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STABILITY REGIONS OF NONLINEAR AUTONOMOUS DYNAMICAL SYSTEMS

Hsiao-Dong Chiang1, Morris W. Hirsch2, Felix F. Wu1

ABSTRACT

A topological and dynamical characterization of the stability boundaries for a fairly

large class of nonlinear autonomous dynamic systems is presented. The stability boundary

of a stable equilibrium point is shown to consist of the stable manifolds of all the equili

brium points on the stability boundary. Several necessary and sufficient conditions are

derived to determine whether a given equilibrium point is on the stability boundary. A

method to find the stability region based on these results is proposed. The method, when

feasible, will find the exact stability region, rather than a proper subset of it as in the

Lyapunov theory approach. Several examples are given to illustrate the theoretical predic

tion.
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L INTRODUCTION

The problem of determining the stability region (region of attraction) of a stable

equilibrium point for a nonlinear autonomous dynamical system is an important one in

many applications, such as electric power systems [1.2], economics [3], ecology [4] etc. The

numerous methods proposed in the literature for estimating the stability region can be

roughly divided into two classes[6] : those using Lyapunov functions, and all others.

Most of the methods belong to the Lyapunov function approach, which is based mainly on

La Salle's extension of Lyapunov theory [7-10]. The estimated stability region based on

these methods usually is only a subset of the true stability region. Recently methods using

computer generated Lyapunov functions [11.12] have been proposed. Another method,

belonging to the Lyapunov function approach, is the Zubov's method[8]. Theoretically, this

method provides the true stability region via the solution of a partial differential equation.

Recent advance includes the maximal Lyapunov function [30]. One of the early non-

Lyapunov methods proposed for planar systems [31] requires the construction of a non-

trivial integral function. The method of sinks [13]. also for planar systems, utilizes the

analogy between the vector field and the velocity field of an incompressible fluid. An itera

tive procedure using Volterra series for estimating the stability region was proposed [14].

Another method, called the trajectory-reversing method, was recently proposed [5,6], in

which the estimation of the stability region is synthesized from a number of system tra

jectories obtained by integrating the system equations.

In this paper a comprehensive analysis of the stability region is conducted. Several

necessary and sufficient conditions for an equilibrium point (or closed orbit) to lie on the

stability boundary are derived. A complete characterization of the stability boundary is

presented for a fairly general class of nonlinear autonomous dynamical systems. It is

shown that the stability boundary of this class of systems consists of the union of the

stable manifolds of all equilibrium points on the stability boundary. A method to find the

stability region based on these results is proposed: this method belongs to the non-

Lyapunov function approach. The method is applied to several examples studied in the

literature.

The organization of the paper is as follows. Some fundamental concepts in the theory

of mathematical dynamical systems that are essential in the subsequent development in
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this paper are introduced in Sec. 2. In Sec. 3. topological properties of the equilibrium point
on the stability boundary are presented. In Sec.4. acomplete characterization of the stabil
ity boundary of aclass of systems is given. The class of systems is examined in Sec. 5and
is shown to be fairly large. In Sec. 6anew method for determining stability region is pro
posed. In Sec. 7. the method is applied to-several examples.

2. SOME CONCEPTS IN DYNAMICALSYSTEMS

In this section we introduce some concepts that play acentral role in the theory of
dynamical systems. For general background on the theory of mathematical dynamical
systems the reader is advised to consult the survey paper by Smale [15], or the books by
Guckenheimer and Holmes[28], or Palis and De Melo[20].

Abstractly, a dynamical system (M.f) is characterized by :

(1) Astate space Mof the possible states for the system under consideration.

(2) Avector field f. defined on M. which generates the time evolution of the states x
in M.

The state space Mis assumed to be Haudsdorff; usually Mis a manifold or an open
subset of some topological vector space. In this section the state space Mis a C2 manifold
without boundary. The time evolution is a map from MXI- M. defined by
(x.t)- 4>t(x). where I is an interval of Rand <t>t(-) is called the flow (induced by the vector
field f). Avector field is said to be complete if *t(x) is defined on MXR. If Mis compact .
all its vector fields are complete. We may write *t(x) = x(t). the map t- x(t) is the tra
jectory of x€M. the image of this map is called the orbit. The set of all trajectories is the
phase portrait of f.

When the vector field f does not depend on time the dynamical system is said to be
autonomous. A nonlinear autonomous dynamical system can be described by a set of
differential equation

* = f(x) x€M (2-1)

We shall assume that the vector field f is C1: this is a sufficient condition for existence and
uniqueness of solution. In this case the solution passing through x0 at time t=0 is denoted
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by <&t(x0).

A zero of a vector field is referred to as an equilibrium point(e.p.) or simply an
equilibrium point. It is a solution of the equation

f(x) = 0 (2-2)

We shall denote the set of equilibrium points of (2-1) by E:= { x : f(x) =0 }.

An equilibrium point x of f is said to be hyperbolic if. in local coordinates, none of

the eigenvalues of the Jacobian matrix Jxf at x have zero real part. For ahyperbolic equili
brium point x. we can decompose the state space uniquely as adirect sum of two subspaces
F +Eu such that each subspace is invariant under the linear operator Jxf. the eigenvalues
of Jxf restricted to Es have negative real part and the eigenvalue of Jxf restricted to F have
positive real part. Letting the dimension of F be ns and the dimension of F be nu. we can
express each subspaceas following :

the stable subspace F = span. { v*,v2 v"*}

the unstable subspace Eu = span { w*,w2 w°u}

where v .v2 v sare the ns (generalized) eigenvectors whose eigenvalues have negative
real parts, w1.^ wn" are the nu (generalized) eigenvectors whose eigenvalues have
positive real parts, obviously. ns + nu = n

We call the value nu the type of x. An equilibrium point of type 0 is called asink ;
one of type nis called asource; all others are called saddle. Type-one equilibrium point (nu
=1) will be of some importance. It is well known that sinks are stable equilibrium points,
while sources and saddles are unstable equilibrium points.

By aclosed orbit of adynamical system we mean the image of anonconstant periodic
solution of (2-1). i.e. atrajectory y is aclosed orbit if y is not an equilibrium point point
and 4>t(x) =x for some x€y. t * 0. Aclosed orbit is said to be hyperbolic if for any p€y.
n-1 of the eigenvalues of the Jacobian of <X«y)) at phave modulus not equal to 1( one
eigenvalue must always be 1). A critical element of f is an orbit which is either aclosed
orbit or an equilibrium point.
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Let x be an equilibrium point. Its stable and unstable manifolds Ws(x). Wu(x) are
defined as follows

Ws(x) = { x€M :<J>t(x)-> x as t- » } (2-3a)

Wu(x) = { x€M :<&t(x)-> x as t- -co } (2-3b)

Similarly the stable and unstable manifolds of a hyperbolic closed orbit can be defined.
Since the stable manifold of x for the flow 4>t() coincides with the unstable manifold of x
for the flow «.,(•). this dual property enable us to translate each property of stable mani
fold into that of unstable manifold. Obviously, these two sets Ws(-). Wu(-) are invariant

sets and it is known that Ws(). Wu() are the image of injective C1 immersions of R°s.
Rn-[15].

The long-term behavior of the trajectory can be studied in terms of its (a-limit set

w(x). We say y is in the co-limit set of x if there is asequence { tj }in R.tj-oo. such that

y = lim*.(x)

The of-limit set a(x) is defined similarly by letting t4 - -co. It can be shown that these

limit sets are closed invariant subsets of M[27.p.l98]. For example, an equilibrium point
is its own co-limit set: it is also the co-limit set of trajectories in its stable manifold and the

a-limit set of trajectories in its unstable manifold. A closed orbit y is the co-limit set and
the a-limit set of every point on y.

The idea of transversality is basic in the study of dynamical systems. If A.B are
injectively immersed manifold in M. we say they satisfy the transversality condition if
either (i) at every point of intersection x €Af|B. the tangent spaces of Aand Bspan the
tangent space of M at x.

i.e. Tx(A) +TX(B) = TX(M) for x€A f] B

or (ii) they do not intersect at all.

One of the most important features of a hyperbolic equilibrium point x is that its
stable and unstable manifolds intersect transversely at x. This transverse intersection is

important because it persists under perturbation of the vector field.
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3. EQUILIBRIA ON THE STABILITY BOUNDARY

We will show in section 4 that under fairly general conditions, the stability boun

dary of a stable equilibrium is the union of stable manifolds of the equilibria on the sta

bility boundary. Therefore in this section we derive conditions to characterize the equili

bria on the stability boundary. The necessary and sufficient conditions for an equilibrium

to be on the stability boundary are derived in terms of both the stable manifold and the

unstable manifold of the equilibrium. We also study the number of equilibria on the sta

bility boundary.

Consider a nonlinear autonomous dynamical system described by the differential

equation

x = f(x) (3-1)

where x is a n-dimensional vector and the vector field f is C1.

Suppose xs is a stable equilibrium of the vector field f. The stability region (or region

of attraction) of xs is defined to be Ws(xs). that is. the set of all points x such that

lim<t>,(x) -» xs (3-2)
t-» oc

We will also denote the stability region of xs by A(xs). its boundary and its closure

by QA(xs) and A(xs), respectively. When it is clear from the context, we write A for

A(xs), etc.. Alternatively, the stability region can be expressed as

A(xs) = {x€Rn : Ux) = xs} (3-3)

Based on the properties of the stable manifold of xs. we have the following proposi-

tion[l5]:

Proposition 3-1 : A(xs) is an open, invariant set diffeomorphic to Rn.

Since the boundary of an invariant set is also invariant and the boundary of an open

set is closed, therefore we have :

Proposition 3-2 : QA(xs) is a closed invariant set of dimension < n. If A(xs) is not dense

in R". then QA(xs) is of dimension n-1.
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proof: The second part of this proposition is from a general result[2?.p.40] which states

that, if U is an open set in Rn. then QU is of dimension < n: moreover if U is not dense in

Rn. then QU is of dimension n-1.

Remark:

If there are at least two stable equilibrium points, then the dimension of stability boun

dary of each of them is n-1: in particular stability boundaries are nonempty in this case.

Next, we give conditions for an equilibrium point to be on the stability boundary,

which is a key step in the characterization of the stability region A(xs). We do this in two

steps. First we impose only one assumption on the dynamical system (3-1). namely, that

equilibrium points are hyperbolic, and derive conditions for an equilibrium point to be on

the stability boundary in terms of both its stable and unstable manifolds (Theorem 3-3).

Additional conditions are then imposed on the dynamical system and the results are

further sharpened. (Theorem 3-5). It should be noted that these characterizations are also

applicable to closed orbits: the obvious generalization is omitted here. We use the notation

A-B to denote those elements which belong to A but not to B.

Theorem 3-3: (Characterization of equilibrium point on the stability boundary)

Let A(xs) be the stability region of a stable equilibrium point xs. Let x ;* xs be a hyper

bolic equilibrium point. Then

(i) x € dA(xs) if and only if {Wu(x)-x} f|A(xs) * <f>

(ii) Suppose x is not a source (i.e. {Ws(x)-x};*<£). Then x € QA(xs) if and only if

{Ws(x)-x} f]BAUs)^<f>

Proof:(i) If y € Wu(x) f]A. then

lim 4>-t(y) = x
X — oo

But since A is invariant, we have

^(y) 6 A.

It follows that

x € A

Since x can not be in the stability region, x is on the stability boundary.
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Suppose conversely that x € flA. Let G C {Wu(x) - £} be a fundamental domain for

Wu(x) with respect to the time-one map ty; this means that G is a compact set such that

U*t(G)= {Wu(x)-x} (3-4)
t€R

Let Ge be the € -neighborhood of G in Rn. Then (J*t(G€) contains a set of the form
t < o

{U -W^x)}. where U is a neighborhood of x [20. corollary 2. p.86]. Since x € flA. it fol

lows that U p|A = <£. But. by assumption, x €QA (i.e. Ws(x) f]A &<f>). Therefore we

have

{ U-Ws(x)} f|A*0 (3-5)

or

U4>t(G€)r|A^0 (3-6)
t < o

This implies that G€ p|4>t(A) ^ <f> for some t. Since A(xs) is invariant under the flow it

follows that

Since € > 0 is arbitrary and G is a compact set. we conclude that G contains at least a

point of A.

The proof of (ii) is similar to the proof of (i). ##

As a corollary to Theorem 3-4. if {Wu(x) -x} f|A(xs) "* & then x must be on the

stability boundary. Since any trajectory in A(xs) approaches xs. we see that a sufficient

condition for x to be on the stability boundary is the existence of a trajectory in Wu(x)

which approaches xs. The nice thing about this condition is that it can be checked numeri

cally. From practical point of view, therefore, we would like to see when this condition is

also necessary. We are going to show this condition becomes necessary under two addi

tional assumptions which are reasonable.

So far we have assumed only that the equilibrium points are hyperbolic. This is a

generic property for dynamical systems. Roughly speaking we say a property is generic for

a class of systems if that property is true for "almost all" systems in this class. A formal

definition is given in [15]. It has been shown [16] that among Cr(r ^1) vector field, the

following properties are generic: (i) all equilibrium points and closed orbits are hyperbolic
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and (ii) the intersections of the stable and unstable manifolds of critical elements satisfy

the transversality condition. Theorem 3-3 can be sharpened under two conditions, one of

which is generic for the dynamical system (3-1). That is the transversality condition. The

other condition requires that every trajectory on the stability boundary approach one of

the critical elements.

The following Lemma, which is a consequence of X-lemma[20.p.86] is interesting in

itself and useful in the proof of next theorem. Recall that the type of an equilibrium point

is the dimension of its unstable manifold. An m-disk is a disk of dimension m.

Lemma 3-4:

Let z be an equilibrium point of type m on the stability boundary QA such that

Wu(z) f]A 5* 0. Let y €{Ws(z) -z }and let Dbe an m-disk centered at y transverse to

Ws(z) at y. Then D f| A s* <f>.

Now, we present the key theorem of this section which characterizes an equilibrium

point being on the stability boundary, in terms of both its stable and unstable manifolds.

From the practical point of view, this result is more useful than Theorem 3-3.

Theorem 3-5 : (Further characterization of equilibrium point on the stability boundary)

Let A(xs) be the stability region of a stable equilibrium point xs. Let x^xs be an equili

brium point. Assume

(i) All the equilibrium points on $A(xs) are hyperbolic.

(ii) The stable and unstable manifolds of equilibrium points on $A(xs) satisfy the

transversality condition.

(iii) Every trajectory on QA(xs) approaches one of the equilibrium points as t -* oo.

Then

(1) x € QA(xs) if and only if Wu(x) f|A(xs) * <f>.

(2) x € 3A(xs) if and only if Ws(x) Q &*A(xs).

Proof : (1) Because of Theorem 3-3, we only need to prove that, under these assumptions.

x € QA(xs) implies Wu(x) r|A(xs) ^ 0. We use the notation nu(x) to denote the type of

an equilibrium point x. It follows from assumption (i) that nu(x) ^ 1 for all equilibrium
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points x € 6*A(xs). Let x € QA(xs) and nu(x) = h. By Theorem 3-3 there exists a point

y€{Wu(x)-x} f|A(xs). If y€A(xs). the proof is complete. Suppose y €QA. by

assumption (iii) there exists an equilibrium point z € QA and y€{Ws(z)—z}. Let

nu(z) = m. by assumption (ii) Wu(x) and Ws(z) meet transversely at y. thus h > m [15].

Now. consider two cases : (i) h = 1 case.' then m must be zero ( i.e. z must be a stable

equilibrium point., which isa contradiction. Consequently. Wu(x) p|A(xs) ?* <f>. (ii) h > 1

case, without loss of generality, we assume inductively that Wu(z) p|A(xs) ;* <f>. There

fore Wu(x) contains an m-disk Dcentered at y. transverse to Ws(z). Applying lemma 3-4.

we have D flA * <f>. which implies Wu(x) f| A(xs) 5* <f>. This completes the proof.

(2) As pointed out in part (1) we only prove that x € QA(xs) implies

Ws(x) £ 6*A(xs). By part (a) we have Wu(x) f|A(xs) * <j>. Now applying the lemma 3-4

(with z= x) we conclude that (Ws(x) -x} £ A(xs). Since Ws(x) f)A(xs) = <j> we com
pletes this proof.

Remarks

(1) Fig. 1 shows an example for which the assumption that every trajectory on the stabil

ity boundary approaches one of the equilibrium points does not hold. For this system, the

unstable manifold of xx does not intersect with the stability region (see Theorem 3-5) and

a part of the stable manifold of Xx is not on the stability boundary (see Theorem 3-5).

(2) To show that the transversality condition is needed in Theorem 3-5. let us consider the

example taken from [17]. In Fig. 2 the transversality condition is not satisfied because the

intersection of the unstable manifold of Xj and the stable manifold of x2 is a portion of

the manifold whose tangent space has dimension 1. Note that the unstable manifold of X!

intersects with the stability boundary (see Theorem 3-3). but not the stability region (see

Theorem 3-5). A part of the stable manifold of Xj (upper part in Fig. 2) is not in the sta
bility boundary (see Theorem 3-5).

The next result concerns the number of equilibrium points on the stability boundary.

Theorem 3-6 : ( Number of equilibrium points on the stability boundary )

If the stability boundary QA is a smooth compact manifold and all the equilibrium points

of vector field f on 6*A are hyperbolic, then the number of equilibrium points on QA is
even.



Fig. 1. An example of dynamical system whose trajectories on the stability boundary does
not all approach its critical elements.



Fig. 2. The intersection between the unstable manifold of xx and the stable manifold of x2

does not satisfy the transversality condition.
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Proof : The proof is based on the following fact [24. Exercise 7. p.139]: the Euler charac

teristic of the boundary of a compact manifold is even. From the Poincare-Hopf Index

Theorem [25.pp.134], it follows that the sum of the indices of equilibrium points of f on
the stability boundary flA is even, but the index of f at a hyperbolic equilibrium point is

either +1 or -1 [26.p.37]. Consequently. Theorem 3-7 follows.*#

Remarks:

(1) Genesio and Vicino [22] have shown that theorem 3-6 is true for a special case,
namely: an odd order system (n ^ 5) without "degenerate" equilibrium point.

(2) Theorem 3-6 is false if it is not assumed that $A is smooth, (see Fig. 3)

(3) Theorem 3-6 is also true under the weaker assumption that every equilibrium point is
nondegenerate in the sense that Jpf is invertible. The proof is the same.

4. STABILITY BOUNDARY

In this section we characterize the stability boundary for a fairly large class of non

linear autonomous dynamical systems (3-1) whose stability boundary is nonempty. We

make the following assumptions concerning the vector field:

(Al): All the equilibrium points on the stability boundary are hyperbolic.

(A2): The stable and unstable manifolds of equilibrium points on the stability boundary
satisfy the transversality condition.

(A3): Every trajectory on the stability boundary approaches one of the equilibrium points
as t-»oo.

Theorem 4-1 asserts that if assumptions (Al) to (A3) aresatisfied, then the stability

boundary is the union of the stable manifolds of the equilibrium points on the stability

boundary.

Theorem 4-1 : ( Characterization of stability boundary )

For the nonlinear autonomous dynamical system (3-1) that satisfies assumptions (Al) to

(A3), let Xj ,i=1.2... be the equilibrium points on the stability boundary QA(xs) of the
stable equilibrium point xs. Then

dA(xs)= Uws(xj) (4-1)



Fig. 3. The stability boundary of xs is not smooth.
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Proof: Let xit i=1.2.... be the equilibrium points on the stability boundary. Theorem 3-5
implies

(JW'Ui) £ $A(xs) (4_2)
i

The assumption (A3) implies

dA(xs) C Uws(xi) (4-3)
t

Combining (4-2) and (4-3) we have the required result. ##

Theorem 4-1 can be generalized to allow closed orbits to exist on the stability boun
dary. The following theorem, which we shall not use. is stated below without proof.

Theorem 4-2 : ( Characterization of stability boundary )

Consider the dynamical systems (3.1) whose vector field satisfies the following assump
tions.

(Bl): All the critical elements on the stability boundary are hyperbolic.

(B2): The stable and unstable manifolds of critical elements on the stability boundary
satisfy the transversality condition.

(B3): Every trajectory on the stability boundary approaches one of the critical elements
as t -» oo.

Let Xj ,i=1.2... be the equilibrium points and y^ j=1.2.... be the closed orbits on the stabil
ity boundary $A(xs) 0f the stableequilibrium point xs. Then

6A(xs)= Uws(Xi) UWS(?P
» j

Returning now to assumptions (Al) to (A3), let

B= Uws(Xi) (4-4)
i

where i ranges over the equilibrium points on $A whose type is greater than one. Now the

dimension of the stable manifold of a type-one equilibrium point is n-1 and the dimen

sions of the stable manifolds of other equilibrium points (with nu > 1 ) are lower than

n-1. It follows from the Baire theorem and Proposition 3-2 that the set B is nowhere dense

in QA. Thus, we have the next corollary:
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Corollary 4-3 : For the nonlinear autonomous dynamical system (3-1). if assumptions

(Al) to (A3) are satisfied, then

6*A(xs)= Uws(xj) (4-5)
j

where j ranges over the type-one equilibrium points on QA(xs).

Remark:

Same conclusion. (4-5). in Corollary 4-3 has been derived by Tsolas. Arapostathis and

Varaiya [17] under different assumptions. Similar results of Theorem 3-5 and Theorem 4-2

under a stronger condition than (A3) have been derived previously [32].

The following theorem gives an interesting result on the structure of theequilibrium

points on the stability boundary. Moreover, it presents a necessary condition for the types
of equilibrium points on a bounded stability boundary.

Theorem 4-4: (Structure ofequilibrium points on the stability boundary)

For the nonlinear autonomous dynamical system (3-1). if assumptions (Al) to (A3) are

satisfied, then the stability boundary must contain at least one type-one equilibrium point.
If. furthermore,

(a) the stability region is bounded,

and

(b) 4>t(x) approaches an equilibrium point as t-*-eo. for all x €flA

then QA must contain at least one type-one equilibrium point and one source.

Proof : Since (a) implies A(xs) is not dense in Rn. it follows that the dimension of flA(xs)
is (n-1) (see proof of Proposition 3-2). Since QA(xs) = Uwstej). where Xj 6e A(xs). at
least one of the Xj must be a type-one equilibrium point, say Xj. so that the dimension of

(JWs(xj) is (n-1). Repeating the same argument, if aWs(Xl) is nonempty, then the dimen
sion of dWs(xj) is < (n-2). say (n-k). The application of Theorem 4-1 yields
dWs(x,) = (Jws(*j). *j €dWs(Xl). In order for (Jw^xj) to have dimension (n-k). at
least one of the Xj must be a type-k equilibrium point. If the stability region is bounded,
the same argument can be repeated until we reach an type-n equilibrium point( a source ).

Remark:
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The hypothesis (b) of this theorem follows from the condition (1) in Theorem 5-1 or con

ditions (1) and (2) in Theorem 5-3.

The contrapositive of Theorem 4-4 leads to the following corollary, which is useful

in predicting unboundedness of the stability region.

Corollary 4-5 : (Sufficient condition for stability region to beunbounded)

For the nonlinear autonomous dynamical systems (3-1). if assumptions (Al) to (A3) and

condition (b) in Theorem 4-4 are satisfied and if $A contains no source, then the stability

region is unbounded.

5. SUFFICIENT CONDITION FOR ASSUMPTION (A3)

The characterization of stability boundary in the previous section is valid for dynam

ical systems satisfying assumptions (Al) to (A3). Since assumptions (Al) and (A2) are

generic properties, assumption (A3) is the crucial one in the application of Theorem 4-1. In

this section, we will show that many dynamical systems arising from physical system

models satisfy assumption (A3). We first present two theorems that give sufficient condi

tions for this assumption.

It should be stressed that the main results in this paper are independent of the

existence of Lyapunov functions. For a convenient sufficient condition for guaranteeing

assumption (A3), however, we will introduce a function in the following theorems which

bears some resemblance to a Lyapunov function. Recall that E denotes the set of equili

brium points of (3-1). If V is a function on Rn. then V(x) := A It=0V(<I>t(x)) =
dt

VV(x)f(x).

Theorem 5-1 : Suppose there exists a C1 function V : Rn -» R for the system (3-1) such

that

(1) V(x) < 0 if x £ E.

Suppose also there exists 8 > 0 such that for any x € E. the open ball

Bg(x) := { x : Ix —xl < 8} contains no other point in E and the distance between any two

such balls is at least 8. Furthermore, suppose that there exist a positive continuous func

tion a : Rn -* R+ and two constants. C! > 0 and c2 > 0. such that
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(2) oXx) If(x) I < c, for all x € Rn;

and

(3) a(x) V(x) < c2 unless x € B^(x) for some x € E.

Then the assumption (A3) is true.

Proof : Let x(t) := <X>t(x) be a trajectory on the stability boundary. If x(t) does not

approach one of the equilibrium points, then it must approach infinity owing to condition

(1). We show this leads to a contradiction. The trajectory x(t) may pass through a finite

or infinite number of balls B{(x). We consider these two cases separately.

Case 1. x(t) passes through a finite number of balls B^Cx).

In this case, we know by condition (1) that there exists a T such that <Dt(x) is not in

any B6(x). for all t > T. Therefore, by condition (3) we have

V(x(t)) <- ,Z) s. for all t >T
oKx(t))

We estimate f or t > T

T

V(x(t)) -V(x(T))= /v(x(r))dT (5-1)

- V 1
C2l~ZxTF.57dT

<-—jTlf(x(r))ldT
Ci*

= -— /*lz(r)ldr

<-—ljTx(T)dTl
cl T

= -filx(t)-x(T)l
Cl

This shows that lim V(x(t)) - - oo. But this contradicts the fact that V(-) is bounded
t -* oo

below (by V(xs)) along any trajectory on the stability boundary, which follows from con

dition (1) and the continuity property of the function V(-).
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Case 2. x(t) passes through infinitely many of balls B0).

Let ip!^....} be asequence of distinct equilibrium points through whose 8-ball Bgfo)
the trajectory x(t) passes. Let us define two increasing sequences hi} and {sj ; where ^ is
the first time x(t) enters the 8-ball B^pj) and ^ is the first time > tj that x(t) leaves the
28-ball Bz^pi).

Fix an integer m > 0: then for t ^ tm+1 we have:

t

V(x(t)) -V(x(0)) = /v(x(r))dT
o

si

< Z/v(x(r))dT
i=it,

s«C2 n>

gl i= 1 l,

< —— m 8

Letting m -• oo. we contradict the boundedness of V() along the trajectory on the stabil

ity boundary. Therefore every trajectory on the stability boundary must approach one of
the equilibrium points. ##

Remark :

If the number of equilibrium points of the vector field f is finite, then condition (3) in

Theorem 5-1 is satisfied with o<x) = 1 because of the continuity property of V(-) along
the trajectory. Therefore an important special case of Theorem 5-1 leads to the following
corollary.

Corollary 5-2 : Suppose that the system (3-1) has a finite number of equilibrium points
on its stability boundary and there exists a C1 function V: Rn -• R for the system (3-1)
such that

V(x) < 0 if x £ E: (5-2)

and

If(x) I is bounded for x 6 Rn. (5-3)

Then assumption (A3) is true.
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Theorem 5-3 : Suppose there exists a C1 function V : Rn -» R for the system (3-1) such

that

(1) V(x) < 0 at every point x £ E:

(2) if x £E. then the set {t € R : V(*t(x)) = 0} has measure 0 in R:

and either

(3) the map V: Rn -• R is proper:

(3*) : For each x € Rn. if {V(*t(x)))t>0 is bounded, then {4>t(x)}t>0 is

bounded.

Then the assumption (A3) is true.

Proof: From the well-known Lyapunov-type argument, the conditions (1) and (2) imply

that all the limit sets of trajectories consist of equilibrium points [27.p.203]. Since the sta

bility boundary is a closed invariant set. by the continuity property of the function V(-)

and the conditions (1) and (2) we have the value of V along every trajectory on the stabil

ity boundary is bounded below by V(xs). Hence, condition (3) or condition (3*) implies

{x(t)}t>0 is bounded. Since the limit set of any compact trajectory is non-empty, thus

(A3) follows.*#

Remarks:

(1) It can be shown, by applying Corollary 5-2. that the following dynamical systems

satisfy the assumption (A3),

x = D f(x)

where f: Rn -» Rn is a bounded gradient vector field with only finitely many equilibrium

points on its stability boundary and the matrix D is a positive diagonal matrix.

(2) It has been shown [19] that many second-order dynamical systems frequently encoun

tered in physical system models satisfy the conditions in Theorem 5-3.

Mx + Dx + f(x) = 0

whose state space representation is

x= y

My = -Dy -f(x)

or
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where M. Dare positive diagonal matrices, f:Rn-Rn is a bounded gradient vector field with
bounded Jacobian. and the number of equilibrium points on any stability boundary is
finite.

6. AN ALGORITHM TO DETERMINE THE STABILITYREGION

Theorem 3-5 and Theorem 4-1 lead to the following conceptual algorithm to deter
mine the stability boundary of a stable equilibrium point, assuming that assumptions
(Al) to (A3) of section 4 hold.

Algorithm

Step 1: Find all the equilibrium points.

Step 2: Identify those equilibrium points whose unstable manifolds contain trajectories
approaching the stable equilibrium point xs.

Step 3: The stability boundary of xs is the union of the stable manifolds of the equili
brium points identified in step 2.

Remark :

In view of Corollary 4-3. the foregoing conceptual algorithm may be modified in such a
way that only type-one equilibrium points are considered in steps 1 and 2. and the union
of the closures of the stable manifolds are used in step 3.

Step 1 in the algorithm foregoing involves finding all the solutions of f(x)=0. Step 2
can be accomplished numerically. The following procedure issuggested:

(i) Find the Jacobian at the equilibrium point (say. x).

(ii) Find many of the generalized unstable eigenvectors of the Jacobian having unit
length.

(iii) Find the intersection of each of these normalized, generalized unstable eigen
vectors (say. Vj) with the boundary of an €-ball of the equilibrium point, (the
intersection points are x + € ys and x —€ y4)

(iv) Integrate the vector field backward (reverse time) from each of these intersec
tion points up to some specified time. If the trajectory remains inside this this €

-ball, then go to next step. Otherwise, we replace the value € by a €and also the
intersection points x ±€y, by x ±a eyt. where 0 < a < 1. Repeat this step.
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(v) Numerically integrate the vector field starting from these intersection points.

(vi) Repeat the steps (iii) through (v). If any of these trajectories approaches xs.

then the equilibrium point is on the stability boundary.

For a planar system, the type of the equilibrium point on the stability boundary is

either one(saddle) or two(source). The stable manifold of a type-one equilibrium point in

this case has dimension one. which can easily be determined numerically as follows :

(a) Find a normalized stable eigenvector y of the Jacobian at the equilibrium point x.

(b) Find the intersection of this stable eigenvector with the boundary of an € -ball of

the equilibrium point x. (the intersection points are x + € y and x —€ y)

(c) Integrate the vector field from each of these intersection points after some

specified time. If the trajectory remains inside this this € -ball, then go to next step.

Otherwise, we replace the value € by a € and also the intersection points x ± € y4 by

x ± a € Vj. where 0 < a < 1. Repeat this step.

(d) Numerically integrate the vector field backward (reverse time) starting from

these intersection points.

(e) The resulting trajectories are the stable manifold of the equilibrium point.

For higher dimensional systems, the numerical procedure similar to the one above can only

provide a set of trajectories on the stable manifold. To find the stable manifold and

unstable manifold of an equilibrium point is a nontrivial problem. A power series expan

sion of the stable manifold of an equilibrium point is derived in [18].

7. EXAMPLES

The method for the determination of stability region proposed in Section 6 has been

applied to some examples we have found in the literature, almost all of them are planar

systems. In this section we present these examples to illustrate the results of this paper. In

each example we give two figures: one compares the estimated stability region by previous

methods and the present one. the other gives the phase portrait of the system to verify the

results of this paper. Throughout these examples we assume the transversality condition is
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satisfied. The assumptions (Al) and (A3) have been checked for these examples: the
details are omitted.

Example 1: This is an example studied in [22.10]

xx = -2xj + xjx2 (7-1)

X2 = —X2 + XiX2

There are two equilibrium points : (0.0.0.0) is a stable equilibrium point and (2.1) is a

type-one equilibrium point. The trajectory on the unstable manifold of (2.1) converges to

the stable equilibrium point (0.0.0.0). hence (2.1) is on the stability boundary (Theorem

3-5). Therefore the stability boundary is the stable manifold of (2.1) (Theorem 4-1).

which is the curve C in Fig. 4(a). Because there is no source, the stability region is
unbounded (Corollary 4-5). Curves A and Bin Fig. 4(a) are obtained by the methods in

[10] and [22], respectively. The approximately true stability boundary mentioned in [22]
seems to agree with curveC. Fig. 4(b) is the phase portrait of this system.

Example 2 : The following system is considered in [10]

x'i = *2 (7-2)

x2 = 0.301 -sin(x,+0.4136) + 0.138sin2(x!+0.4136) -0.279x2

The equilibrium points of (7-2) are periodic on the subspace {(x1.x2)lx2 = 0} and there
exists a V-function

V(xltx2) = 0.5x22 + 0.301xj -cos(x,+0.4136) + 0.069 cos2(x!+0.4136) (7-3)

We have

**,,,>= |U+gu (7.4)

= -0.279x22 < 0

the Jacobian matrix of (7-2) at (x!.x2) is

J(x)= I ° *JKXJ ' a -0.279 (7-5)
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where a = -cos(xi+0.4136) + 0.276 cos2(x!+0.4136)

Let Xi X2 be the eigenvalue of J(x):

Xi + X2 = -0.279 (7-6a)

X! X X2 = -a (7-6b)

The following observations are immediate

(1) At least one of the eigenvalue must be negative which implies there is no source in the

system (7-2). By Corollary 4-5 we conclude that the stability region (with respect to any

stable equilibrium point) is unbounded.

(2) The stable equilibrium points and the type-one equilibrium points are located alter

nately on the x^axis.

It can be shown that (6.284098,0.0) is a stable equilibrium point of (7-2). Let us

consider its stability region. The application of Theorem 3-5 shows that the type-one

equilibrium points (2.488345,0.0) and (8.772443.0.0) are on the stability boundary. The

stability region is again unbounded owing to the absence of a source. The stability boun

dary obtained by the present method is the curve B shown in Fig. 5(a) which is the union

of stable manifolds of the equilibrium points (2.488345.0.0) and (8.772443.0.0). Curve A

is the stability boundary obtained in [10]( after a shift in coordinates). It is clear from the

phase portrait in Fig. 5(b) that all the points inside curve B converge to the stable equili

brium point which verifies that the curve B is the exact stability boundary.

Example 3 : The following system was also considered in [6]

Xi = -X! + x2 (7-7)

x2 = O.lxx -2.0x2 -xx2 -O.lxj3

There are three equilibrium points : (0.0.0.0) is stable. (-2.55 . -2.55) is type-one and (-

7.45.-7.45) is also stable. We are interested in the stability region of (0.0.0.0). Again the

stability region in this case is unbounded. Fig. 6(a) shows the stability region obtained by

our method. Fig. 6(b) represents the phase portrait of this system.

Example 4 : A simple nonlinear speed-control system studied by Fallside etc. [2l] and

Jocic [6] shown in Fig. 7(a) can bedescribed by the following equation
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Fig. 5(a). Predictions of the stability region of Example 2 by different methods. Curves A
is obtained by the methods in [lO](after ashift in coordinates). Curve Bis obtained by the
present method.
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xi = x2 (7-8)

x2 =-Kdx2 -xj -gXl2(^- +Xi +1)

For Kd= 1 and g=6. there are three equilibrium points : (-0.78865, 0.0) is stable ( the

corresponding Jacobian has two real negative eigenvalues), (-0.21135,0.0) is type-one and

(0.0,0.0) is also stable ( the corresponding Jacobian has two complex eigenvalues with

negative real parts). The type-one equilibrium point is on the stability boundary of

(0.0,0.0) and also on the stability boundary of (-0.78865,0.0) because the two branches of

its unstable manifold approaches them. Thus, by Theorem 4-1 we conclude that the stabil

ity region of (0.0.0.0) is the open set containing (0.0.0.0): its boundary is characterized by

the stable manifold of (-0.211325.0.0): the stability region of (-0.78865.0.0) is the open

set containing (-0.78865.0.0) with the same boundary as that of (0.0.0.0). The region in

Fig. 7(b) is the stability region predicted by this method. The region denoted by Aj in Fig.

7(c) shows the stability region predicted by method of sinks [13], and the region Aw is

predicted by [21]. The phase portrait of this control system is in Fig. 7(d).

Example 5 : Consider the following system which is similar to (7-8) except the term

—Kdx2 is replaced by Kdx2.

x, = x2 (7-9)

x2 = Kdx2 -Xi -gX!2(^- +Xj +1)

For Kd= 1 and g=6. there are three equilibrium points : (-0.78865. 0.0) is stable. (-

0.21135,0.0) is type-one and (0.0.0.0) is a source. It can be shown that both the type-one

equilibrium points and the source are on the stability boundary. Both parts of the unstable

manifold of the type-one equilibrium point (-0.21135.0.0) approach the stable equilibrium

point. We conclude that they both belong to the stability region : consequently, the stabil

ity region is the whole state-space except for the stable manifold of (-0.21135. 0.0) and

the source (0.0.0.0). Fig. 8(a) shows the stable manifold and unstable manifold of (-

0.21135. 0.0). The phase portrait of this system is in Fig. 8(b) Compare system (7-9) to

system (7-8) we found that the stability region of (0.0.0.0) for (7-8) is shrunk to a point

for (7-9) while the stability region of the stable equilibrium point of (7-9) is expanded to

fill almost all of the state space.
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-23-

8. CONCLUSION

A comprehensive theory of stability regions of stable equilibrium points for non

linear autonomous dynamical systems is presented. A complete dynamical characterization

of the stability boundary of a fairly large class of nonlinear autonomous dynamical sys

tems is derived. A method for finding the stability region based on its topological proper
ties is proposed.

The proposed method requires the determination of the stable manifold of an equili

brium point. For lower dimensional systems this may be done by numerical methods. For

higher dimensional systems efficient computational methods to derive the stable manifolds

are needed.
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