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Abstract

The notions of state and state transition play a central role in the study of dynami

cal systems. In many control problems, state information is distributed or incomplete.

Important issues arising in such problems are proper choice of observations, communica

tion strategies between the decision makers at each location, and choice of a centralized or

distributed control strategy.

This dissertation considers three different problems, each incorporating some or all of

these issues. The first part studies the role of communication in conventional discrete-

time stochastic control problems. A combined observation/control optimization problem

is formulated and solved. This problem differs from previous work by the added feature

that, at each stage, the decision makers can choose among different observations, each

observation incurring a different cost. Dynamic programming is employed to determine

the optimal observations and controls.

The second and third parts deal with two problems from database management.

Although far less structured than stochastic control problems, their dynamics are

described with the help of a state/state-transition formulation. The first problem studied

is that of concurrency Control. A state model (where the state is a graph composed of

different types of arcs) is proposed for the analysis of existing concurrency control tech

niques. The partial state information nature of this problem is clearly identified, and a

new locking protocol based on the idea of state estimation is presented. This protocol

uses a higher degree of central control than conventional techniques to allow for more con

currency between the users of the database.



The optimization of query processing, particularly in the case of a distributed data

base, is the other database-management problem studied. The operations involved in the

processing of a query are parametrized by means of a state-transition model. The optimi

zation of communication and local processing costs is done by using a dynamic program

ming algorithm over the state space obtained from the model. This state space is general

enough to encompass many important optimization strategies currently in use.
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Chapter 1

Introduction

1.1 - State, Information, and Communication in Control

The notions of state and state transition play a central role in the study of dynami

cal systems. At the outset, the formalization of the dynamical aspect of a given problem

in the form of a state model helps considerably in understanding the main issues involved

in that problem. In addition, a state model provides a precise framework for posing ques

tions of control and for formulating and analyzing proposed solutions.

In the case of systems described by differential or difference equations, an appropriate

definition of the state is usually natural, and the current maturity of multivariable control

theory illustrates how fundamental the state approach is. However, the usefulness of that

approach is not limited to such well-structured problems. Many problems with far less

structure (for example, various control and optimization problems arising in computer sys

tems) can benefit from being studied with the same approach.

The state of a system provides a complete description of all the past behavior, and,

in this sense, it contains necessary and sufficient information for control purposes. This

ideal situation often is not achievable in practice, because the information available to the

controller is incomplete. A prime example of partially observed systems are stochastic

systems where the state information is obtained through a possibly incomplete set of

observations corrupted by noise. More generally, we can also include in this category

deterministic systems where, for some reason, only partial knowledge of the state is avail

able. In all these cases, state estimation becomes a central issue.

Another interesting category of problems is that where all the state information is

available, but it is distributed, i.e., not all available at a central location. Here, communi

cation is linked inherently with control, not only through the observations as in the case



of state estimation, but also through the exchange of information between the various

sites in the distributed sytem under consideration.

This dissertation is composed of three different parts treating three independent

problems. The first part deals with the optimal control of stochastic systems described by

difference equations. The second and third parts deal with two control problems arising in

database management: concurrency control and optimization of query processing.

Despite the fact that these problems are very different in nature, they all incorporate

some of the aspects of the previous discussion on state and information. More precisely,

the first part analyzes a standard control problem characterized by the necessity of per

forming both state estimation and communication in an optimal way. In the last two

parts, two important problems in database management systems are approached from a

dynamical system point of view. The objective of such an approach is to gain a better

understanding of the essential features of these problems, and, furthermore, to suggest

new strategies for their control objectives, based on the notions of state and state transi

tion obtained in the modelling phase. In Part II, we show that concurrency control is a

control problem with partial state information, and we propose a new technique for state

estimation and control. In Part III, we formulate a state-transition model for query pro

cessing and use it to formulate a new optimization algorithm.

We have identified state and information as two central themes in this work. A

third theme is communication. The following general objectives guided our research,

(i) Model the communication taking place in the dynamical evolution of a system,

(ii) Determine what minimum communication is necessary between control agents (or deci

sion makers) for the existence of a solution satisfying given requirements,

(iii) Analyze how an optimal solution varies when the available information is decreased or

increased (information-vs-control).

(iv) Formulate and solve a combined control/communication optimization problem, where

decisions on what information to communicate are also included in the control variables.



In the next three sections of this chapter, we present in more detail the three parts of

this dissertation (Chapters 2 to 7). The content of Chapter 8 is briefly described in Sec

tion 1.5. Finally, we have grouped in Chapter 9 our conclusions and suggestions for

future research on the three problems analyzed in this work.

1.2 - Information Structure and Communication in Stochastic Control Prob

lems

Generally speaking, our work on stochastic systems concerns a study of the role of

communication in optimal control problems. Attention is restricted to the discrete-time

case. The term communication is employed in a broad sense; it includes observations on

the system and information transfer between the decision makers.

Chapter 2 is devoted to the transfer of information between a group of decision mak

ers. We review and discuss important concepts in stochastic optimal control, in particu

lar, the partial nesting condition on the information structure, and the dual and triple

effects of control. We also comment on the difficulty of treating decentralized control

problems. Chapter 2 also serves as a motivation for the class of problems considered in

Chapter 3.

Optimizing observations is an important issue in the control of systems whose state

is partially observed. In Chapter 3, we study a special class of problems with the added

feature that the decision makers can choose among different sets of observations on the

system, each type of observation incurring a different cost. We formulate this combined

observation/control optimization problem as a two-step decision problem for each decision

maker, leading to the choice of a natural candidate for the information state. Then we

present a general theorem for the computation of the optimal solution. This theorem uses

standard dynamic programming techniques. This result is then applied to the special

cases of finite-state controlled Markov chains and linear Gaussian systems. In the latter

case, we identify a special case where a partially closed-form solution to the dynamic



programming equation exists.

1.3 - Concurrency Control in Database Systems

In Part II, the concurrency control problem in database management systems is con

sidered as a problem of controlling a dynamical system. Concurrency control is the task

of scheduling many users simultaneously accessing a database. The action of each user on

the database is described by a transaction, i.e., a sequence of actions on certain objects in

the database, and the resulting interleaving of the transactions is called an execution.

Concurrency control is necessary because not all executions are correct.

Serializability is the widely accepted correctness criterion for concurrency control.

Roughly speaking, an execution is considered to be correct if it produces the same effect as

some serial execution of the transactions composing it. Control by locking is an efficient

concurrency control mechanism. In this method, each transaction must lock for its

exclusive usage all the objects it needs in the database before it can act on them.

In Chapter 4, we propose a new state model for the characterization of what can and

what cannot be achieved, in terms of serializable executions, by existing concurrency con

trol techniques. Our model also suggests ways of improving these techniques. It shows

that concurrency control is a control problem with partial state information: maximum

concurrency without rollback can only be achieved when the state is completely known.

Since this condition is rarely satisfied in practice, a good controller (or scheduler) is one

that can construct a better state estimate.

Of the various ways that have been proposed to achieve serializability, the Two-

Phase Locking Protocol is the most widely used, because it provides a good level of con

currency with relative simplicity of implementation. Yet, not all serializable executions

can be achieved by two-phase locking. Our model gives a precise characterization of the

set of serializable executions that this protocol can reach (this is a new result).



In Chapter 5, we propose a new locking protocol that can reach all conflict-

serializable executions. Thus, this protocol provides for more concurrency than the two-

phase locking protocol. This Declare-Before-Unlock Protocol is characterized by the

introduction of two new features. The first is a different locking action called declare.

This action is designed for communication purposes and enables the controller to con

struct a better estimate of the state. The second feature of our protocol is a directed

graph that summarizes the ''must-precede" constraints associated with an execution. This

must-precede graph is a state estimate constructed with the help of the declare action.

1.4 - Optimization of Query Processing in Database Systems

In Part III, we study the problem of optimizing query processing in database systems,

with an emphasis on the special case of distributed databases. We consider queries that

can be described by the three relational algebra operations projection, restriction (or

selection), and join on a set of relations in the database. This description is not unique,

and different processing strategies to obtain the answer to a query (for example, different

orderings of the joins) can have substantially different processing costs. Moreover, in the

case of distributed databases, the distribution of the information makes it essential to

optimize communication costs between the processing sites together with local processing

costs.

In Chapter 6, we present a new state-transition model for the optimization of query

processing in a distributed database system. The problem is parametrized by means of a

state describing the amount of processing that has been performed at each site where the

database is located. A state transition occurs each time a new join or semi-join (which is

a special case of a join followed by a projection) is executed.

The cost of a state comprises all local processing and communication costs incurred

in reaching the state. Once the concept of state transition has been properly defined and

the state space constructed, dynamic programming is used to find the state containing the
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answer to the query that has the minimum cost and to find the optimal trajectory to that

state, i.e., the optimal sequence of processing operations. Our model is general enough to

account for the possibility of parallel processing among the various sites, as well as for

redundancy in the database.

To simplify the presentation of our results, we have grouped in Chapter 7 some spe

cial cases and extensions to the basic model described in Chapter 6. These include the use

of semi-joins as state transitions, the case of redundant relations in the database, and pos

sible refinements of the model in the case of a centralized database.

1.5 - Application to Distributed Function Evaluation

An implicit objective of the study of database management problems from a dynami

cal systems approach is that their characteristics and solution techniques could bring

insight and suggest applications to conventional control problems. Chapter 8 is an exam

ple of such an occurrence. We show how the modelling and algorithmic solutions obtained

in Part HI can be applied to the optimization of communication in control problems where

the control strategy is function of distributed information. The results of Chapter 6 are

applied to find an optimal communication strategy between the sites in the process of

computing the control action.



PARTI

INFORMATION STRUCTURE AND COMMUNICATION

IN STOCHASTIC CONTROL PROBLEMS



Chapter 2

The Role of the Information Structure

in Team Decision Problems

2.1 - Problem Configuration

In this chapter, we discuss the role of communication in the control of discrete-time

stochastic systems. Our objective is to review important communication-related issues

arising in stochastic optimal control problems. Since we wish to emphasize concepts

rather than solutions to specific problems, we shall accept a measure of mathematical

informality in this chapter.

The discussion is based on the pictorial representation given in Fig. 1.1. There, we

have a set of decision makers, DMlt DM& . .., acting, in that order, on a stochastic

system. Each DM* is responsible for choosing one control action uk. These decisions are

chosen to optimize one or more cost functions. Communication takes place in two forms:

(i) through the exchange of information between the decision makers, and (ii) through

observations made by each DM* on the system.

This configuration is very general, and in order to obtain a well-defined problem,

three elements need to be specified.

(1) Stochastic system: The system can either be static (one-stage) or dynamical

(multi-stage). Observe that there can be more than one decision maker in the static case.

We shall consider systems of the form

*A+i = /*(**, «*» «>*), (1.1)

where k = 0 for static systems, and k > 0 for dynamical ones. xk is the state, u* the

control variable taking values in someset U, and wk is some noise process.
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Fig. 1.1 - Distributed decision-making

(2) Information structure: We shall denote by /* the information available to DMk for

the calculation of the control action uk, i.e.,

«* = 1k(h), (1.2)

7^ being the control strategy of DMk. This information consists of

(i) the information that is communicated to DMk by DMif i < k, i.e., by the decision

makers that have acted previously, and
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(ii) the observations made by DMk on the system, which are of the form

V* = M**» v*), (1.3a)

or simply

Vk = M*o, «*) (l-3b)

in the static case. The term vk is observation noise. This chapter emphasizes the role of

the communication mentioned in (i), whereas the observations of (ii) are the subject of

chapter 3.

The description of all the i*'s is called the information structure. There are two

important classes of information structures [10, 13]:

• static information structure: when Ik is independent of past control actions u,-,

• <k.

• dynamic information structure: when Ik depends on some past control action(s).

We shall refer to the initial state x0, the state equation noise w0 wv .. ., and the

observation noise v0 vv . . ., as the basic random variables.

(3) Control objective: The control objective is specified by one or more cost functions

that must be optimized. Problems where all the decision makers are working to optimize

a unique cost function are team problems. For iV—stage problems, this cost is typically

an expected cost taken over all possible realizations of the noise variables, such as

J(7) := & [ £ck(xki uk) +Cn(xn) ], (1.4)

where the superscript 7 emphasizes that in the case of a dynamical system, the stochastic

processes x and u become well-defined only once 7 := {70,..., 7jv-i} is specified.

Although we are mainly concerned with team problems, we shall briefly discuss

leader-follower problems in Section 2.5. In the case of team problems, the standard ter

minology in the literature is to call static team problems those that possess a static
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information structure, and similarly dynamic team problems those that possess a dynamic

information structure. It is important not to confound the type of the information struc

ture with the dynamical nature of the system. For example, dynamic team problems can

occur with static (one-stage) systems, and even though dynamical systems have a dynamic

information structure, some of them can be transformed to static team problems (see Sec

tion 2.3).

2.2 - Static Team Problems

The fact that the information of a decision maker does not depend explicitly on the

control actions of other decision makers is of prime importance in solving static team

problems. Usually, this information depends only on the the basic random variables.

This means that in contrast to dynamic team problems, the observations yk of DMk are

well-defined random variables even if the strategies 7,-, i j& k, are not specified.

In theory, static team problems can always be solved. Of course, they may be com

putationally hard. It is not our purpose to give an exposition of static team theory. We

refer the interested reader to the original work of Radner [17], and to the clear treatment

of Ho et al. [9-10] on this subject. We present only a simple example.

Example 2.1: Consider the situation where two persons, one in Berkeley, the other in

Sacramento, have to make a decision about going skiing together in the lake Tahoe area.

Suppose that each person's ski equipment is partly in Berkeley and partly in Sacramento,

and assume that the only observation available to each person is the weather in his city.

The two persons cannot communicate with each other.

Let jto, y§, and y? denote the weather in Berkeley, Sacramento, and Tahoe, repec-

tively. The decision of each person whether to go skiing is of the form uB «= 7b( Vb)» and

ti5 = «y5( ys). A simple example of cost function is c(uB, us, yT). The weather in the

three cities is correlated, and all the uncertainties in this problem are completely described

by the joint probability Prob(yBi ys, yT).
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The objective is to minimize the expected value of c over all the admissible strategies

7# and 75. This can be written as

min J] c(uBi us, uT) Prob(yB, ys, yT). (2.1)
riB,'1s {VB,ys,Vr}

Given the probability law and c, (2.1) can be solved. D

This example illustrates that solving static team problems is in general computation

ally hard. In fact, Tsitsiklis et al. [20] recently showed that even in simple cases, these

problems are NP-hard (that is, NP-complete or worse, in the cardinalities of the observa

tion spaces). A special case where this complexity is avoided is in the so-called LQG static

teams, where the cost is quadratic in the controls and the observations are linear combina

tions of the basic random variables (all assumed Gaussian) (see [9, 10, 17]).

2.3 - Dynamic Team Problems

In this and the following sections, we shall consider dynamical systems of the form

(1.1), with control objective as in (1.4), and we shall discuss the effect of the information

structure on the optimization of the control objective. Since observation yk of DMk

depends on the control actions of previous decision makers, we are dealingwith a dynamic

team problem.

A major difficulty of dynamic team problems is precisely that the y's are dependent

on the control strategies- 7. As mentioned before, the observation variable yk of DMk is

not a well-defined random variable unless the control strategies 7,- of the Z?A/$-'s acting

before DMj are specified. This considerably complicates the minimization of the cost in

(1.4), because the various probability measures required there are solution-dependent.

Fortunately, this difficulty can be circumvented for a large class of special information

structures.

In [6, 10, 11], Ho and Chu described the important partial nesting condition of

information structures. In general terms, this condition requires that "if uk affects the
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state the system is in when DMj is acting, then Ik C Ij" (see [10] for details). In short, if

uk affects yj, then DMj should know all that DMk knows.

The importance of this condition comes from the fact that Ho and Chu showed in

[10] that "a dynamic team problem with partially nested information structure can be

transformed to a static team problem." Roughly speaking, for a fixed 7,- known by all the

decision makers, whoever knows /,• can reconstruct u(>. Thus, «,• is redundant informa

tion for the other DM% and their information sets can be transformed to equivalent ones

that only explicitly depend on the basic random variables (see [10]). The rationale for this

transformation is that since static team problems can be solved, then partially nested

problems can also be solved.

In our opinion, the partial nesting condition is fundamental in delimiting the prob

lems that have been solved. However, the transformation to static problems the condition

permits is usually not an appropriate way to attempt a solution, even for the well-known

LQG-type problems. The key step that has proven useful in solving partially nested prob

lems is the observation that this condition enables the definition of an observed quantity

possessing the crucial Markovian property enjoyed by the state (that is, the state summar

izes all past behavior). Since the state is only partially observed, the problem is reformu

lated in terms of this quantity which becomes the new state. The terminology for this

quantity varies: sufficient statistic (Bertsekas [5]), information state (Kumar and

Varaiya [16]). We shall adopt the latter terminology.

From now on, we assume a special case of a partially nested information structure,

where for all Jk, /|C /*+i and uk 6 h+i- More precisely,

Ik = {y^ . . . f ykf uq, . . . ,tijk_i}. This is referred to as the strictly classical pattern in

the literature [25]. (For simplicity, we shall say nested information structure.) The impor

tant feature of this special case is that the control action of a decision maker is known to

the subsequent decision makers. This is of great practical importance, and it is something

that the partial nesting approach of [6, 10, 11] does not discern. (It is hidden in the
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stronger requirement that the control strategies be known to all the decision makers.)

In nested information structures, the obvious candidate for information state is the

conditional probability distribution of the state given the current information, i.e., at step

k, Prob(xif I Ik). With the controls u explicitly available, it can be shown (see [16]) that

the information state at stage k+l can be completely determined from the information

state at stage k, yk, and uk. Therefore, the information state does not directly depend on

7. Witsenhausen [25] refers to this fact as "the keystone of much of the existing stochas

tic control theory."

An important consequence of the nesting property of an information structure is that

dynamic programming can be used for the computation of the optimal strategies. It per

mits application of the smoothing property of conditional expectations to find a value

function that satisfies the dynamic programming equation. In particular, as asserted in

[25] and demonstrated in [16], it suffices to restrict attention to separated policies of the

form

7* = <f>k IProb(xk I 4)1. (3.1)

In general, this estimation/control separation is only "one-way" in the sense that

first the estimation part is carried out with u* as a parameter, and then the optimal <f>k is

determined. Another way to explain why the separation cannot be complete is by the

dual role of control. The control actions uk not only possess a strict control function, but

they also possess a learning function by the effect they can have on the knowledge about

the system (through future observations). This dual role is an important source of compu

tational complexity.

An important special case where this dual role disappears and the separation is

"both ways" is that of the LQG control problem (linear stochastic system, Gaussian noise,

and quadratic cost function). There, by an accident of mathematics (if we may say so),

the optimal control strategy is the same as in the deterministic case, and its value only
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depends on the mean of the above conditional probability distribution (the certainty-

equivalence principle ). In the estimation, u^ affects only this mean, and not the spread

of the conditional distribution. The mean has deterministic dynamics with u as a param

eter, and therefore the control has no learning role. The tasks of estimation and of com

putation of the optimal <f> can be carried out independently (two-way separation). As an

extra benefit, the dynamic programming equation has a closed-form solution. In Section

3.5, we study a generalization of this standard LQG problem.

Before concluding this section, we make two remarks. The first one concerns the

case where Ik_x C Ik, but the controls u do not appear explicitly in the information sets.

In such cases, the information state Prob(xk I Ik) is not independent of earlier control

strategies (see [25]). In [23], it is shown that this considerably complicates the task of

finding an optimal strategy. We shall not elaborate further on this issue.

Finally, we mention that delayed sharing information structures have received some

attention in the literature. In these cases, past observations and controls are not com

municated immediately to future decision makers, but only after a certain delay. Roughly

speaking, a one-step delay poses no major problems, because Prob(xk I 4—1> uk-i) ls an

information state independent of 7. However, for longer delays, the conditional probabili

ties are no longer independent of the control strategies, unless the latter are determined

beforehand (open-loop control) (see [16], Chapter 2). (Concerning this case, we mention

that an assertion in [25] claiming a separation result similar to (3.1) has been showed to be

false in [22].)

2.4 - Non-Nested Information Structures and Decentralized Problems

We begin this section with the following example from Witsenhausen [24].

Example 4.1: Consider a 3-stage problem with deterministic dynamics

stage 0: x0
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stage 1: x0 + btut (4.1)

stage 2: x0 + ftjiij + b2u2 ,

and with available observations

Vi = *o + «>i (4.2)

1(2 = *o + &iui + v2 »

where v is observation noise. The information structure is: Ix = (j/J and J2 == (ite)-

DM1and DM2 have to minimize the cost (xQ + u2 + «2)2- D

This problem is currently unsolved. Its information structure is not partially nested

(Vi i h)y and this is precisely where the difficulty lies (see [9]). The optimization is of the

type

min J(7i, 72<7i)), (4.3)

and, unlike nested structures, the dependence of future control strategies on earlier ones

cannot be bypassed. It is no longer possible to obtain a one-way separation

estimation/control as in (3.1) yielding strategies dependent on the past only through the

information state.

The difficulties here are theoretical, not simply computational. Control has a triple

effect [23]. In addition to balancing the tasks of guiding the system behavior and learning

about the state from the observations, the control action can also affect what other deci

sion makers will learn about the state from their own observations. In other words, the

learning function of control does not only affect the common knowledge that the decision

makers have about the system, but it also includes the possibility that the decision makers

can influence their respective knowledge, since past observations are not all shared. This

third function is called signaling (see [9, 12, 19, 23]).
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As an illustration of the difficulties arising in problems with non-nested information

structures, consider the decentralized control problem of stochastic systems. The system

is of the form given in (1.1), and the observations are as in (1.3a). However, at each step

k, the control is composed of two components: uk = (uk, uffi, with a decision maker for

each component. Refer to Fig. 4.1. The two sets of decision makers are located at two

different sites, and even though the information is nested site-wise, there is no communica

tion between site A and site B. Hence, the global information structure is not nested.

SITE A SITEB

Fig. 4.1 - Decentralized control
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Since the system is assumed to be coupled, DMk needs to know uf, j < k, in order

to estimate the state x*. But uf = if(if) and if <$. /jf. Now, DM£ could try to esti

mate uf. Then, similarly, DMk+l would have to estimate u£, which would involve

estimating the estimate that DM£ made ofuf, and so forth. Clearly, such an estimation

procedure is never-ending, and this approach is not suitable.

Another approach is to have DMf transmit uf to DM£. However, uf is a function

of if and so it implicitly carries information unknown to DM$. How could DMk try to

infer that information to increase its own knowledge? There is no simple answer to that

question. (Aoki [1] considered a problem where the sites communicate their controls but

that inference step is not performed. Further assumptions, such as a noise-free state

equation, enable him to obtain a person-by-person optimal control strategy.)

To conclude this section, we repeat a comment of [19]. The standard dynamic pro

gramming tools, being heavily dependent on the sequentiality and nesting of a problem, do

not seem to be appropriate or powerful enough to handle non-nested problems such as

those occurring in decentralized and hierarchical stochastic control.

2.5 - Comments on Leader-Follower Problems

When the control objective is to optimize two cost functions, the first one

corresponding to a leader, and the second one to one or more followers, we obtain the

so-called leader-follower'or Stackelberg problems.1 From the extensive amount of litera

ture on this subject, we mention references [2-4, 8, 14].

The terms leader and follower emphasize that the leader is the first to announce his

or her control strategy. However, the leader need not act first, and we distinguish the

normal, reversed, and simultaneous forms of the leader-follower problem, accordingly as

1 Named after H. von Stackelberg, author of The Theory of the Market Economy, Oxford Univ.
Press, 1952.
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the leader acts first, last, or at the same time as the follower(s), respectively (see [14]).

Our motivation for mentioning this class of problems is to stress that the only ver

sions that have been solved possess either a static information structure (e.g. [3]), or a

nested dynamic information structure (e.g. [2-4, 8, 14]). These problems are hard to solve,

because even in the nested information case, the leader's control actions have a signaling

effect: the leader wishes to induce the followers to work for his or her own benefit (incen

tive control, see [14]) and may want to know the followers' actions before acting (thus the

motivation for reversed problems).

2.8 - Comments on the Value of Information

The discussion in the previous sections indicates that complete exchange of informa

tion between the decision makers (in the sense of the partial nesting condition) is central

in order to solve stochastic optimal decentralized decision-making problems. Therefore, it

seems more appropriate to pursue the study of the observations component in the infor

mation structure: the communication between the decision makers and the system. This

aspect is generally referred to as the value of information in the literature (although the

value of observations seems a more accurate terminology).

Suppose that a cost is incurred when obtaining information (making observations).

Clearly, the marginal value of this information need not always be positive. However, one

would think that at the zero-information point, information is cost-efficient. Quite

interestingly, this is not 'always true. Radner and Stiglitz [18] considered a general prob

lem formulation and showed that "a small amount of information has a negative marginal

net value whenever the marginal cost of information is strictly positive."

It is not clear what the implications of this result are in our context, namely that of

standard stochastic control problems of the form (l.l)-(1.3a). It was shown by Wonham

([26], p. 154) that an unstable stochastic system cannot be stabilized by open-loop control.

Therefore, satisfactory long-term performance of such systems requires feedback control
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strategies, meaning that observations will have to be made. How then can we measure the

value of the observations? It seems that only a small amount of research has been con

ducted by control theorists in this area.

Chu [7] considered a static system with a linear and noise-free observation equation

y = Cx. A quadratic cost function uTQu + 2uT(Sx0 + c) had to be optimized. He

showed that the relevance of the observation to the optimization performance could be

measured by the projection of C relative to the matrix STQ~lS. (Related work concern

ing redundancy in the observation can be found in [15].)

Van de Water [21] studied the problem of the value of the observations in dynamical

systems from an open-loop approach. He compared the optimal costs obtained in (1.4) for

distinct sets of observations in (1.3a), in the case of LQG problems. He then used the con

cept of mutual information of two different observation sets (an entropy-like function

measuring the amount of information about one set that is contained in the other set), to

express the difference of the two optimal costs as a function of this mutual information.

Our aim is to study the problem of the value of observations from a closed-loop

point of view. Suppose that at each stage, the decision makers can choose among

different observations, each incurring a different cost. The cost function in (1.4) is gen

eralized to include the cost of each observation yk. How then could such a joint

observation/control optimization problem be formulated and solved? This is the question

that we shall address in the next chapter.
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Chapter 3

Dynamic Team Problems with Nested Information Structure

and Costly Observations

3.1 - Problem Formulation

Optimizing observations is an important issue in the control of systems whose state

is partially observed. In many practical applications, observations are hard to obtain, and

it may not be necessary or economical to always make "good" observations, or simply to

observe continuously (e.g., trajectory guidance problems). Moreover, as the discussion in

Chapter 2 emphasized, observations are probably the only communication where some

flexibility is possible in the context of dynamic team problems. There is little hope in

being able to alter the information transfer communication in distributed decision-making,

since whenever the partial nesting condition is violated, considerable theoretical and com

putational difficulties arise.

Therefore it makes sense both from an engineering viewpoint and from a theoretical

one to examine problems where multiple costly observations are available and an optimal

sequence of observations has to be determined simultaneously with an optimal sequence

of control actions. Another interpretation of putting a cost on observations is to say that

there is a charge for feedback, since the control strategies we are interested in are not

determined open-loop, but are functions of the observations.

The precise formulation that we adopt is as follows. At each step, two consecutive

decisions must be taken: (i) a decision on what type of observation to make on the system,

and (ii) a decision on what control action to exert. The cost criterion depends on the state

and these two control actions. We shall restrict our attention to finite-horizon problems.

The system representation is
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Vk = *k(*k> mk, vk), (1.1b)

for k > 0, with initial condition x0. x0, wq, . . ., Vq, . .., are mutually independent

random variables defined on an underlying probability space. Their probability distribu

tions on Rn, Rn, and Rp, respectively, are known. xk 6 Rn is the state, mk and uk are

control variables taking values in M C Rl and U C Rm. uk is the usual control vari

able, whereas mk is an additional control variable associated with the decision on observa

tion. In particular, mk parametrizes the observation equation (1.1b), where yk 6 Rp is

the observed process.

Let

h := {Vo> • • • >Vk> "»* • • • ,"»*> «o, . . . ,«*} (1.2)

denote the information available at step k, k > 0. By convention, i_i = 0. At each

step k, the values of the control actions mk and uk are determined by feedback in the fol

lowing way:

mk - 9kVk-i) e M, (1.3)

«* = Okih-i, ™k, yk) e U. (1.4)

Let the control strategy be denoted by g = (gl, g2), where g* = {g^, . . ., yjv_i }> an^

let G denote the set of all admissible strategies. We define

JV-l

J(g) := E'[ £ ck(xk, mk, uk) + c^(xN) ] (1.5)

to be the cost function associated with the control strategy g. The superscript g in the

expectation emphasizes the fact that the stochastic processes x, m, «, and y become

well-defined only when g is given.1 We want to find an optimal strategy g G G, i.e., a

strategy satisfying (1.6) almost surely:

1 In the following, we will use the two notations
E9ck{xkl mk, uk) and Eck{xi, mi, u£) interchangeably.
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/(/)~./*:=inf J(g). (1.6)
gee

A choice of mk 6 M at step k determines a given observation equation (and its sta

tistical properties) in (1.1b). This choice among different observations can be as simple as

deciding whether to observe, in which case card(M) = 2 (no observation corresponding to

an infinite variance for yk, for example). For the sake of generality, we shall also allow

the possibility that the state equation depends on mk. For example, in Section 3.5, we

consider linear Gaussian systems where the matrix Ck in yk = Ckxk + vk and the vari

ances of the processes w and v depend on mk. Another point is that at each step k, the

decisions on mk and uk are made sequentially, and therefore uk is allowed to depend on

mk, whereas the converse is not true. In short, this problem corresponds to optimizing

the trade-off between the increased performance resulting from better observations (via

better state estimates) and the higher cost of making better observations.

We mention at this point some related work that has been done for linear Gaussian

systems with a quadratic cost function (a special case we analyze in Section 3.5). Deissen-

berg and Stoppler [4] restricted their attention to the case where card(M) = 2. The

results in this chapter generalize their work. Aoki and Li [1] studied a different version

where the observation decisions concern their total number and the spacing (in terms of

number of steps) between them. (Also, their model has a noise-free state equation (1.1a).)

Tugnait and Haddad [6] assumed an observation equation of the form yk = (kCxk + vk,

where £ is a Markov chain process taking values in the set {0, 1}, but with an unknown

transition probability matrix. Their aim was to study the convergence of the optimal esti

mator; they did not consider control issues.
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3.2 - Information State for the System

The stochastic control problem with partial state information formulated in the pre

vious section corresponds to a dynamic team problem with nested information structure,

as these were defined in the previous chapter (Section 2.3). The nested property is easy to

see from (1.2)-(1.4). (One way of looking at the problem is to assume that two decision

makers act at each step k, one choosing mk, the other choosing uk.)

Our aim is to determine a suitable information state for the system (1.1), i.e., a func

tion of Ik that possesses a Markovian property similar to that enjoyed by the state, in the

sense that it summarizes all past information. For the sake of completeness, we repeat

here the definition of information state in [5] (adapted to our specific context).2

Definition: zk is an information state for the stochastic system (1.1) if:

(i) zk is a function of Ik-\, and

(ii) zk+1 can be determined from zk, mkt yk, and uk. D

For simplicity, we assume that densities exist. Let Po(zo) denote the probability den

sity (p.d.) of the initial condition x0 and, for a given control strategy g, let

?i\k-\(xk I h-i) and pl\k(xk I Ik-\, nik,yk) denote the conditional p.d. of xk, given

/*_! and Ik_x U {mk, yk], respectively.

Lemma 2.1 : pl\ *_i(* I h-i) is an information state for (1.1). It does not depend expli

citly on g (and therefore we can drop the superscript g). There exists a function Sk such

that

P*+i|*(-1 h) = Sk[Pk\k-i{-1 A-i), mk, yk, uk ] , (2.1)

with initial condition Po|-i = Po- $k can be decomposed into two functions $* and ¥*:

Pk\k(' I h-i* m, Vk) =» **[P*|*-i(* I h-\), wi*» Vk ] J (2-2)

2 The organization of this chapter and the proofs it contains were inspired by the treatment of
standard stochastic systems
(no mk in (1.1)) in [5], Chapters 2 to 6.
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P*+i|*(* I 4) = *k[Pk\k('1 4-i> m*» y*)» mk* «* ] • (2.3)

Proof: The independence of all the noise variables in (1.1) and the fact that the values of

m and u are measured imply that

P'(**+i I **> 4) = P(**+i I **,»»*,«*), (2-4)

P'ilfk I **, ™A, 4-i) = P(V* I **,"»*), (25)

where the densities on the right-hand sides do not depend on the strategy g, but only on

the values of m and u.

We now establish the precise form of the recursive relations (2.2) and (2.3).

a , , , > P8(Vk I **,4-i, ™k) Pgi*kf 4-i» "»*) /OAv
Pl|*(*A I 4-i> "t*, tf*) = 777 r (2.6)

P(y* I **>">*) P'fo, 4-i>">*)

Jp9(*k> 4-1, n*kf Vk)d*k
Zk

(2.7)

where (2.6) follows from Bayes' rule, and (2.7) by using (2.5). But

Pgi*k> 4-i> ™*, Va) = P'(v* I *A, 4-1, "»*)P'(*A, 4-i, "»*) (2.8)

^PiVk I **, ™a)Pg(*k I 4-i, ™a) P*(4-i, ™k) (2.9)

by (2.5). Substituting (2.9) in (2.7),

Pl,*(*» I/*-„ mh, ,»)- /(y*">'",*)P'(a,tlf*-"m*) (2.10)
Jp(y* I **,*»*) P*(*A I /fc.j, mk)dxk
Xk

PJVk I **, "»*) Pi |*-l(*» I 4-l)
(2.11)

xk

because mk is a function of 4-i (see (1.3)) and xk only depends on mk via 4-i* (2.11) is

of the form given in (2.2). Next,



Pf+llA^A+l I 4) —/P'(*A+1 I *A,4)p'(*A I 4M*A

^JpfaA+l I *A, mk, «A) P'(*A I 4-lt mA» VA, «a¥*A
xk

= Jp(*a+i I *A, ">*>«*) p{|*(z* I 4-i> ™A, VaM*a •
**
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(2.12)

(2.13)

(2.14)

(2.13) is a consequence of (2.4). (2.14) is true because xk does not depend explicitly on uk

but only through 4-i U {mk, yk], of which uk is a function (see (1.4)). (2.14)

corresponds to (2.3). pk \k and p*+1 \k do not depend on g because the functions $ and ♦

of (2.11) and (2.14) do not, and the initial condition is pg|_i = Po (recall that /_! = 0)

and is therefore independent of g. D

The dynamics of the information state are illustrated in Fig. 2.1.

PA|A-lH4-l) Pa|a(*I4-i, mk, Vk) Pa+ha(* 14)

mk Vk ™k «A

Fig. 2.1 - Information State

For simplicity, we shall often denote p*|A-i(*l 4-i) by PA|A-i, and, similarly,

Pa|a(* I 4-i, mA, Vk) by Pa| a* Observe that although the functions pk\k-\ and pk\k do

not depend explicitly on g, the processes x,m, u,and y, and consequently Ik, do depend

on g. For this reason, it will sometimes be necessary to write Jf_i in the arguments of



30

PAIA-i and pk\k to emphasize the strategy considered. Observe also that (2.2) and (2.3)

imply that

PA+l IA+l(* I 4» mA+l> tfA+l) = rA+l[ Pai a(* I 4-l> mk, Vk), mk, uk, mA+l> VA+1 ], (2.15)

and so pk+l \k+l is not an information state, because due to the explicit dependence of xk

on mk in (1.1a), mk has to appear as an argument in Tk+V even though it is already in

Pai a-

3.3 - Optimal Observations and Controls

The sequentiality assumption for the decisions on mk and uk suggest that the

optimal strategy g could be determined by a dynamic programming algorithm, where the

dynamic programming equation (d.p.e.) would contain two nested minimizations. From

Lemma 2.1, we expect that restricting attention to separated strategies is sufficient. Such

strategies are of the form

mk = yA!(4-i) - 9k(Pk IA-i) € M ; (3.1)

«A = 9A4-i> mA» Vk) = 9&Pk\ A-i» mk, Vk) = 9k\Pk\k, mk) € U . (3.2)

The following theorem shows that these claims are true. P denotes the set of all probabil

ity densities on Rn. We define the cost-to-go from step k

Jk(9)i=E[ E^W, m(, «fl +ejv(*W I 4U ]• (3.3)
i-*

Theorem 3.1 : Define recursively the functions Vk(p), 0 < k < N, and p G P, by:

Vjv(p) :«=» E[ CaK*n) I PNIiV-i = P ] J (3.4)

Vk(p) := inf• E[ mt E{ck{xk, m, u) + Vft+1(*[PifeU, m, u ]) I pklk, m)
m&ii u&J

IPAIA-i^Pl- (3-5)
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(a) Consider any g € C?. Then

V*(PA|A-i(* I «-i)) < Ml) a.s., 0 < k < N . (3.6)

(b) Let g* be a separated policy such that for all 0 < k < N-l and for all p € P, gk\p)

achieves the infima in (3.5). Then

V*(P*|*_,(• I id)) = Ma') "•, o < k < N, (3.7)

and g*is optimal. In particular, V<£p0) = J a.s.

Proof: (a) The proof is by induction. Consider any g EG. (3.6) is true with equality for

k = N, because

• JcN{x)pmN_1(x \ Ik-X)dx
X

~VtApN\N-A'\ Ift-i)), (3-8)

by definition of Pn\n-\, and from (3.4). Now, suppose that (3.6) is true for A:+l. We

show that it is true for k, thus proving (a). Using successively the smoothing property of

conditional expectations, (3.3), and the induction hypothesis, we get

JV-l

Jk(g) = E'[ck(xk,mk,uk) + E'{ £ Cj(xj, roy, tiy) + c^xN) I 4} I 4_J a.s.
i—A+i

= Eg[ck(xk, mk, uk) + 4+i(tf) I 4-J

> Eg[ck{xk, mk, uk) -r Vk+1(pk+Uk{' \ Ik)) I /*_,] a.s.

-&l&{ch{zktmhtuh) + VMipMih('\ 4) I 4} I 4-J a.s. (3.9)

But, by Lemma 2.1, we can replace the information sets by information states in (3.9):

4(f) > Eg\ E8{ck{xkt mkf uk) + V*+i(*ft|p*|*('1 4-i, rnk, yk), mk, uk] I pkSk, mk) I 4-J *•«•
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= Eg[E'{ck(xk, mk, «*) + V*+i(**b*l*> mk, yk], mk,uk) I pk\k,mk) I pk\k-X\

>n(PA|A-i(*l Il-i)), (3.10)

the last inequality holding by (3.5).

(b) Again, we use induction to prove (3.7). First, we observe that (3.8) implies that (3.7)

is true for k = N. Next, we repeat the development in (a), but with the given g in place

of g. However, the two inequalities in (a) now become equalities: (3.9), by the induction

hypothesis, and (3.10), because, by assumption, gk achieves the infima in (3.5) for all

p € P. This proves (3.7). To show the optimality of g*, we set k = 0 in (3.7) and (3.6)

to get

A90) = Vo(p(x0)) < J(g) a.s., for all g 6 G. (3.11)

The proof of Theorem 3.1 is now complete. •

Remarks: (i) Observe that the Vk+1 term could be removed from the inner conditional

expectation in the d.p.e. (3.5).

(ii) (2.2) implies that, for each fixed m, the outer conditional expectation in (3.5) is an

integral over yk. D

The argument of the value function Vk in (3.5) is a function, meaning that finding

the optimal g is computationally difficult. In the next two sections, we consider two spe

cial cases where the problem is more amenable because the information state is finite-

dimensional.

3.4 - Special Case I: Finite-State Controlled Markov Chains

Consider a Markov chain whose state process x takes values in a finite set

S = {1, 2, . . . ,S}f and whose transition-probability matrix P(m, u) can depend on two

different controls m and u:

\P(™, «)]»,/ = Pij(m, u) := Prob(xk+l=j I xk=*i, mk=m, uk=u). (4.1)
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Let the observed process y 6 S be described by the output probability

P,(t, m) := Prob(yk=j I ar*=i, mk=>m). (4.2)

These probabilities do not depend on A:. It is convenient to define the SX S matrix

D(m,j)by

D(m, j) := diag [ Pj(i, m) ],„, 5 . (4.3)

Let /Vo6a|a-i(** I 4-i) and Probk\k(i I 4-1, mA, Vk) be the probabilities that

xk = i, given the respective information sets. Since the state space is finite, these proba

bilities are completely described by the IX S row-vectors:

jtaia-i(4-i) :» [Pr**A|A-i(l I 4-i), • ••,/V**A|A-i(S I 4-i)] J (4.4)

*a|a(4-i, mk, yk):=[Probklk(l I /*_„ mk, yk),. . . ,Probk]k{S I Ikmml, mk, yk)] . (4.5)

To simplify the notation, we shall often omit writing the arguments of these two probabil

ities. Also, 7Tjt| jfe_i(y) will denote the jth component of xk\k-i-

We write recursive relations for itk\k and irk+t\k. The initial condition is

ff0| -i = *o> the given law of the initial state. It can be shown (see (2.11) and (2.14) in the

proof of Lemma 2.1) that the functions $* and Vk in (2.2) and (2.3) have the following

expression:

,, v *A|A-i(4-i)D(™a, yk)
*m(/*"' ""' Vi) = Ttlt-,(/*-.)D(m„yt)L! (46)

*A+i Ia(4) = ffAl a(4-i» mk, yk) P{mk, uk). (4.7)

l_in (4.6) is the SX 1 column-vector (1, . . . ,l)r.

We now write the complete expression of the d.p.e. (3.5). Consider a* € n, the set of

all 1X S probability row-vectors. Then, (3.4) and (3.5) become:

tW*)=E*AK0 *<0, (4.8)
»€S
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Vk(x) = mt E I inf {£«*(», m, u)nk{k{i) + V4+1(jta,a P(m, ti)) } I jr*,^ = *].(4.9)
ntgiu tifct/ ."eg

Let i*k "= 9k (*k\ k, m) ^ 9k2 (*a|a-i» m» Vk) achieve the inner infimum. We evaluate the

conditional expectation in (4.9):

Vk(ir) — inf' E [ J]ca(», ™, «aVa|a(») + VM(wh{h P(m, «^) I irklk^ —jt]
m€Af f-€S

• * f r ^ /• *\ *D(m>Vk) ,.x
m€M V* i€S n D(m>^A) L

+̂ wSZ'Ik)!*'"' a**)) ]*D(m, yA) WVA , (4.10)
since

/Vo6(yA I rrk\k-i=x,m)=*£Prob{yk \ i, m)Prob(xk=i I JTaia-i8^) (4.11)

= jrD(m,yA)L, (4.12)

where in (4.11) we have used (3.1).

Example 4.1: A Problem of Instruction

To illustrate the application of Theorem 3.1 to finite-state controlled Markov chains,

we consider a modified version of an example in [2] (pp. 138-144) entitled a problem of

instruction. A teacher wishes to teach a student a certain simple subject. At the begin

ning of each period, the student is in one of two possible states:

3=0: subject learned;

2=1: subject not learned.

To determine which state the student is in, the teacher must choose between two different

observations:
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m = 0: give a short test, at no cost;

m = 1: give an exhaustive test, at cost cQ.

Depending on the outcome of the test, the teacher must then choose between two control

actions:

u = 0: terminate instruction, with a penalty of cT if x = 1;

u = 1: continue instruction for one period, with cost Cj.

Let the maximum number of periods be N, and let

Nt :=» min (first k such that uk = 0 ; N-1). (4.13)

The cost function can then be written

J(g) = JB» £ [com* + c/t*^ + 2*^1 - uk)\ , (4.14)
A«0

with possibly an additional final cost xNeT if instruction continues until the last period.

The matrix P in (4.1) is assumed to depend only on u. Since the problem stops when

« = 0, P(0) is not defined. We take

P(D=[{ l-J (4-15)
with 0 < t < 1. The output probabilities are described by the four possible values of the

matrix D(m, j) defined in (4.3):

W.«)-[oo] ^')-[oi] ^-[T!] D«U)=[S £1.(4.16)
These probabilities mean that an exhaustive test permits perfect observation of the state

of knowledge, whereas a short test returns the exact state with probability r. In this

example we assume that 0 < r < i/s.

Our objective is not to solve completely this example, but rather to illustrate how

Theorem 3.1 is used in finding the optimal solution. The dependence of u on m makes

it difficult to determine properties of the optimal soultion (such as threshold form, see [2]).
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We shall assume that the instruction has continued up to period JV, and we shall find the

optimal mjV_1 and uN_t. Since there are only two states, the IX 2 probability row-

vectors in (4.4) and (4.5) are completely determined by their first components, which we

denote

*A|A-i := Prob{xk = 0 I 4_J — *a|A-i(1) , (4.17)

*A|A := Prob(xk = 0 I /*_„ mk, yk) = Jr*,*(l) • (418)

Therefore, the information state is one-dimensional, and represented by a, 0 < <r < 1.

TV is the last step and no decisions are made at that point. If the state is still in 1, a

termination cost eT is incurred. Therefore, (4.8) has the simple form

VM*) = (1 - <r)*T • (419)

Next, writing (4.9) at A=iV—1 yields

VN-l(ff) = m>n &[ m*n {*Om + C/U + Cy(l - «Xl —^iV-l|JV-l)
m «

+Viv(^-i|iV-iP(«)[ J])} I*N-1|N-2(1) - *] • (4.20)

Since there can be no future cost after termination, we have that

V*+,(>r*|*P(0)[j]) =0. (4.21)

It follows that tfjv-i is determined by the minimum of the following two quantities,

corresponding to u = 0 and ti = 1, respectively:

min[(Cr(l - **_!,„_!)); (C/ + Ct(1 - t\\ - <rN^, ^.j))] (4.22)

= min[0; (c7 - tcj{l - <rN_x, N_x))) . (4.23)

If Cj —tcx > 0, then Ujj.ifov.mv-i) = 0 for all ffjv-ilJV-i* For ^8 reason, we

make the assumption that cj — tcT < 0, and define

a := 1- 2- , (4.24)
ICf



with 0 < o < 1. Then, the optimal control is of the form

uN-i(ffN-i\N-i) ^
0 if <T;v-l|N-l > <*

1 if ^_i|jv-i < <*
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(4.25)

Using (4.6) and considering the four possible values of the matrix D(m, y), we write this

control in the form tijv-ifa, m,y):

«n-i(*, 1, 0) = 0

ujv-i(*, 1, 1) = 1

«N-iK °, °)s

«jv-i(*, 0, 1) =

where we have defined

0 'dUZ±>a

1 ifil^l<a
^1

0 if(T^J ^
1 ,f(i=ivg<a

JVj :•= (1 - 2r> + r

(4.26a)

(4.26b)

(4.26c)

(4.26d)

(4.27)

Next, we use (4.26a,b) to write the complete expression of (4.10), taking into account

the two possible values of Vn-i and the two choices for m. After some simplifications, we

get

Vjv-iM - min{ [*/{«£_!(*, 0, 0)Nt + u^*, 0, lXl-^)}

+er[NAl - «jv-i(*, 0, 0))(1 - ilgfe.)

+ (1-N,K1 - «i-i(<rf 0, 1)K1 - rtr

(\-Nt) ))

+ NtVN •i-[(l-r), r(l-»JM-JJ^frr, 0, 0))[ J]
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+ (i-^i)yjv jzjvgl" (i^Xi-^)W«n-i(^ o> D)[ J]

I«o + '/(I " ") + Ml " 0(1 - *)] } • (4.28)

The first term corresponds to m=0, and the second to m=l.

At this point, it is necessary to break the range of o and make the appropriate sub

stitutions in (4.28), according to (4.26c,d). It is convenient to define the two quantities

or

5*'r: (l-aXl-r) +ftT '

o(l-r)
T "•

r(l-a) + (l-r)a *

With this notation, (4.26c,d) can be rewritten as

«iv-i(*» 0, 0) =

«jv-i(", 0, 1) =

0 if Sa,r< ° < 1
1 if 0 < a < Sa, '

0 if Ta,r< u < 1
1 if 0 < <r < Taj

(4.29)

(4.30)

(4.26c)

(4.26d)

It can be shown that 50|f< TaiT iff r < 1/2, so that since we have assumed the latter, we

must consider three intervals for the values of 0 :

case a: 0 < a < Say,

case b: 5ttjf< a < Tay,

case c: TatT < <r <*1.

For each case, (4.28) gives an optimal observation decision depending on the parame

ters c0, a, t, eT, Sat„ and Taff. Then, the three cases are combined to describe com

pletely mjv-i(ff). We summarize the results of these calculations. First, as for tijv_i,

mjv-i(^) = 0 for all 0 if c/ —tcT > 0. In the more interesting situation where

C/ —tcT < 0, we must distinguish between the two cases 0 < o < 1/2 and 1/2 < a < 1.

But first we define3

* The subscripts are to emphasize the dependence on Cq.
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kco tCf(l

——r- whenever c0 < tcj(\ —a)50>f ,

eoCg^ := 1 whenever Cq < tcTa(l —Tar).
tc-pa *
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(4-31)

(4.32)

When Cq increases, A^ increases and C^ decreases.

We now state the optimal solution for mN_x in terms of the parameter c0.

Case 0 < a < 1/2:

In this case, tcj(\—a)Sar< tc-pa(\ —TQtT) , and three ranges for cq must be con

sidered.

(i) cQ < lcj(l-o)5ttff

mN-i(ff) =

0 if 0 < (T < Aeo

1 if Aeo<<r<Ceo

0 if Ceo<a<l

Note that A^K Saif< Tatf< Ceo.

(ii) <cr(l-a)50tr< cQ < *cra(l-raff)

Define

*-=<7&-"><T^>
with B^ := Taff when a = 1/2. Then, 5a,r< B^ Ta%r < C^, and

"»jv-iM =

(Hi) . c0 > tCTa(l-TQtr)

0 if 0 < a < BCo

1 if Beo<^<Ceo

0 if C^ < 0 < 1

mN-i(ff) = 0 , 0 < <r < 1 .

(4.33)

(4.34)

(4.35)

(4.36)
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Case 1/2 < a < 1 :

In this case, tcTa(l —T0ff) < tcf(l—a)Satf, and again three ranges for ca must be

considered.

(i) co < tcTa(l-Ta>r)

«i-iW

0 if 0 < <t < ACo

1 if ACo<<r<CCo

0 if C^ < a < 1

(ii) tCra(l-rafr) < c0 < «CT(l-.a)5afr

0 if 0 < a < A^

1 if Aeo<^<Beo

0 if B^ < <r < 1
"»JV-iM =

B^ is as defined in (4.34), and A^< Sa%T< B^K TatT.

(Hi) c0 > tCj{l-a)SQtr

mJv-iM = 0 , 0 < a < 1 .

(4.37)

(4.38)

(4.39)

This example illustrates that the solution of combined observation/control optimiza

tion problems is intricate, due among other factors to the learning role of the observation

decision m. An analytical treatment of these problems requires considerable work, as it

was the case here for finding mN_l and t*jv-i> A numerical approach seems a better

alternative in many cases.

3.5 - Special Case II: Linear Gaussian Systems

Consider the case where (1.1) is of the form

*A+1 = 4fe*A + #A«A + <"A ,

Vk =" Gh(mk)xk + vk ,

(5.1a)

(5.1b)
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with x0 ~ N(xQt LQ), wk ~ N(0, Qk{mk)), and vk ~ JV(0, Rk(mk)). Consider a cost-

function quadratic in the states and in the controls u:

J(9) := E'[ £ (xlMkxk + ulNkuk + ck(mk)) + x%MNxN] . (5.2)
A=0

Here, we make the usual symmetry and positive (semi-)definiteness assumptions on

Mk, Nk, Qk, and Rk. (We assume in this section that the reader is familiar with the

standard LQG theory, as treated in [3, 5] for example.)

The derivation of the Kalman filter remains valid when the matrices Ak, Bk, and Ck

are random, provided that they are measured at time k, i.e., that they are in Ik, and that

they are independent of the noise variables (see [5]). In our case, once mk is chosen, all

the parameters in (5.1) that depend on it can simply be regarded as time-varying, with the

important difference that their time variation can be altered. However, that decision is

based on past information, namely, Ik_x. It follows that the p.d. pk+l \k and pk \k defined

in Section 3.2 are Gaussian, and therefore the information state pk+i\k is two-

dimensional. In fact, this remains true if Ak and Bk also depend on mk.

Consider a fixed feedback strategy g and the corresponding processes

x, m, u, and y.4 Then, using the notation

Pa+i Ia(*a+i I h) ~ N( xk+l |k, Lk+l |k) (5.3)

Paja(*A I /*-i, mk, yk) ~ N( £klk, Xk{k), (5.4)

the Kalman filter equations corresponding to (2.2) and (2.3) are

*A| A= *A |a-i + Lk{yk - Ck(mk)xk, k_t) (5.5)

*A+i | A = AkXk IA + ^A«A (5.6)

Sa ia = 2* i*_! - LkCk(mk)Lk |k_x (5.7)

4 For simplicity, weomit writing the superscript g for these processes.
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Ea+i|a = ^aSaia^IT+ Qk(mk) (5.8)

where

Lk := EaiA-A(mA)r[Cik(mJk)EifeU_1C/fe(mJk)T + R^m^]'1. (5.9)

The interesting feature of this special case is that, due to the quadratic form of the

cost and the fact that only Rk in (5.1a) depends on mk, the certainty-equivalence principle

still holds and the value function has a partially-closed form. This is not true for linear

Gaussian systems in general, and this was our motivation for these extra assumptions.

More precisely, it can be shown, by substituting (5.10) in (3.5), that

Va(*AI A-l, E*|A-l) - **|A-lPk*kI A-l + Wa(£a, k_x) , (5.10)

0 < k < N. Pk\s determined by solving the standard backward Riccati equation

Pk - Mk + AlPk+1Ak - KftNk + BTPMBk)Kk , (5.11)

0 < k < N, with final condition PN = MN. Kk is the deterministic optimal control

gain

Kk := -lAfc + BTPmB^BJP^^ , (5.12)

i.e., uk = Kkxk\k = gk (xk\k). Rk an<l Kk do not depend on m and they can be com

pletely determined beforehand. The other part of Vk has no closed-form solution and

must be solved recursively as follows:

Wh(L) = jrfMm) +Tracc{Mki: +«E, m\Pk-Mk)}

+ Wk+l{AkLA^Qk(myAklk(i:, mW)] , (5.13)

with final condition VV)y(E) = Trace{MNL}, where we have defined

lk(L, m) :- ZCk{m)T{Ck(m)ZCk(m)T + ^(mj^lfnlE . (5.14)
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The optimal sequence m can be determined beforehand, but it depends on Pk, and conse

quently the Riccati equation must be solved first. If M is finite with I Ml = n, then at

step k, the domain of E in (5.13) can contain up to n* values.

As in the standard LQG problem, the control u has no learning role, but the control

m has one, since it can influence the estimation covariance of the state. Clearly, if Ak or

Bk were dependent on mk, Vk would possess no separation property as (5.10) exhibits,

even with a quadratic cost. Thus, uk would in general also depend on Hk\k_l, meaning

that it too would have a learning function.

Finally, we point out that Deissenberg and Stoppler [4] presented a solution to the

problem considered in this section, in the special case where I MI = 2 (corresponding to

the decision observe/do not observe). However, the value function used in that paper does

not have the estimation covariance matrix E* |k-i as an argument, and therefore the solu

tion does not have the clear recursive form of (5.10) and (5.13), which also provides for

more computational efficiency.

5 | MI denotes the cardinality of set M.
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PART II

CONCURRENCY CONTROL IN DATABASE SYSTEMS
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Chapter 4

A State Model for Concurrency Control

4.1 - Introduction

In this chapter, we consider the concurrency control problem in database manage

ment systems as a problem of controlling a dynamical system. We propose a new state-

space model for the dynamical system consisting of concurrent actions by many users on a

database, and we study how to control this system. Concurrency control is the task of

scheduling the interleaving of the read and write actions of the users according to some

correctness criterion. Serializability is widely accepted as the appropriate correctness cri

terion, and we shall adopt it in our work (it is defined in Section 4.2).

Concurrency control and serializability have been extensively studied in the past

decade. We shall not review here the large amount of research literature on these two

problems. Textbook treatments of these problems can be found in Date [3], Gray [5], and

Ullman [15]. We shall, however, mention many relevant references throughout the presen

tation of our results in this and the next chapter.

Despite the extensive work done so far on concurrency control, few people have tried

to formulate the serializability aspect of that problem in the framework of dynamical sys

tems. This was the motivation for our work, and we shall formulate a model for the char

acterization of what can and what cannot be achieved in terms of the serializability

requirement by existing concurrency control techniques. Moreover, we shall present in the

next chapter a new locking protocol that was inspired by our model.

As we shall see, our approach is different from earlier work on the dynamical aspect

of concurrency control and serializability (e.g., the geometric analysis of locking in [12]).1

1 Locking is a technique for concurrency control.
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In our model, concurrency control is a problem of supervisory control for a discrete-event

dynamical system. In this sense, our model fits into the framework of [13].

This chapter is organized as follows. In Section 4.2, we introduce our terminology

and define the notion of serializability. The model that we propose is described in Section

4.3. Section 4.4 contains some background on control by locking, probably the most

widely studied and used concurrency control technique. In Section 4.5, we compare vari

ous graphs that are estimates of the state of the system and are used with control by lock

ing. Their properties are characterized in terms of our model. Sections 4.6 is devoted to

an analysis of control by locking, with a special emphasis on the popular two-phase lock

ing protocol. Section 4.7 contains a discussion on concurrency control for distributed

databases. Finally, in the appendix, we comment further on the interpretation of our

model in terms of supervisory control.

4.2 - Preliminaries

We begin with a simple representation of the concurrent action of many users on a

database. Suppose that a, b, c,... denote atomic units of data that we call objects. A

transaction is a description of the actions of one user on the database. It consists of a

finite sequence of reads and writes, each action touching a single object. The transactions

are assumed to map a consistent state of the database to a new consistent state, i.e., they

are all individually correct. We denote a transaction T; by

T{ = TiioJr&oJ • • • r,(onJ ,

where rt*(oy) means that the /th action of 2J is on object Oj. When we wish to distinguish

between read and write actions, rwill be replaced by r and w, respectively. The objects

Oj, j = 1, . . . ,nif touched by Tt- need not be distinct.

In a multiprogramming environment, the simultaneous execution of many transac

tions results in an interleaving of their actions; this interleaving respects the ordering
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within each of them. A complete execution Ee of a (finite) set of transactions is an inter

leaved sequence of all the actions from the transactions. An execution E is a prefix of a

complete execution.2 Thus, the set ofall executions contains the set of all complete execu

tions. An execution is said to be serial if there is no interleaving between the actions

from different transactions.

Example 2.1 : Let Tx and T2 be two transactions:

Ti = ^(0)^(6), T, = !#)!&). (2.1)

Examples of execution and complete execution are:

E2 = rx(a)rJib) (2.2)

^ = *W*Wc)r,(i). (2.3)

Observe that E2 is serial, but E\2 is not. Q

The essential feature of concurrency control is that since concurrent transactions are

individually correct, any serial execution of them is correct. Therefore, the objective is to

allow any execution which will be "equivalent" to a serial execution, or "serializable." The

rationale is that more interleaving is good because it means less waiting for the users and

thus better overall performance. The notions of equivalence and serializability have to be

more precise.

Consider an execution E. When there exist some object 6 and actions r{(ok) and

r/(°m) in E with ok = om = b and with at least one of the two actions being a write, the

tuple ((t, k), (j, m), 6) is called a conflicting pair due to object 6 between the kth action

of Ti and the mth action of Tj. In this case, we say that transaction T{ precedes Tj in E

if Ti(ok) comes before Tj(om) in E.

2 Prefix means that 0, 1, or more actions are removed, starting from the last action. The terms
•schedule," "log," and "prefix of history" are also employed in the literature for "execution."
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An execution E is said to be conflict-serializable if precedes in J? is a partial order

ing, i.e., if all the conflicting pairs in E are consistently ordered [4]. ("Consistent" means

that the partial order is transitive and asymmetric.)

We can depict the situation by a precedence graph PG(E) as follows.3 The nodes of

PG(E) represent the transactions. A directed arc from 7} to Tj is put in PG(E) if 2} pre

cedes Tj in E. Then, an execution E is conflict-serializable if and only if PG(E) is cycle

free.

Example 2.2 : The two transactions of (2.1) have only one conflicting pair

((Tj, 2), (T2, l),b). Any execution of them is serializable since the PG will either be

TX-*T2 or T2-*TV U

The notion of conflict-serializability (CSR) is not the most general correctness cri

terion for concurrency control. CSR is a sufficient, but not necessary, condition ensuring

that an execution produces the same effect on the database as some serial execution. The

most general version of serializability is called state-serializability (SSR).4 An execution is

SSR if the final state (after an execution) of the database is reachable from its initial state

(before the execution) by some serial execution of the transactions composing that execu

tion. SSR was studied by Papadimitriou [11]. If, in addition, it is required that each

transaction views the same state from the database as in the corresponding serial execu

tion, then the execution is said to be view-serializable (VSR). VSR was studied by Yan-

nakakis [16].

Testing whether a given execution is SSR or VSR is an iVP—complete problem [11,

16]. As argued in [16], it is not clear if the extra concurrency allowed by these more gen

eral definitions is actually desirable in practice. It is shown in [16] that in the context of

control by locking (discussed in Section 4.4), the set of "CSR-safe locking policies" and the

8 The term "conflict-graph" is also used in the literature.
4 The terminology SSR is from [16].
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set of "VSR-safe locking policies" are identical.5 Other important observations are that if

no distinction is made between read and write actions, or if the write-set (set of objects

written by) of each transaction is a subset of its read-set, then the three notions CSR,

VSR, and SSR become equivalent.

In view of these remarks and of the fact that all concurrency control techniques now

in use ensure CSR, we shall consider only conflict-serializability in our work. To simplify

the notation, we shall omit writing "conflict" every time. The following definition of

equivalence is appropriate for serializability (CSR). Two executions Ex and E2 of the

same transactions are equivalent if for every object o in them which is touched by a write

action, the subsequence of Ex touching o is the same as the subsequence of E2 touching o.

Then, another characterization of our correctness criterion is: an execution is serializable

iff it is equivalent to a serial execution [4]. (Objects that are read only need not be con

sidered because two reads on the same object do not constitute a conflicting pair.) This

notion of equivalence illustrates that CSR is an object-based requirement, whereas SSR

and VSR are more "final-state-based" and "transaction-view-based."

In summary, the dynamics of this problem correspond to the generation of an execu

tion from the actions of concurrent transactions. Concurrency control consists in ensuring

that any complete execution of a set of transactions is serializable. In particular, incom

plete executions have to be serializable. Non-serializable executions are not acceptable

because they result in possible violations of the consistency of the database; the lost-

update problem and the inconsistent retrieval problem (see [3]) are examples of such

undesirable situations. Observe that, in general, the set of objects touched by each tran

saction is not known beforehand.

5 We do not wish to elaborate here on the notion of "safety." The interested reader is referred to
(16, 11, 12).
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4.3 - State Model for Concurrency Control

4.3.1 - Model Formulation

In this section, we describe the model that we propose for concurrency control. Con

sider the dynamical system where N transactions are being executed concurrently. Given

an execution, it can be straightforwardly determined whether this execution is serializable

by looking at its current PG. However, it is not possible to tell whether this execution

can be completed to a serializable execution (i.e., the execution has a serializable comple

tion ), unless the objects that remain to be acted on by the transactions are known.

Example 3.1 : Consider the two transactions

Tx = rx(a )rx(b) T% = r3(6 )tz(a). (3.1)

The execution

E = rMHbHb) (3.2)

is serializable (its PG is Tz —*• Tx), but its only possible completion is

Ec = rx(a)rz(b)Tx(b)rz(a) (3.3)

which is clearly not serializable. •

We want to define a state for this system that will contain all required information

about current and eventual (i.e., concerning the completion of an execution) serializability.

Therefore, the state needs to have more information than what is contained in the PG of

Section 4.2. This justifies the following construction for the state-space model of this sys

tem.

Let E be the set of all actions from N transactions Tv . . . ,TN. The elements of E

are inputs to the system. (Recall that they are of the form a = r.-fo*).) Let CP denote

the set of all conflicting pairs among the elements of E. We now define four sets of finite

strings w of elements of E. No repetition of any element of E is allowed in a string w.
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Ee := { w : w is an execution }

E,e := { w : w is a serializable execution } (3.4)

Egp := { w : w is a prefix of a complete serializable execution }

£<»e := { w : tt; is a complete serializable execution }.

(By execution is understood an execution of Tx to TN, as defined in Section 4.2.) Clearly,

these sets are strictly nested: EMe C E^ C E,e C Ee. The first three contain the empty

string denoted w = 1.

The state of the system, denoted q, is a graph composed of N nodes and of three

types of (labeled) arcs: (i) dashed, not directed; (ii) dashed, directed; and (iii) solid,

directed. A state q is also called a state graph, abbreviated SG. It is constructed from

an initial state and a state-transition function that we now define.

The initial state q0 is a graph with N nodes representing the N transactions and one

undirected dashed arc for each conflicting pair in CP. Recall that the elements of CP are

of the form ((j, k), (j, m), b). The arc is drawn between nodes t and j and has for its

label this whole tuple.

Given an input action a 6 E and a state q, the state-transition function, denoted

4>Mi 9.), is as follows. In response to a = r,(o*), identify all- arcs attached to node t

whose labels contain <r (i.e., all conflicting pairs in which <r is involved). If there are no

such arcs, set (f>e(c, q) =» q. Otherwise, determine which of the following situations pre

vail for each of these arcs and do as indicated:

(i) the arc is dashed and not directed (meaning the other action in this conflicting pair has

not yet occurred); in this case, direct the arc out of node t;

(ii) the arc is dashed and directed into node t (meaning the other action has occurred); in

this case, replace the dashed arc by a solid one with same direction;

(iii) in all other cases, <f>€ is undefined.
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The state space, denoted Qe, is the set of all SGs that are generated by all possible

executions of the N transactions (all elements of Ee), starting from the initial state q0.

More precisely, define the transition function $ on Ee in the following recursive way:

(i) *(1) := q0 ; (3.5a)

(ii) for any w1 € Ee and a 6 E such that w := w'a 6 Ee,

<*>(«/) := 4>e(o, *(«;')). (3.5b)

(Observe that the assumptions in (ii) guarantee that <f>e in the above equation is always

defined.) Qe is the range of <t> :

Qe == {tf •* there exists w 6 Ee such that q = $(w) }. (3.6)

We similarly define Q9e, Qm, and Q^ by replacing Ee in (3.6) by E,e, E^y, and E^,

respectively. Qe contains all SGs that will ever be reached by executing the N transac

tions.

Remark 3.1 : When we talk about nesting of state subsets in this chapter, the same

nesting results will clearly be true for the corresponding sets of executions under 4>_1. Q

The state-transition function is the partial function <f>e- E X Qe -+ Qe corresponding

to the above description. It is a partial function because <j>e(<?, q) is defined only when

there exists w € $-1(?) such that wo 6 Ee. It is now clear that given an input action

from E, the current SG and 4>e completely and uniquely determine the new SG.

Non-conflicting actions are not considered in this model because they have no effect

on serializability and achievable concurrency. Without loss of generality, we can ignore

them since they do not induce a transition of the state.

Observe that the mapping under $ of the various sets of executions into the

corresponding sets of states is not injective. Recall the definition of equivalence in Section

4.2. Then the following result is clear.
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Lemma 3.1 : Two executions have the same state graph iff they are equivalent.

Proof: First observe that two equivalent executions are composed of the same actions. So

in their SGs, the sets of directed dashed arcs and of solid arcs will be respectively identi

cal. If the actions on each object appear in the same order in these executions, then the

arcs in their SGs will have identical directions. Conversely, identical SGs imply the same

sets of actions, and identical directions imply that conflicting actions occur in the same

order, and so the subsequences touching each object are the same. Q

Therefore, as far as serializability is concerned, there is no loss of generality in

assuming de facto a one-to-one corespondence between an execution and its corresponding

SG, since this graph contains all necessary information for this purpose. However, when

analyzing a specific execution in terms of some concurrency control method (as we do in

Section 4.6), the entire state trajectory of this execution has to be considered. For an exe

cution E = «!*•• en where the e,-'s are individual actions, this trajectory is defined to be

Traj(E) := {q0, " • ,qn) where qi+x «= 0e(et+„ q{).

Lemma 3.2 : Traj(E) completely and uniquely determines E.

Proof: Immediate from the definition ot <f>e. Q

Our state-space model can be viewed in the terminology of automata theory [6] as a

deterministic automaton or in that of supervisory control [13] as a generator:

G = (Qe, E, *,, <70, Qm), (3.7)

where Qm can be taken as Qete, the set of acceptable final states corresponding to the

complete serializable executions. Observe that in our model the states g 6 Qe are them

selves graphs. Also, our generator G is accessible [13] by construction. The sets Ee, E,e,

Ejp. and EMe are languages, and in particular Ee is the language generated by the uncon

trolled generator G. We comment further on the relation of our work to supervisory con

trol (as studied in [13]) in Appendix 4.A. However, we will not pursue the deterministic-

automaton interpretation of our model.
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EU ='MrzibMaMb).
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(3.8)

£ff8 has two conflicting pairs: ((Tx, 1), (T3, 2), a) and ((Tlf 2), {T3, 1), b). Traj(E\iZ) is

drawn in Fig. 3.1. •
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Fig. 3.1 - Trajectory of E\tZ of (3.8)

U

4.3.2 - Characterization of the State Space

The nesting of the various subsets of the state space defined in (3.4) is represented in

Fig. 3.2. For convenience, we denote Qe_fe = Qe - Q$e and Q9t_m := Q,e - Qm.

We now make the following observations,

(i) The SG represents the current status of the ordering of all the conflicting pairs in CP,

whereas the solid arcs represent the ordering of those pairs for which the two actions have

occurred, corresponding to the PG of Section 4.2.

(ii) The method of construction of the SG shows that a "dashed" or a "mixed" cycle will

always result in a "solid" cycle, no matter how the execution is completed. (A solid cycle

is composed only of solid arcs, a mixed cycle has at least one dashed arc and one solid arc,

and a dashed cycle has only dashed arcs.)
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Fig. 3.2 • State space subsets

(iii) The partial ordering of the conflicting pairs can remain consistent if and only if the

current SG has no cycles, although the violation of serializability only occurs when there

is a solid cycle. This is because the violation effectively happens only when all the actions

involved in this cycle have occured. Hence, mixed and dashed cycles anticipate an una

voidable violation of serializability, even though the execution can be serializable up to

now (if there are no solid cycles).

These observations lead to the following results.

Theorem 3.3 : The state space Qe has the following characterization:

(') 9 € Qm iffq is cycle free;

(ii) q € Qfe-»? '** 9 nas at *east one dashed or mixed cycle butno solid cycles;

(iii) q € Qe-»e iffq has one or more solid cycles.
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Proof: (i) Complete serializable executions and their prefixes correspond to cycle-free

states.

(ii) Those executions which are serializable but which cannot be completed to serializable

ones correspond to the states in Qte_m, and so these states must have cycles, although

none of them can be solid.

(iii) Non-serializable executions correspond to states with solid cycles. Q

Corollary 3.4 :

(i) The state cannot jump from Qm directly into Qe-te-

(ii) A state 9 6 Q9t-m can never return to Qm and will inevitably go to Qe-te upon

completion of the execution. D

Example 3.3 : In Fig. 3.1, g0 and qx are in Qm, but the presence of dashed and mixed

cycles in q2 and qz, respectively, indicates that these states are in Qte„m, »e> although

the corresponding (incomplete) executions are serializable, they possess no serializable

completion. In fact, q4 6 Qe-$e shows that £J_3 of (3.8) is not serializable. D

We will use the term rollback states to denote states out of Qm, which means that

in order to obtain a complete serializable execution, it is necessary to back up (or undo)

the current execution until the state returns inside Qm- We are concerned with the

detection of rollback states only, and not on how the rollback is actually performed. Each

time such a state is detected, we will assume that some rollback procedure is invoked,

after which the execution is resumed.

4.3.3 - The Concurrency Control Problem

In the situation where a controller acts on the system described by G of (3.7) by

accepting or rejecting inputs, the controller's decisions are based on division of the state

space into a "legal" region and an "illegal" one. All transitions inside the legal region are

accepted, whereas transitions from the legal area to the illegal one are always disabled

(the input is rejected). Given a controller, executions which are accepted by it are termed
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achievable and their corresponding states (through $ of (3.5)) are reachable.

The control objective for this dynamical system b to obtain only complete serializ

able executions. Having more concurrency means achieving more elements of E^; max

imum concurrency meaning achieving all of E^. We stress again that all complete serial

izable executions are assumed to be good.

Our model is not only useful to characterize the status of an execution concerning

serializability (by using Theorem 3.3), but it also provides for a measure of concurrency

via the state space and its subsets, as we now demonstrate.

Lemma 3.5 : E € E^ iff Traj(E) C Qm.

Proof: (only if) If E € E^, all its prefixes are also in E^. Hence, the SGs of these

prefixes are in Qm, and since they constitute Traj(E), this trajectory remains inside Qm.

(if) Consider the states q{ in Traj(E), i = 1, • • • n. By definition of Qm, the inverse

image dJ>""1(9i) is some set 5(i) C E^y. But, on the other hand, Traj(E) uniquely deter

mines E (Lemma 3.2). This means that E is the only execution such that its tth prefix is

in 5(i) for all t = 1, • • • n. In particular, E € S(n). Hence, E € E^. D

Corollary 3.6 : Ee € Eete iffTraj(Ec) C Qm. D

Lemma 3.7 : Given a controller for G, an element of EMe is not achievable iff one or

more states in Qm are not reachable.

Proof: Follows from Corollary 3.6 and the type of controllers we consider. D

The above result justifies that the portion of Qm reachable by a controller is an

appropriate measure of the concurrency it can achieve. Of course, the "ideal" legal region

is Qm. A controller that reaches Qm exactly solves optimally (in terms ofserializability

requirements and achievable concurrency) the concurrency control problem. We say

ideally, because, for this to be possible, the controller must know q0 beforehand, i.e., it

must have complete state information. (All state transitions out of Qm must be

detected.) Lack of knowledge of some (dashed) arcs can result in cycles in the SG that are
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not detected by the controller.

In general, g0 is unknown to the controller since this state contains information

about future actions. By looking at a current execution, the controller can only identify

the elements of CP for which the two actions have already occurred, so the best it can do

is to determine if g 6 Qte or if 9 6 Qe-$e- Determining membership in Qm requires more

information. Therefore, the concurrency control problem is one of control with partial

state information.

A necessary requirement is that the state remains within Qte at all times, because an

execution has to be serializable, even if incomplete. Therefore, given the information

available to the controller, our control objectives are:

(i) to bring the set of reachable states by the controlled system as close as possible to Qm',

(ii) to detect rollback states as soon as possible and guarantee detection before the state

jumps into Qe-$e (recall Corollary 3.4).

Remark 3.2 : As formulated, our model considers the dynamics of the problem for a

fixed set of N transactions. In the case where transactions leave upon completion and are

replaced by new ones, the state-space model will be time-varying. By this we mean that

E, Qe and its subsets, and the state q will jump to new values each time there is a change

among the N transactions. However, the basic properties of the model (nesting of states

and executions subsets, characterization of state space, admissible states, properties of the

controllers, etc.) will be unchanged; the analysis and results in this paper still apply to this

more general case. •

4.4 - Control by Locking

Locking provides an effective means for concurrency control when a locking protocol

is specified. In this section, we introduce the necessary background on the method of con

trol by locking and see how it fits in our model.
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There are two basic locking actions: lock and unlock. Locking actions are added to

a transaction to produce an augmented transaction, and any interleaving of augmented

transactions is termed an augmented execution. We represent locking actions in an aug

mented transaction 2J by the symbols /,-(6) and ut(6) to denote that Tt- locks and unlocks

object 6, respectively.

An augmented transaction T has to satisfy the following locking constraints: (i) every

object is locked before it is used; and (ii) to every lock there is a corresponding unlock

before the end of the transaction. (An unlock voids the corresponding lock.)

An augmented execution E is called a locking execution if it satisfies the following

locking constraints: (i) every transaction in E is augmented correctly; and (ii) locks are

exclusive, i.e., there is never more than one lock on an object at any given time. Locking

executions are the only augmented executions we are interested in.

Different grades of lock may be considered (see [3]), the most frequent case being that

of share loeks and exclusive locks, when distinguishing between read and write actions.

A share lock gives right to read only, whereas an exclusive lock gives right to read or

write. In the same way that two reads on the same object are not a conflicting pair, share

locks do not conflict with each other; they do conflict, however, with an exclusive lock. In

the remainder of this chapter, unless otherwise specified, the word "lock" will include

both share locks and exclusive locks.

There are at least.two reasons for distinguishing reads from writes and using two

grades of lock. The first one is that more concurrency is possible, because the class of

serializable executions is bigger (there are less conflicting pairs).6 It is necessary to have

two types of lock to allow for this extra concurrency.

The second reason relates to transaction abort and crash recovery. In these

instances, for obvious reasons, we want to avoid rolling back committed transactions

e For comments onextensions to theread/write actions model for user transactions, see [2].
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(cascade rollback). One way of ensuring this, if there is only one type of lock, is for a

transaction to keep all its locks until it is committed [3, 5]. However, with separate share

and exclusive locks, only exclusive locks need to be held until commit time. (We comment

further on this in the next chapter.)

Control by locking with one, two, or more lock modes has been studied by many

researchers. A small sample of interesting papers is [4, 8, 9, 12, 16]. The above locking

constraints do not affect the possible executions, since every element of Ee has a

corresponding locking execution. To see this, replace every rfa) in an execution by

/,(o )r{(o )u,-(o); the resulting augmented execution is clearly a locking execution.

Locking actions are useful when they are used as a means for concurrency control via

a locking protocol (LP). An LP for the augmentation of an execution is described by two

sets of constraints:

Category (1): constraints on the augmented execution itself;

Category (2): constraints on each transaction present in this execution.

Category (1) always contains the condition that the augmented execution be a lock

ing execution, plus some other constraints on the state estimate corresponding to it.

Category (2) groups conditions which concern a transaction in its entirety: the constraints

may not only apply to the actions from this transaction that are in the (incomplete) exe

cution, but they may also involve future actions by the transaction (e.g., the two-phase

condition discussed in Section 4.6.2). Some LPs will be analyzed in detail in Section 4.6

and in Chapter 5. For new, we wish to introduce more terminology.

Let LPx denote any locking protocol. An LPx—execution is an augmented execution

such that itself and the transactions present in it satisfy the requirements of protocol LPx.

An execution is LPx—augmcntablc if there exists an augmentation of that execution that

is an LPx-execution. The language of protocol LPx is the set of executions that it can

achieve:

^•lpx := {E € Ee : E is LPx-augmentable } ; (4.1)
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the set of states reachable by this protocol is Qut, the image under the mapping $ of its

language:

QiPx := {<! - ^ere exists E 6 E^^ such that g = ${E)}. (4.2)

A state in Qlpx ia termed LPx—reachable.

Lemma 4.1 : An execution E is LPx-augmentable iff Traj(E) C Qlpx-

Proof: As in Lemma 3.5. Replace E^ and Qm in that proof by T,LPx and Qlpx, respec

tively. D

4.5 - Graph Representations of Concurrent Augmented Transactions

In this section, we compare two directed graphs for the representation of a set of

concurrent augmented transactions that is being executed according to some locking pro

tocol. These graphs are in effect state estimates, i.e., sub-graphs of the SG, and they are

constructed from the incoming locking actions of a locking execution. All augmented exe

cutions considered in this section are assumed to be locking executions. The locking pro

tocols that we study in Section 4.6 use these graphs for control (via constraints of

category (1)).

In the following graphs, a node corresponds to each transaction. Arcs are added

according to the specifications given below. They are labeled by the objects that produce

them.

N.B.: When an object is not locked, most recent (exclusive-) lock-owner means the last

transaction that held a lock (an exclusive lock) on that object, if there is any.

Precedence Graph (PG) : This graph was defined in Section 4.2. In terms of locking

actions, it can be redefined as follows:

(a) when transaction T obtains an exclusive lock on object a, draw arc S —*T where 5 is

the last lock-owner of a;

(b) when transaction T obtains a share lock on object a, draw arc 5 —* T where 5 is the
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last exclusive-lock-owner of a. (In such a case, we say: "T reads a from 5.") Q

Concerning the PG and the SG, we have the following terminology. If there is an

arc from 5 to T, then 5 is called an immediate predecessor of T and T an immediate

follower of 5. If there is a path from 5 to T, then 5 is called a predecessor of T and T a

follower of 5.

Wait-For Graph (WFG) : This graph is constructed as follows:

(a) when T requests a lock on a and a is currently locked by 5, draw arc S —*T, unless

the two locks are share locks ("T is waiting for 5");

(b) update the graph at each new lock or unlock. D

Our objective is to compare the above graphs and the SG. We assume for the

updating of the SG that an action input occurs simultaneously with obtaining the

corresponding lock for this action. (There is no loss of generality in doing so, even if a

transaction acts more than once on an object.) The results below are valid for any locking

execution of some given execution E 6 Ee.

Lemma 5.1 :

(i) The PG is a sub-graph of the solid arcs in the SG.

(ii) There is a cycle in the PG iff there is a solid cycle in the SG.

Proof: (i) Suppose an arc labeled a is added from 5 to T in the PG. This means there

exist integers k and m such that ((T, k), (S,m), a) 6 CP and now (T, k, a)is the second

action in this pair to occur. Hence, the directed dashed arc from 5 to T corresponding to

this pair becomes solid in the SG.

(ii) There may be more solid arcs in the SG than those appearing in the PG, when the PG

is constructed from the locking actions (arcs are drawn only from the last user of an

object to the current one); however, the extra arcs in the SG can be obtained by transi

tivity from those in the PG. Therefore, the PG contains enough information for the

detection of solid cycles in the SG. D
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Corollary 5.2 : The PG is cycle free iff the state is in Qte. D

Lemma 5.3 : The WFG is a sub-graph of the dashed arcs in the SG.

Proof: If we have the arc 5 —• T labeled a in the WFG, i.e., T is waiting for 5 to get the

lock on a, then necessarily a similar dashed arc was added previously to the SG, when 5

locked a which was in a conflicting pair with T. The arc is dashed, since T has not yet

obtained the lock on a. Q

Theorem 5.4 : A cycle in the WFG implies that the state has previously jumped out of

Qggf. However, a cycle-free WFG does not imply that the state is in Qte.

Proof: The first statement follows from Lemma 5.3. For the second statement, observe

that the WFG is only concerned with waiting; any sequence of inputs constituting a lock

ing execution keeps the WFG cycle free, and every element of Ee has such an augmenta

tion. D

In view of Theorem 3.3, the objective is to detect all cycles appearing in the SG,

since this graph must remain cycle free in order to get a complete serializable execution.

But Corollary 5.2 and Theorem 5.4 show that (i) the WFG is of no help unless we impose

some other conditions, and (ii) the PG detects cycles only when they become solid in the

SG—dashed and mixed cycles cannot be detected.

4.8 - Analysis of Locking Protocols

4.8.1 - Basic Locking Protocol

We have found it useful to present as a basic locking protocol (LPO), a requirement

that is common to all LPs used in practice in order to precisely outline its effect in the

context of our model.

Protocol LPO

(1): The augmented execution must be a locking execution.

(2) : A transaction cannot acquire a new lock on an object after it has unlocked that
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object.' D

The second requirement means that a transaction can only request one lock per

object. Its effect on concurrency is as follows.7

Theorem 0.1 :

(i) Qm C Qlpo C Qe-

(») Q.c <t Qlpo and Qm <£ Qae.

Proof: We first make the following observation. In the SG, an arc has a label of the form

((»'» *)> U, ™)» M* The effect of condition (2) of LPO is to force all arcs with the same

object label (b part in the tuple) between two given nodes to have the same direction.

This direction is determined when the lock on this object is first obtained by one of these

two transactions.

(i) In a cycle-free state q € Qm, no two arcs between two nodes can have opposite direc

tions. Therefore, all these states are LPO-reachable. Of course, not all states in Qe satisfy

the above implication of condition (2).

(ii) Clearly, there are many states in Q,e that do not satisfy the above condition (e.g., con

sider a dashed cycle between two nodes). This shows the first non-inclusion.

On the other hand, condition (2) does not guarantee that solid cycles will not appear in

the SG. This shows the second non-inclusion. D

Example 6.1 : The non-inclusions of (ii) above are also true for the corresponding sets of

executions: Efe <£ E^pQ-and E^po <£ Ete (recall Remark 3.1). Consider the transactions

Tx = rx(a)rx(b) r3 = r3(6)r3(o) T6 = rs(a)rM. (6.1)

Here are examples for the executions indicated in Fig. 6.1.

EXl6 —r6(a)rx(a)r6(a)rx(b) £ Ete (cycle in PG) and E\tb $ Lm because T5 violates condi

tion (2) of LPO.

7 Unless otherwise mentioned, all inclusions below are strict.



£(1(5) = r6(a )rx(a) is serializable but again T5 violates (2) of LPO.

E\z = rx(a)r3(6)rx(b)r^{a) is LPO-augmentable but not serializable. •

Fig. 6.1 - Executions of Example 6.1
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Observe that protocol LPO is not an acceptable concurrency control method, since it

does not guarantee that the state remains inside Qie. Due to the second part of Theorem

6.1, we define:

Q,eo :— Q.e n QLPo ,

Q»eO-EK :t=s Q*eO ~ Qin

(6.2)

(6.3)

Efe0 and E#e0_iJ7 are defined in an analogous way.

When condition (2) of LPO is in force, we group all arcs between two nodes which

have the same object label into a single arc, since one arc carries all the information
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needed for our purposes. This induces a concatenation of some states in Qe and elim

inates other states, yielding Qlpo- Also, the arcs of the SG need now only have an object

label. However, we cannot completely reconstruct E from Traj(E) when E has more

than one action on an object, because we only know when the first such action occurs

(when the arc becomes directed) and an upper bound for when the last action occurs

(when the object is used by another transaction, i.e., when the arc becomes solid).

Nevertheless, this undeterminacy is of no consequence for our analysis of concurrency. If

a concatenated state is reachable, all original states before concatenation are also reach

able. Hence, Lemma 4.1 is still true.

Remark 0.1 : Example 6.1 illustrates that at a given time during an execution, a tran

saction might not know if it can unlock an object, because it does not yet know if it will

need it again later. This applies to all requirements of category (2) in LPs. Clearly, no

model can account for such situations. We stress that the proper interpretation to the

concept of LPx-augmentability is that, given an execution, there exists an augmentation

of it that is an LPx-execution. In a sense, this is optimistic for states in Qm but pessimis

tic for states out of Qm. D

4.0.2 - Two-Phase Locking Protocol

We now wish to analyze the well-known Two-Phase Locking Protocol [4], abbrevi

ated LP-20 in our notation.

Protocol LP-20

(1) : The augmented execution must be a locking execution,

(r): The WFG must remain cycle free.

(2) [20 condition] : A transaction must acquire all needed locks before unlocking any

object. D

(Observe that the 2<ft condition implies condition (2) of LPO.)
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Lemma 0.2 : Consider an execution and any locking execution of it. Assume that the 20

condition is enforced. Then:

(i) No solid arc is preceded by a dashed arc in the SG; in other words, there cannot

be a (directed or not) dashed arc attached to a node from which a solid arc is coming

out.

(ii) All dashed cycles in the SG eventually appear in the WFG.

Proof: (i) By way of contradiction, suppose that a solid arc is preceded by a (directed or

not) dashed arc in the SG, and call T the transaction node where these arcs are attached.

The solid arc out of T means that T has unlocked some object. But the dashed arc

attached to T means that T has not yet locked the object labeling this arc. This contrad

icts the 20 condition.

(ii) Consider a dashed cycle in the SG. Only one of the two actions of each conflicting

pair represented in that cycle has occurred. Each transaction involved in the cycle will

eventually request a lock for the object labeling the arc going into it. Since all transac

tions observe the 20 condition, all these requests will be placed before any lock is released

by any of these transactions. Therefore, none of these requests can ever be granted, and

the same cycle eventually appears in the WFG. D

Theorem 0.3 :

(») Qlp-2* C Q,e0.

(») Qm tf Qlp-2*>

Proof: (i) Lemma 6.2 (i) guarantees that no solid or mixed cycles will ever appear in the

SG, and so by Theorem 3.3 and the fact LP-20 is more restrictive than LPO, the state

remains within Qte0. The inclusion is strict because Q,e0 surely contains states where a

solid arc follows a dashed one, whereas Qu*-2^ does not.

(ii) Clearly, QiJ? contains many states where a solid arc follows a dashed one. D

The interpretation of the above results is that the 20 condition is so strong that the

controller need only keep the WFG as state estimate. The state remains within Q9e (in
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fact Qieo) and transitions out of Qm are eventually detected by a deadlock. (A deadlock

is a cycle in the WFG.) The price to pay for using such a simple controller is that only a

fraction of Qm is now reachable, meaning that concurrency is considerably less than is

admissible.

Theorem 6.3 is not a new result, since it was known that LP-20 is a correct protocol,

albeit a conservative one because it does not achieve all admissible concurrency. However,

we believe that our correctness proof is simpler and more intuitive than the original proof

in [3] and than the proof based on a geometric model in [12]. More importantly, a contri

bution of our model is that we have obtained (from Lemma 6.2 (i)) a precise characteriza

tion of the concurrency achieved by LP-20: no SG containing • •——»—• or

• • •—-*—• can ever be reached by LP-20. This is a new and useful result.

As an extra benefit, determining if a given execution is LP-20-augmentable is now easily

and clearly answered by employing the state model. Performing this task by trying to

augment the execution is generally messy and certainly not as simple.

Example 0.2 : (i) Recall the transactions in (3.1). The execution E3 = rx(a )r3(6 )rz(a),

whose SG is g3 in Fig. 3.1, is in Ete0 because it is serializable and the following is an LPO-

execution if it:

Ez-lpo = IMrMuMl^rJibMa^a). (6.4)

But g3 £ Qlp-24 (from Lemma 6.2 (i)), and so Ez £ Zlp-2$ by an application of Lemma

4.1.

(ii) Consider the transactions in (6.1) and another transaction T4 = r4(6), and consider the

complete (serializable) execution

£f,4,5 = rx(a )r6(a )r^a )r4(b )rx(b). (6.5)

Fig. 6.2 shows Traj(E\Ab). qb cycle free shows that this execution is serializable. But

q2 — qz and q4 are not LP-20-reachable, so £1,4,5 is not LP-20-augmentable. D
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4.7 - Decentralized Concurrency Control for Distributed Databases

The problem of concurrency control is intrinsically more complicated when the data

base is distributed at different sites (see [1, 7, 10]). Specific results about the complexity

of this problem in a given framework for distributed databases are presented in [7]. In

our model, we made no restrictions concerning the physical location of the objects. We

assumed that the actions in all the transactions and executions were totally ordered,

although some preliminary work indicates that our framework could be generalized to

partially ordered transactions and executions, which seems to be a realistic assumption in

the distributed case [7].

However, we analyzed only the case of a unique central controller for the system of

transactions. Suppose that the database is distributed at many sites, and suppose that it

is required that control be decentralized (in the sense of local controllers at each site

instead of a central one). Suppose also that the properties of the "global system" con

cerning serializability and concurrency (as developed in Section 4.3) must be preserved,

i.e., the local controllers must perform as well as a central controller. A non-clever way of
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achieving this objective is to maintain a copy of the complete SG (or its estimate used for

control) at each site. Here, we present a local aggregation method of the SG permitting

achievement of the same performance as a central controller, but without the need to

have all the information about the global system at each site. (This corresponds to the

idea of model aggregation in decentralized control theory, see [14].)

We want each site to have all necessary information about the status of serializabil-

ity (in the global system) of the transactions acting at this site. For this purpose, we

assume each transaction knows beforehand if it needs objects

(i) from only one site, in which case the transaction notifies the given site of its existence

and is said to be a local transaction, or

(ii) from more than one site, in which case the transaction notifies all the sites of its

existence and is said to be a common transaction.

Each local graph SG has a node for each local transaction at this site (termed a local

node), and a node for each common transaction in the global system (termed a common

node). Consider the initial global SG, and do a transitive closure of the arcs between the

common nodes (it is not necessary to put a label on the new arcs). Then, each initial local

SG is the restriction of this modified initial global SG to the common nodes and the given

local nodes, and to the arcs attached to them.

We now treat the updating of the local SGs. Upon the arrival of an incoming action

on an object at a given site, update the local graph following the rules of Section 4.3.1.

Moreover, if the newly added directed arcs create a path (solid path) between two com

mon nodes in this local graph, inform all other sites to place a directed arc (directed solid

arc) between these nodes in their graphs. (This arc could be labeled with the site number

where the path is created.)

This way, each site has complete information about the current partial ordering of

its local transactions and all common transactions. Therefore, we can show that "a

(dashed, mixed or solid) cycle occurs in the global SG iff a similar cycle occurs in some
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local SG." (The proof is straightforward.)

Clearly, the level of aggregation that is possible is a function of the proportion of

local transactions; the above procedure gives the maximum possible aggregation under the

constraints of having no loss in performance and of having decisions made locally.
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Appendix 4.A - Relation to Supervisory Control of Discrete-Event Processes

4.A.1 - Controlled-Generator Model

In the terminology of [13], our control problem is (ideally) to construct a controller

for the generator G = (Qe, E, tf>e, q0, Qm), such that the language generated by the con

trolled generator is E^y. The controller can be viewed as another generator

S = (X, E, {, x0, Xm) with state space X, state transition function £, initial state x0,

and the same set of inputs E (Xm need not be specified for our purposes). The controlled

generator, denoted S/G, corresponds to the situation where 5 and G are coupled in the

following sense: (i) the state transitions of S are forced by that of G; and (ii) the state

transitions of G are constrained by a feedback control map depending on the state of S;

this feedback map acts on G by enabling or disabling state transitions.

Roughly speaking, the theory in [13] says that if q0 is known beforehand, then there

exists a controller attaining the ideal control objective, because the language Ee77 is con

trollable (as defined there). In our case, the emphasis is on the issue of partial state infor

mation. There are no controllability constraints on the languages we are interested in,

because we assume that any incoming action can be accepted or rejected. However, the

information available to our controller is incomplete. Typically, x € X is a partial ver

sion of the state of the system q. The design task is hence two-fold: (i) construct a good

state estimate to be used by the controller, and (ii) define the feedback map S —• G so

that the serializability requirements are satisfied.

4.A.2 - Incorporation of Locking to the Generator

It is convenient to view locking as a partially decentralized control strategy for our

sytem, each transaction being responsible for its own locking actions and for the con

straints that concern it alone (including the constraints of category (2), Section 4.4). In

other words, we augment the set of inputs E to include the locking actions, and we
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consider the problem of scheduling concurrent augmented transactions. Specifically,

e' :=e u { u u W°). 'Ml«;(»)}) (A.1)
;'™i all object* o vied by Tj

is the new set of inputs. The new generator is Gl = (Qe, E*, <f>lef q0, Qm), where

4>[:T,1 X Qe —¥ Qe ls 0Jdy defined for "action" inputs (inputs in E):

tlfr, 9)=
^cWi 9) whenever a 6 E and <f>e(cr, q) is defined;

undefined otherwise. * ' '

The controller is now of the form Sl = (X, E*, £, x0> Xm), where we can assume,

without loss of generality, that the transition function { is only defined for "locking"

inputs. This suffices, since the information carried by the locking inputs of a locking exe

cution contains the information carried by the action inputs (recall the locking constraints

in Section 4.4).

The action of the LPs that we study in Section 4.6 and Chapter 5 can be interpreted

as follows.

- Conditions of category (1) involving the state x of the controller (typically, cycle-free

conditions on x) define the feedback map from Sl to Gl. For example, all inputs causing

a cycle in x are rejected, and the transitions they would have caused in Gl are disabled.

- Conditions of category (2) on the augmentation of a transaction correspond to restricting

the set of strings of elements of E* that can constitute inputs. In some cases (such as (2)

of LPO in Section 4.6.1 and the 20 condition of Section 4.6.2), this also restricts the set of

strings of E that can constitute inputs (the non-augmented inputs to which the controlled

Gl responds). For example, Lemma 6.2 gives a description of states that are no longer

reachable when the 2<f> condition is in force. All executions whose trajectories go through

these states are then eliminated as possible input strings. In other cases, conditions of

category (2) (such as the DBU condition of the next chapter) do not directly restrict the

possible non-augmented inputs, but instead they enable the controller to construct a
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better state estimate x, therefore making the feedback map more complete.
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Chapter 5

A Locking Protocol That Uses Declaration of Objects

5.1 - Improving on Two-Phase Locking

Two-phase locking (LP-2^) is used almost universally for concurrency control in

existing database management systems. However, this protocol does not permit achieving

all admissible interleavings of concurrent transactions. It is therefore not surprising that

many ways of improving on two-phase locking have been studied. The work that has

been done can essentially be divided into two classes.

The first class consists of protocols using more than two grades of lock (e.g., [6, 14,

19, 20]). Generally speaking, using many lock modes with various compatibility rules per

mits reduction of the portion of time that a transaction holds an exclusive lock on an

object, the simplest example being the case of share and exclusive locks discussed in Sec

tion 4.4. To the best of our knowledge, these protocols retain, in one form or another, the

familiar 20 condition. In some sense, locks are not necessarily released earlier (with

respect to LP-20), but exclusive locks are acquired later.

Another active research area is the study of concurrency control for "structured

databases," i.e., databases where access to the objects is governed by a tree or a general

directed acyclic graph (e^.g., [3, 12, 15, 21, 26]). The strategy is to use the available struc

tural information on the objects to prevent the occurrence of conflicting actions.

Our motivation was to approach the problem from a different angle: since the control

problem is one of partial state information, how could we enhance information? We do

not wish to make structural assumptions on the objects or to use more than two grades of

lock. Our results are presented in the next sections. Section 5.2 describes the new locking

action that we propose, and Section 5.3 explains how this action is used to construct a

better state estimate than the WFG or the PG of Section 4.5. Our Declare-Before-
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Unlock Protocol is presented and analyzed in Sections 5.4 and 5.5. An extension to that

protocol is given in Appendix 5.A. Appendix 5.B contains a discussion on the issues of dis

tributed information and control (transaction-wise) in concurrency control.

5.2 - Declare: A New Locking Action

Motivated by the discussion in Section 4.3.3 on the partial state information aspect

of concurrency control and by the fact that locking provides an efficient tool for control,

we introduce a new locking action, called declare, for the purpose of state estimation.

The following rule is added to the locking constraints governing augmented transactions

(see Section 4.4): a transaction must declare an object before it can lock it, and this

declare becomes void once the lock is obtained. Declares are defined to be compatible

with locks and with themselves, and so the requirements for an augmented execution to be

a locking execution are unchanged.

A declare must precede a lock, but not necessarily immediately. Once obtained, a

declare is kept until it is promoted to a lock, unless the transaction aborts. Upon promo

tion, it becomes void. When we say "all the transactions currently holding declares on

a," we mean all the transactions that have declared but not yet locked object a. In con

trast to locks, declares do not conflict with each other, neither do they conflict with a

lock. This means that any number of transactions can simultaneously hold declares on

the same object, even if this object is locked. The action of transaction T{ declaring

object o is denoted rf,(o).

Although similar in spirit to some locking actions that have been proposed in the

literature (e.g. [4, 6]), declares are different because they are fully compatible with all

other locking actions. For this reason, we prefer to think of declare strictly as an

information-carrying action, rather than as a new mode of lock (as invisible, intention,

etc. locks, see [6]), since "lock mode" normally refers to an action which is involved in at

least one conflict in the compatibility matrix of the locks.
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It is not difficult to see that when declares are used, every element of £e still

possesses a locking execution. For clarity purposes, we formalize this fact by presenting

an augmentation procedure for the construction of a locking execution from a given execu

tion.

Standard augmentation procedure

Let E be an execution E = exe^' ' ' en where the e,-'s are actions. We begin by

augmenting ex in E with the addition of locking actions to produce Ev Then, we aug

ment e2 in Ei to produce E2, and so forth. At the beginning of the &th step, we have tk

in the form of r<j{a) where T is a transaction and a is an object. In E^-i, one of the fol

lowing situations prevails.

(a) At the time of ck,T holds the lock on a; in this case, we set Ek = £*_i-

(b) At the time ot ek, a is unlocked; in this case, we replace ck = rj{a) in E^-i by

<Wfl)W°)rr(0) t° produce Ek.

(c) At the time of ck, some transaction S j& T holds the lock on a; in this case, we replace

ek — rr(0) m -^Jfe-i by us(a)^TiaVTia)Tjia)to produce E^.

After step n, we remove all redundant declares in En (retaining only the first declare

on each object for each transaction) to get En. Finally, if E is not a complete execution,

we set El = En, whereas if it is complete, we add all needed unlocks at the end of En to

get El. El is called the standard locking execution corresponding to E. D

Example 2.1 : Consider the three transactions:

7i = r,(a)r,(») Tt-r#) Tt = r^Ua), (2.1)

and the following complete (serializable) execution:

El,tfi = n(aMo W« )r4(» )r,(i). (2.2)

We now perform the standard augmentation of £1,4,5- At-each step, we obtain the follow

ing sequences:
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E, = d1(a)ll(aM«H<'M<>WMI>)

Et = d1(a)/1(«h(«)«i(«W«W''W«W''W»h(i)

Et = E2 (7j has the lock on a)

E< = dt(o)/,(«)r,(0)«,(«)d&a )Ua M«M« )dt(b )f4(* )r4(» )r,(6)

£5 = <*»(« )'.(« W«)«i(« M5(« )'«(<> W« Ho )dt(b )l<(b Mb )«4(6 )</,(* )f,(*)r,(6)

£5 = ^5 (no redundant declares in E5).

Finally, adding the missing unlocks (this is only necessary because £1,4,5 is complete), we

get the locking execution

E'iM = dMIMMa^Md^aUoMoMa) (2.3)

rf4(* )/<(» Mb )«4(6)/,(»)r,(6Mo)«,(6). Q

In the above, we have not distinguished between reads and writes. When both share

and exclusive locks (denoted sl and xl, respectively) are employed, there are similarly two

types of declares:

(i) exclusive declare, xd, to be acquired before a xl;

(ii) share declare, sd, to be acquired before a sl.

As before, none of the two actions xd and sd are conflicting. Before a transaction can

upgrade an sl to an xl, it must place an xd on the given object, unless that xd was

placed previously (xd gives permission to both sl and xl, in the same way that xl permits

reading and writing). Unless otherwise stated, "declare" will mean both share and

exclusive declares.

5.3 - The Must-Precede Graph

This section complements the results of Section 4.5. We define a new directed graph

for the representation of a set of concurrent augmented transactions. This graph is con

structed with the help of declare and lock actions.
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Must-Precede Graph (MPG)

(a) When transaction T places a share declare on object a, draw arc P —* T where P is

the most recent exclusive-lock-owner of a.

(b) When transaction T places an exclusive declare on object a, draw arc P —• T where P

is the most recent lock-owner of a.

(c) When transaction T acquires a share lock on object a, draw arc T —• F for each F

that is currently holding an exclusive declare on a.

(d) When transaction T acquires an exclusive lock on object a, draw arc T —* F for each

F that is currently holding a declare on a. •

In short, no arc is added in the MPG for the pair (sl, sd), but arcs are added for the

pairs (sl, xd), (xl, sd), and (xl, xd). Observe that when a transaction downgrades a lock

on an object from exclusive to share, it still remains the most recent exclusive-lock-owner.

The state estimation role of the MPG is illustrated by the following results.

Lemma 3.1 : The MPG is a sub-graph of the SG.

Proof: According to the method of construction of the MPG, an arc S —*• T with label a

is added only if one of the two following cases occurs.

(i) T declares a for which S is the most recent lock-owner, and the declare or the most

recent lock is exclusive. This means there exist integers k and m such that

((T, k), (S, m), a) € CP and the action input rs(am) has already occurred. Hence, there

is a directed dashed arc S —* T in the SG.

(ii) S locks a on which T holds a declare, and at least one of the two actions is exclusive.

Again, there exist integers k and m such that ((T, k),(S,m),a)€ CP, but the action

input r^ait) has not already occurred. Hence, the arc S -» T is added to the MPG at the

same time as a corresponding dashed arc becomes directed in the SG. •

Corollary 3.2 : A cycle in the MPG is anticipated by or occurs at the same time as a

similar dashed or mixed cycle in the SG.
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Proof: Follows from the proof of Lemma 3.1. Observe that the cycle cannot be solid in

the SG when it occurs in the MPG. D

Lemma 3.3 : The PG is a sub-graph of the MPG.

Proof: Follows from the proof of Lemma 3.1 and from Lemma 5.1 in Section 4.5. Arcs

are added in the MPG when they are dashed in the SG, whereas they are added to the PG

when they become solid in the SG. Since any solid arc is first dashed, then all arcs in the

PG are anticipated by arcs in the MPG. •

Lemma 3.4 : The WFG is a sub-graph of the MPG.

Proof: If we have the arc S —*• T labeled a in the WFG, i.e., T is waiting for S to receive

the lock on a, then necessarily the same arc was added before to the MPG, either when

(i) T declared a which was already locked by 5, or

(ii) S locked a on which T was holding a declare at the time.

(Of course, in (i) and (ii), one of the two actions has to be exclusive. Observe that T

would not be waiting for S if both wanted share locks.) Q

Corollary 3.5 : Cycles in the PG and in the WFG are always anticipated by similar

cycles in the MPG.

Proof: Follows from the proofs of Lemmas 3.3 and 3.4. •

Example 3.1 : Recall execution Ez of Example 6.2, Chapter 4, whose SG is qz in Fig. 3.1

of that chapter. A locking execution of it is

E„ = rfi(a)rf1(6)/1(a)r1(o)rf3(6)/3(6)r3(6)tii(a)(/3(a)/3(a)r3(a). (3.1)

The PG and MPG of E^ are drawn in Fig. 3.1. •

Theorem 3.6 :

(i) If the MPG is cycle free, then the state is in Q,e.

(ii) If the state is in Qm, then the MPG is cycle free.

(iii) To any state q G Qte corresponds a locking execution whose MPG is cycle free.
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PG MPG

Fig! 3.1 - PG and MPG of E^ in Example 3.1

Proof: (i) If the MPG has no cycles, then the PG has no cycles, and so the result is true

by Corollary 5.2, Chapter 4.

(ii) Follows from Theorem 3.3 (Chapter 4) and Lemma 3.1 above.

(iii) Take any element in $~\q) and augment it by using the standard augmentation pro

cedure of Section 5.2. The PG of this locking execution is cycle free because it is serializ-

able. But, since in this standard augmentation all declares immediately precede

corresponding locks, we can see that (i) arcs in the MPG of a standard locking execution

are only added at declares, and (ii) if such an arc causes a cycle, the same cycle appears

immediately after in the PG when the corresponding lock is requested. Hence, the MPG

of this locking execution is also cycle free. •

This last result shows that concerning cycle prediction in the SG, the MPG is as

good as the PG (recall Corollary 5.2, Chapter 4), and, furthermore, the MPG has the pos

sibility of detecting dashed and mixed cycles, provided declares occur early enough in the

locking execution. (Compare the PG and MPG in Fig. 3.1.) Therefore, in contrast to the

PG, states in Qte_#y can potentially be detected by cycles in the MPG. This important

observation is the basis for the LPs discussed in Section 5.4, and it is one justification for

using the declare locking action.
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We conclude this section with a result on complete locking executions.

Theorem 3.7 : Let q = $(Ee) for some complete execution Ee € Ec« Then q € Que &

the PG is cycle free iff the MPG is cycle free iff q is cycle free.

Proof: Once the execution is complete, all arcs in the SG are solid, and so the three

graphs differ only by arcs that can be obtained by transitivity. Hence, the complete exe

cution Ee is serializable if and only if the graphs have no cycles. •

5.4 - A New Locking Protocol Using the Action Declare

5.4.1 - Comments on the Use of Declare

In the spirit of Section 4.6.1, we now'present and study two protocols, not for their

practical interest, but because it will help in understanding the Declare-Before-Unlock

Protocol of the next section. Protocol LP-PG is for control with lock and unlock actions,

whereas protocol LP-MPG is for the case when declare is also employed.

Protocols LP-PG and LP-MPG

(1) and (2) : As in protocol LPO.

(V): The PG (MPG respectively) must remain cycle free. Q

Theorem 4.1 : Qlp-pg ~ Qlp-mpg = Quo-

Proof: (i) Qlp-pq = <2f«o- From Corollary 5.2, Chapter 4, and the fact that LPO is con

tained in LP-PG, we have Qlp-pg = Qlpo H Qte "=»: Q.«o-

(ii) Qlp-mpg s=s Qieo- As in (i), but this time using Theorem 3.6. •

Condition (1') means that locks (and declares for LP-MPG) are rejected by the con

troller if they cause a cycle to appear in the PG (MPG). In the case of LP-PG, it means

the state is already in Q9e0_£i? aQd so rollback must be undertaken.

In the case of LP-MPG, the situation is different and two cases have to be con

sidered. First, suppose a request by T for "declare" on object a is the cause of the cycle
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detected in the MPG. The proof of Lemma 3.1 shows that a similar cycle is already

present in the SG. The state jumped out of Qm previoulsyand we must do rollback.

Intuitively, this declare comes too late. The transition out of Qm occurred when a previ

ous action was accepted (because of insufficient information then).

Second, suppose that a request by T for "lock" on a is the cause of the cycle. This

time, as mentioned in the proof of Lemma 3.1, a similar cycle appears simultaneously in

the SG. Provided there are no other (dashed or mixed) cycles in the SG, the state would

jump out of Qm if the lock were granted. So, there is no deadlock, and the strategy is

not to grant the lock and ask T to wait until its predecessors are done with object a. We

shall comment further on this in Section 5.5. (If there are other cycles in the SG, they

will eventually appear in the MPG (at a declare request), and this will result in rollback.)

These remarks show that although in the worst case LP-MPG does no better than

LP-PG in terms of reachable states, it has the potential to achieve better performance,

because cycles caused by lock requests do not require undertaking rollback, but can be

resolved by waiting. This capability for improved performance is execution dependent

and is a function of how early declare locking actions are placed. For example, standard

locking executions never cause such cycles because declares always immediately precede

locks, and so only arcs of types (a) and (b) in the definition of the MPG are ever drawn.

Therefore, more stringent requirements than merely "declare before corresponding lock"

are a necessity for reducing the set of reachable states from Q$€q. This is of crucial impor

tance to understand the usefulness of the declare locking action. Such methods of improv

ing on LP-MPG are discussed in the next section and in Appendix 5.A.

5.4.2 - The Declare-Before-Unlock Protocol

We propose the following protocol which is a stronger version of LP-MPG, where a

condition of category (2) is added.
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Declare-Before-Unlock Protocol (LP-DBU)

(1) [LPO] : The augmented execution must be a locking execution.

(I') [LP-MPG] : Declares and locks are granted only if the MPG remains cycle free;

specifically:

- no declare on an object is granted to a transaction that is a predecessor of the most

recent lock-owner of the object, unless it is an (sd, sl) pair;

• no lock on an object is granted to a transaction that has a predecessor currently

holding a declare on the object, unless it is an (sl, sd) pair;

(2) [LPO] : A transaction cannot acquire a new lock on an object after it has unlocked that

object.

(2') [DBU condition] : A transaction must' declare all the objects it needs before it can

unlock any object. D

In order to completely specify the protocol, we need to say what actions are

appropriate when a request for declare or lock is rejected. This will be analyzed in detail

later. For the moment, we mention that in the case of a rejected lock, waiting will almost

certainly solve the problem, whereas in the case of a rejected declare, as we said in the

previous section, a rollback procedure must be undertaken.

We note that the DBU condition is similar in spirit to the 2<f> condition. It is, how

ever, far weaker, since declares conflict with neither locks nor each other. They are

merely means for exchanging information among the transactions. LP-DBU does not

specify where the declares need to be placed, except that a declare on an object must

come before the lock (locking constraint), and that the DBU condition must be satisfied.

This affords considerable freedom in requesting declares.

Our objective is to identify Qlp-dbu-

Lemma 4.2 : The DBU condition guarantees that all cycles in the SG that are not in the

MPG (called undetected cycles) must contain at least two consecutive dashed arcs.
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Proof: First observe that all solid arcs in the SG necessarily appear in the MPG, and so

all undetected cycles must have at least one dashed arc. The undetected arcs are due to

declare actions that have not yet been placed. By way of contradiction, suppose there is

an undetected cycle in the SG with some dashed arcs but no two consecutive ones. At

least one of these arcs is not present in the MPG. Consider Fig. 4.1 and suppose that

S —• T is such an arc. T has unlocked object b (because the corresponding arc

is solid) but has not declared object a (because the arc S *• Tis not in the

MPG). Therefore, T has violated the DBU condition. D

S T F

-•* > —• > • >- - -•-

a . 6

<--

Fig. 4.1 - Proof of Lemma 4.2

Theorem 4.3 : Qm C Qlp-dbu C Qte0.

Proof: By an application of Lemma 4.2 and previous results on LPO. The first inclusion

follows by observing that all cycle-free SGs are reachable by LP-DBU, since they do not

violate any of its constraints. The second inclusion is due to the fact that (i) no states out

of QteQ are reachable since LP-DBU is more restrictive than LP-MPG, and (ii) states in

Qieo with mixed cycles not containing at least two consecutive dashed arcs are not reach

able by LP-DBU. D

Corollary 4.4 : QLP_2* C Qlp-dbu-

Proof: This inclusion follows from the results in Lemmas 6.2 (Chapter 4) and 4.2. D



Example 4.1 : The following are examples of executions identified in Fig. 4.2.

£i,4,5 = fi(a)r5(a )r4(6 )rt(b). (4.1)

Recall Example 3.1 and Fig. 3.1 from Chapter 4.

E2 = Tx(a)TdJ>), (4.2)

whose SG is q2 in that figure, will result in a cycle in the WFG, i.e., deadlock.

From Example 3.1, take

£3 = 71(0^3(6)73(0). (4.3)

Finally, consider the three transactions

T* = Ts(c )r6(6) T7 = r^o )ftfHe) T9 = r^a) (4.4)

and take

£4 = ^7(0)^0)^)^6). (4.5)

Traj(E4) is given in Fig. 4.3. It shows that E4 is not LP-2^-augmentable, but is LP-

DBU-augmentable. D

Example 4.2 : The complete execution

**-«(«W«W»W») (4-6)

has no augmentation satisfying LP-20 (this can easily be verified by constructing

Traj(Ec), but it has many different augmentations satisfying LP-DBU, e.g.,

U* M° M° )<*s(» )«s(« )<<»(<» M*M« ¥,(» )',(& h(»)«,(6 Mb M>>W- M»),

the standard augmentation, or

«W« )dJJ>M* Ha )u^a)d^a)lz(a Ha )dt(b )lt(b )rt(b )u t(b M* M* W«WH

where for each transaction all the declares precede the first lock. In both cases, the MPG

is 1 —♦ 2 —• 3. D
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We wish to emphasize the following points. First, the declare locking action is a

means for predicting future conflicting actions. It permits construction of the MPG, a

graph containing more information than the PG or the WFG. Intuitively, better perfor

mance is possible when the transactions declare early, because then a larger fraction of the

cycles in the MPG are created at "lock" than at "declare," and these lock cycles can be

resolved by waiting. In the WFG and the PG, all cycles indicate the impossibility of con

tinuing the execution without violating serializability; none of them can be resolved by

waiting.

Moreover, when a cycle is created in the MPG at a declare request, the PG does not

yet have a cycle, and if the same rollback state were to occur with LP-2^, it would be

detected much later in the WFG. This early detection of rollback states, compared to

their detection by LP-2^ when a deadlock occurs (recall Lemma 6.2, Chapter 4), is a

highly desirable feature of LP-DBU.

Roughly speaking, the DBU condition is a simple condition achieving the goal of

early declaration by delaying unlocking until a transaction has finished declaring its

objects. Since declare is a non-conflicting locking action, the DBU condition is not res

trictive in terms of achievable serializable executions, in contrast to the 20 condition. Of

course, the goal of reaching all of Qm could be achieved by using LP-PG, but that would

be highly inefficient because of the frequency of occurrence of rollback (all of Q#e0_a7

would be reachable).

To conclude this section, we indicate how arcs and nodes can be deleted from the

MPG (for the purpose of cycle detection) in the situation when transactions commit and

new transactions arrive.

Theorem 4.5 : Cycle detection in the MPG is unaffected by deleting from this graph a

node and all arcs attached to it, once the corresponding transaction and all its prede

cessors have obtained all their locks.
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Proof: Consider a transaction T along with its predecessors and followers in the MPG. In

this graph, any predecessor or follower is in a path of the form

Pn- ^-h. T -Fi- >Fm.

Once T and all its predecessors have obtained all their locks, there can be no arc coming

into the corresponding nodes. An arc can only be drawn into a node when the

corresponding transaction is holding declare on the object under consideration. Hence, T

can never be in the path of a cycle. Therefore, the node and the arcs attached to it can

safely be removed from the graph. D

Remark 4.1 : Observe that once the condition in Theorem 4.5 is satisfied, the transac

tion under consideration cannot get any new predecessors. However, that condition may

be hard to verify. A stronger but more easily verifiable condition is the following: ua node

and all the arcs connected to it can be deleted from the MPG when the corresponding

transaction and all its predecessors are committed." In such a case, it is clear that no

other transaction can become a predecessor of T, and so no cycle involving T can occur in

the future. Q

5.4.3 - Delaying Cycle Verification in the MPG

Cycles in the WFG need only be checked periodically (see [9]). In the MPG, we have

to distinguish two cases.

(i) Cycle verification at lock requests:

These cycles can be resolved by waiting, if the lock is not granted. But if no verification

is made, a dashed or mixed cycle is created in the SG and the MPG, and so late detection

of this cycle will force rollback. Therefore, delaying cycle verification in the MPG at each

new lock is not a good approach to pursue.

(ii) Cycle verification at declare requests:

Observe that a violation of serializability can occur only after all the transactions involved
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in a cycle have unlocked at least once, because it is only after that time that a cycle

occurs in the PG. This violation will inevitably occur, but not before all the transactions

involved in the cycle have unlocked at least one object. For this reason, when the DBU

condition is in force, it is not necessary to check for cycles in the MPG at each declare

request, but only at the first unlock by each transaction. This reduces the overhead due

to cycle verification..

We also mention that cycle detection can be done in linear time (in the number of

arcs) in a dynamical situation such as ours where graphs are continually updated (see

[24]).

5.4.4 - Cascade-Rollback Prevention •

When a rollback state is detected (cycle in MPG at declare request), a transaction

involved in the cycle is chosen and its actions are undone. This rollback of a transaction,

which may also be due to a transaction abort or to crash recovery, may have the undesir

able side-effect of having to rollback a committed transaction. (Undoing the actions of

transaction T may force undoing actions of other transactions as well, if, for instance,

they "read objects from 7\") Rolling back a committed transaction (cascade rollback) is

very undesirable and should be avoided.

Lemma 4.6 : The rollback of transaction T has no side-effects if and only if, at the time

the rollback is started, T has no follower in the MPG that has locked and acted on

an object for which T had requested an exclusive lock. Q

(The proof is straightforward and therefore omitted.) "Side-effects" signifies that rolling

back another transaction is necessary in the process of undoing the actions of T. If all

transactions keep their exclusive locks until commit time, then the condition in Lemma

4.6 is satisfied. In fact, this is the condition which is most often used in practice (see [6]).

If only one type of lock was employed, LP-DBU would have no advantage, because its

main feature is allowance of early unlocking. However, with separate share and exclusive
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locks, only exclusive locks need be held until commit time. Thus, LP-DBU enjoys a real

advantage even with support for avoiding cascade rollback by permitting early release of

share locks.

5.4.5 - Prior Declaration of Objects

Rollback occurrence is a function of how early declare actions are placed in a locking

execution. If a transaction knows all objects it needs beforehand, then it is possible to

achieve optimal performance. Consider the following protocol.

Prior Declaration Protocol

(1)(1')(2): As in LP-DBU.

(2"): A transaction must declare all the objects it will act on before its first lock. D

Clearly, if such a protocol is observed, MPG = SG, i.e., the initial state q0 is com

pletely known, and the set of reachable states is exactly Qm- In particular, no deadlocks

or rollbacks ever occur. But, as we said in Section 4.3.3, a condition such as (2") can

rarely be met in practice. For instance, the objects a transaction will act on may depend

on results obtained during the processing of that transaction.

The idea of predeclaration of objects is not new. In the context of operating systems,

for example, predeclaration is often employed to prevent deadlock [5, 11]. In the context

of database systems, protocols using some form of predeclaration have been suggested in

[2] (the transactions are pre-analyzed to gain information to enhance concurrency), in [4]

(predeclaration of the write-set of each transaction before its first lock), and in [9] (each

transaction must request all needed objects at once and cannot proceed until all have been

granted), among others. (Predeclaration is more general than this last example, however,

becauseobjects need only be declared, not locked.)

Since the goal of predeclaration is not practically achievable, appropriate conditions

are those that delay unlocking or locking until more or all declares are placed. An exam

ple is the DBU condition which is simple and easy to implement. A disadvantage of LP-
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DBU, however, is that more states in Qu0^ggg are reachable than with LP-2<f>. Our inves

tigations to specify a protocol that reaches all of Qm but approximately the same portion

of Qteo-m M LP-2^, i.e., a protocol that achieves maximum concurrency but about the

same number of rollback states as LP-20, have led to the No-Declaring-Phase Protocol

presented in Appendix 5.A.

5.5 - Rejected Lock Requests

5.5.1 - Avoiding Long Waitings at Lock Requests

In this section, we deal with the case where a request by a transaction T to lock

object a is denied. This happens if and only if one of the following cases occur:

- case 1: a is locked, but no predecessor of T is currently holding a declare on it;

• case 2: a is unlocked, but one or more predecessors of T in the MPG are holding declares

on it;

• case 3: a is locked, and one or more predecessors of T in the MPG are holding declares

on it.

N.B. In cases 2 and 3, it does not matter whether or not some predecessors have

requested the lock, because "declare" becomes void only when "lock" is granted.

Defining also:

- case 4: a is unlocked and no predecessor of T is holding a declare on it;

the diagram representing the permissible transitions among these four states is depicted in

Fig. 5.1.

When in 1, 2, or 3, the simplest solution is having T wait until there is a transition

to 4. Then, the lock on a can be granted to T without causing a cycle in the MPG. If we

are in 1 and if no predecessor of T declares a before the lock is released, then T will get

the lock, i.e., we will have a transition 1 — 4. Otherwise, we have the transitions

1—3 — 2.
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Fig. 5.1 - Possible transitions when waiting for a lock

However, cases 2 and 3 could imply potential trouble. The number of predecessors

of T declaring a could increase, or some of these predecessors themselves could be waiting

for other objects, and so on, so that we have no guarantee that the waiting time for T will

be finite. We have modeled the system of Fig. 5.1 as a continuous-time Markov chain and

found that the system it represents is inherently stable (i.e., it returns to 4 in finite time)

when the product (number of concurrent transactions - 1) X 2(fraction of the database

used on average by a transaction) is less than one. The details of our analysis are given in

Section 5.5.2.

We have also found a sufficient condition guaranteeing that T's waiting time will be

finite. Before we state the condition, we need to introduce an extra assumption. From

now on, assume a that ufirst-come-first-serve policy" in granting permissible lock requests

is in force, in complement to the "predecessor-first" policy of LP-DBU. More precisely,

when an object is unlocked and one or more transactions have requested a lock on it (call

this set Ri), then the lock is granted to the transaction in Ri that has no predecessor in

Ri; if there is more than one such transaction, it is granted to the first to have requested

the lock.
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Then, the following result holds.

Theorem 5.1 : If, at any time t after transaction T requests a lock on object a, all the

concurrent transactions acting on a and all their current predecessors have requested

all the locks that they will ever need, then T will eventually obtain the lock on a.

Proof: Define the two sets:

Na(t) = {all the concurrent transactions at time t that act on a),

PNa(t) = {all the transactions in Na(t) and all their predecessors in the MPG at time t},

and observe that:

(1) The condition in the theorem implies that, after time t, no transaction not in PNa(t)

can become a predecessor of a transaction in PNa(t). This would occur if and only if that

transaction would lock, before a transaction in PNa(t), an object needed by both transac

tions. But, by assumption, all the transactions in PNa(t) have requested all their locks,

and we are using a first-come-first-serve policy in granting permissible lock requests. Also,

there is always a transaction in PNa(t) that can be granted a lock when an object

becomes available, namely the transaction in that set which currently has no uncommitted

predecessor still using this object.

(2) In particular, (1) implies that the set of transactions that will get a lock on a before T

is bounded above by Na(t), since after t, no new transaction needing a can become a

predecessor of any transaction in Na(t).

The result follows by noting that (1) implies that PNa(t) is a closed set that will

clear up in finite time, since no rollback can occur (all the declares have been obtained; see

section 5.4.5), and there is always at least one transaction in that set that can be executed

with no waiting, namely the one at the summit of the sub-graph of the MPG for the tran

sactions in PNa(t). D

Observe that a long denied request for a lock on an object can always be cleared by

suspending initiation of new transactions. In fact, such an action is stronger than neces

sary, and Theorem 5.1 suggests the following procedure:
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Let OpNm(t) be the set of all objects acted on by the transactions in PNa(t). At time

t, force all the transactions in PNa(t) to request locks on all the objects they act on.

At the same time, do not initiate any new transaction that will act on any object in

Oppfm(t) until all the above requests have been made.

Once all the requests have been made, the sufficient condition of Theorem 5.1 is

satisfied, and we will eventually have a transition to case 4 for object a.

5.5.2 - A Stability Analysis of the Declare-Before-Unlock Protocol

Our objective in this section is to find simple conditions under which LP-DBU

possesses a stability property (in a sense that will be made precise below). As was seen

before, requests for either "declare" or "lock" can be rejected. In the first case, an inevit

able rollback has been detected and some rollback resolution mechanism must be invoked.

A detailed analysis of rollback occurrence using some probabilistic model for the behavior

of a system of concurrent transactions under LP-DBU is beyond the scope of this work.

In fact, existing research along those lines has been limited to simple probabilistic

arguments or to simple locking strategies (such as lock everything at once at the begin

ning), see [8, 10, 17, 18, 22]. Even those simple cases are difficult to analyze, which makes

us pessimistic about whether detailed analytical treatments of complex locking protocols

are feasible. Many people have relied on simulations studies (e.g. [1, 13, 16, 23, 25]).

Note that many simulation studies of locking techniques, in particular of two-phase lock

ing, support the assertion that in practice deadlocks do not occur often. However, recent

work [13] indicates that this assertion may no longer be valid when the number of con

current transactions is high, as will be the case in future database management systems.

What we will study from a probabilistic approach is the situation where a request by

transaction S for a lock on object a is denied. Recall the four cases mentioned in Section

5.5.1 and in Fig. 5.1. We use the following notation to denote these states: nx, where

x = I or u denotes that object a is locked or unlocked, respectively, and where n is the



number of predecessors of S that are currently holding declares on a. Using NT to denote

the maximum number of concurrent transactions that the system can support, we have

the following transition diagram between these 2NT states.

(Nr-2)'

Fig. 5.2 - Transition diagram

Being in state 0" means that the lock on a can be granted to S. Assume that the

process nx constitutes a continuous-time Markov chain with rates as indicated in Fig. 5.2.

The state 0U is absorbing, and since the number of states is finite,

Prob { first hitting time of 0tt < oo} = 1 . (5.1)

We are interested in the stability of LP-DBU. We want to find a condition under

which the above probability will remain equal to 1 when NT — oo. In other words, we do

not want the first hitting time of state 0" to increase to oo when the number of
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concurrent transactions increases to oo. This would indicate that the protocol behaves

poorly and is therefore unsatisfactory from a practical stand-point.

Our analysis will be divided into two steps. First, we will determine the desired con

dition in terms of the rates indicated in Fig. 5.2. Then, we will find approximations for

these rates in terms of the following "macroscopic" system parameters:

NT;

Nq = total number of objects in the database;

p = probability than an object be needed by a transaction;

r = average lifetime of a transaction in the multi-user environment.

Observe that NT and Nq are known quantities, whereas p and T are parameters

that can be estimated from practical situations.

Analysis of Markov chain model

Consider the stochastic process nx where z = / or u and n 6 Z+. Assume that this

process evolves as a continuous-time Markov chain with the transition diagram and rates

indicated in Fig. 5.2, but with NT — oo there. We want to find a condition under which

no matter what the initial state is, the first hitting time of state 0" is always a.s. finite.

For this purpose, let us add a fictitious transition between the states 0U and lu (as indi

cated in Fig. 5.3) to obtain an irreducible chain. Then, our problem is equivalent to

finding a condition under which the new irreducible chain is positive recurrent when

X > 0. The same condition will guarantee that, in the original chain, the first hitting

time of 0" is a.s. finite, no matter the starting point.

The Markov chain depicted in Fig. 5.3 is positive recurrent iff there exists a probabil

ity measure n such that

nQ = 0, (5.2)
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Fig. 5.3 - Irreducible chain

where Q is the rate transition matrix of nx. For the purpose of this calculation, there is

no loss of generality in assuming that X = \</. (5.2) yields the following recursive rela

tion, for n > 1:

«((»+,!)")
<«')
«(«')

1

/»X,

0

a((„-lV) (5.3)

(Due to the special form of Q, we cannot obtain a system of two equations.) n exists

in (5.2) iff the ;r(nz)'s solving (5.3) converge to zero as n — oo and

J *n>u'')< oo. (5.4)

But (5.4) is true iff the matrix on the right-hand side of (5.3) has eigenvalues inside the

unit circle in the complex plane. After some manipulations, we* obtain that this is true iff

AiXj
\a <

/* + X, '
(5.5)

(5.5) is the stability condition for the Markov chain of Fig. 5.2.
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Remark 5.1 : The matrix in (5.3) also has an eigenvalue on the unit circle, due to the

fact that we have a system of three equations and two unknowns, flfn") and n{nl). How

ever, this eigenvalue cancels out when computing the Z—transforms of Ji(nu) and ir(nl).

Also, we can verify that the two remaining eigenvalues have positive real parts, guarantee

ing a positive solution for it in (5.2). •

Rate approximations

The process n* of Fig. 5.2 (with N? — oo) will indeed be a Markov chain if the fol

lowing conditions are satisfied:

(i) The holding time of a lock on any object by a transaction is exponentially distributed

with parameter //.

(ii) The arrivals of "predecessors of S holding declares on o" constitute a Poisson process

with rate X^ (independent of n). Here, we do not distinguish between arrivals of declares

on o by predecessors of S and arrivals of new predecessors of S from transactions already

holding declares on a. \j represents a global rate.

(iii) The elapsed time between the moment a transaction declares a specific object and the

moment it requests and obtains the lock on that same object is exponentially distributed

with parameter Xj.

'This model is pessimistic for the two following reasons:

(a) since Xj is the same for all n, we assume that only one predecessor among the n's can

obtain the lock on a;

(b) X<j is taken to be the same for all ft, but for finite chains it will be monotonically

decreasing, since only JVr —I —n transactions can become "predecessors of S holding

declares on a" when we are in state nx.

We are not arguing that assumptions (i) and (ii) can be satisfied in practice. Our

approach is to try to estimate averages for the rates /i, Xj, and Xj in terms of the parame

ters T, NT, N0, and p.
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A conservative estimate for /* and Xj is —. Let np be the average number of con

current transactions that are predecessors of 5 at a random time during 5's lifetime.

Then, the average number of concurrent transactions that are "predecessors of S holding

declares on a" at a random time in 5's lifetime is

"p'P = Vr (5.6)

by a "conservation argument." Therefore, we get

X< =^ • (5.7)

In the worst case where all the transactions having objects in common with S are indeed

predecessors of5, np = (N?—1) X /Vo6^,,'where we have defined Prob%, to be the proba

bility that two transactions overlap in their choice of objects. Although we could evaluate

Probst let us be conservative and, for simplicity, take np = NT—l. Substituting all these

estimates in (5.5), the stability condition becomes

^r-!<-£-• (5.8)

In other words, LP-DBU is stable (as defined before) when the number of concurrent

transactions minus one is less than half the fraction of the database used on average by a

transaction. This condition is quite intuitive and very likely to be satisfied in practice.

Therefore, the analysis in this section indicates that in most situations, it should not be

necessary to take action to clear lock-waiting queues; it is very improbable that a transac

tion would constantly get new predecessors and would have to wait very long before being

granted a lock.

Remark 5.2 :

(i) It can be argued that, in practice, transactions operate on some portion of the

database, and so the transactions operating in the same sub-database are more likely to be

ordered with respect to each other. For this reason, the parameters N? and p in the
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above condition can be taken to be those of a sub-database. Since the chance of overlap is

high in this case, the probability of overlap Prob%, can be assumed to be one, as we have

done in (5.8).

(ii) The. condition under which the countably infinite Markov chain has a finite

return time (w.p.l) to state 0tt is indeed very important. The condition's interpretation is

that it guarantees stable behavior of the protocol even when NT varies in a wide range.

However, this model should not be used to calculate specific values for the average return

time to state 0tt.

(iii) The work described in this section was undertaken because our attempts at

estimating an upper bound on 5's waiting time proved to be inconclusive. There are so

many ways a transaction can be kept waiting, that any bound is too pessimistic to be use

ful. D
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Appendix 5.A - No-Declaring-Phase Protocol

If we want to improve LP-DBU by reducing the number of rollback states that are

reachable (and only the rollback states), we have to find conditions ensuring that less

mixed and dashed cycles in the SG will go undetected in the MPG. Recalling Lemma 6.2,

Chapter 4, we see that the 2<j> condition ensures that no mixed cycles can be reached.

However, since the effect of this condition is on sequences of arcs rather than on cycles, it

also considerably reduces the portion of QaE that is reachable. Our objective in this

appendix is to specify conditions that do not impair concurrency, but that guarantee

detection in the MPG of all mixed cycles (and possibly also some dashed ones) in the SG.

For this purpose, it is necessary to distinguish between solid and dashed arcs in the

MPG. Therefore, let all arcs added to the MPG in its definition in Section 5.4.2 be

dashed, and add the following part to its construction:

(e) when transaction T locks object a, replace all dashed arcs into T with label a by solid

arcs with same directions.

This way, the arcs in the MPG have the same type as they have in the SG.

Next, we introduce more terminology. 5 is called a predecessor through c of T, and

T a follower through c of 5, if in the path from 5 to T in the MPG, one of the arcs has c

as a label. 5 is called a solid predecessor of T, and T a solid follower of 5, if the path

from 5 to T in the MPG contains at least one solid arc. A transaction is said to be in the

declaring phase if it has not declared all its objects yet. An object is said to be in state

dsf if one or more transactions holding declares on it have a solid follower in the MPG.

We now state the No-Declaring-Phase Protocol, (LP-NDP).

Protocol LP-NDP

(1) (1') and (2): As in protocol LP-MPG.

(1") : No lock on object a is granted to transaction T if one of the two following condi

tions is satisfied:

(i) T has a predecessor through a in the MPG that is still in the declaring phase;
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(ii) Tor a predecessor of it in the MPG is in the declaring phase and a is in state

dsf. D

Lemma A.1 : Condition (1") of LP-NDP guarantees that all mixed cycles and all dashed

cycles preceding a solid arc in the SG are detected in the MPG.

Proof: Condition (l"-i) implies that when an arc becomes solid in the MPG, all the tran

sactions in all paths left of this arc in the MPG have declared all their objects. Hence, as

far as these transactions are concerned, the MPG has complete information, and it will

detect all cycles going through these nodes in the SG.

Condition (l"-ii) is for preventing the addition of new predecessors to the left of a

solid arc when one of these predecessors is still in the declaring phase. This guarantees

that when new predecessors are added to the left of a solid arc in the SG, they are also

added in the MPG, and all the information about them is known because they have

finished declaring. The two conditions together imply the result. Q

Theorem A.2 :

Qm ^ Qlp-ndp C { q € Qteo '• Q. ls cvcle free or has dashed cycles only }.

Proof: Clearly, all cycle-free SGs are reachable by LP-NDP since they do not violate any

of the conditions of this protocol. (The transactions need only have declared for condition

(1") of LP-NDP to be satisfied, and declares are non-conflicting actions.) The second inclu

sion is a consequence of Lemma A.1 and Theorem 4.1, because now condition (1") guaran

tees that all dashed cycles preceding a solid arc and all mixed cycles are detected in the

MPG. •

Corollary A.3 : Qu>-2t C Qlp-ndp-

Proof: The 2<j> condition implies that condition (1") of LP-NDP is always satisfied. Q

Observe that the rollback states that are reachable by LP-NDP but not by LP-2^

are not a cause of concern, since the extra arcs they contain (typically dashed arcs fol

lowed by solid arcs preceeding or not connected to a dashed cycle) are not involved in the
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cycles causing rollback. Also observe that the DBU condition implies that the immediate

predecessor through a of T never causes condition (l"-i) to be satisfied when T requests a

lock on a. (The same is true for all immediate solid predecessors of a transaction, since

by DBU they have declared all their objects.) This is why in this case undetected mixed

cycles always contain at least two consecutive dashed arcs (Lemma 4.2).

Protocol LP-NDP is of theoretical interest because of the above results. However, its

practical usefulness is limited because it would be difficult to implement.

Appendix 5.B - Discussion on Distributed Information and Distributed Con

trol

A desirable feature for a concurrency control strategy is its degree of decentraliza

tion. In the limit, we would like each transaction to take care of its own control, i.e., that

the control strategy be totally decentralized (distributed). An example of a decentralized

strategy is control by locking. Conditions of category (1) in a locking protocol (see Sec

tion 4.4) are the responsability of a central controller, whereas conditions of category (2)

correspond to the part of control that can be distributed to the individual transactions.

From a transaction's point-of-view, locking is decentralized, because a transaction

need not know anything about concurrent transactions or about the status of each object

in order to produce its augmented version. Acknowledgment or denial of specific locking

actions will be the task of the central controller, based on the particular protocol that is

being implemented. If we assume that the lock-waiting-queues for each object are passive

resources requiring no action from a central controller, then we can see that LP-20 is com

pletely decentralized, except for the deadlock detection mechanism (cycle verification in

the WFG). In the case of LP-DBU, a central controller is required to implement step (1'),

namely to grant or reject declares and locks based on the current status of the MPG.

Observe that LP-2^ has the property that it achieves "minimal optimality" in the

following sense: if any transaction performs an augmentation other than a two-phased
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one, then there always exists another transaction resulting in an execution satisfying the

locking constraints, but not serializable [7]. In other words, LP-2^ is the best to be done

to guarantee serializability if no communication is allowed between the transactions and

no central controller is employed.

With more information, greater concurrency can be achieved if some form of central

control is available. In the case of LP-DBU, the central controller is an "intelligent" lock

manager having access to centralized information in the form of the MPG. An important

observation is that control itself (by means of locking actions) does the communication

between the sites. Two types of control, lock and unlock, are not enough to attain

optimal concurrency (Qg&)- But the three control actions declare, lock, and unlock carry

sufficient information for this purpose.
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Chapter 6

A State-Transition Model for

Distributed Query Processing

6.1 - Introduction

In this and the following chapters, we consider the problem of optimizing the pro

cessing of a query in a distributed database system.1 This problem has received a great

deal of attention in recent research, and many algorithms for query optimization have

been proposed and implemented. We refer the interested reader to [6, Chapter 6] and to

the recent survey paper [20] for detailed reviews of the literature on this subject. Refer

ences [1, 3, 7-13, 18, 19, 21] are of particular relevance to our work. Generally speaking,

most of the algorithms in these references fall into one of the following categories:

(i) those that give a local optimum or a "close to optimal" solution for general join

queries, often by using heuristics based on the semi-join operation (see [1, 3, 11, 12, 18]);

(ii) those that give a global optimum for special classes of queries such as chain and tree

queries that can be completely answered by semi-joins (see [8, 9]); and

(iii) those that give a global optimum for general join queries, but for a class of strategies

excluding the semi-join operation (see [13]).

Our objective is to formulate the distributed query processing problem within a pre

cise state-transition framework, and then to find global optima among strategies based on

joins and semi-joins, using dynamic programming over the state space. In this sense, we

believe that our results generalize the above references, in particular [3, 8, 9, 13, 18] which

were our main inspiration.

1 For the sake of generality, we assume a distributed database. The special case of a centralized
database is discussed in Section 7.4.
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The key element in our work is the introduction of a state to parametrize the evolu

tion of the processing of a query in a distributed environment. Not only is this step cru

cial for modelling the dynamical nature of this problem, it is also necessary in order to use

a dynamic programming algorithm to find the globally optimal solution. The cost of a

state comprises all local processing and communication costs incurred in reaching the

state.

Once the concept of state transition has been properly defined and the state space

constructed, dynamic programming can be used to find the state containing the answer to

the query that has the minimum cost and to find the optimal trajectory to that state, i.e.,

the optimal sequence of processing operations. We note that without a state transition

model, the problem is not truly one of dynamic programming, and inefficient computa

tions would probably result. An additional benefit of this framework is that clever stra

tegies improving on the basic algorithm can be employed.

The concept of state can be thought of as a means for parametrizing the processing

of a query in terms of joins and semi-joins (which are a special case of a join followed by a

projection). However, in contrast to many strategies that have been proposed (see [1, 3,

12, 18, 20]), we do not decompose the problem into a reduction phase where only semi-

joins are used to reduce the relations, and an assembly phase where all the joins are per

formed at a single site. Instead, we consider a more general dynamical model allowing for

arbitrary interleaving of join and semi-join operations, as well as for executing the joins in

a distributed fashion, i.e., not all at the same site. The state trajectories in the state

space will then include all the join orderings of [13], all the "correct nonredundant semi-

join programs" of [8, 9], and all the "semi-join reducer programs" of [3, 18].

Another feature of our model is that the definition of a state transition accounts for

the possibility of parallel processing among the various sites where the database is located.

We also allow a choice among multiple copies of a relation when the database incorporates

redundancy. In the case where the sites are uniform in terms of local processing and
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communication costs (as is assumed in almost all the literature), and where the answer can

be located at any site (as in [3, 18]), we show how some states can be aggregated into

equivalence classes, thus resulting in substantial savings for the computation of the

optimal solution.

This chapter is organized as follows. The problem is stated in Section 6.2. In Sec

tion 6.3, we present the state parametrization that we have formulated, and in Section

6.4, we discuss the cost of one-step state transitions. The complete algorithm that we pro

pose is given in Section 6.5. Section 6.6 is concerned with equivalence classes of states.

Finally, a complete example is given in Section 6.7. Chapter 7 is a direct continuation of

this chapter.

6.2 - Preliminaries and Problem Statement

8.2.1 - Review of Some Concepts from Relational Databases

In this section, we briefly review the concepts of relation, selection, projection, join,

and semi-join for the reader who may not be familiar with relational databases. This dis

cussion is based on UUman [16].

The mathematical concept underlying the relational model for databases is the set-

theoretic relation, which is a subset of the Cartesian product of a list of domains. A

domain is a set of values, for example a set of integers or character strings. The

members of a relation are called tuples. It helps to view a relation as a table, where each

row is a tuple and each column corresponds to one domain. The columns are often given

names, called attributes.

For example, a relation "Capital" can be defined over three domains, two of which

consisting of character strings (attributes COUNTRY and CITY) and one of integer

numbers (attribute POPULATION). A tuple of Capital is (Canada, Ottawa, 300000).
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Queries on relational databases can be expressed in terms of relational algebra opera

tions. Let R and S be relations of kx and k2 columns, respectively. The Cartesian pro

duct of R and S, R X S, is the set of (kx + /:2)-tuples whose first kx components form a

tuple in R and whose last k2 components form a tuple in S.

A projection on relation Capital consists of taking Capital and removing some of its

columns and/or rearranging the remaining ones. For example, Capital could be projected

on the two attributes CITY and POPULATION, yielding a relation with tuples such as

(Ottawa, 300000).

A selection (or restriction) on relation Capital consists of selecting those tuples of

Capital satisfying some logical ("COUNTRY = Canada") or arithmetic ("POPULATION

> 100000") formula.

The join of relations R and S on a clause involving columns t of R and / of S, and

an arithmetic comparison operator (=, <, and so on), is a new relation whose tuples are

the elements of the Cartesian product R X S satisfying the given clause. Let

"City. of. birth" be a relation with attributes NAME and CITY. OF. BIRTH. A tuple of

City. of. birth is (Joseph. Doucet, Ottawa). Then City.of. birth can be joined with Capital

on the clause "CITY. OF. BIRTH = CITY" to yield tuples of the form (Joseph. Doucet,

Canada, Ottawa, 300000). The two columns involved in the equality join clause are

merged into a single one in the new relation. Unless we need to explicitly state the join

clause, we will denote the join of R and S on a given clause by R xS. Observe that join

is a symmetric and associative operation.

The semi-join of R and S, denoted R xS, is formally defined as the projection on

the attributes of R of RxS (the semi-join clause is that of the corresponding join).

Thus RxS contains only those tuples of R which contribute in RxS. In contrast to

join, semi-join is not symmetric nor associative.

Semi-joins are useful in a distributed environment (R and S located at different

sites), because they may require less communication than joins. In this case, they are
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taken as follows: first, S is projected onto the attributes common to R and S; then, this

result is sent to the site of R where the semi-join (which is technically a join) is performed

(this last operation deletes the tuples in R that produce no tuples m RxS). If i?x5 is

required at the site of S, then it may be advantageous to perform R xS as above, ship it

to the site of S, and then complete the join with S. Since RxS = (RxS)xS, the

"elementary semi-join program" on the right-hand side may involve moving less tuples

than moving all of R to the site of 5. This fact is the basis for many query optimization

strategies based on the semi-join operation (see Section 6.1).

0.2.2 - Problem Statement

Consider a distributed database system. By this we mean a database consisting of a

finite set of original relations distributed among M sites, together with a collection of M

autonomous processors communicating with each other via a general communication

medium. The database may contain multiple copies of each original relation, but we

assume that each copy is entirely located at a single site.

We are given:

(a) a query q0 which references N distinct original relations not all located at the same

site. We assume that the query can be described by means of the three relational algebra

operations: projection, restriction (selection), and join. (We need not be more specific

about the form of q0 until Chapter 7.) As in [2], we call the query graph of q0 the multi-

graph with N nodes, where each join clause in q0 is indicated as a link between the

corresponding nodes.

(b) an initial materialization (see [19]) of the N original relations of the database that are

referenced by q0. This consists of an M-component vector x0, each component x<£i) con

taining those of the N original relations that are located at site i. In this chapter, we

assume that xQ is irredundant (there is only one copy of each original relation), but this

assumption is relaxed in Chapter 7.
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The added dimension in distributed query processing, as compared to query process

ing in a centralized database system, is the necessity to transfer data when joining rela

tions located at different sites. Thus, the cost of processing a query includes both local

processing and communication costs. We consider both categories and make no assump

tions concerning their relative importance.

Finally, we assume that the site location of the answer to q0 is irrelevant. But, as we

indicate in Section 5, the algorithm that we propose also computes the optimal solution

for all M possible locations of the answer. We will use the terminology site-uniformity

assumption to describe the situation where the processing costs are independent of the

sites, and where the communication costs are the same between any two sites.

6.3 - State Parametrization

0.3.1 - Notions of State and State Transition

We define a state x as follows: x is an M-component vector such that x(i) contains

the list of relations (including original relations and intermediate results) located at site t.

The materialization x0 is the initial state of the system. A final state is a state which con

tains the answer to q0 at one of the M sites. We will denote this answer by qdx0), and

Xf will denote the set of all final states. In order to construct the set of reachable states,

or state space, we need to specify the rules for state transitions. We do this by means of

two definitions.

Definition: An intermediate relation derived from state x £ Xf is a new relation, i.e., it

is not already present in x, that can be obtained by: (i) joining any two relations (original

or intermediate) in state x, and then (ii) possibly making some projections and restrictions

on this new result. D

Therefore, all the relations in a state are either original relations or intermediate

ones. Since any relation is always entirely located at a single site, all projection and
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restriction operations correspond to local processing (we adopt this terminology). Next,

let J = {1, ...,M).

Definition: We say that there exists a one-step transition from state xx to state x2 iff

the following conditions are satisfied:

(i) »i**>;

(ii) x2 ^ xx;

(iii) for all t 6 I, zJS) is equal to xx(i), except for possibly one new intermediate relation

derivable from xlt and except for the deletion of some relations in xx(i) (deletion rules are

specified later). D

From the above definition, the new intermediate relation at site t is the result of a

join between any two relations in xx (not necessarily located at site t), possibly followed

by some local processing. In particular, the first definition allows for this new relation to

be the semi-join of two relations in x, since a semi-join can be viewed as a join followed

by a projection. (The operations need not be actually performed in that order; see Section

4.) We assume that all the semi-joins are on the same attributes as the corresponding joins

in the query graph of go-

Even though they are not natural relational algebra operations, semi-joins are at the

core of many distributed query processing algorithms (see [1, 3, 8, 9, 12, 18, 21]). For this

reason, we have allowed for their explicit consideration in the state-transition framework.

We emphasize that the above definitions permit arbitrary interleaving of join state tran

sitions and semi-join state transitions, i.e., semi-joins need not be part of semi-join

reducer programs only, as is the case in the above references.

Another feature of the model is that by allowing for one new intermediate relation at

each of the M sites, and not only for one new intermediate relation from x1 to x2, we

account for the possibility of parallel processing, in the sense that we allow for simultane

ously joining (and semi-joining) distinct relations at different sites.
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The modelling of the processing of a query by a state-transition model is influenced

by the trade-off between state and one—step state transition. Finer definitions for

state transitions, considering separately data movement and local processing, for example,

result in a much bigger state space, and this may be computationally inefficient. On the

other hand, coarser definitions, like allowing more than one join per site, may render the

optimization of one-step transitions too complex and may cancel the advantages of using a

state-transition model (dynamic programming is less advantageous when the number of

steps is small). Moreover, in addition to being relatively simple to carry out, each sub-

optimal problem for the optimization of a one-step transition must be separable, meaning

that it can be isolated from the rest of the problem, in order to be able to use dynamic

programming. These considerations have led us to choose join as the unit step in state

transitions, with the possibility of also allowing semi—join if a finer model is desired. If

the cost function satisfies the site-uniformity assumption, the equivalence classes presented

in Section 6.6 result in a coarser model.

We now divide the problem into two cases to simplify the presentation of our results.

From this point on and until Chapter 7, we restrict ourselves to the case where the state

transitions are joins only, i.e., semi-joins are not allowed as one-step transitions. Observe

that there is no restriction on how each such join is to be performed. Let A and B be

two relations in xx and suppose that the transition from xx to x2 is due to the operation

A x B. Then A x B could be the result of the elementary semi-join program

(A x B) x B, but the intermediate step A x B will not correspond to a state.

Our purpose is to exclude, for the moment, multi-step semi-join programs which use

sequences of semi-joins on a relation to reduce it as much as possible in order to minimize

the amount of data that has to be moved when the joins are actually performed. The

general case including such sequences of semi-joins for original and intermediate relations

is more complex and will be treated separately in Chapter 7.
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The following deletion rule is adopted: when a relation is joined in a state transition,

it is deleted from the new state. In the above example, this means that x2 differs from xx

by the addition of A x B and the deletion of A and B.

A total of N—l joins (each possibly followed by some local processing) need to be

performed to obtain <7o(xo)> since we can assume, without loss of generality, that the query

graph of <70 is connected. (If disconnected, each connected part can be optimized

separately.) Therefore, the above restrictions mean that a maximum of N—l state transi

tions are necessary to obtain a state in Xf from x0. Observe that IXf I = M, namely

one state for the answer at each of the M sites.

In general, not all two original relations are joined in the query graph of q0, and

some transitions may correspond to joins that are in fact Cartesian products. Thus, they

may be expensive to perform. If one wishes to exclude these, as done in [13], for example,

it is necessary to keep track of the new form of the query after each state transition to

determine which joins are admissible. We do this by defining the complete state (x, q)

where q is the updated form of q0 when in state x, and of course q(x) = qd(x0). In the

following exposition of our solution method, for the sake of generality, we do not exclude

joins that are Cartesian products. (We will do so in the examples however.)

Example 3.1 : Let q0 be described by the query graph

A B C D

which we simply write as q0 = A xB xCxD, and let x0 = (A; B; C; D). Then, if

xx = (AxB; —; C; D), the new form of q0 is qx = (AxB)xCxD. In other words,

only two joins are admissible from xx: (A xB)xC or CxD. Q

Remark 3.1 : If desired, it is possible to bypass the restriction that an original relation

be deleted from the state once it has been joined. In the above example, the separate

computation of the two joins AxB and BxC could be made possible by adding the

new relation B' = B and by considering the modified query:
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A B B' C D .

Here, B' would be treated as a distinct relation, with the constraint that B'xB = B.

However, this technique will not always work in Chapter 7, because there we must distin

guish between tree queries and cyclic queries (see [2]), and such substitutions may

transform the query graph of a cyclic query into a tree. •

0.3.2 - Construction of the State Space

We use the notation: y 6 Tf\x), if state y can be reached from state x in exactly j

steps, for j > l.2 The fact .that parallel processing is possible implies that for each state

* 7^ Xq, there exist integers k(x) and l(x) such that

x e n Jf(x0) 1 < k(x) < l(x) < N-l, (3.1a)

* $ T?(*o) far 1 < j < k(x) and l(x) <j< N-l. (3.1b)

l(x) is easy to determine: add the number of joins that have been performed in the inter

mediate relations present in x. k(x) depends on the amount of parallel processing that

can be done in reaching x from xQ.

The state space, denoted X, is then

X := {x : x e T*(x0) for some integer j, 1 < j < N-l } U {xQ}. (3.2)

Clearly, Xf = Tj$_x(x0). T~(x) will denote the set of states that can reach x in a one-

step transition:

r-(x):={yeX:x6T*(y)}. (3.3)

Our objective is to use dynamic programming to determine the minimum-cost trajec

tory from x0 to any state in Xf. For this purpose, we have to divide the state space X

2 When j"»l, it will be omitted as a subscript.
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into N disjoint subsets. (This is necessary to solve recursively the dynamic programming

equation; see Section 6.5.) We subdivide X as follows:

X=g1X(.') (3.4a)
1=0

where

X(0) := { x0 } (3.4b)

X(t):={* eX:l(x) = i }, 1<i<N-1, (3.4c)

with l(x) as defined in (3.1). The fact that / is a function on X implies that (3.4a) is true

with the X(i )'s mutually disjoint. Observe also that X(N—1) = Xf.

The motivation behind the above subdivision is to put a state in the indexed subset

corresponding to the maximum number of steps in which this state can be reached from

x0. As a consequence, the following simple lemma is true.

Lemma 3.1 : If x 6 X(i), 0 < • < N-l, and y € T(x), then y € X(j) with j < i.

Proof: Since y 6 T~(x), l(x) > l(y) + 1, proving the result. Q

0.4 - Analysis of One-Step State Transitions

0.4.1 - Minimum Cost of One-Step Transitions

We now define the^partial function c : X X X —• R+ U {0} as follows. For x € X

and y 6 T*(x), c(x, y) is defined to be the minimum cost of doing the one-step transition

z toy. This transition involves doing one or more parallel joins between relations in x.

(By parallel joins, we mean joins involving distinct relations with answers located at

different sites.) This minimization problem has received much attention in the literature,

and various methods have been proposed for joining two relations located at different

sites. This point is discussed in the next section.
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We will not study specifically how to compute c(x, y) except for discussing what

information is needed for its computation. We impose no assumptions on the function c,

apart from requiring that it be non-negative. Therefore, we allow for complete generality

of the cost model.

Let is(x> y) denote a sequence of operations, comprising data movements and local

processing, that performs the join and possibly subsequent local processing, in the transi

tion from x to y. (In the case of parallel joins, assume 75 is a vector whose components

describe how each new intermediate relation in y is to be obtained from x.)

The important observation is that c(x, y) is only a function of x, y, and 75(2, y),

and does not depend on how the state x was reached from xQ. We shall refer to this fact

as the separation assumption.

Remark 4.1 : We use the terminology separation assumption, because as mentioned in

[13], the ordering of the tuples in the relations that are being joined can influence the cost

of performing that join, depending on the way the data is accessed in the join method

employed. We neglect such a dependency and assume throughout this chapter that the

separation assumption is valid. However, we discuss in Chapter 7 how to account for this

further degree of refinement by including in the state information about the ordering of

the tuples in each relation. D

Letting T§ be the (finite) set of all admissible 75, we can write

c(x,y)= min e(x, y; 75) (4.1)
1s€Ts

l\x, y) := argmin c(x, y; 75), (4.2)
TsGTs

where c(x, y; 75) represents the total cost (including communication and local processing)

to go from state x to state y by doing the operations described by 7s(s, y).

We now separate in 75 the information concerning the relations that are joined from

the specific site locations of these relations and the new intermediate one, in the following
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way.

is(x> v) = q[ *A i(z, y))»*(*, y) ] (4.3a)

where, if we denote by Rx and R2 the two relations that are being joined, and by Rx+2 tne

resulting new intermediate one,

I(x,y):={Rx,R2;d;a } (4.3b)

with d = 0 if Rx and R2 are located at the same site in x, or d = 1 if not, and with a =

1, 2, or 3, according to whether Rx+2 is located, in y, at the site of Rx in x, at the site of

R2 in x, or at some third site, respectively;

and where

s(x, y) '== { site of Rx in x ; site of R2 in x ; site of #1+2 in y }. (4.3c)

7 is to be seen as the restricted form of 75, depending only on I(x, y), whereas the func

tion g combines it with s(x, y) to completely describe 75(2, y).3

This notation is employed because under the site-uniformity assumption, a strategy

for performing a join only depends on the information contained in I(x, y), and not on

the supplementary information in s(x, y). We denote by T the set of all these strategies.

Knowledge of I(x, y) suffices to completely determine their costs. Typically, a strategy in

r specifies which data is to be moved, e.g., Rx to the site of R2, vice-versa, or both Rx and

R2 to a third site, and how the join is to be performed, e.g., merge join, nested-loop join,

or by an elementary semi-join program. More details are given in the next section.

Therefore, we can write in this case

c(x, y) = min c(x, y; 7) = min c( I(x, y); 7), (4.4)
7€T i€r

8 In the case of parallel joins, think of all the above as vectors, each component associated with a
different join.
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the last equality emphasizing the information required for the computation of the cost.

This result will be used in Section 6.6 to reduce the amount of computations under the

site-uniformity assumption.

Finally, we mention that the evaluation of the function c requires information such

as the size of the intermediate relations and the amount of processing time needed to per

form some operation. In practice, these values are not known beforehand and estimates

have to be found. This problem will not be considered in this paper (see [20] for a review

of some estimation algorithms). In any case, it is common to all distributed query process

ing algorithms, and we believe that the estimation task is no greater in our framework

than in most other algorithms.

0.4.2 - On Distributed Join Strategies

In this section, we mention some strategies that can be included in the strategy space

r of (4.4). At the outset, we point out that our state model is general enough to permit

any distributed join strategy.

Assume, as in [1, 5, 7-13, 15, 18-21], that the site-uniformity assumption holds.

I(x> v) =* { R\) R2) d \ a } is given, and an appropriate set of strategies over which to

carry the minimization in (4.4) must be determined. The decision on which strategies to

include in T is a design problem that will be influenced by the specific cost model under

consideration.

If d = 0, i.e., if Rx and R2 are located at the same site, the work done in [4] suggests

that one of the two join methods: nested-loop or merge-scan, will give good results. If also

o=3, the two relations may be moved and the join performed at the third site, or,

instead, Rx+2 may be moved to the third site.

In the case where d = \, more options are available. In system R for example ([13,

15]), eight strategies 7 are considered. These strategies are obtained by selecting interest

ing choices among all possible combinations of the following parameters: (i) join methods:
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nested-loop or merge-scan, and (ii) transfer strategy when moving relations: ship whole,

ship whole and store, or fetch as needed. Also, the join is performed at the site specified

by a, i.e., the join site is that where Rx+2 is located after the state transition. This

requirement can be ignored to allow for more strategies.

When semi-join state transitions are not explicitly considered, as is assumed for the

moment, elementary semi-join programs (Section 6.3.1) can also be included as strategies

for the join state transition. These simple semi-join programs are often a useful tactic in

query optimization, especially when communication costs are much more important than

processing costs. (See [5] for recent simulation results on this issue.) Moreover, if mul

tiprocessing at each site is available, suitable multiprocessor join algorithms can be

included in T (see [17] for examples of such algorithms).

0.4.3 - Additivity Properties of the Function c

Due to the possibility of parallel processing, two states that are connected by a one-

step transition can also be connected by other /-step transitions, / > 1. In general, the

total cost of each of these paths between the two states will not be the same. For exam

ple, if the two states differ by two new intermediate relations, it may be cheaper to do

parallel processing and perform the two joins and required local processing in one step, if

this is possible, than to do a 2-step transition. (This will be the case if e is the total

elapsed time.) We will be concerned with the following set of additivity properties for c.

Definition: Given a state space X, the function c defined in Section 6.4.1 is said to be:

(i) additive iff

n-l

*(*!, *n) = E c(*i» *i+i) (4.5)

for all integers n < N and for all [xx, . . . ,xn] in X, such that all the above terms are

well-defined. That is, we must have xn 6 T+(xx) n T+(xn„x) and

*•+! € T^Xi), i = l,... ,n-2.
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(ii) sub-additive (super-additive) iff

c(*i, xn) < (>) "S c(xit zl+1) (4.6)
t=i

for all integers n < N and for all {xx,. . . ,xn) in X, such that all the above terms are

well-defined. D

A sub-additive c means that parallel processing is always cost-advantageous. In this

case, among all paths between any two states, one with only one step always has a non-

superior cost to one with more than one step, as the above definition says.

It is reasonable to assume that c will either be additive or sub-additive. For exam

ple, total processing time is additive, whereas total elapsed (or response) time is sub

additive. Nevertheless, it may happen in some cases that c is neither. For the sake of

generality, we shall also take this case into account in the following sections. (Most of the

work in the literature assumes an additive (see [3, 8, 9, 13]) or sub-additive (see [1, 12])

cost function.)

0.5 - Algorithm for the Computation of the Optimal Solution

0.6.1 - Dynamic Programming Equation

The algorithm that we propose is based on the separation assumption discussed in

Section 6.4.1. The key fact about the solution to this problem is that it can be separated

into two steps: (i) computation of the function c for all admissible pairs of states, and (ii)

computation of the cost to reach each state by an application of dynamic programming.

The advantage of using dynamic programming is that we need not compute the costs

of state trajectories, but only that of states. This results in substantial savings, since

N-l

there is a maximum of 2 IX(i) I states whose costs must be computed, whereas there
1=0

N-l

can be as many as JJ |X(i)| trajectories between x0 and Xf. (Each trajectory
t«=0
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corresponds to a distinct sequence of processing operations yielding qo(x0) at some site.)

We now wish to describe step (ii) in detail. For this purpose, we must introduce new

notation. For x € X, we define C(x) to be the minimum cost to go from state x0 to state

x, the number of steps being arbitrary. We also define V(x) to be the minimum cost to

go from state x to a state in Xf in an arbitrary number of steps. The boundary condi

tions are: C(x0) =» 0 and V(x) = 0 for all x £ Xf.

The objective is to determine

Cpf/):= min C(x) (5.1)

along with the optimal state trajectory between x0 and the state: Xf := argmin C(x).

We will also use the notation C;() to denote the restriction ofC() to X(j).

The dynamic programming equation for this problem is

C(x)= min lC(y) + c(y,*)]. (5.2)
V € T{x)

This is a consequence of the separation assumption. We want to specify an efficient recur

sive procedure for finding C(x) for all states x. Such a procedure will depend on the

additivity properties of e. In the case of additivity or super-additivity, the following

lemma shows that we need only consider the set of trajectories with maximum number of

steps between x0 and x, since this set always contains an optimal solution.

Lemma 5.1 : Suppose that c is additive or super-additive. Consider a state x 6 X(i).

Then there is an t-step trajectory between x0 and x that achieves C(x).

Proof: Straightforward, using (4.5) and (4.6). D

When e is sub-additive, i.e., parallel processing is always advantageous, we can elim

inate all the trajectories which contain a multi-step path between two states whenever

these two states can be connected by a one-step transition. In such cases, the sub-

additivity property of c implies that the one-step path is more economical, and therefore

these trajectories will never be optimal. However, this simplification in terms of
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trajectories is not immediately applicable to (5.2). To achieve it, we shall use T^(x), a

subset of T~(x) constructed as follows.

Construction of T~(x) :

Step 1 - Given an x 6 X(i), i.e., l(x)=i, let j be the lowest integer such that:

x(j) n r-(*) ^ 0- set s(j) = t(x).

Step 2 - If j as i —1, then go to step 4. Otherwise, let Z(j) be the set

Z(J)—X(j)riS(j) (5.3)

and proceed to step 3.

Step 3 - Determine the set P(j), which is defined as follows:

P(j) := { y e S(j) : y 6 Tf(z) for some 1 < k < i-j-l

and some z 6 Z(j) such that there is (5.4)

some optimal trajectory between x0 and y that goes through this z }.

(Observe that the optimal trajectories to each such y are determined at the same

time as C(y), hence before the computation of C(x) (from Lemma 3.1).)

Set S(j-\-l) = S(j) —P(j), and then increment j and return to step 2.

Step 4-SetI7-(z) = 5(i). Q

For a motivation of the above construction procedure, refer to Fig. 5.1. There, for

the computation of C(x), we can only remove y from T~(x) if we are sure that there

exists a trajectory that reaches y by going through z and that achieves C(y). If this is

not the case, then

C(z) + e(z, y) > C(y) (5.5a)

and we cannot conclude that

@(z) + c(z, x) < C(y) + c(y, x), (5.5b)
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even though

c(z, x) < c(z,y) + c(y, x). (5.5c)

Consequently, y cannot be deleted from T~(x).

step i-S

step i-1

step i

Fig. 5.1

The following theorem gives a procedure for computing C over all the state space.

Theorem 5.2 : Given the initial condition C(x0) = 0, the function C can be recursively

computed over all of X as follows. According to the properties of the function e,

solve the following corresponding recursion for t = 1, . . . ,7V—1.

Case 1 - c is additive or super-additive:

ciix) — ^,^1° ,. „ Ici-i(v) + c(y>x) 1

Case 2 - c is sub-additive:

C,.(x)= min [C(y) + c(y,:r)]
V € 7Vt*)

Case 3 - c has none of the properties of cases 1 and 2:

C{(x)= min [C(y) + e(y, *)]

(5.6)

(5.7)

(5.8)
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Proof: First observe that the three recursions are well-defined because, by Lemma 3.1,

i-l

T~(x) C M X(j), and so all C(y)'s on the right-hand sides have been computed before

step t. By (3.4), C(x) will be computed for all x 6 X. What must be shown is that, in

cases 1 and 2, the restriction on the domain of the optimizer y is of no consequence, i.e.,

(5.6) or (5.7) return the same results as (5.2).

Case 1: c is additive or super-additive.

By way of contradiction, suppose that there exists z € T"(x) fl X(j), with j < i—1, such

that:

Cj(z) + c(z, x) < C,-i(y) + c(y, *) for ally 6T(x)n X(i-l). (5.9)

The left-hand side of (5.9) describes a (j*+f)-step trajectory between x0 and x whose cost

is strictly smaller than all t-step ones, t = l(x) > j'+l. This is because the right-hand

side of (5.9) contains all t-step trajectories from x0 to x, and only those ones. But, by

Lemma 5.1, this means that c cannot be additive nor super-additive. We get the desired

contradiction.

Case 2: c is sub-additive.

Again, suppose that there exists w 6 T~(x) —T^(x) such that

C(w) + c(w,x) < C(y) + c(y,x) for all y 6 77(x). (5.10)

But, from (5.4) in the construction of TT(x), there exists z 6 7T(x) such that w 6 Tjf(z),

for some integer k, with z necessarily on an optimal trajectory between x0 and w. That

is, we can write:

C(w) = C(z) + c(z, xx)+ "• + c(xn_x, w) (5.11a)

where we denoted by {z, xx, . . ., xn_lf w) this optimal path between z and w, or more

simply:

C(w) = C(z) + c(z, w) (5.11b)
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if this path is only composed of one step. Combining (5.11a) and (5.11b) with (5.10) (set

ting y=* there), we get, respectively,

c(z, xx)+ • • • + c(xn_x, w) + c(w, x) < c(z, x), (5.12a)

c(z, w) + c(w, x) < c(z, x). (5.12b)

But (5.12) means that there is a multi-step path between z and x going through w, whose

cost is strictly smaller than c(z,x). This contradicts the sub-additivity property (4.6) of c

and demonstrates that no such w can exist. D

This theorem shows that when c possesses some additivity property, significant sav

ings can be achieved for the computation of C{(x) by a restriction on the domain of the

optimizer y. The minimization in (5.6) is over a considerably smaller set than the one in

(5.2). (This is why we have chosen to put additive e's in case 1. They could also be con

sidered as part of case 2.) In the sub-additive case, if one does not wish to construct

T^~(x), then using (5.8) would of course yield the correct answer.

0.5.2 - Statement of the Algorithm

We now have all the elements to state the algorithm that we propose.

Algorithm for distributed query processing :

Given a query q0 referencing N original relations and an initial materialization x0 for

these relations in the distributed database, proceed as follows to determine the optimal

sequence of processing operations for q0, according to a given cost model.

Part I - Construct the state space X by constructing the sets Tf(x0), j = 1, . . . ,N—l.

At the same time, identify the sets T~(x) for all x in X.

Subdivide X into disjoint subsets X(i), i = 0, . . . ,N—l as described in (3.4).

Part II - Compute c(x, y) for all y 6 X and for all x E T~(y). 7s(x, y) of (4.2) gives

the optimal sequence of operations for the state transition x toy.

Determine if the function c possesses some additivity property.
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Part m - Compute C(x) for all x G X by using Theorem 5.2.

For each x, let y (x) be the argument (or the set of arguments) minimizing the

appropriate form of the dynamic programming equation: (5.6), (5.7) or (5.8).

Part IV - The globally optimal cost is C(XA = min C(x), achieved at Xf, say.

The globally optimal trajectory(ies) is (are)

*o> •••, y'(v'(*f)), y'(z}), *f, (513)

i.e., eachone of them is constructed backwards from Xf until it reaches x0. D

The fact that the trajectory(ies) of part IV is (are) globally optimal is a consequence

of the verification theorem for dynamic programming. If it is desired that the answer to

q0 be located at a specific site, then we eliminate the last minimization done in part IV: Xf

is the final state in Xf that contains 9o(x0) at the given site. In addition, heuristics such

as "defer to as late as possible joins requiring a Cartesian product" could be taken into

account in the construction of the state space in part I.

Finally, the state model permits expression of the computational complexity of this

problem algebraically in terms of the states. Because of the use of dynamic programming,

the total number of additions and comparisons required in part III is at most quadratic in

the cardinality of the state space. On the other hand, in the worst case where N = M

and where no heuristics are used to prune the state space, we have not been able to obtain

a polynomial bound on the total number of states and this number is probably exponen

tial in N. (Observe that the equivalence class technique of Section 6.6 can significantly

reduce that number.)

0.5.3 - A "Best-First" Strategy

The algorithm of the preceding section gives a systematic way of computing C(Xf).

It is however possible to compute the optimal solution without necessarily having to com

pute all c(%, ') pairs and all C(). For example, suppose that we know an upper bound for
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the optimal cost, i.e., suppose that we have determined that C(Xf) < R. Then, if we

compute a C(x) > R for some state x, we know that this state will never be on an

optimal trajectory and need not be considered in the remaining calculations. This will

result in smaller T~() sets for all states in T*(x). In particular, the one-step optimal

transitions c(x, •) need not be computed.

We now wish to propose a "best-first" strategy which takes advantage of this fact to

improve on the efficiency of the basic dynamic programming algorithm of the last section.

More precisely, we want to replace parts II and III of that algorithm by a better pro

cedure. For this purpose, we need some new terminology. We say that a state z in an

ancestor of state x if there exists k, 1 < k < N—l, such that x 6 Tjf(z). The set of all

the ancestors of x is denoted by Anc(x). Observe that our definition of a one-step transi

tion implies that each state in Xf has exactly X(N—2) as the set of its ancestors. This

observation justifies step 4 in the following procedure.

"Best-first" strategy for parts II and HI of the algorithm :

Given a state space X and Xf C X, we want to determine C(Xf) and the optimal

trajectory to the optimal state in Xf.

Step 1 - Determine a good upper bound Rf such that C(Xf) < Rf, and denote the tra

jectory that achieves this value Rf by Traj(l). 7ray(l) = {xq, . . ., x^^l), Xf },

where Xn^I) := Traj(l) DX(N—2), and where Xf € Xf is chosen together with

Rf and Traj(l), or,is the state containing q<J(x0) at the desired site, if a given site is

specified for the location of the answer.

Set ioi and Xr — X.

Step 2 - Set X\ — ( Anc(xN^i)) n Xr ) U { xN^i) }.

Use Theorem 5.2 to compute C(xN_2(i)), considering XI as the state space, and com

puting each c(-, •) only when needed. If a state has cost greater than Rf, then it can

be deleted whenever it appears in a subsequent T~() set.

Update the current upper bound Rf if there exists Xf € Xf such that
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C(xjv-jj(»)) + c(xn-2(*)i xf) < Rf, or if this is true for the specified Xf.

Step 3 - Delete all unnecessary states from the current state space:

X* o-X* -{x :C(x)>Rf }.

Step 4 - If not all the remaining states in X7(N—2) have been used as an xN_o(j) for

some j < t, set t = i+1 and choose a new x^^i), under the constraint that the

selected state has the smallest number of ancestors whose costs have not yet been

computed, and then return to step 2.

Otherwise, compute C(Xf) and determine the optimal trajectories). D

This strategy can be used recursively, i.e., step 2 can be carried out by invoking the

same best-first procedure with Zjv-zf*) m place of Xf, and with Xj in place of X. How

ever, in step 3, Xr and Rf must always remain those corresponding to the original appli

cation of the procedure. This is due to the following observation. Let the upper bound

for the first sub-problem be denoted by R^^i). Then states with cost greater than

Rjsr-A*) can temporarily be deleted from XI for the purposes of the calculation of

C(xN_2(i)), but they should not be deleted from Xr unless their cost also exceeds Rf.

This is because even though such states never lie on an optimal trajectory from x0 to

xN-di* )t thev may he on one from xQ to Xf.

The determination of a good first upper bound in step 1 is normally based on heuris

tics. For example, it could be the result of another (fast) sub-optimal algorithm, or it

could correspond to any- "initially feasible solution" (as defined in [19]). (Observe that it

is required that the sequence of processing operations corresponding to this upper bound

be a trajectory in the state space.) Clearly, the smaller this upper bound is, the higher the

savings yielded by the best-first strategy are. Finally, we mention that the choice of the

new Zjv_2(t) in step 4 could be made on different considerations than simply the number

of ancestors whose costs remain to be computed.

(The A algorithm (see, e.g., [14]) has been suggested as a way of finding the optimal

solution without necessarily having to compute the costs of all the states (or even having
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to construct them). However, an important consideration is that a conservative estimate

of the cost-to-go V(x) must always be available to guarantee that this algorithm will gen

erate an optimal solution.)

0.0 - Equivalence Classes of States

We assume throughout this section that the site-uniformity assumption holds and

that the site location of the answer is irrelevant. In this case, it is possible to aggregate

states into equivalence classes and considerably reduce the computations required to

optimally solve the problem.

Definition: Two states xx and x2 are said to be equivalent, denoted xx « x2, iff the two

following conditions are satisfied.

(i) For all t € / such that xx(i) or x£i) contains original relations, xx(i) = xjj).

(ii) Letting all other sites be denoted by the set of indices J C J (in other words, for all j

€ J, neither xx(j) nor xj^j) contain original relations), xx(J) is equal to xj^J) up to a per

mutation of its components.4 Q

Lemma 0.1 : If xx « x2, then:

(i) T*(xx) « T*(x2), where « for sets means that each element on the left has a

corresponding element on the right that is equivalent to it;

(ii) v(xx) - v(x2y,

(Hi) l(xx) = l(x2) and k(xx) = k(x2).

Proof: (i) xx and x2 differ by a permutation of components containing only intermediate

relations. Do the same permutation on each state in T^Jxj). Since the characterization of

a one-step transition is preserved under site permutations, the resulting set is T*(x2).

(ii) Follows from the definition of V in Section 6.5.1 and from the site-uniformity assump

tion.

4 x(J) denotes x restricted to its components in the index set J.
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(iii) Immediate since xx and x2 contain the same relations. • The proper interpretation

to (ii) above is that the site permutation in going from xx to x2 can be propagated along

an optimal trajectory from xx to Xf to yield an optimal trajectory from x2 to Xf.

Observe, however, that in general C(xx) j^ C(x2) even if xx « x2.

We define an equivalence class of states, denoted x, to be a set of states that are

mutually equivalent. From now on, we regard the state space X as the collection of all

equivalence classes, each containing at least one state, and all of them being necessarily

mutually disjoint. We wish to work with these equivalence classes directly. For this pur

pose, we define

r-(x):= u r(x) (6.1)
*€x

and we say that x 6 ^(y) iff y € T"(x).5 Because of Lemma 6.1 (i), this definition is

sufficient for T*(-), i.e., we need not do as in (6.1). In particular, the following result is

true.

Corollary 0.2 : Let y € X, and consider any y € y. Then, for each x 6 ^(y), there

exists x € x such that x 6 T+(y). D

The purpose of the above is to extend the domain of definition of c(',x) from T~(x)

to T~(x). Whenever a state y € T~(x) - T(x), we set c(y, x) := oo . This has two

consequences. First, it implies that

min- [C(y) + c(y, x)\ = min [C(y) + c(y, x)] (6.2)
V € T\x) y € r\x)

when x € x. Second, it makes the following definition consistent. For y 6 X and

x € T~(y), we define

c(x, y) := min c(x, y). (6.3)
z €x,y €y

6 In the following, we regard T*"(y) as a collection of equivalence classes.
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C(x):= min C(x) , (6.4)
* €x

we can prove the following lemma.

Lemma 0.3 : C(x) = min [ C(y) + c(y, x)] .
y€T"(x)

Proof: From (6.4), (5.2) and (6.2), we have that

C(x)=min{ min [ C(y) + c(y, x) ] }. (6.5)
* € x ye T~{x)

But the two minimizations can be interchanged in (6.5), yielding successively

C(x) = min min [ C(y) + c(y, x) ] } (6.6)
y € T-{x) x € x

C(x) = min min min [ C(y) + c(y, x) ] (6.7)
y € I^x) y 6 y * € x

C(x)= min [C(y) + c(y,x)], (6.8)
y € rix)

where (6.7) is obtained by breaking the first minimization into two steps (define th y's by

partitioning T~(x) into disjoint equivalence classes), and where (6.8) is obtained by bring

ing the last two minimizations inside the brackets and by using definitions (6.3) and (6.4).

•

This lemma shows that C(x) does not have to be computed from its definition (6.4),

but instead can be computed recursively by means of (6.8) and (6.1), starting from the ini

tial condition C(xq) = 0 (with Xq := { x0 }). In other words, once c has been computed

for all admissible pairs of equivalence classes, we only have to consider these equivalence

classes, not the individual states they are composed of, for the computation of C. The

desired answer is C(Xf), since Xf is itself an equivalence class.

With (6.8) now established, it is clear that the generalization of Theorem 5.2 to

equivalence classes is also true. It suffices to replace states by equivalence classes every

where in the statement of that theorem. (The proof makes use of lemmas 6.1 (iii) and 6.3,
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and of the following observation: the definitions of additivity and sub(super)-additivity in

Section 6.4.3 guarantee that (4.5) and (4.6) (and hence Lemma 5.1 as well) still hold when

individual states are replaced by equivalence classes in these equations.)

Observe that so far we have not invoked the site-uniformity assumption. Solving

(6.8) recursively yields C(Xf) and one or more optimal trajectories going through

equivalence classes and represented by

xo,...,y\y'(X,)),y\Xt),X,, (6.9)

where y*(x) denotes the argument minimizing the given dynamic programming equation

for C(x). However, the definition of c(x,y) in (6.3) shows that it will depend on specific

states inside x and y. Consequently, we must show that we can match the various paths

between the equivalence classes in (6.9) to produce a continuous optimal state trajectory.

For this, we must invoke the site-uniformity assumption.

Let x* and y* be two arguments minimizing (6.3). Since the site-uniformity assump

tion holds, we can make use of (4.4). Therefore, the minimum cost of the transition

between x* and y* depends only on J(x*,y*), and not on s(x ,y ), and it is achieved by

the strategy 7* € I\ say. Suppose now that the previous path in the optimal trajectory

reaches state x' 6 x, but that x' j£ x*. We know from Lemma 6.1 (ii) that these two

states have the same minimum cost-to-go. Nevertheless, we want to be more precise con

cerning the continuity of the trajectory inside the equivalence class x. The following

lemma shows how to connect the two portions.

Lemma 0.4 : Let x*, y* and 7* be arguments minimizing (6.3) and (4.4). Then, given

x% ~ x , there exists y' £* y such that

«(»V)-«(*V). (••">)

c(x',V<) = c(x',V\-,'). (6.11)

Proof: Recall the definition of I(x,y) in (4.3b). Clearly, from the definition of

equivalence, the elements Rv R& d depend only on the class x. We can perform on y
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the same permutation that transforms x into x' to get y1, with y1 6 T*(x') since one-step

transitions are preserved under site permutations. But, clearly, I(z',yr) = I(x ,y ), i.e.,

by propagating the permutation, we obtain in I(x',y') the same a as in I(x ,y ). (6.10)

and (6.11) are then immediate from (4.4). •

Observe that this lemma states that not only the pair (x',y') has the same minimum

transition cost as (x ,y ), but, moreover, that this minimum is achieved by the same stra

tegy 7*.

A consequence of this lemma is that the first time an optimal trajectory enters an x

with Ix I > 1 from some state z, e(z,x) determines a specific state x(z) £ x. Then, by

way of the propagation of permutations of the above proof, specific states in all the subse

quent equivalence classes in the trajectory "are being determined. The resulting complete

state trajectory achieves C(Xf). This application of Lemma 6.4 is the only addition to

the algorithm of Section 6.5.2 in the site-uniformity case considered in this section.

0.7 - Example

Consider the four relations:

Person: P(socsec, name),

Corporation: C(cnumber, sector),

IRA: I(socsec, amount),

.Employee: E(socsec, enumber, salary).

Person and Corporation are located at site 1, IRA at site 2, and Employee at site 3.

Suppose one wants the name and salaries of those persons working in the sector "high-

tech" who have invested in their IRA's more than half of their annual salary. This query

<70 can be written



range of p is Person

range of c is Corporation

range of i is IRA

range of e is Employee

retrieve (p.name, e.salary) where (p.socsec = e.socsec)

and (e.socsec => i.socsec)

and (p.socsec = i.socsec)

and (e.cnumber = c.cnumber)

and (csector =» "high-tech")

and (e.salary < 2 X i.amount).

q0 is described by the query graph of Fig. 7.1, where each link represents a join.

Fig. 7.1 - Query graph
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x0 = (P, C; I; E). We want to find the optimal sequence of operations to obtain

Q.dixo) from xot assuming the sizes of the original and intermediate relations are as in Fig.

7.2, and for the following simple site-uniform cost model:

c(xXf x2; 7) = total size of data moved between sites in the transition l(x1, x2).

(This cost model does not consider local processing costs.) We solve this problem using

equivalence classes, considering the following strategies in T:
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(i) rf=*0 and a=3: move Rx and R2 to s(Rx+2), or move /21+2 to s(Rx+2);*

(ii) J=i and a=l: move /?2 to «(i?i), or move i?x to 0(^2) aQd then #1+2 to «(i?i);

(iii) d=\ and a=3: move Rx to $(#2) aQd then -ft1+2 t0 tne third site, or move i?2 to

«(i2|) and then #1+2 to tne third site, or move A| and R2 to the third site.

The complete state space is given in Fig. 7.3 (only one state per equivalence class is

indicated), and the diagram of all state trajectories in Fig. 7.4. From the data in Fig. 7.2

and the above list of admissible strategies 7 for a one-step state transition, it is straight

forward to obtain from (4.4) the values of c labelling the one-step paths in Fig. 7.4. Then,

by an application of the dynamic programming equation (6.8) (or (5.6) with equivalence

classes since the above c is clearly additive), we obtain the C(x) listed in Fig. 7.3. We

conclude that the optimal cost is 110, and that it it is achieved by the four following tra

jectories, all giving the answer at site 1:

x0 -+ xx0 -*• a?ia -♦ (PxIxExC; —; —)

xo ~~- xn ~* *i6 ~* (PxIxExC; —; -)

xo ~* *io -* {P't CxExI; -) -♦ (PxIxExC; -; -)

x0 -*• xxx — (P; CxExI; -) —• (PxIxExC; —; —).

We now comment on the use of the "best-first" strategy of Section 6.5.3 for this

example. Since there are only three steps in this problem, it is not necessary to invoke

this procedure recursively. A simple initial choice for step 1 would be:

Traj(l) = { x0, xx, xx3, Xf }, whose cost is Rf = 100 + 130 + 0 = 230 (refer to Fig.

7.4). This corresponds to having each new intermediate relation always located at site 1,

the site where there is the largest number of tuples at the beginning. Then, x4, x5 and x6

can be deleted from the state space immediately after their costs have been computed.

This alone saves the calculation of 12 one-step optimal costs. Once C(xl3) has been

0 s(R) denotes the site where relation R is located.
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computed, x2 and xz can also be deleted because the updated Rf is now 130 + 0 = 130.

So if xx2 is the choice for xN^2), then T~(xx2) now contains only three states instead of

the original seven. Further savings will occur at the subsequent steps.



RELATION SIZE

P

C

I

E

1000

50

100

500

Pxl
PxE

IxE
CxE

100

500

30

50

PxIxE

CxExI
PxExC

30

10

50

PxIxExC 10

Fig. 7.2 - Size of relations
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X x(l) 2(2) x(3) l(x) Ixl C(x)

0 P,C J E 0 0

1 C,PxI - E 100

2 C Pxl E 200

3 C - E,PxI 200

4 C,PxE J - 500

5 C I, PxE - 1000

6 C I PxE 1000

7 P,C,IxE - • 130

8 P,C IxE - 100

9 P,CxE I - 100

10 P I, CxE - 100

11 P I CxE 50

12 C PxIxE - 2 160

13 C,PxIxE • - 2 130

14 PxExC, I - 2 100

15 - I,PxExC - 2 150

16 P,IxExC - - 2 110

17 P IxExC - 2 2 100

18 Pxl,CxE - - 2 3 200

19 Pxl CxE - 2 6 150

/ PxIxExC - - 3 3 110

Fig. 7.3 - State space
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Fig. 7.4 - State trajectories
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Chapter 7

Extensions of the State-Transistion Model:

Semi-Joins, Redundancy, Centralized Database

7.1 - Introduction

In this chapter, we pursue the work of Chapter 6 and consider three extensions to

the basic model presented there: (i) semi-join state transitions, (ii) redundant initial

materializations, and (iii) refinement of the model in the case of a centralized database.

These three cases are treated separately, but the results that we obtain can all be com

bined to allow for complete generality.

7.2 - Including Semi-Join State Transitions

7.2.1 - Admissible Semi-Join Transitions

We now remove the restriction imposed in Section 6.3.1 that only joins be admissible

state transitions and also include transitions consisting of semi-joins. This time, since

another join with B is required after A xB has been done, B has to be kept in the new

state. In other words, we now make the following deletions in the new state after a tran

sition: (i) after AxB, remove both A and B from the new state, and (ii) after AxB,

only remove A from the new state.

The q part in the complete state (x, q) must keep track of the new properties of the

query to avoid idempotent transitions. Let q0 = AxBxC, corresponding to the query

graph: A B C, and let x0 =» (A; B; C). Then for xx = (A1; B; C) with

A' = A xB, the corresponding qx =» A'xB xC with the constraint that A'xB = A1.

Observe also that the strategy sets Ts and T of Section 6.4 (for step II of the algorithm)

are not the same for semi-join and join state transitions. (They are clearly simpler for a
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semi-join.) In particular, join strategies based on elementary semi-join programs need not

be included any longer because the intermediate semi-join states now appear explicitly in

X.

We shall say that a relation has been fully semi-join-reduced when any further

admissible semi-join on it is idempotentor brings no further deletions of tuples (cf. [9]). A

state is fully semi-join-reduced when all the relations in it are fully semi-join-reduced.

Remark 2.1 : We do not consider the reductive power of semi-joins, as in [2-4, 9], but

rather their efficiency, in terms of cost, as operations (state transitions) in distributed

query processing. We need the concept of full semi-join-reduction to determine a bound

on the maximum number of state transitions before reaching Xf. For this purpose, we

will invoke results from [2-3]. D

In addition to the conditions in the definition of one-step transitions in Section 6.3.1,

a one-step transition from state (x, q) involving AxB with A and B relations in x is

admissible iff:

(i) A is not fully semi-join-reduced;

(ii) A and B are linked in the query graph of q (observe that if there is more than

one link between them, the semi-join is on all the attributes involved in these join

clauses); and

(iii) A and B are located at different sites in x.

Furthermore, we require that: (site of (AxB) in the new state) = (site of A in x).

(These requirements are common in the literature; cf. [5, 6, 7, 8, 13, 14].)

Despite these restrictions, the number of semi-joins that can be made in the process

of solving q0 is very high. The reason for this is that for general queries involving the

three operations: projection, restriction, and (equality or inequality) join, the semi-join

operation possesses no nice properties; in particular, it is not associative and rarely idem-

potent. Very long semi-join programs can be constructed to reduce a relation (see [6, pp.

141-5]).
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Our interest is two-fold: (i) how to recognize fully semi-join-reduced states, and (ii)

how to determine the maximum number of state transitions possible before such a state is

reached, denoted NUM,j. Once in such a state, a maximum of N—l additional transi

tions (corresponding to the TV—1 joins that must be done) necessarily yields a state in Xf.

The answer to these questions depends on the form of q0. For our purposes, we distin

guish two categories of queries:

(1) those for which full semi-join-reduction can be identified syntactically, and for

which NUMtj is expressible in terms of N only;

(2) those for which full semi-join-reduction cannot be identified syntactically, and for

which NUM,j is of O(m), where m is the number of tuples in some original relation

referenced by the query.

The work in [2-3] demonstrates that for equi-join queries,1 the characterization

between (1) and (2) is simple: (1) consists of the tree queries (roughly speaking, of the

queries whose query graph has no cycles), whereas (2) regroups all other equi-join queries,

denoted cyclic queries. (We refer the reader to [2, 3, 9] for the precise definition of tree

query.) Queries with inequality joins have also been studied (see [4, 15]), but the results

are quite different. In particular, full semi-join-reduction is possible for queries with

"good cycles" [4]. For the sake of simplicity, we shall restrict our attention to equi-join

queries and treat separately tree queries and cyclic queries in the next two sections.

Observe, however, that there is no other conceptual difference between the case we

study in this section and the simpler case of the preceeding chapter, as far as the solution

framework that we have proposed is concerned. Once the state space X has been con

structed according to the above restrictions for admissible semi-joins, the rest of the solu

tion is exactly as described in Sections 6.3 to 6.6, and all the results there still hold. The

1 An equi-join query is a query which is a conjunction of join clauses, all the joinsbeing on equali
ty conditions, i.e., equi-joins. They can be augmented by target lists and clauses involving constants,
but these latter clauses should not be treated as links in the query graph, but instead separately by
the restriction operation. They are the type of queries considered in [1, 7, 8, 10], for example.
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only difference is that the maximum number of steps to reach Xf is no longer N—l.

Now, the important fact is that the state transition model is general enough to

encompass and generalize many algorithms based on semi-join programs, in particular [5,

7, 9, 13]. All the strategies that the the SDD-1 algorithm [5, 13] can reach and all the

"correct nonredundant semi-join programs" for chain and tree queries of [7-8] correspond

to state trajectories in our framework, since all their intermediate steps are states in X.

(The same cannot be said about the main algorithm of [1], because it can yield strategies

containing more than one semi-join with the same relation, each one on a different attri

bute.)

7.2.2 - Case of Tree Queries

Tree queries are simpler to analyze than cyclic ones due to the following lemma.

(Without loss of generality, we assume a cycle-free query graph.)

Lemma 2.1 : Let q0 be a tree query referencing TV original relations in a distributed

database. Then the maximum number of state transitions to reach a state in Xf

from x0 is bounded above by (N+1)(N—1).

Proof: The worst case occurs when each of the N original relations is located at a

different site. Each such relation will be fully semi-join-reduced after N—l semi-joins ([2],

Theorem 1; [3], Theorem 1). Hence, with only one new semi-join at each transition (and

this is always possible),.after N(N-l) transitions, all the relations will have been fully

semi-join-reduced, and any further admissible semi-join will be idempotent (cf. [8],

Theorem 2). After that stage, q<J(x0) can be obtained after N—l joins. Clearly, interleav

ing join and semi-join transitions cannot result in more steps before q^x0) will be reached.

D

The crucial fact here is that the above upper bound only depends on the number of

relations in the query, and not on the particular relations themselves. Hence, the results

in Sections 6.3 to 6.5 can be directly applied to tree queries. Another interpretation to
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this fact is that in the case of tree queries, the semi-join operation can be viewed as pos

sessing syntactic properties that make it simple to determine when a new semi-join is

idempotent.2 This is best illustrated by means of an example.

Example 2.1 : Consider the tree query qQ: R S D, and let x0 = (R; S; D).

First, observe that from the restrictions on admissible semi-joins in Section 7.2.1, there is

no ambiguity in writing: SxRxD; it can only mean: (SxR)xD. Then, it can be

shown that:

(i)RxSxR =RxS;

(ii) (R xS xD) x(S xD xR) =*RxS xD;

(m)(RxS)x(SxDxR) = Rx(SxD);

Using these and similar results, the state space for this example can be constructed in

a straightforward manner. In that figure, we also list the elements of each T*(x) set. In

order to keep this example simple, we have not performed any semi-join transition when

the answer could be reached in one more join. For the last join, one can always include

elementary semi-join programs in Ts instead of explicitly allowing a semi-join transition.

Observe the advantage of dynamic programmming in this example, where card(X) = 50,

while Fig. 2.1 indicates that there are more than 740 trajectories between x0 and Xf.

The same example is treated in [6], p.146-7, usingthe SDD-1 algorithm. The solution

given by that algorithm corresponds to the following state trajectory in our model:

x0t xit x8* X34>-X/- D

2 These syntactic properties are used in [7-8] to prune thesetof semi-join reducer programs (which
corresponds to eliminating some state trajectories in our model), but this pruning depends on the
specific cost modelconsidered in these references (affine in amountof data moved).
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X x(l) x(2) x(Z) l(x) Ixl T^x)

0 R S D 0 1[ (1-2-3-4-17-18-19-20)

1 RxS S D 1 1I (5-8-7-17-18-26-27)

2 R SxR D 1 1I (6-8-11-17-18-36-37)
3 R SxD D 1 1L (8-9-13-19-20-34-36)
4 R S DxS 1 11 (5-9-10-19-20-28-29)

5 RxS S DxS 2 I (14-15-26-27-28-29)
6 RxS SxR D 2 1 (12-21-17-18-41-42)

7 RxS SxD D 2 I (12-13-14-26-27-34-35)
8 R SxRxD D 2 I (22-23-34-35-36-37)
9 R SxD DxS 2 I (16-24-19-20-43-44)
10 R SxR DxS 2 1 (11-15-16-28-29-36-37)

11 R SxR DxSxR 3 1 (21-23-32-33-36-37)

12 RxS SxRxD D 3 1 (22-30-34-35-41-42)
13 RxSxD SxD D 3 1 (22-24-34-35-38-39)

14 RxS SxD DxS 3 1 (24-25-26-27-43-44)

15 RxS SxR DxS 3 1 (21-25-28-29-41-42)
16 R SxRxD DxS 3 1 (23-31-36-37-43-44)

17 RxS . D 3 * f
18 . • DJlxS 3 I f
19 RfDxS - • - 3 1 /
20 R DxS - 3 2 /

21 RxS SxR DxSxR 1 (30-32-33-41-42)

22 RxSxD SxRxD D 1 (40-34-35-47-48)
23 R SxRxD DxSxR 1 (40-36-37-45-46)
24 RxSxD SxD DxS 1 (31-38-39-43-44)
25 RxS SxDxR DxS 1 (30-31-41-42-43-44)

26 RxS,SxD - - 1 /
27 - RxS SxD - 2 /
28 RxS - DxS 2 /
29 - - DxS,RxS 1 /
30 RxS SxRxD DxSxR 5 1 (40-41-42-45-46)
31 RxSxD SxDxR DxS 5 1 (40-43-44-47-48)

32 RxS . DxSxR 5 2 /
33 • - DxSxR,RxS 5 1 /
34 Rx(SxD) - D 5 2 /
35 - - DJlx(SxD) 5 1 /
36 R Dx(SxR) • 5 2 /
37 RJ>x(SxR) - • 5 1 /
38 RxSxDJ)xS - • 5 1 /
39 RxSxD DxS • 5 2 /

40 RxSxD SxRxD DxSxR 6 1 (45-46-47-48)

41 RxS Dx(SxR) - 6 2 /
42 RxSJ)x(SxR) - 6 1 /
43 Rx(SxD) DxS 6 2 /
44 • DxSJlx(SxD) 6 1 /
45 Rx(SxD) DxSxR 7 2 /
46 - DxSxRJlx(SxD) 7 1 /
47 R xS xDJ) x(S xR) • 7 1 /
48 RxSxD Dx(SxR) - 7 2 /

/ RxSxD - - 8 3

Fig. 2.1 - Example 2.1
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7.2.3 - Case of Cyclic Queries

There is an extra conceptual difficulty in handling cyclic queries. The maximum

number of semi-joins that can be done before full semi-join-reduction is attained is of the

order of the number of tuples in some relation in the query. Thus, in our framework,

there is no upper bound on the maximum number of steps that can be expressed as a

function of N.

Essentially, the reason for so many steps is that, in contrast to the case of tree

queries, semi-join programs for cyclic queries cannot be syntactically examined for idem-

potence, as was possible in Example 2.1. In general, examining the tuples in two relations

is necessary to determine if semi-joins between them will reduce one of the two.

Since it is necessary to recognize when each relation cannot be further semi-join-

reduced to determine which states X can be limited to, the state space for such queries

depends on the particular tuples in the relations referenced by q0, and not only on go aQd

x0. This suggests that it may be impractical to solve the problem in such generality.

For this reason, we suggest below a list of heuristics that can be used to reduce

IXI, resulting in the determination of a possibly sub-optimal solution. (In any case, long

semi-join reductions are unlikely to yield optimal trajectories.)

(i) Impose a bound on the maximum number of semi-joins, based on the size of an original

relation after each reduction (in practice, on the estimate of this size). If there are n links

in the query graph and this bound is 2n, then the state space will be large enough to con

tain any strategy obtainable by the SDD-1 algorithm. Since a maximum of 2n semi-joins

are considered in the first iteration of that algorithm, it has a maximum of 2n iterations.

(ii) Allow only some semi-join programs for each original relation, based for example on

the size of these relations and on the query graph.

(iii) Transform the cyclic query into a tree query (see [14] for a list of some methods that

have been proposed). For example, break each cycle in the query graph of q0 by imposing

a specific join for the first state transition. After that step, the query becomes a tree
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query.3 (Choose the cheapest join in each cycle, or exhaustively solve the problem for each

possible combination of choices.)

(iv) Solve each cycle in the query graph by considering only joins as state transitions, and

then solve the resulting tree query where each cycle is now considered an original relation.

7.3 - Redundant Initial Materializations

We now discuss the effect of beginning with an initial materialization that may con

tain more than one copy of each original relation. Since a join or semi-join of a relation

with itself is not an admissible state transition, the fact that x0 is redundant brings no

complication provided:

(1) for a state transition to be admissible, it must be admissible for each possible

selection of copies of the original relations involved in it;

(2) in the computation of the function c in part II of the algorithm, an extra minimi

zation is carried over all possible selections of copies for the original relations

involved in the state transition; and

(3) when the rules for state transitions require the deletion of a relation from a state,

all copies of that relation are deleted.

Proceeding in this manner is roughly equivalent to solving the same problem for each

possible irredundant x0, and then taking the minimum among these optimal solutions.

This is exact if only join transitions are allowed, but when semi-join transitions are also

included, the same copy need not be used each time an original relation is part of a transi

tion, and thus (1}*(3) permit more generality.4 (l)-(3) are advantageous because the extra

minimization is brought at the individual one-step state transition level, thus significantly

simplifying the task.

8 This corresponds to the"relation-merging algorithm" mentioned in [14].
4 This distinction is irrelevant in the site-uniformity case.
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In conclusion, under conditions (l)-(3), all the results in Chapter 6 remain valid when

Xq is redundant.

7.4 - Centralized Database

Even though we have assumed so far that the database was distributed, our state-

transition model can certainly be applied to query optimization for a centralized database.

The development is the same as in Chapter 6, with the only difference that M = 1. All

the results we have derived remain applicable. In this case, however, no parallel process

ing (as considered in that chapter) is possible, although the model could be specialized to

allow for producing more than one new intermediate relation per site. Also, semi-joins do

not have to be considered.

We believe that in the centralized case it is worthwhile to refine the state space by

considering as state information the orderingof the tuples in the intermediate results (see

Remark 4.1). Such orderings are explicitly considered by the optimizers of systems R [12]

and R [11]. In the remainder of this section, we shall discuss the inclusion of tuple-

orderings in the state.

There are essentially two reasons why tuple-orderings are important. First, the

answer may be required in a given order. More importantly, the merge-scan join method

can use such orderings profitably. In that method, the two relations are first ordered with

respect to the join attribute, and then the join is performed by scanning the relations in

the order of that attribute. It follows that the result is also produced in that order.

Along with the nested-loop join method (which scans the two relations in any order),

merge-scan is one of the most efficient join methods [6]. If one or both of the relations to

be joined are already ordered on the appropriate attribute, then a merge-scan join may be

very advantageous. Therefore, allowing for different orders of the intermediate results is a

relevant refinement of the model.
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Clearly, only the existence of an order on the attributes which are part of a join, or

on those that have to be ordered in the answer, are of interest. We shall regroup the case

of other orders and that of no ordering in one category called "unordered." Let JA(q) be

the set of all attributes that are part of a join in the (closed under transitivity) query

graph of the current form of the query, denoted q in Section 6.3.1 (see the example in that

section). We denote by OA(q) the union of JA with the ordering attribute of the answer,

if any is specified. The admissible orders 0(R) of a relation R in q are

0(R) := OA(q) fl {attributes of R) U {0} , (4.1)

where the symbol 0 means unordered. The elements of 0(R) are of interest because they

influence (each differently) the cost-to-go from the state containing R. The order informa

tion is used at the time of the optimization of one-step transitions for the choice of the

best access and join methods to perform that transition.

An ordering variable in the state is only necessary for the intermediate relations.

Any ordering of an original relation can implicitly be taken into account in the minimiza

tion of the first transition involving that relation. (We do not wish to include an extra

transition at the beginning where each original relation would be ordered with respect to

all its admissible orders.)

Essentially, the only modification to the construction of the state space in Section

6.3.2 is that each state is replaced by a group of states allowing for all combinations of all

the admissible orders of the intermediate relations in the state. An intermediate relation

is now represented by a couple (R,o), where o GO(R). In the most general situation,

when two states connected by a one-step path are hereby generalized, we can allow one-

step transitions between every pair of states from the two groups.

Example 4.1 : Recall the example of Section 6.7. Using the abbreviations s for socsec,

n for p.name, c for cnumber, and d for i.amount or e.salary (whichever is applicable),

the join attributes of q0 in that example are as labeled in the query graph of Fig. 4.1.
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3,d

E

Fig. 4.1 - Query graph for Example 4.1

Assume that the answer is not required to be in any pre-specified order. Given that

the original relations are composed of the attributes listed in Fig. 4.2, we can obtain the

admissible orders indicated in the last column of that figure. (We have adopted the

heuristic: "perform restrictions and projections as early as possible.11) Using these orders,

we can construct the state space tabulated in Fig. 4.3. D

Relation Attributes O(Rclation)

P

C

I

E

s,n

c

s,d
s,c,d

•

Pxl
PxE

' IxE
CxE

s,n,d
s,n,c,d
s,c,d
s,d

s,d, 0
s,c,d, 0
s,c, 0
s,d, 0

PxIxE

CxExI
PxExC

n,d,c
s,d

s,d,n

c, 0
s, 0

s,d, 0

PxIxExC n,d -

Fig. 4.2 • Admissible orders for Example 4.1
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X First Relation Second Relation Third Relation Fourth Relation

0 P I C E

1 (Pxl,s) E C

2 (Pxl, d) E C

3 (Pxlt 0) E C

4 (PxE, s) I C

5 (PxE,e) I C

6 (PxE, d) I C

7 (PxE, 0) I C

8 (IxE,s) P C

9 (IxE,e) P C

10 (IxE,0) P C

11 (CxE,s) P I

12 (CxE,d) P I

13 (CxE,0) P I

14 (PxIxE,c) C

15 (PxIxE, 0) C

16 (CxIxE,s) P

17 (CxIxE,0) P

18 (PxExC,s) I

19 (PxExC,d) I

20 (PxExC,0) I

21 (Pxl, s) (C xE, s)
22 (Pxl,s) (C xE,d)
23 (Pxl,s) (CxE,0)
24 (Pxl, d) (C xE, s)
25 (Pxl,d) (C xE,d)
26 (Pxl,d) (CxE,0)
27 (Pxl, 0) (CxE,s)
28 (Pxl, 0) (C xE,d)
29 (Pxl, 0) iCixE, 0)

/ PxIxExC

Fig. 4.3 - State space for Example 4.1

States x2l to 220 m Fig. 4.3 illustrate that the state space may grow considerably

when all combinations of all admissible orders of intermediate results are allowed. This

also adds many one-step transitions. For instance, in Example 4.1, the three states xx, x2,

and x3 are connected to the nine states x2x to x^.
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If the expanded problem is judged to be too large, some of states and state transi

tions may be pruned. We suggest some heuristics for such pruning. (We refer the reader

to [12] for other heuristics to reduce the number of admissible orders.)

(i) To reduce the number of states, do not allow a pair (Rx, a) in a state if all other inter

mediate relations in the state are ordered on different attributes than a (they could be

unordered), unless a is the required order for the answer. In Example 4.1, this means that

states 222 and z24 would be removed. The rationale is that it may not be useful (cost-

wise) to specifically distinguish states where all the intermediate results are on different

orders. (Observe that in this case "unordered11 can be interpreted to mean unordered or

in any order that is not explicitly considered for this relation.)

(ii) To reduce the number of one-step transitions, require that once an intermediate rela

tion is in a given order, it either (i) stays in that order, (ii) becomes unordered, or (iii)

acquires a new order it could not have had before (e.g., new attribute acquired during a

join). Unordered relations would still be allowed to become ordered in the process of a

join. The transitions pruned this way seem intuitively less interesting. For example,

transition xx -* x2i in Example 4.1 would be eliminated under these constraints.
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Chapter 8

Application of the Results of Part EI:

Distributed Evaluation of a Control Strategy

8.1 - Introduction

In many engineering applications, a control action has to be calculated from meas

urements that are distributed among various locations. When the size of the measure

ments is large and varies widely from site to site, different strategies for the exchange of

information between those sites will result in substantially different communication costs.

Thus, there is a need to determine information-transfer strategies that will minimize the

amount of communication necessary to compute the control action.

We have in mind the situation where K sites, each equipped with a processor and

sensors, are linked together via a general communication network (see Fig. 1.1). Each site

can communicate with every other site, and we assume that none of them plays the role of

central supervisor (although that would pose no complications).

The objective is the computation of a control action of the form

« - /(f)

- fiivi) + /dfo) + • • • + Mvk) t (M)

where u 6 Rm, and where / is a control strategy depending on the information vector

y € Rnt V = (Vv Vij • • • y Vtf)r» with yi € Rni located at site i only. Such strategies /

include linear controls of the form u = My, where M is an m Xn matrix. The data vec

tor y could for example be the state of the system; it could also be an observation vector.

Each site t knows the exact form of /. However, it lacks the information yj, j 7^ 1.

We are not concerned on how the strategy / has been obtained (for example, from the

solution of a deterministic or stochastic optimization problem), but rather on how to
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compute u optimally with respect to a given cost model comprising communication and

local processing costs. For the sake of generality, we make no assumptions concerning the

relative importance of these two costs. In addition, the communication costs need not be

the same between any two sites. Also, the location of the answer u may or may not be

specified.

The problem of distributed function evaluation has been considered by computer

scientists in a more general context. A great deal of this research deals with the complex

ity of finding communication protocols that minimize communication ( [2, 3, 6] is a small

sample of such work), ft was conjectured by Yao [6] and demonstrated by Papadimitriou

and Tsitsiklis [3] that "minimizing the amount of communication necessary for the distri

buted computation of a given function is an NP—complete problem11 ([3], Theorem 3).

We are not aware of many papers in the control literature addressing the communi

cation issue in distributed control, except from the point of view of the study of the role

of the information structure in such problems (see [1]), or from the point of view of model

aggregation as a means for reducing computation (see [4]). Speyer [5] specifically
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examined the communication aspect in the context of decentralized LQG-problems. He

showed how the optimum centralized solution could be decomposed into local computa

tions (including local Kalman filters) requiring only the exchange of a compressed data

vector instead of the complete observation vector.*

This chapter is a direct application of the framework and results of Part III to the

problem of minimizing communication in distributed control-strategy evaluation. Our

objective is to adapt the solution method presented in Chapter 6 to the present problem.

To avoid repetitions, we shall present only the modifications to the model of Sections 6.3

to 6.6 concerning the definitions of state, state transition, and state equivalence, and we

shall conclude this chapter with a simple example.

8.2 - Distributed Evaluation of a Control Strategy

First observe that in order to simplify the notation, we have not indicated time sub

scripts for the quantities in (1.1). Clearly, a more interesting situation is ut = f(yt) or

ut = ft(Vt), t = 1, 2, 3,.... Under the reasonable assumption that the dimensions m and

nif i = 1, .. ., K, are constant in time, the solution method that we propose in this

paper need only be carried out once. Therefore, its benefits can be considerable in a

dynamical situation.

When m « n and the n^s vary widely (in a range n,- < m to n,« > m, say), there

can be large differences in the total cost incurred in obtaining u at a given site. Consider

the following simple example.

Example 2.1 : Let K = 2 and assume that the value u is required at site 2. Two stra

tegies for the calculation of u are:

(i) send the nx X I vector yx to site 2;

(ii) send the m X 1 vector fx(yx) to site 2.

1 This data compression can be achieved if theobservation vector is larger than the control vector.
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If local processing costs are non-negligible and the cost of processing at site 2 is much

higher than that at site 1, then the following strategies could also be advantageous:

(iii) send the n2Xl vector y2 to site 1, and then send the m X 1 vector fx(xx) + f^x2)

to site 2;

(iv) send the m X 1 vector f£y2) to site 1, and then send the m X 1 vector

fi(xi) + f2ix2) to s»te 2. D

As this example indicates, when the value of K starts to increase, there are

numerous ways of moving the information between the sites in the process of calculating

it. We propose to describe all the ways of obtaining u at any site with the help of a state

space constructed as follows. Let / = (1, . . . ,K). A partial result is a result of the

form

E fAVi) y with ^ C / , and \J\ > 1 . (2.1)
»€/

The initial state is x0 := y, and a state is a if—component vector x whose components

as(t), i=l,... ,K, are pairs («,(,-), Iz^), where:

u^ is either (i) nothing (denoted "-11), (ii) the original information y,-, or (iii) a par

tial result of the form in (2.1) with t 6 J;

h(i)>the index set of site t, is correspondingly (i) 0 , (ii) {t}, or (iii) J.

A final state is a state containing the answer u at one of the K sites, i.e., if Ix^) = / for

some t, then x is a final state. Xf will denote the set of all final states.

In order to construct the state space, we need to specify the rules for state transi

tions. We do this by means of two definitions.

Definition: A partial result derived from state x £ Xf is a new partial result J]/»(y«)>

where J is the (disjoint) union oftwo index sets Ix^ and Ixy) from x. D

Definition: There exists a one-step transition from state xx £ Xf to state x2 ^ xx if x2

differs from xx by the addition of a new partial result derived from xx. Let
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JnetD = 7x(y) U Ix(i) be the set specifying this result (from the above definition). Then

either x&j) = ( £ fAn), J*m) and x&l) - (-, 0), or x&) = ( £ /,(v,), 'new) and

x^j) = ( —, 0). (The other state components are unchanged.) D

Example 2.2 : An admissible one-step transition from the initial state of Example 2.1 is

to the state [( - , 0), (£ ffa), {l, 2}) ]r. •

The motivations behind the last definition are that processing of the data is done

each time a site receives new information and that a site always transmits all of its

knowledge. These constraints could be relaxed, and state components could be allowed to

contain more than one partial result and to transmit them separately, as it was the case in

query processing. However, we felt that this approach was inappropriate in the present

context.

Once a new partial result is formed, there is no need to keep in the new state the

results from which it was obtained. The necessary deletions happen by the requirements

of the second definition. That definition also allows for the possibility of parallel data

communication and processing.

Clearly, the above definitions guarantee that in any state x, I 'is the disjoint union

K

(J Ix(iy A total ofK—l transitions need to be performed to obtain u, and IXf I = K.
t'o.1

Now that the rules for state transitions have been specified, all the content of Sec

tions 6.3.2, 6.4.1, 6.4.3, and 6.5 is directly applicable to the present problem without any

modification. Example 2.1 indicates that four ways of performing a one-step transition

must be considered. Therefore, the determination of c(x, z) is a much easier task than in

query processing.

The results of Section 6.6 are also directly applicable to the present problem when

the notion of state equivalence is defined as follows.
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Definition: Two states xx and x2 are said to be equivalent, denoted xx « x2, if the two

following conditions are satisfied.

(i) For all i £ I such that uXl(i) or uX9(t) is the original information vector y,-,

*i(0 = »d(0-

(ii) Denoting all other sites by the set of indices J C I (in other words, for all j 6 J,

«*,(/) and ul3(y) either are partial results or nothing), xx(J) is equal to x<£J) up to a per

mutation of its components. Q

8.3 - Example

Let K = 4, and for simplicity, consider a site-uniform cost model with no processing

costs but only communication costs equal to the size of the vector moved. In this case,

IXI =41 and there are 15 equivalence classes. Those are indicated in Fig. 5.1.

Observe that only the ux^ part of the pair x(i) = (ux(t*), /*(,*)) is indicated, since Ix^ is

trivial from the expression of ux(,-). Also, only one state per equivalence class is given; the

others are easily obtainable by permutation. The equivalence-class trajectories are drawn

in Fig. 5.2.

If we assume that nx < n2 < m < n8 < n4, then it is straightforward to obtain

that C(Xf) = nx + n2 + m by an application of (6.8), Chapter 6. An optimal trajectory

achieving this cost and producing u at site 4 is

Vi
• i » t

V2

1/3
-

V2

/itoiH/afoa) - fi(vi)+flv2)+fhi) -

Vi V4 Va fl(Vl)+f2iV2)+fz(Vz)+f4(V4)

(The purpose of this example is illustrative. For complicated cost models, or even for sim

ple cost models with the explicit consideration of parallel processing, the correct answer is

certainly not as intuitive as it is here.)
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fl(Vl)+f2(V2)
fi(vi)+/M
fl(Vl)+fi(V4)

Vi

Vi

7 fi(Vi)+f&V2)+fz(Vz)
s /itoiH/^R/^)

10 yi

11 fl(Vl)+f2(V2)
12 f i(Vi)-rfz(Vz)
13 fihifr-fJivJ

"*(2)

V2

V2

fM+fsiVz)
/dbfd+Afo)

V2

V2

fAV2)+fz(Vz)+f4(V4)

AbrsH/^irJ
fM+fztVz)

"*(3)

Vz

Vz

Vz

f*(Va)+f4(V4)

Vz

fJLvJ+fJLv*)

Fig. 3.1 - Equivalence classes in the state space
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Fig. 3.2 - Equivalence-class trajectories
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Chapter 9

Conclusions and Future Research

8.1 - General Comments

The objective of this research was to study some control problems where communica

tion plays a central role due to the distribution of information and control. We analyzed

three problems, two of them from database management. In these cases, our approach

was to examine the problems from a dynamical systems angle. We believe that the results

we have obtained in Parts II and III demonstrate that this approach is a valuable contri

bution.

Even though concurrency control and query processing are quite different problems

from those normally studied in control theory, we gave in Chapter 8 a relevant applica

tion of our results on distributed query processing to the problem of distributed evalua

tion of a control strategy. The results in that chapter seem to be a natural first step in

the modelling of communication in distributed control. We believe that the same

approach could be employed for more general strategies than those described by (1.1)

there.

Also, our model for concurrency control in Chapter 4 was partly inspired by the

framework of [6] for supervisory control of discrete-event systems. This model brings an

interesting new dimension: the state is a graph, not a node in a graph as discrete-event

systems are usually represented. Having a state containing structural information about

the system is certainly a nice feature.

Our conclusions and suggestions for future research for each part of the dissertation

follow in the next three sections.
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9.2 - Information Structure and Communication in Stochastic Control Prob

lems

In Chapter 2, we tried to give a nonmathematical exposition of the role of the infor

mation structure in stochastic optimal control. Our goal was to stress the importance of

complete communication between decision makers and to motivate the approach adopted

in Chapter 3 to formalize combined observation/control optimization problems.

The contribution of Chapter 3 is to demonstrate how dynamic programming can be

used in problems where two decisions on observation and control are made sequentially.

Our main theorem generalizes previous work, in particular that in [2]. Computing the

optimal solution requires a large amount of work; even in the LQG case, the dynamic

programming equation has no closed-form.solution and must be solved recursively for a

large state space. In view of our results, we believe that trying to do the

observation/control optimization jointly at each step would lead to considerable concep

tual and computational difficulties.

A possible extension of our results in Chapter 3 would be to consider the infinite

time-horizon case. A discounted-cost approach does not seem appropriate due to the form

of the solution to finite-horizon problems. An average-cost approach may lead to a sta

tionary solution for the observation decision or to a more interesting periodic solution.

Another suggestion for future work would be to formulate a similar problem in the

continuous-time case. A decision on observation could be made after constant time inter

vals, the length of these intervals being specified or being an extra control parameter.

8.3 - Concurrency Control in Database Systems

In Chapter 4, we presented a state-space model for the study of concurrency control

in database management systems. We showed that this problem is in effect one of control

with partial state information: there does not exist a control method always achieving

maximum concurrency and at the same time avoiding rollback.
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We believe that an interesting contribution of our model is that it permits com

parison of the performance of concurrency control techniques by providing a precise char

acterization of their reachability properties. In particular, the subsets Qej7 and Q$e_m of

the state space enable measurement of the trade-off concurrency/rollback associated with

a given technique. In view of the difficulty of doing probabilistic analyses of locking pro

tocols, this measure of performance provided by the state space is both relevant and

insightful, especially concerning the occurrence of rollback and deadlock.

Although we have restricted our analysis to locking protocols, in particular two-

phase locking, our model could be employed to study other concurrency control methods

such as timestamp-based techniques [1].

The formalization of the issue of partial information (in terms of dashed arcs in the

state) suggested doing state estimation to enhance performance. In Chapter 5, we pro

posed a new locking action and a new graph keeping information about the "must-precede

contraints11 associated with an execution. This action "declare11 differs from other lock

modes that have been proposed and from other other predeclaration strategies, because it

is a non-conflicting action that is used as a dynamic locking action in the course of an

execution. The must-precede graph can be seen as an augmented version of the wait-for

graph used to detect deadlock in conventional locking schemes.

The declare-before-unlock protocol is an example of a simple protocol taking advan

tage of the action declare and of the must-precede graph. This protocol achieves max

imum concurrency and provides for early detection of unavoidable deadlocks. As a draw

back, it reaches a larger portion of Qte0_m than two-phase locking does, and thus its use

may result in more rollbacks. We stress that these properties would not have been

apparent without the tools provided by the state model. If for rollback and recovery pur

poses it is required that all exclusive locks be kept until a transaction commits, then our

protocol is still advantageous in terms of concurrency by permitting early release of share

locks.
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We now suggest some directions for future research on concurrency control,

(i) Find a quantitative measure of performance for locking protocols and other techniques.

Investigate the possibility of counting the states in the various subsets of the state space,

(ii) Generalize the use of declare to the case of more than two (nested or not) grades of

locks.

(iii) Apply the state model to the study of "dynamic timestamp techniques11 (see [1]), and

use the results to compare these techniques with locking.

(iv) Generalize the state approach to partially ordered transactions and executions, as con

sidered in [4] for distributed databases.

(v) Evaluate the performance of the declare-before-unlock protocol by comparing its gains

in terms of concurrency and early detection of deadlocks to the additional overhead it

entails (cycle detection in the must-precede graph).

(vi) Pursue the work on the formulation of a probabilistic model for control by locking, in

order to study the performance of important protocols. Rollback (and deadlock)

occurrence and waiting time for denied lock requests are of special interest.

9.4 - Optimization of Query Processing in Database Systems

In Chapters 6 and 7, we presented a state-transition model for the solution to the

problem of optimizing the processing of a query in a centralized or distributed database

system, when the join and semi-join operations are taken as the unit step in the sequence

of operations. Our discussion was centered on the distributed case, but as we mentioned

in Section 7.4, all our results are directly applicable to the special case of a centralized

database. The cost model can be as general as desired. By defining a state space to

parametrize the evolution of processing, the problem can be separated into two stages.

In the first stage, all one-step state transitions must be optimized. This problem has

been addressed in the literature, and many different strategies can be used for the optimi

zation. The possibility of choosing among various copies of the relations can also be



177

included at this stage. We believe that the problem of the estimation of the costs that is

central to this stage is no more difficult than in the other works on distributed query pro

cessing in the literature.

In the second stage, dynamic programming is applied over the state space to deter

mine the minimum-cost sequence of operations (state trajectory) yielding the answer to

the query. This separation is an important feature, because by properly defining the con

cept of state transitions, we are able to incorporate the possibility of parallel processing

without any further modifications.

We do not believe that the size of the state space hinders the practicality of our algo

rithm. Experiences from query optimization for centralized databases indicate that the

cost of computing an optimal solution is often overestimated, while the benefit is underes

timated. Our premise is that this may also be true for distributed databases. Moreover,

the savings from dynamic programming over an exhaustive search well compensates for

the extra work in constructing the state space. Concerning the case of join state transi

tions only, we believe that our algorithm, by explicitly defining a state, is computationally

more efficient than the algorithms in [7] (centralized database) and [5] (distributed data

base) which also use a form of dynamic programming.

In the case of both join and semi-join state transitions, we allow any sequence of

these two operations, which is considerably more general than the popular reduction-

phase/assembly-phase strategy in the literature. In fact, there is no guarantee that semi-

join reducer programs will be optimal. Moreover, not executing all the joins at the same

site, but rather in a distributed fashion, may render additional semi-joins profitable. Of

course, the optimization requires more work in this case, although, apart from the prob

lem of the construction of the state space for cyclic queries, it is only computationally

more difficult, not conceptually. We stress that the use of dynamic programming is

significant- here, especially in the case of tree queries, due to the large "fan-out" of the

state trajectories in the state space (see example in Section 7.2).
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Another important benefit of the state parametrization is that it provides a precise

framework into which many additional refinements can be incorporated. For example,

clever strategies concerning the computation of the function C over the state space can

improve on the systematic recursive approach of part III of the algorithm (Section 6.5.2).

The "best-first11 strategy of Section 6.5.3 is an example of such a modification. These

strategies require a minimal amount of additional work (for example, the computation of

an initial upper bound for the optimal cost), but the rewards can be significant (see Sec

tion 6.7).

In Section 7.4, we described how the model could be refined to take into account pos

sible tuple-orderings of the intermediate results. This refinement is quite likely to be

worth the extra effort when the database is centralized.

Among the areas of interest for future work, we mention:

(i) the appropriate selection of the distributed join strategies to include in Ys of (6.4.1);

(ii) the determination of efficient semi-join strategies for cyclic queries, alleviating the

inconvenience of long semi-join sequences;

(iii) the study of other ways of improving on the basic dynamic programming algorithm;

(iv) the use of a similar state-transition approach in the case of recursive queries (see [3]

for recent work on conditions for the existence of bounds on the number of steps in this

case);

(v) the generalization of the model to the joint optimization of a set of queries referencing

common original relations.
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