *“‘kayak-rowing" pattern. Figure 5.5.4b shows the motion of the
beam during the early tumnbling stage; the entire sequence of motion is depicted
in Figure 5.5.4c. The traces of end A and end B of the beam are shown by dotted
lines. A side view of the motion in the plane (e, eg) is given in Figure 5.5.4d, and
a perspective view of the entire sequence of motion in Figure §.5.4e. During the
loading stage, finite deformation of the beam is clearly discernible. An eigen-
value analysis at the reference configuration of the free-free beam yields a
period of vibration of 1.08 for the second bending mode (the first two torsional
modes appear at lower frequencies). A time step size of 2 = 0.1 is subsequently

chosen for the entire analysis.

6.8. Concluding Remarks

Within the context of a general nonlinear finite-strain rod model, we have
developed an implicit, second order accurate transient algorithm that furnishes
a canonical extension of the classical Newmark algorithm to the rotation group
50(3). The exact linearization of the algorithm and associated configuration
update has been obtained in closed form, with accuracy and convergence
characteristics precisely stated.

We have demonstrated the generality and eflectiveness of the present for-
mulation in several numerical examples involving vibration with finite amplitude,
dynamic instability due to follower load, dynamic snap-through of a thin right-

engle frame, and a free-free flexible beamn subject to large overall motions and
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undergoing infinitesimal or large deformation. The latter example illustrates
the applicability of the proposed formulation to the transient analysis of free-
free flexible beam structures undergoing large overall motions. Since the
dynamics of the motion is referred directly to the inertial frame, this methodol-
ogy represents a radical departure from traditional formulations in which small
deformation is assumed at the outset, and the use of a floating frame that moves
along with the deformed structure is necessary. In the present approach, the
dynamic coupling in the inertia terms that appears in the use of the floating
frame is exactly accounted for, and nonlinear geometric effects leading to insta-

bility are automatically included.
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Figure 5.3.1 Geometric interpretation of the time-stepping
algorithm. (a) Translational part takes place in RS, (b) Rotational
part takes place in SO(3). Velocity and acceleration update takes
place in the same tangent space.
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Figure 5.5.1c. Right angle cantilever beam subject to out-of-
plane loading. Perspective view of deformed shape.
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Figure 5.5.4b. Pree-free flexible beam undergoing large overall
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Figure 5.5.4c. Free-free flexrible beam undergoing large overall
motions. Entire sequence of motion.
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Figure 5.5.44 Free-free Jlexidle beam unde
motions. Side view of deformed shapes.
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Figure 5.5.4e. Free-free flexible beam unde
motions. Perspective view of deformed shapes.

rgoing large overall
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CHAPTER 6
THE DYNAMICS OF FLEXIBLE EARTH-ORBITING SATELLITES
AND NMULTIBODY SYSTEMS

6.1. Introduction

In previous chapters, we presented a methodology to analyze the dynamic
response of flexible structures undergoing large overall motions based on a
finite-strain approach. Restricting our attention to one-dimensional structural
elements, we demonstrated the generality of the proposed methodology,
employing a finite-strain rod model, through several examples of flexible beams
subjected to complex motions and a wide range of structural deformations.
These analyses were performed using efficient algorithms which were developed
from concepts in differential geometry.

In this concluding chapter, we shall present an important application of the
methodology developed throughout this dissertation: an application to the
dynamics of flexible earth-orbiting satellites and of multibody systems. Recall
that our formulation essentially makes use of the property of invariance under
superposed rigid body motion of fully nonlinear structural theories. This pro-
perty enables us to refer the dynamics of the satellite directly to the inertial
frame. In addition, geometric instability effects are automatically accounted for
in the formulation. To avoid numerical ill-conditioning, the deformation map is
additively decomposed into the far field, which describes the orbit of the satel-
lite, and the near fleld, which describes the structural deformations as seen by
an observer in a close neighborhood of the satellite (Vu-Quoc & Simo [1986]).
The dynamics of the far field and of the near fleld are treated separately by
introducing a rotationally-fixed floating frame which in fact can be conveniently

chosen to be a parallel translate of the inertial frame with origin placed at the
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instantaneous center of mass of the satellite. Constraints to determine the
‘orientation of the floating frame that typically arise in standard treatments are
thus entirely by-passed. The proposed formulation can accommodate an unres-
tricted class of maneuvers under the action of follower actuator forces and grav-
ity force, and is particularly well suited for the dynamics of flexible multibody
systems undergoing a broad range of structural deformations.

6.2. Dynamics of flexible satellites

The configuration of earth-orbiting satellites has evolved markedly from
rigid vehicles (spinners, dual spinners), hybrid rigid-elastic systems (dual
spinners with flexible appendages), towards future generation of flexible large
space structures (space antennae, solar power satellites); see Kline [1979]. The
size of space antennae may vary from 50 to 300 meters, even to one kilometer in
diameter; the projected solar power satellite measures 5 kilometers in width by
10 kilometers in length. Spacecrafts of this size, constructed using light weight
materials, are therefore highly flexible. These structures can no longer be pre-
fabricated on earth, but must be assembled directly in space.

It was recognized that flexibility significantly influences the behavior of
satellites early in the start of the space program,t thus posing serious difficulty
in the stabilization of their attitude. In fact, Likins [1971] identified the
influence of spacecraft flexibility to the spacecraft attitude cor;trol problem.

Even though the proposed methodology is applicable to a large class of
structural elements, —rods, plates, shells, 3-D continua — we shall limit our dis-

cussion to the case of a flexible satellites composed of beam elements. In

t For example, the instability of Explorer |, the first U.S. satellite, was caused by the flexibil-
ity of its small wire turnstile antemmae.
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Section 8.2.1, we introduce the concept of a rotationally-fixed floating frame
that permits additive decomposition of the deformation map into the far field
(Section 8.2.2) and the near field (Section 6.2.3). A computational procedure to
solve for the dynamics of the far fleld and of the near field, coupled through the

presence of gravity force, is proposed in Section 6.3.

6.2.1. Rotationally-fixed floating frame

Some traditional floating frames. Current approaches to the dynamics of
flexible structures in orbit are largely based on the assumption of small defor-
mation, and rely on the use of a floating reference frame to describe the struc-
tural displacements; that is, a frame that floats with the structure and such
that, relative to this frame, infinitesimal structural deformations are observed.
To prevent the rigid body motions relative to the floating frame, one imposes
constraints on the displacement fleld of the entire body. There are typically five
types of floating reference frames: (1) a locally attached frame, (2) a principal
axis frame, (3) Tisserand’s frame, (4) Buckens’ frame, and (5) a rigid body mode
frame (Canavin & Likins [1977]). When the structure has a central rigid body
with attached flexible appendages, the frame is attached to the rigid body (the
locally attached frame) and no constraint equation is needed. For structures
with distributed flexibility, other types of floating frame should be used. In
these frames, the origin is fixed at the center of mass of the deformed struc-
ture, ie., one seeks to annihilate the linear momentum relative to the floating
frame. Its orientation is then defined by adding constraints concerning the rela-
tive angular momentum. When small structural deformation is assumed, the
Buckens frame is the most widely used since one can either use the free-free
elastic modes to eliminate these (holonomic) constraints from the equations of

motion (Canavin & Likins [19877]), or apply the Gram-Schmidt orthogonalization
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procedure on an independent set of basis functions to eliminate the Buckens
constraints (Benson & Hallquist [1985]).

For the type of highly flexible large space structures described above, what
would guarantee that the deformations remain small? Clearly, traditional
epproaches employing the small strain assumption would yield only a first order
epproximation to the fully nonlinear theory. The methodology proposed in pre-
vious chapters represents a departure from traditional approaches in that, by
employing fully nonlinear structural theories, we refer the dynamics of the
structure directly to the inertial frame, and thus completely by-pass the use of
a floating reference frame. The inertia term for the translation part then
becomes linear simply as mass times acceleration; the rotational part has the
structure of the equations of motion of a rigid body. Moreover, the role of non-
linear theories in the dynamic analysis of rotating flexible structures, where
linear theories are inadequate to capture certain phenomena, has been explored
in Chapter 3.

Rotationallyfixed floating frame. Mathematically, the system of partial
differential equations summarized in Box 5.1 completely describes the dynamics
of a flexible satellite constituted of beam elements. However, when gravitational
force is accounted for, it is computationally unwarranted to refer the dynamics
of flexible satellites directly to the inertial frame using finite precision
mathermnatics. The reason clearly stems from the large difference in magnitude
of structural deformations and the distance from the center of the earth to the
satellite. Owing to the property of invariance with respect to superposed rigid
body motion of the rod model, we can refer the dynamics of the satellite to a
parallel translate of the inertial frame. As a result, when this floating frame is
placed in the neighborhood of the satellite, the structural deformations, will be

properly described.
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Let us introduce the frame {Z;a,, &, &3], as shown in Figure 8.2.1, with base
point Z € R’ whose position relative to origin O of the inertial frame is given by

the position vector

Ut)=2Zi(t) e, (8.1)

and such that the orthonormal basis vectors {a;} have constant components
relative to the inertial basis {e;]. This frame is thus rotationally fixed with
respect to the inertial frame, and will be henceforth referred to as the
rotationally-fized floating frame. For convenience, we choose a; m e, =B,
which makes {Z;e;, @, e3} simply a parallel translate of the inertial frame
{O0:e,, ez, eg). Let $Z[0, L]+R? denote the deformation map of the line of cen-
troids of the beam relative to this frame. The position vector of the centroid x,

defined in (4.1b) can now be restated in terms of ¢Z as follows

X m@(S.t) =Zt) + $Z(S.t) =[2:(t) + p2(S.t)] & (6.2)

Note that the relation (4.1c) for the rotation field remains identically the same
for the rotationally-fixed floating frame. We shall refer to the map £-+Z(t) as the
Jar-field dynamics which will be used later to describe the position of the satel-
lite relative to the inertial frame. By the dynamics of the near field, we refer to
the map t +$Z(S,t) which describes the structural deformation.

8.2.2. Loading conditions and far-field dynamics

Loading conditions. Three types of loading are considered. The simplest
loading is the spatially fixed type with (possibly time varying) components rela-
tive to the inertial basis vectors given by W (t) = nf(¢) e,. Most relevant t.o
flexible satellites is loading which is dependent on the deformation of the struc-
tures such as actuator control forces — coming, for example, from gas jets or

fon thrusters —used for the pointing maneuver and vibration suppression. The
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actuator control force considered herein falls into the category of follower load-
ing of the circulatory type —that is, loading which is not derivable from a poten-
tial and not explicitly dependent on time —defined as follows

B%(t) := NP(t) tft) . (6.32)

The applied load in (6.3a) thus follows the change in orientation of the cross sec-
tion, represented by the basis {t;}, and may have time varying magnitude. By
virtue of (4.1c), relation (8.3a) can be rewritten as

n‘(A) =Ay NP e, (B.Sb)

thus explicating the dependence of the actuator loading on the configuration.
Finally, gravity loading derived from a spherical potential applied to a material
point of mass A4, located at a distance ¢, from the source, here the origin 0, of

the form

¥($,) = - i;":% (6.4)

is also configuration dependent. In (6.4), 1 denotes the gravitational constant.
For the rod model, using (6.4) implies the reasonable assumption that the mass
of the rod is concentrated on the line of centroids. Even though more complex
models of the gravitation fleld could be considered, our purpose here is to show
how the formulation could accommodate configuration dependent loading. For

this reason, within the confines of this chapter, we shall consider only the follow-
ing type of loading

=1 +5°(A) + B (g,) (6.5)

Farfield dynamics. To determine the far field dynamics ¢ -+ Z(t), we shall

employ the following equation which defines the motion of the center of mass of

the satellite,
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1
t)=1(Z A):= = [ [ +8°(A)]dS, (6.6a
¥ =1zn:= L8 * o, )] )
where pis the unit vector deflned as p:= % d M the total mass of the satel-

lite,

H:= , JL‘ ]A,(S) ds (6.6b)

The first term on the right-hand side of (8.8a) gives the acceleration due to the
gravitational field, whereas the second term represents the acceleration pro-

duced by the spatially fixed and actuator follower forces applied to the satellite.

8.2.3. Near-field dynamics and weak formulation

Nearfield dynamics. In treating the dynamics of the near field one can
always assume that the far field £ -+ Zt) is known. The equations of motion for
the near field are in fact valid for any known function Z{t). Noting that

8¢, ol
S 85

we obtain

and using the decomposition (8.2), i.e., $,(S.t) = Z(t) + $Z(S.¢t),

g—°-+ [8 +E°(A) + B (% $2) - 4,51 = 4, §7
082 (6.7a)
OS 85"’ xn+m=Lw+wx[,w]

The strain measure I' is now evaluated by

LLH
r=AT —- 25 B (6.7b)

It is noted that equations concerning the dynamics of the rotation field of the
rod and its curvature in Box 5.1 remain identically the same in the above formu-

lation.
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In all applications of interest, the origin Z of the rotationally-fixed floating
frame, with position vector Z(t), is located in a small neighborhood of the center

s
1z
numerical ill-conditioning of the gravitational force field B¢ (Z $2). one employs

of mass. Thus, in the present situation, we have z:= « 1. To avoid

the following standard Taylor series expansion that retains terms up to order
0(c?)

z L]
E’(Z.’f)-—Apy-li!+z = AP“¢132[1_3P ¢f]

oZ+d° |7 77]
A 3p° oz o e Z-9; 2
|1 ';zu" -g—‘r‘jﬂ + 15 |z|]¢4z> +0(e%).  (8.8)

The complete system of partial differential equations describing the dynam-

ics of the far field and of the near field is summarized in Box 6.1.

Remark 6.1. It should be noted that the far-field dynamics and the near-
fleld dynamics are coupled through the presence of the follower actuator force
BE°(A), dependent on the rotation field A of the rod, in equation (6.8) and the

presence of the forcing term Ap.i as well as the gravity force & (Z ¢2), which

depends on the far field Z(t ), in equation (6.7). =

Dynamic weak form of the near fleld. The weak formulation of the local
equations (6.7) governing the dynamics of the near fleld is the cornerstone of
the finite element numerical solution procedure discussed in the next section.
Consider a configuration of the satellite defined by @, (S, t) = Z(t) + PZ(S. ¢t)
and A(S, t). We shall denote by S = 9(S) := (5, (S), ¥(S)) an admissible varia-
tion of the configuration @ := ($Z, A). Physically, S -+ 1, (S) represents a super-
Pposzd infinitesimal displacement fleld, and S -+ $(S) a superposed infinitesimal
rotation field onto the satellite. By multiplying (8.7) by %(S) and integrating
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BOX 8.1. The far-field and the near-field dynamics

Far field
LR " al RLAL LS
Near field
BAGS.H) - 55.6) AGS.t) A& w(S.t) A(S.t)
r= Ar?.‘_og_‘)__ , 0=A"0o
-g%+[ﬁ-.4p.i] = A, §Z
%’; :s‘,’xn-l—ﬁ Lw+wx[l,wl]

over [0, L] we obtain, after integration by parts, the following dynamic weak

form

Gan($. 1) := wfum,. $7em +[Lw+wx (L, w)]-9}dS - G(d. 1) (6.9a)

Here, G(@. ) denotes the static weak form of equilibrium given by

L

= .o
G($.n): wfﬂin [35

~¥x 5o+ me P45~ Gu(s.m)  (6b)
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where Gt ($. ) is the weak form of the externally applied loading; that is

Gt (9. ) := [‘rL ]t[ F + (2 $2)+B°(A)-A,Z) 9, + E-¥}dS . (6.10)

It is noted that in (6.10), the far fleld Z(t) is assumed to be known, and the

acceleration term A;iis regarded as an additional forcing term.

8.3. Computational solution strategy

In this section, we shall discuss in detail the numerical integration pro-
cedure to solve the system of equations in Box 8.1. The proposed treatment
relies on an essential property of our formulation: The motion of the
rotationally-fixed floating frame relative to the satellite (the map £ - Z(t)), in
strict mathematical consideration, has absolutely no influence on the mechani-
cal behavior of the satellite (the deformation map ¢ - $Z(S,t)). Its role in the
formulation can be thought of simply as a **zooming device,” and serves the sole
practical purpose of avoiding numerical ill-conditioning resulting from the large
difference in magnitude between the structural deformation and the distance
from the satellite to the center of the earth. This ill-conditioning of course
arises only when gravitational force is taken into account in the formulation.

Conceptually, the coupled problem to be solved may be stated as

Find Zt), $X(S. t). and A(S, t) such that:
Z=1(Z A), end
Gam (@, 1) = 0, for any n admissible,

where @ := (o, A), and P = Z + $Z. The single-step solution procedure can be

summarized as follows:
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Assume that at time t = ¢, the solution is known, i.e., we have solved for
{Z(tn). $Z(S.ta), A(S.t,)). Pind the solution at time tne1 =ty + h denoted

by $Z(tn+1). $Z(S.tne1). A(S tnsy)}, where h represents the time step size,
based only on the known solution at time ¢,,.

We propose a single-step explicit/implicit transient algorithm to solve the above
coupled far-field/near-field satellite dynamics problem. Consider the time
interval of interest [0, T] to be discretized into subintervals such that
[0, T]= A [tn. th+1], where 254, := 5 + h, and h is the time-step size. The fol-

lowing steps are performed over the interval [t,, £541]):

(i) Solve the initial value problem %= f (Z A), with initial condition Z(t,) = Z,,
by assuming that A remains unchanged within this time interval, i.e.,
A(S.t) m A(S, t,), for t € [t,, tn,,]. The numerical integration is performed
by an ezplicit integration method.

(i) Solve the nonlinear structural dynamics problem Gum($. %) = 0 by a gen-
eralized Newmark implicit time-stepping algorithm and the spatial Galerkin
finite element method. This discretization procedure results in a system of
nonlinear algebraic equations that can be solved by Newton's method.

We shall first discuss in Section 6.3.1 the temporal discretization in steps (i)
and (ii), followed by the spatial Galerkin finite element discretization of the weak

form for the near-field in Section 8.3.2.

6.3.1. Temporal discretization

In line with standard usage, we employ the subscript n to denote the tem-
poral discrete approximate of a time-varying quantity at time #,; thus for the
far field 2, = Z(t,), for the near fleld d,(S) = $Z(S.tn), v, (S) = S&(S.t,).
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8. (5) = $J(5.ta). and for the rotation field An(S) ¥ A(S.tn), Wa(S) T w(S.t,),
@n(S) 2 w(S.t,). Also denote the configuration at time £, as #n(S)
:= (da(S), An(S).

Farfield dynamics: Explicit scheme. The ordinary differential equation
(ODE) describing the motion of the center of mass of the satellite given in (6.8)
is easily solved by employing any of the classical explicit single-step algorithms
for ODE's (e.g., Gear [1971]) if the function f(Z A) is explicitly known. However,
the dynamics of the rotation field ¢ + A(S,t) for £ = £, is not known until we
have solved the equations of motion (8.7). Hence, to solve for Z,.;, with known
solution {Z,, Ax(S'). we assume that A(S.t) m A, (S), for all time ¢ in the inter
val [t,, tp1]. In the implementation, we employ the explicit Runge-Kutta 4th
order method.

Remark 6.2. In fact, a wide choice of numerical algorithms for ODE's —
explicit or implicit, single-step or multi-step — could be considered to solve for
the far field with the above assumption. We note that in general, due to struc-

tural vibration, the time step size of the whole numerical integration scheme is

rather governed by the near-fleld dynamics. =

Remark 6.3. Numerical integration of the far-field dynamics is only neces-
sary when external forces from other than the (spherical) gravitational field are
applied on the satellite. In the absence of these applied forces, one can use

well-known analytical solutions in orbital mechanics (the two-body problem) to

obtain directly the solution for the far field Z(t). =

Remark 8.4. Because of the assumption that the follower load remains con-
stant in the interval [£,, ty4;] for the integration of the far-field, the origin Z of
the rotationally-fixed floating frame will not exactly follow the path of the center
of mass of the satellite, and could gradually drift away from the latter. We note
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that the assumption of piecewise constant applied follower loading used in the
integration of the far fleld is closely related to the rectangular integration rule.
This assumption can therefore be viewed as a convenient interpolation of the fol-
lower actuator load; the role of this interpolation is to allow a decoupling in the
numerical treatment of the coupled far field/near fleld problem. However, first
due to the small time step size to accommodate structural vibration as noted in
Remark 6.2, the drift of origin Z from the center of mass would be insignificant.
Second, since one could always arbitrarily re-position the floating frame relative
to the satellite as will be shown later, the drift of Z from the center of mass is

therefore inconsequential as far as the structural response of the satellite is

concerned. =

'Near-field dynamics: Implicit scheme. The basic problem concerning the
discrete time-stepping algorithm for the near field may be formulated as follows.
With Z,,, known from solving the far-field dynamics as described above, and
given the configuration @, :=(d,, A,) € R3xS0(3) at time ¢,, its associated
linear and angular velocities, (v,, W,)., and linear and angular accelerations
(a,. @,). obtain the configuration @4, := (dp4y, Ansy) € R®xSO(3) at time ¢,,,,
the associated linear and angular velocities (vg.;, Wn+,). and the linear and
engular acceleration (8, 4;, @g4;). To this end, we employ the generalized impli-
cit Newmark algorithm summarized in Box 5.2.

Remark 6.5. The accuracy of the implicit integration scheme for the near
fleld is independent of the accuracy of the integration scheme for the far field in
the sense that we shall always obtain the structural displacement and rotation
flelds of the rod up to second order accuracy (see the analysis in Chapter 5)

regardless of the choice of integration scheme for the far field. =
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We shall now proceed to the spatial discretization procedure of

% (”H' 1s ")'

6.3.2. Linearization and spatial discretization

We recall that as a result of introducing the generalized Newmark time
stepping algorithm in Box 5.2, the weak form Gin(@n+1. #) = O governing the
dynamics of the near fleld becc;mes a nonlinear functional depending on
$n+1(S) := (@ +1(S). An+1(S)). In what follows, we shall be concerned with the
spatial discretization of this nonlinear functional by a Galerkin procedure.

Tangent gravity load stiffness operator. The solution of the nonlinear varia-
tional problem Ggn(@#n+1. 1) = 0 by Newton's method — step (ii) of the solution
strategy outlined above —involves the solution of a sequence of linearized prob-
lems, denoted by L[ G(${;. %) ] = 0 where the superscript (i) designates the
iteration number. These linear problems are obtained by consistent lineariza-
tion of Gun(¢$.m) =0 at the current configuration S - ¢9,(S)
:= (d,(S), Afi(S)), in the direction of an incremental field S - A¢fH),(S)
:= (Aufy(S), 80{),(S)) according to the directional derivative formula

L[ Gyn($ih.m) ) := Gﬂm(’v(ﬂl- n)+ %L:o Gam(Pih + e 8091 m) =0 (6.11)

A detailed account of the linearization process for the static weak form
G(¢{),. n) defined in (6.9b) that includes consideration of follower loading is
contained in Chapter 4. Extension of this methodology to the dynamic problem
governed by the weak form de(ﬁ,(.‘ 1 1) in (8.9a) is given in Chapter 5. Thus,
within the present context, it only remains to address the linearization of the
contribution to Gy (${Y,. #) defined by (6.10) of the gravity force field. This
contribution will be denoted by Gf;(¢{!,. #) in what follows. By making use of
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the Taylor series expansion (B.8) in (8.10), use of the directional derivative for-
mula yields the expression

d « €) gy=— [ Ao BT [ [ 5 Pn+1* &8,
?:[w%(’nll"'tA’nlhﬂ) @ Iz”ﬂus HZH-I" Prn+1 ® Pnn1

3Pn+1* dwl

¢ =2 pn @ ), + [1 - la] Buf), ds (8.12)
12 .1}

Note that the above tangent gravity load stiffness operator is non-symmetric
and concerns only the translational degrees of freedom. This result will be used
in the computation of the load stiffness matrix upon introducing the spatial
discretization.

Galerkin finite element discretization. Following the same procedure as in

Section 4.6.1, we begin by introducing a partition of the interval [0, L] into non-
N-1
overlapping subintervals according to [0, L]= K2 [Sk. St+1). where

Om §;<Sp< - <Sy wm L. Consider the following approximation for the
translational field

€aerS) = 3 N(S) duusr, where duous ¥ Gn(S) . (8.139)

Here, Ni(S) is a set of global functions which are either prescribed or con-
structed from local finite element approximations in the standard manner. An
interpolation for the rotation field S -+ A,,,(S) is constructed by noting that
An+i(S) = exp [i.....;(S)]. where i(S ) is the skew-symmetric matrix associated
with the rotation vector . We then consider the approximation for the rotation

field

Xnn(S) = gNl(s) Xn+1s» Where Xners = Xna1(S7).
and A, .i(S) 2 exp [xns1(S)) . (6.13b)
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Notg that the approximation scheme for the rotation field preserves exactly the
orthogonality property of A. By substitution of the interpolation in (8.13a-b)
into the the weak form %(‘Ml. 1) = 0, and assuming that the admissible vari-

ations 9 := (7., ¥) ere approximated in the same manner according to
n(S) ¥ £ M(S)ns wihnr % mlsp). (6.13¢)

after application of standard results in variational calculus, we arrive at a sys-

tem of nonlinear algebraic equations whose linearized form is given by

Pr{eM) + glcu(h... o) Al s =0, (6.14a)

for I=1,...N. In (6.14a), P; represents the residual force, and K;; the dynamic
tangent stiffness matrix obtained from

Kis(An. $80) = My (A, AY)) + S (88) + G (o)
+ LH(A8)) + 1§ (Zn oy, 48,) . (6.14b)

Expressions for the tangent inertia matrix M, the material tangent stiffness
matrix Sy, the tangent geometric stiffness matrix Gy, and the tangent follower
load stiffness Lf; have been obtained in Chapters 4 and 5 —see equations (5.23),
(4.61), (4.62), and (4.83), respectively. The expression for the tangent gravity
load stiffness results from the introduction of the approximations (8.13a,c) into
(8.12),

- 5 Pn.1* 4:(S))
L(Zn 41 d“lx) = 5 Iz.mls [ [ 120 o1l j Prn+1®Pn+1

* BT Pt © A(S) + [1 - 3;"'*]’2.,:'52'(5)} la] Ni(S) Ny(S) 8. 14c)

The incremental displacement and rotation Aﬁ,(.‘ 1 ~an be obtained easily by solv-
ing (B.14a). The update procedure to obtain the solution ${} at iteration (i+1)
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such that the solution always remains in the configuration manifold is, however,

non-trivial; we refer to Chapters 4 and 5 for the detailed discussion.

6.3.3. Re-positioning of the rotationally-fixed floating frame

One of the salient features of our formulation is that the rotationally-fixed
floating frame could be arbitrarily re-positioned and its velocity in the inertial
frame reset at any time. Thus in case of a drift of the origin Z of the floating
frame from the center of mass, one could easily re-position the floating frame to
the center of mass by first computing the current position of the center of mass

relative to Z, denoted by r,
re)= L J. 4(5) 9¥(s.t) ds (6.152)
M 5.1)
with velocity and acceleration relative to the floating frame given by,

#t) = }7{ 6[; ].4,(5) $2(s.t)ds, (8.15b)

®t) = 311—[ dfz ]A,(S) $Z(5.t) dsS . (6.15b)

Only when [Z] and [r{ are of comparable magnitude to threaten the loss of preci-
sion on the structural deformation due to round-off error that the re-positioning
procedure need be performed. In this case, suppose that we wish to re-position
the floating frame at time ¢ = , we simply restart the integration of the far-field
dynamics with initial conditions reset as follows:

UE) « [ UT) + x(f) ]

[] ¢ o 0y 8. 16

E) « [ UE) + HE) ] (6.180)
Also the near-field dynamics is reset according to

$5(E) « [ $2(F) - () ]

PE(F) « [ $&F) - K(F) ] (8.16b)
HE) « [ $2(F) - KD ]
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It is clear that the above re-positioning procedure leaves strictly unchanged the
value at time f of @, () = Z{) + ¢Z(f). and hence the values of the velocity
@, (F). and acceleration §,(f). Further, this re-positioning procedure is most
conveniently employed when a single-step integration algorithm for ODE's is
used to solve for the far field.

8.3.4. Numerical examples

We shall give two numerical examples of application of the concept
rotationally-fixed floating frame in the dynamics of flexible rods undergoing
large overall motions with and without the effects of gravitational force. All
figures of the deformed shapes reported herein are given at the same scale as
the geometry of the structure. There is no artificial magnification of the struc-
tural deformation for visualization purpose. '

Example 6.3.1. Freefree flexible beam undergoing large overall motions
(revisited). Consider a free-free flexible beam initially placed at an inclined
position and subjected to applied force and torques at the lower free end as in
Example 5.5.4. Since the gravitational field is not considered in this example,
and since only spatially fixed loading is applied on the bearn, the dynamics of the

far field and the dynamics of the near field are completely decoupled:

=i
%= P 6,‘fL ]li’(S)dS. (6.17)
W -47)= 4,87, . (6.18)

Substitution of (8.17) into (8.18) yields the equation of motion for the near field

L -‘}}l Jo¥ (51 1= 487 (8.19)
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Thus, in this example, one does not need to solve for the far field if only the
near-fleld dynamics is of prime interest. The result is shown in Figure 6.3.1 with
a clear physical meaning: The motion given in Figure 5.5.4e as perceived by an
inertial observer is now seen by an observer, attached to the rotationally-fixed
floating frame and moving with the center of mass. A time step size of h = 0.1 is
used in both analyses (with and without the rotationally-fixed floating frame). A
justification of the time step size chosen was given in Example 5.5.4.

Example 8.3.2. Satellite dynamics: Libration and orbit transfer. To illus-
trate the proposed methodology for solving the coupled far-field /near-field prob-
lem in the presence of gravitational force, we consider in this example a beamn of
length 100VZ2 completely contained in the plane fe,, ez} and placed at 45° with
respect to axis e;. The center of mass of the beam is initially located at a dis-
tance of 7x10° from the center of the earth, i.e., Z(0) = 7x10° e,. For the center
of mass to describe a circular orbit, an initial velocity of Z = 7544.1557 e is
chosen; the gravitational constant being u = 3.984x10'%. We are interested here
in capturing the well known librational motion, due to the eflect of gravity gra-
dient, of orbiting satellite when the geometric configuration of the latter departs
from spherical symmetry. Hence, for simplicity we choose the initial conditions
for the near field to be $Z(S,0) = &.,Z(S .0) = $Z(5,0) m 0. For the rotation field
of the beam, A(S,0) = 13, w(S.,0) = &(S5.0) = 0. Let A be the (libration) angle

between the beamn and the unit vector p:= —z—known as the local vertical, see

1z
Figure 8.3.2a. The dynamics of libration of a uniform bar on circular orbit

(IZ = constant) is governed by the diferential equation

= S 8in2\
1 -“———2 i2F (6.20)
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The initial conditions for (6.20) that correspond to the above chosen initial con-

ditions for the far fleld and the near fleld are given by A(0) = %- and

A(0) = - {%%%g— Figure 6.3.2b shows the evolution of the libration angle A as

obtained from the proposed approach to finite deformation satellite dynamics
and from using the 4th order Runge-Kutta method to integrate (6.20); both
curves are obtained with a time step size of A = 100 which in fact covers a com-
plete circular orbit in about 80 steps — the orbital period for the above initial
conditions of the far fleld is 5830 sec. With a smaller time step size, for example
h = 10, we can exactly achieve the result as obtained from solving (6.20). In
addition to the second order accuracy of the algorithm summarized in Box 5.2
as compared to the fourth order accuracy in the integration of (6.20), we note
that the need for a smaller step size stems from the fact that the semi-discrete
equations (ODE's) of the PDE's in Box 8.1 are actually much stiffer than (6.20).
Next, to dethonstrate how a combination of loading given by (6.15) could be
applied on the satellite, we consider an orbit transfer from the current circular
orbit to a higher circular orbit by passing through an intermediate elliptic orbit.
This orbit transfer is achieved by activating the satellite thrusters under the
form of impulsive loading in two stages. First, when the satellite completes the
first revolution in the low circular orbit, impulse loading with resultant in the
direction of axis e; is applied to induce an increase in magnitude of the velocity
i and thus put the satellite into a transitory elliptic orbit as depicted in Figure
6.3.2c. The time history of the libration angle (in degree) is given in Figure
8.3.2d. Next, when the satellite reaches the apogee of this transitory orbit,
impulsive thruster force, with resultant in the negative direction of axis e, is
egain applied to put the satellite on a higher circular orbit with the radius
defined as the distance from O, the center of the earth, to the apogee of the
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elliptic orbit. Since the satellite tumbles on the transitory orbit, as can be seen
from Figure 6.3.2d, an impulsive couple is also applied at the same time to stop
the tumbling; it therefore subsequently induces the satellite into a librational
motion in the higher circular orbit. The radius of the higher orbit is about
1.843x10” with an amplitude of libration about 70° over a balf librational period
of about 8610sec. This result can be easily verified using (6.20).

8.4. Dynamics of multibody systems

A robot manipulator arm consisting of human-like links connected by joints
is an example of a multibody system. Today’s commercial robots are designed
to be rigid because of the limitation of currently available analytical tools —
mainly in the active control design of these mechanical systems (Dubowsky
[1985]). As a resuilt, they a.re heavy and slow. Future robots will be light weight,
thus very flexible, and operating at high speed. Robot arms also play an impor-
tant role in space technology: for instance, the Canadarm on the Space Shuttle
assists in launching and retrieving satellites. $ Future space stations assembled
from several modules with different degree of flexibility — habitation module,
solar array, radiator, universal interface — provide another example of multi-
body systems. In the construction phase of these space stations, the versatile
robot manipulator arm will find its role increased even more. In the envisioned
Automated Space Manufacturing Facility, robotics are essential for efficient
manufacturing, repair, and for building new generations of equipment.

There exists a vast body of literature on multibody dynamics starting with

the pioneering work by Hooker & Margulies [1985] and Roberson & Wittenburg

t The Canedarm also helped closing balky hatches and knocking off a block of ice that accu-
mulated on the liquid-waste vent of the Space Shuttle.
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[1967). Most of the research in this area was focused on systems of rigid bodies;
attention has been, however, directed to the study of flexible multibody systems.
An overview of several approaches to the dynamics of n-body systems can be
found in Jerkovsky [1977]. An extensive reference list is contained in Huston
[1981]). Ho & Herber [1985] classify multibody systems into several categories in
the order of increasing difficulty in the formulation as follows: (1) two-rigid-body
system, (2) all-rigid topological tree multibody system,} (3) cluster of flexible
appendages around a central rigid body, (4) topological tree multibody system
with rigid interconnected bodies and flexible terminal bodies, (5) all-flexible
chain system, and (68) all-flexible topological tree multibody system. There are
basically two points of view to treat the dynamics of multibody systems (Hughes
[1979]): (i) the formalism developed by Roberson & Wittenburg [1967] known as
the Augmented Body Approach, and (ii) the Direct Path Method propounded by
Ho [1977). In these approaches, one first transforms the individual body dynam-
ics into a common set of dynamic variables, then eliminates the interacting
forces and couples at the connecting hinges. Treatment of the flexible chain
system (5) may be found for example in Hughes [1979] with some restriction in
the speed of motion of the angles at the joints, while treatment of the more
complex topological tree multibody system is explored in Huston [1981]. In gen-
eral, with the presence of closed-loops, additional non-holonomic constraints
have to be included in the equations of motion (e.g., Kane & Levinson [1983)),
and thus require special care in the numerical integration procedure.

It is emphasized that as a direct by-product of our formulation, one can

easily analyze flexible multibody configurations of classes (5) and (8) of the Ho-

$ That is a set of (n+1) bodies interconnected by n points, each of which is common to two
bodies. The tree topology thus implies the absence of closed loops.
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Herber classification, and even with the presence of closed loops. This is
achieved without alteration of the formulation and without any additional con-
straints since hinge conditions are accounted for in a straightforward manner
using the spatial Galerkin finite element discretization of the equations of
motion.

We shall first consider the case of a flexible beam attached to a rigid block
in Section 8.4.1, and show how the present approach could be easily applied to
analyze this systemn. Also, we will discuss how to treat systems constutituted
from a rigid body with several attached flexible appendages including closed-
loop links — this class of multibody systems in fact encompasses class (3) of the
Ho-Herber classification as a subset. In Section 6.4.2, we shall present several
examples that involve flexible chains undergoing large overall motions. Further,
owing to the full nonlinearity of our formulation, should the chain be made more
flexible, large deformations in these links would be obtained. Also, no limitation

on the speed of evolution of the system is imposed.

8.4.1. Rigid body with attached flexible appendages

For simplicity in the exposition and without loss of generality, consider the
free plane motion of a flexible beam attached to a rigid block of mass 4Y and
inertia If with respect to the connection point. We then use the same notation
as in Section 2.3 of Chapter 2. The kinetic energy of the system is given by

expression (2.24) augmentéd by the kinetic energy of the rigid block,

K= ;_[ J;l[AP I, [2 + 1,92)dX, + AR |, (0.¢)F + IR $%(0,t) .  (6.21)
The expression for the potential energy remains the same as in {2.28),

1= é—w_l;][EAI‘? + GA T + EI (8')?)dS —[‘!;][ﬁ-ﬁ. +m 8 )dX, (6.22)
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where the expression for the strain measures I'; and I'z in terms of the displace-
ment components (u,,uz) and rotation ¥ is given in (2.27b). Application of

Hamilton's principle yields the following system of PDE's

! .
ne +H = Ay, (8.23a)

m' + [(1+ u,')ng —ugln,] +W = I¥
with boundary conditions

n,(0.t) = AR (0,t), n,(L.t)mO
ne(0.t) = ARup(0,t), no(L.t)mO (8.23b)
m(0,t) = IRJ(0.t), m(L.t)moO

where (n,,n;) represent the internal forces and m the internal moment defined
in (2.33).
Weak form. The weak form of the above set of PDE's and boundary condi-

tions is obtained from expression (2.42) augmented by the terms corresponding

to the boundary conditions
n;(o. t)
Gaum($.1) = df n-1$ dX; + n(0) - I*F(0.£) - n(0){nz(0.t) | + G(. ) = 0,
0.0y m (0, t)

(6.24)

for all admissible variations 9 € (H(0, L))3. All quantities such as I, ¢, G(g,7)
have been defined in (2.41) and (2.43) of Section 24.1, except
I® := Diag[AR,AF,IF]. Upon integrating by parts the first term in G($.%) of
(2.43), and from the cancellation of the boundary terms, the dynamic weak form
in (8.24) becomes

Gan($.m) = [‘rL ln-lﬁdx, +7(0)-1*$(0.t) + G($.n) . (6.25)
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where G(@,%) is now given in (2.45). The temporal and spatial discretization of
the above weak form, as discussed in Section 2.4, leads to the same mass matrix

as in (2.84) with the exception that

My = gt SINGOPL + Ry (8.26)

as a result of the choice of the global shape functions N;(X) such that
N;(X;) = 6;;.1 The other tangent matrices are the same as given in Section 2.4.3.
It thus follows that the case of a flexible beam attached to a rigid block and sub-
ject to large overall motions can be accomodated easily within the proposed
methodology.

Satellites often have the configuration of a cluster of flexible beams (e.g.,
antennae) attached to a central rigid block (e.g., main body of the satellite). In
this case, one can choose, as a basic structural component, the rigid block and
one of the attached flexible beams; thus the model for this basic component has
been discussed previously. The remaining flexible beams are then tied to the
basic component by means of algebraic constraint equations expressing that the
distance between the points of connection of the beams to the rigid body
remains constant at all time. We are thus led to a constrained nonlinear prob-

lem. Further, treatment of the three-dimensional case is identically the same.

6.4.2. Numerical examples of flexible hinge-connected multibody systems

As a direct application of the proposed methodology, one can treat the
dynamics of flexible beams interconnected by hinges without alteration in the
formulation. This is possible since the hinge conditions can be easily accounted

for in the finite element formulation by simply identifying the displacement
t 8,7 denotes the Kronecker delta.
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degrees of freedom of the hinged ends, leaving free the rotational degrees of
freedom. The case of a closed-loop chain attached to a rig@d body presents in
principle no difficulty, except that the treatment must include possible alge-
braic constraints.

Example 6.4.1. Multi-component robot arm. The robot arm considered in
Example 2.5.1 is in this example stiffer by a factor of 100, and now consists of
two flexible components connected together by a hinge at mid-length. The two-
component robot arm is subjected to the same prescribe rotation y¥(t) = 3(0, t)
es in Example 25.1. The problem data are summarized in Figure 6.4.1a. The
sequence of motions is shown in Figures 8.4.1b and 6.4.1c. Note that while the
first component vibrates about the stop angle ¥(t) = 1.5rad for ¢ = 2.5, the
second one undergoes a complete revolution about the connecting hinge at
mid-length.

Example 6.4.2. Articulated beam in free flight. A two-body system consist-
ing of two flexible links connected by a hinge, is i.nitially at an inclined position.
The system is set into motion by applying a force and a torque at one end of the
lower link, as shown in Figure 6.4.2. The applied loads are subsequently
removed at time ¢ = 0.5, so that subsequently the articulated beam undergoes
free flight. The lower link, indicated by the letter A in the figure, then moves in
the same clockwise direction as the applied torque, whereas the upper link, indi-
cated by the letter B, moves in the opposite counter-clockwise direction.

Example 8.4.3. Closeddoop chain in freeflight. To demonstrate the capa-
bility of the present approach to model the dynamics of flexible multibody sys-
tagms. we consider a closed-loop chain constituted of 4 flexible links intercon-
nected by hinges as shown in Figure 6.4.3a. One of the links is 500 times stiffer
than the other three: Link AB in Figure 6.4.3a has a bending stiffness of
EI = 105, while the remaining links have a bending stiffness of E/ = 200. The
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other material properties are chosen to be identical for the four links, and are
listed in Figure 6.4.3a. Initially, the closed-loop chain forms a square of length
10 for each side. The whole system has no prescribed displacement boundary
condition. To create a forward motion, a force is applied at end A of the stiff link
AB; the overall tumbling motion of the chain is induced by a torque applied at
the same end as shown together with the time history of their magnitude in Fig-
ure 6.4.3a. Figure 6.4.3b depicts the entire sequence of motion with three
close-ups given in Figures 8.4.3c—e. A time step size of A =0.1 is used

throughout the analysis.

6.5. Conclusion

Ve have presented a methodology to treat the dynamics of flexible struc-
tures performing large complex motions. The essence of the proposed approach
is largely based on the use of fully nonlinear strain measures. These strain
measures together with the stress resultants and constitutive laws are required
to satisfy the property of invariance with respect to superposed isometries
(rigid body motions). This property allows the dynamics of flexible structures be
referred directly to the inertial frame, and thus simplifies considerably the iner-
tia operator in the equations of motion.

In addition to the above advantage, the centrifugal stiffening effect in rotat-
ing structures is properly accounted for when using nonlinear theory. Further,
the proposed methodology is suitable to treat the dynamics of flexible struc-
tures subjected to large overall motions and undergoing a wide range of struc-
tural deformations.

We have focused our attention only on one-dimensional structural elements,
Le., flexible rods. Since the rotation field in the rod is represented by orthogo-

nal, generally non-commutative transformations, the deformation map takes
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values in the nonlinear differentiable manifold R®xS0(3), instead of the linear
space R°xR® usually encountered in nonlinear structural dynamics. Concepts
from modern differential geometry proved to be useful in the numerical treat-
ment of the nonlinear PDE's governing the motion of the rod. An eflicient com-
putational algorithm has been developed; its convergence and accuracy is also
established. Quadratic rate of convergence of the Newton iterative procedure in
the integration algorithm results from the exact linearization process. More-
over, the update procedure is stable in the sense that the solution be required
to remain in the configuration manifold, and that the property of invariance with
respect to superposed isometries be preserved.

The dynamics of earth-orbiting flexible satellites is completely described by
the same system of equations of motion for the fully nonlinear rod model. How-
ever, to avoid numerical ill-conditioning due to the large difference in magnitude
between the distance from the earth to the satellite and the structural deforma-
tions, we introduce an additive decomposition of the displacement field of the
rod into the far field and the near field. This decomposition led to the concept of
rotationally-fixed floating frame to treat satellite dynamics. To integrate the
coupled far-fleld/near-field problem, an algorithm has been proposed such that,
for the near-field dynamics, all of the properties concerning convergence and
accuracy mentioned above are preserved. In other words, the accuracy of the
integration of the near-field dynamics is unspoiled by the integration of the cou-
pled far-field dynamics. Further, the proposed methodology can be applied to
the nds of flexible multibody systems (rigid body with flexible appendages,
all flexible chain system, flexible closed-loop chain) without alteration in the for-

mulation.
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Figure 6.3.1. Pree-free flexible beam undergoing large overall
motions. Perspective of deformed shapes as seen by an observer
attached to the rotationally-fixed floating frame.
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Figure 6.3.2a. Satellite dynamics:
transfer. Libration angle A, local vertical p.
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Figure 6.3.2b. Satellite dynamics: Libration and orbit
transfer. Time history of libration angle A on lower circular orbit.
Line A: present formulation, line B: “exact’ solution.
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Figure 6.3.2c. Satellite dynamics: Libration and orbit
transfer. Transfer from lower circular orbit to higher orbit
through a transitory elliptic orbit.
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Figure 6.4.1b. Multi-component robot arm. Repositioning
sequence to stop angle ¥ = 1.57ad. Time step size h = 0.1.

Figure 6.4.1c. Hulti-component robot arm. Vibration of robot
arm about stop angle, and revolution of flexible appendage about
connecting hinge. Time step size h = 0.01, plot after each 10 time
increments.
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t=4.8 t=29.6 t=14.4

Figure 6.4.3b. Qlosed-loop chain in free flight. Entire
sequence of motion.
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shape at time t = 14.4.
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