Copyright © 1986, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

MANAGING TEXT AS DATA

by

Gordana Pavlovic-Lazetic and Eugene Wong

Memorandum No. YCB/ERL M86/21
14 March 1986

MANAGING TEXT AS DATA

by

Gordana Pavlovic-Lazetic and Eugene Wong

Memorandum No. UCB/ERL M86/21
14 March 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

MANAGING TEXT AS DATA

by

Gordana Pavlovic-Lazetic and Eugene Wong

Memorandum No. UCB/ERL M86/21
14 March 1986

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Managing Text as Data
Gordana Pavlovic-L azetic and Eugene Wong

University of California
Berkeley

1. Introduction

With all their advances, database management systems of the present generation are
aesigned to handle only data of primitive types, namely, numbers and character strings. Several
approaches to extending their capabilities to handle data with higher order semantics exist. One
is to add general abstract data‘type support, so that users can define such data types easily. In
this approach, the DBMS makes no attempt to understand the semantics of user-defined data
types, and evaluation of operators on such data are done in applications programs. As a supple-
ment rather than an alternative, one can also extend the query language and its processor so that
certain common non primitive data types are directly supported by the DBMS. Of these, ezt and
geometric dala are probably the two most prominé_nt examples. This paper deals with the case of

text. Direct embedding of complex data in a database management system has obvious advan-

tages, the most important one being performance.

To manage text as data, the first step is to handle words satisfactorily. Words are after all
natural atoms of text. Whereas representing texts as strings of characters capture none of their
meaning, representing them as sequences of words is a reasonable first order semantic representa-

tion. Our first step, then, is to introduce "words” as a data type.

Important operations on words are lexical operators, not string operators. They deal with
how words are related to each other and how they are used. For example, "went” is a verb in
past tense with "go” as its root. "Verb”, "past tense”, and "go” are values returned by these dis-
tinct operators on the word "went”. We refer to "words” together with a class of operators on

words as the lezical data type. The principal objective of this paper is to deal with issues that

Research supported by the National Science Foundation under Graat DMC-8360463

arise in implementing the lexical data type.

The specific issues that we shall consider are the following:
* efficient storage of words in a relational database
* implementation of lexical operators

* resolving ambiguous words represented by the same character strings.

The principal application that we envisage for textual databases is automatic extraction of

facts. We shall consider sonie simple examples of this using lexical operators.

2. Encoding Words
A natural way of storing texts in a relational database is to represent text by a relation:
textname(seqno, word)

where ”seqno” denotes the order of appearance and "word” stands for words, punctuation and
special symbols such as "new paragraph”. As character strings, words have greatly varying
lengths. For storage in a ﬁxed-lenéth field, character strings are grossly inefficient. A solution to

this problem is to encode words into a fixed-length representation. Great compression can be

achieved. For example, a 4-byte integer suffices to represent a vocabulary of 2°%4*10° words.

There is a second and equally compelling reason to encode. Very little of the lexical infor-
mation is contained iq the character-string representation of a word. Clearly, the fact that
"went” has "go” as its root cannot be deduced from the string w-e-n-t alone. If the goal is to
implement lexical operators, then words need to be represented in a form whereby the values
returned by the operators are explicit in the representation. Basically, the coded form of a word

should be a composite of the values returned by the set of all admissible operators on the word.

There is yet a third reason to encode, namely, removing ambiguity. The same character
string often has several meanings. In effect, it represents several different words, or more pre-
cisely, different "lexical units”. For example, "well” has at least two unrelated meanings: "good

and proper” and "a hole in the ground”.

For these reasons we believe that encoding words is a must in storing text in a database sys-
tem, if its meaning is to be exploited. The question is: how can this encodi'ng be done? For
compression alone, some kind of automatic encoding can probably be devised. However, no
automatic encoding using only the character-strings as input can achieve the other two goals,
since additional information must be supplied. To provide the lexical information, we shall use a

dictionary. To resolve ambiguities, we shall use an expert system.

The amount of lexical information that has to be supplied depends on the lexical operators

to be supported. Thus, the first step is define the lexical data type.

3. Lexical Data Type

We adopt the following terminology: a lezical unit is the image of a word under encoding,
lezical data set is a set of lexical units together with certain default values, lezical data type is a
pair (X, L) where X is a lexical data set and L the set of all supported operators. An element in
X is of the form (id, descr) where id is a four byte integer that uniquely identifies the element

(lexical unit), and descr a two byte descriptor that incorporates additional semantic information.
Encoding is done using a dictionary that is represented as a relation as follows:
dictionary(word, class, root, prefix, ending, feature, id, descr)

where "word” denotes the character-string representing a word, "class” denotes the syntactic
classification of the word (i.e., verb, noun etc.), "feature” denotes semantic feature to be specified
later. The meaning of "root”, "prefix”, and "ending” is clear. The code (id, descr) is a composite
made up as follows:

id=(code(root)*100 + code(prefix))*100 + code(ending)

descr==code(form)*100 + code(feature)

Codes for prefixes, endings and semantic features are read from tables, and a root is encoded
on the basis of interpolation of words density in a dictionary; starting codes for roots beginning
with a specific letter are determined on the basis of the total number of codes available, and pro-

portionally to the number of pages occupied by that beginning letter in a sample dictionary.

Code of a word’s form is a number that is joined, in the table containing an entry for every
possible form of any word class, to the form of that word (eg. 40 for infinitive form of anomalous
verbs like "to have” or "to be”, 41 for the first person in singular of the present tense of those
verbs -as "have” or "am”,46 for participle of those verbs -as "had” or "been”, 150 for regular
nouns in singular, 151 for regular nouns in plural, 210 for comparatives of adjectives ending on -

er”, etc.).

Encoding is done as follows: Given a word as a character string, we first search for the
corresponding entry in the dictionary and extract the code (id, descr). If there is more than one

entry, then disambiguation is necessary.

The set of operators L consists of four types of operators: lezical operalors such as finding
root, prefix, ending or semantic feature of a lexical unit, building specific lexical forms such as
plural for nouns or past tense for verbs, concatenating or deleting one lexical unit with/from
another one; syntactic operators such as finding word class for a given lexical unit, tense for a
given verb, degree for a given adjective, kind, gender, case for a given pronoun; metric operators
such as length of a lexical unit in characters; truth operators such as equality or order of lexical

units based on weights of roots, prefixes, endings, word forms and semantic features.

Examples of those operators are:
root(went)=go;
end(action)=ion;
tense(went)=past;
lexform(pl, datum)=data;
lexform(past, go)=went;
lexform(past, datum)=null;
concat(act, ion)=action;

concat(trans, ion)=null;

In what follows, we give a precise and formal specification for the lexical data type.

3.1. Lexical Data Set
LEX (lexical data set) is a union of the following sets of pairs of integers (id, descr):

- encoded full lezical units - encoded lexical units from the dictionary, which are

images of words,

-sets of pairs (id, descr) having codes of all the entries from PREFIX, ENDING

and SEM-FEATURE data relations in the corresponding portions of id, descr,

and all the other zeros, and

-"null”.

SYNT (syntactic data set) is a union of:

-WCL (word-class set), and

-NFORM, VFORM, AFORM and PFORM sets {sets of all the different forms

corresponding to noun, verb, adjective-adverb, and pronoun word classes, respec-

tively, ie.

WCL={reg.noun, reg.verb, reg.adjective, reg.adverb, ir;'eg.noun, irreg.verb,
irreg.adjective, irreg.adverb, anom.verb, pronoun, conjunction, prefix, preposition, null};

NFORM_={sing, pl, null};

VFORM=={pres_lst_sing, pres_2nd, pres_3rd_sing, past, part, null};

AFORM=/{positive, comparative, superlative, null};

PFORM=/{pers_{_lst_sing, pers_m_lIst_sing, pers_lst_pl, pers_f_4th_sing,
pers_m_4th_sing, pers_4th_pl, pos_f_sing, poss_m_sing, poss_n_sing, poss_pl, show_sing,
show_pl, null}

Q - set of numbers.

TF - truth values set {T,F}.

3.2. Constants, Variables

Conslants:
ll from LEX;

s, from SYNT;

q; from Q;

T,F from TF.

Variables:
Ll from LEX;

S[from SYNT;

Q, from Q;

TR‘ from TF.

3.3. Operators

lezical operators: LEX* -> LEX* or

LEX* X SYNT -> LEXt;
syntactic operators: LEXT X SYNT -> SYNT;
metric operators: LEX* -> Q;

truth operators: LEX* -> TF.

The operators on lexical data type:

unary:
lexical:
root(L|) € LEX);
prefix(L) (¢LEX);
end(L,) (¢LEX);
feat(L,) (¢LEX);
syntactic:

w_class(L|) (e WCL);
tense(L,) (¢VFORM);
number(L) (¢ NFORM U PFORM);

‘degree(Ll) (¢ AFORM);

kind(L,) (¢ PFORM);
gender(L) (¢PFORM);
case(L,) (¢PFORM);
metric:
length(L) (€Q).
binary:
lexical:
lexform(S,, L,) (€LEX);
concat(L, L,) (€LEX*);
delete(L,,L,) (¢LEX*);
truth:
equal(L, L,) (¢ TF);
less_;:q(Ll, L,) (eTF);

greq(l, L)) (¢TF).

3.4. Lexical and Logical Expressions

Lezxical expression is a sequence of constants and variables from the set LEX and the sets

supporting it, intermixed with operators leading to LEX-type result.

Lezxical predicalés are of the form t.ruth_op(exprl, exprz), where expr, expr, are any lexical

expressions, and truth_op is any of the binary truth operators defined above.

Logical ezpressions (and thus qualifications) are extended to accept lexical predicates as

arguments of logical operators (not, and, or).

3.5. Procedures for Operator Evaluation

Lexical operators are defined by procedures having encoded lexical units (ie. pairs of

integers) as their arguments.

The following are some examples of those procedures written in a C-like language:

root:
root(L)
int L[2];

L{0]=(L[0]/10%+4) * 10%+4;
L

1]=0;

lezform:

lexform(form,L)
char *form;
int L[2];

if(form=="sing')
singular(L);

else if (form=="pl’)
plural(L);

else if (form=="pres_lst_sing’)
prisg(L);

else if (form==="pres_2nd’)
pr2(L);

else if (form=="pres_3rd_sing')
pr3sg(L);

else if (form=="past’)
past(L);

else if (form=="part')
participle{L);

else if (form=="positive’)
psit(L);

else if (form==="comparative’)
compar(L);

else if (form=="superlative’)
superl(L);

else if (form=="pers_{_lIst_sing’)
prfls(L);

else if (form=="pers_m_1st_sing’)
prmls(L);

else if (form==="pers_lst_pl')
prip(L);

else if (form=="pers_{_4th_sing’)
pri4s(L);

else if (form==="pers_m_4th_sing’)
prm4s(L);

else if (form=="pers_4th_pl’)
prdp(L);

else if (form=="pos_{_sing’)
psfs(L);

else if (form=="pos_m_sing’)
psms(L);

else if (form=="pos_n_sing’)

" pens(L);
else if (form==="pos_pI’)
psp(L);
else if (form="show_sing’)
ss(L);
else if (form=="show_pl’)
sp(L);
‘else
L=NULL;

-

Procedure "singular” might be defined as follows:

singular(L)
int L[2];

if(L[1]/1000!=8 && L{1]/1000!=15)
L=NULL;
else if(L[1]/100===381 || L[1]/100==151)

L{o]=LIo}-1;
L[1]=L[1]-100;

}

and similarly for other procedures.

4. Text Representation
Our goal is to take a text in its natural form and automatically convert it into a relation:
text(seqno, lex)

where seqno represents the sequential order and lex (lexical unit) is either the image of a word
- under encoding or a special symbol. The process of encoding (a) reduces a word to a fixed length
representation, (b) makes explicit the lexical properties required to support the desired operators,
and (c) resolves any ambiguity that may be present in the character string form. The automatic
conversion of text is done using: a text scanner, a dictionary, and an expert system for resolving

ambiguity.

10

4.1. Dictionary

The structure of the dictionary has already been described in section 3. It contains all
words except plurals for regular nouns, tenses for regular verbs and comparatives and superlatives
for regular adjectives and adverbs. Roots, prefixes and endings are determined by hand and their

meaning is obvious; one rule about roots is that they are always words themselves.

Semantic feature is a marker that expresses semantics of a word or of a specific use of a
word (e.g., ACTION for thé word "work”, LOCATION for the word "abroad”, TIME for the
word "then”, QUALITY for the word "brilliance”, both MEASURE and EMOTION for the word
"content”). The set of semantic features we use is much like the one in [SiCh 82|, extended with
a hierarchical structure. For example, semantic feature TIME has as its subordinated semantic

features FUTURE, PRESENT and PAST. Our set contains about 50 semantic features.

The dictionary encoding is done by an EQUEL-program. For our experimental study, we

have built a dictionary with 1400 entries of basic words.

4.2. Lexical Rules

Since different forms of regular words are not present in the dictionary, lexical (ie. morpho-
logical) rules for synthesizing them or recognizing them is necessary in order for a text to be

encoded.
An example of those rules is the following:

- if a word from the text ends with "ies” and in the dictionary there is a noun equal to that word
except for the ending being "y” instead of "ies”, then the word is the noun from the dictionary, in

plural.
Those rules are stored in a relation "lexrule” which is of the form:

word_ending | dict.entry_ending | word's class | dict.entry’s class | descr | code offset

Word and dict.entry endings are the letter groups that should be deleted at the end of the
word that is to be encoded and that should be then added to the end of such a word, respectively,

in order to obtain a dictionary entry corresponding to the word being encoded (e.g., the ending

11

"ies” should be deleted at the end of the word "copies” and then the ending "y” should be added

to "cop” in order to get a dictionary entry "copy”).

Word and dict.entry’s classes are word classes that the word being encoded and the
corresponding dictionary entry, respectively, belongs to (e.g., noun for both in the previous exam-
ple).

Descriptor is an explanation of the form found in the text (the code for "plural” in our

- .

case), and a code offset says how to calculate the code of the word being encoded on the basis of

the code of the corresponding dictionary entry.

The lexical rules relation created contains about 40 rules.

4.3. An Expert System for Resolving Ambigulty

According to the classification of expert systems in [HaWL 83|, our expert system is of the

interpretation type. The components of the system are:
(1) a blackboard used to record intermediate results,
(2) a knowledge base containing facts from the dictionary and rules used for resolving ambiguity,

(3) an interpreter that applies a rule from the knowledge base and posts changes to the black-

board,

(4) a scheduler that controls the order of rule processing according as whether the ambiguity is to

be resolved syntactically or semantically.

In most cases, ambiguity is between word classes (e.g., noun and verb) and is resolved using
context. For example, suppose that the phrase "a set of rules” is encountered. The word "rules”
is either "verb - third person singular” or "noun - plural”. In this case, the ambiguity is easily
resolved by the rule: ”preposition-noun” combination is far more likely than ”preposition-verb”

combination. As in MYCIN [DAVI 77|, we use a probability model, and our rules have the form
(antecedent, consequent, probability)

where antecedent specifies a set of conditions under which the rule is applicable, consequent is the

12

conclusion and probability gives a weight to the conclusion. For example, we might have:
antecedent: if x is a noun or a verb and if x follows a preposition
consequent: then x is a noun with

probability: weight 0.9.

The architecture of the expert system was chosen on the basis of knowledge, data and solu-
tion space appropriate to our problem. Using the terminology found in [STEF 82], we find that
we have a small solution space (few possible choices), unreliable data and knowledge (the context
used for resolving ambiguity of a word might be ambiguous as well, and rules, representing
knowledge, are not absolutely correct), and fixed (time - independent) data. For such an environ-
ment, the [STEF 82| suggests an expert system organization that applies exhaustive search and

combines evidence from multiple sources and a probability model.

Thus, our strategy is a MYCIN-like one [DAVI 77]. It is designed to make an exhaustive
search through the set of rules applicable to a given situation, and stops short of exhaustion only

when ambiguity is resolved with certainty.

Backward chaining control strategy is used. The search is hypothesis driven: from possible

solutions to related antecedent conditions and to their required data.

Our expert system was built using EQUEL [INGR 81], which is QUEL (QUEry Language
for INGRES) coupled with general purpose programming language "C” [KeRi 78], rather than

knowledge representation languages [HaWL 83].

In our experimental system, we have 110 rules, 50 of which involve word class (e.g., noun
vs. verb), 30 involve semantic feature (e.g., time or place), and 30 are word specific (e.g., noun
"drama” or adverb/noun "back”). Both rules and facts as well as the dictionary are stored as rela-
tions in INGRES. Figure 1 depicts the flow of control among the basic procedures. All pro-

cedures have read and write access to blackboards, which are "C” arrays of structures.

13

RESAMB
. (resolving ambiguity)

!

WCOND

(word-class cond. test)

FCOND

(feat-cond. test)

Yy

ENVIR

(environment to be searched)

BLDNP
(building noun phrase
starting from noun)

BLDVP
(building verb phrase
starting from verb)

)

|

CHPHR

. (check phrase)

Figure 1. Basic cooperating procedures in the expert system

4.4. Text Encoding

Texts are scanned first, and then encoded and stored on a sentence by sentence basis. A
current word is matched against the dictionary entries, taking into account lexrule relation. It is
appended to the blackboard 1 together with the information about its position in the text, and, if
unambiguous, with its code and descriptor. If a word is ambiguous, then it is marked indicating
the kind of ambiguity that is encountered. The procedure for resolving ambiguities in a sentence
is then called, which fires the expert system procedures for every word on the blackboard 1

marked as ambiguous. The contents of the blackboard 1 is then written into an output file, and

at the end stored in a relation.

14

As an experiment, Albert Einstein's biography [ENCY 79| has been used as a text that con-
tained 4096 words (including numbers, punctuations and special symbols) within 140 sentences.
The following are some numbers that are obtained as a result of applying the system to the text:
82% of all the sentences {115 sentences) were found to contain ambiguous words, 251 in total (5%
of all the words). Out of all the ambiguous words, 147 were found to be syntactically ambiguous
and 104 semantically ambiguous. In the process of resolving ambiguities, 139 out of 147 syntactic
ambiguities were resolved . correctly (94%), examples of incorrect resolution being some
occurrences of the word "after” (adverb/adjective/preposition/conjunction), of the word "found”
(regular/irregular verb) and the word "divorce” (noun/verb) in the phrase "was to lead to
divorce”. Semantic ambiguities were mostly on semantics of prepositions. Out of 104 semantic
ambiguities, 82 were resolved correctly (79%), examples of incorrect being several occurrences of
the preposition "by” (TIME/ SOURCE/ INSTRUMENT) as in the phrase "rejection of his ideas

by statesmen”, and the word "content” (EMOTION/MEASURE) in the phrase "energy content”.

. Source of incorrect resolution of ambiguities is mostly in that we decided on a very limited
and simple analysis of context, and it would significantly improve with addition of more complex
analysis. In order to resolve semantic ambiguities better, the system would also have to be

enchanced with context-dependent semantics.

As an example of what has been successfully resolved, the following is an extract from the

text been encoded:

Albert Einstein was born in Ulm, Germany, on March 14, 1879.

His theories of relativity were a profound advance over the old
Newtonian physics and revolutionized scientific and philosophic inquiry.

The words "on”, "advance” and "over” were recognized as ambiguous ones (first one as hav-
ing more than one semantic feature, last two as belonging to more than one word-classes) and

were successfully resolved(TIME, regular noun, preposition, respectively).

15

5. Example Applications

Operations on texts that we have experimented with include: extraction of keywords and
phrases, (information retrieval application), stylistic homogeneity testing (computer linguistics
application) and extracting precise informations from texts. We shall describe the last one in

greater detail.

Extracting precise informations from texts consists of asking a question about a fact from

the text (e.g., when a person ‘named "X” was born) and finding the answer (e.g., 1879).

Our approach to extracting facts from texts is to view texts as a virtual relational database
corresponding to a specific schema. The schema defines, a priori, the universe of all queries that
may be posed, and the answer to a query is found from one or more texts at execution time.
Thus, except for the encoding at load time, the texts are not preprocessed. Query processing
makes heavy use of the syntactic and semantic features of words that we have designed into the

code.

We have constructed an experimental system with a collection of biographies in the (virtual

relational) database and the following schema:

relations with attribute:domain pairs:
birth(author:person, birth_place:place, birth_date:date);
degree(name:person, degree:degree, degree_institution:institution, field:field_of_science,
degree_date:date);
education(name:person, attend.instit:institution, field:field_of_science, period:(date,date));
emp_history(name:person, employer:institution, position:position, date_started:date,
date_left:date);
location(inst_name:institution, place:place);
research_interest(name:person, area:field_of_science, period:(date,date) U
{w|feat(w)="PRT"} U (date-date));

publication(author:person, title:citation, published:institution, date:date).

16

A priori, lexical information concerning some of the relations and domains may be supplied,

for example,

birth:

root: ”birth”;

person:
word class: proper phrase;

-

semantic feature: HUM;

place:
word class: proper phrase;

semantic feature: LOC;

As we have explained, no stored relations correspond to the schema above. Instead, the col-

Jection of texts is stored as a relation
cod_text(tno, sno, id, descr)

where tno (text number) identifies a particular biography, sno identifies a sentence, and (id, descr)
is the coded form of a lexical unit. Now the question: "Where was Albert Einstein born?” can be

expressed as a virtual query:

range of e is birth
retrieve (e.birth_place) where e.author="Albert Einstein”,

Using the facts: code("LOCATION”)=46, code(”Albert Einstein”)= -1607030,

code(root="birth”)=12636, we can translate virtual query into a real query:

range of e is cod_text

range of u is cod_text

range of v is cod_text

retrieve(e.id) where e.id <0 and feat(e.id)=46
and e.sno=u.sno and e.tno=u.tno
and root(e.id,e.descr)=(126360000,0)
and v.tno=u.tno and v.sno=u.sno
and v.id=-1607030

which yields the answer "Ulm, Germany”.

17

6. Conclusion

We have presented a way of handling texts in a relational database system so that: (a)
storage efficiency is maintained, (b) ambiguity of words is resolved, and (c) lexical (word based)
information, both syntactic and semantic, is made explicit. These goals are achieved through
encoding, which in turn uses a dictionary and an expert system for resolving ambiguity. Once a
dictionary is built, any machine readable text can be automatically encoded with no human inter-

vention.

Our long term goal is to apply what we have done to the problem of extracting facts from
texts. A simple and rather primitive version of such a system is given as an example. However,
considerable more work will be required for a fact-extraction system of general utility, and we are

in the midst of such a development.

References:

[DAVI 77] Davis,R., et al., Production rules as a representation for a knowledge-based consulta-

tion program, Artificial Intelligence, 8(1977), pp.15-45;
[ENCY 79] The new Encyclopaedia Britannica, Macropaedia, 15th edition, Vol. 6, pp.510-514;

[HaWL 83] Hayes-Roth,F.,Waterman,D.A. Lenat,D.B.(Eds.), Building expert systems, Addison

Wesley Publ. Comp. Inc., 1983;

[INGR 81] INGRES Version 7 Reference Manual, ERL, UC Berkeley, Memo. No. UCB/ERL
M81/61, Aug 1981;
[KeRi 78] Kernighan,B.W., Ritchie,D.M., The C programming language, Prentice Hall Software

series, 1978.

[SiCh 82] Simmons,R.F., and Chester,D., Relating sentences and semantic networks with pro-

cedural logic, CACM, Aug. 1982, vol. 25, No.8, pp.527-547;

[STEF 82] Stefik,M., et al., The organization of expert systems, A tutorial, Artificial Intelligence,

18(1982), pp. 135-173;

	Copyright notice1986
	ERL-86-21

