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On the Dynamics of Finite-Strain Rods Undergoing
Large Motions — The Three-Dimensional Case

J.C. SIMO

Applied Mechanics Division,
Stanford University, Stanford, CA 94305.

L. VU-QUOC
Structural Engineering and Structural Mechanics Division,

University of California, Berkeley, CA 94720.

Abstract

The dynamics of a fully nonlinear rod model, capable of undergoing finite bending, shearing
and extension, is considered in detail. Unlike traditional nonlinear structural dynamics formula
tions, due to the effect of finite rotations the deformation map takes values in R3XSO(3), which
is a differentiate manifold and not a linear space. An implicit time-stepping algorithm that fur
nishes a canonical extension of the classical Newmark algorithm to the rotation group (50(3)) is
developed. In addition to second order accuracy, the proposed algorithm reduces exactly to the
plane formulation. Moreover, the exact linearization of the algorithm and associated
configuration update is obtained in Closed form, leading to a configuration dependent non-
symmetric tangent inertia matrix. As a result, quadratic rate of convergence is attained in a
Newton-Raphson iterative solution strategy. The generality of the proposed formulation is
demonstrated through several numerical examples that include finite vibration, centrifugal
stiffening of a fast rotating beam, dynamic instability and snap-through, and large overall motions
of a free-free flexible beam.

1. Introduction

The numerical treatment of the dynamic response of a three-dimensional
finite-strain rod model formulated in stress resultants is considered in detail. The

governing set of nonlinear partial differential equations in the form employed here
is given in Simo [1985]. The numerical treatment of these equations restricted to
the static problem is considered in Simo & Vu-Quoc [1985a]. We note that the
structure of the inertia operator associated with the rotation field of this rod

model is identical to the one that typically arises in rigid body mechanics.
Related finite-strain rod models developed by Reissner [1972-73,1981-82] and
Parker [1979] in a classical context, and by Antman [1974-75] in the context of a
director type of formulation, have been restricted to the static problem. These
formulations generalize the classical Kirchhoff-Love model (Love [1944]) to
account for finite extension and shearing in the rod. In addition, the appropriate
parametrization of the configuration space, a question fundamental for computa
tional significance, is not addressed in these developments.

From a computational standpoint, the central issue concerns the treatment
of the rotation field which in the present formulation has the same physical
meaning as in the classical Kirchhoff-Love model, that is, a one parameter family
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J. C. Simo and L. Vu-Quoc 3

of orthogonal transformations A :[0,L] —• 50(3) of the rotation group 50(3). The
basic difficulty lies in the nature of 50(3), a non-commutative Lie group and not
a linear vector space. This difficulty is by-passed in the numerical treatment of

the Kirchhoff-Love model by Nordgren [1974] by restricting the formulation to
cross sections with equal principal inertia and ignoring the effects of rotary iner
tia. The treatment advocated by Argyris and co-workers [1979,1981a-c,1982]
relies on an alternative characterization of the rotation field employing the notion
of semi-tangential rotations.

The numerical integration of the rotation field proposed in this paper

employs an implicit transient algorithm that furnishes the canonical extension of

the Newmark formulae, classically stated in R3, to the rotation group 50(3). In
this extension, notions of differential geometry, such as exponential mapping and

parallel transport, play a crucial role. The associated configuration update pro
cedure is amenable to a geometric interpretation consistent with that found in
the static problem, Simo & Vu-Quoc [1985a]. Proofs of the convergence and
second order accuracy of the algorithm are also given. In addition, exact lineari
zation of the proposed algorithm and associated configuration update is obtained
in closed form, leading to a configuration dependent tangent inertia matrix, which
is non-symmetric in the rotation degrees of freedom. This exact linearization
results in quadratic rate of asymptotic convergence in Newton's type of solution
strategies. Finally, the proposed time-stepping procedure exactly reduces to the
classical Newmark algorithm for the plane problem, as illustrated in our first
numerical example presented in section 5.

The spatial version of the proposed rotation update is related to the pro
cedure proposed by Hughes & Winget [1980], subsequently rephrased in Hughes
[1984], and employed by a number of authors in different contexts, including the
recent comprehensive work of Stanley [1985]. Although this update procedure
and the one proposed in this paper are both second order accurate, the update of
the rotation field set forth by Hughes & Winget [1980] does not reduce exactly to
the plane problem. In addition, the linearization of the latter update procedure is
not addressed by these authors. From a computational stand point both
approaches involve essentially the same computational effort.

The formulation developed in this paper encompasses a general class of non
linear structural dynamics problems that include elastic instability and non-
conservative loading, such as follower loads of the circulatory type. A fundamen
tal property of the proposed formulation is that the proper invariance require
ments under superposed rigid body motions, satisfied by the continuum rod
model, are preserved exactly by the integration algorithm and configuration
update procedure. In fact, the appropriate invariance of the strain measures
along with the inherent conservation of global linear and angular momenta of the
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3-D Finite-Strain Rod: Dynamic aspects 4

formulation are the essential ingredients for the success of the present approach
to the dynamics of flexible beams undergoing large overall motions, Simo & Vu-
Quoc [1985b]. Flexible robot arms, rotor blades of aircraft propellers, flexible
Earth-orbiting satellites are some typical examples of this type of structures.
Traditional approaches to this problem (see, e.g., Laskin et al [1983] and Kane et
al [1985]) assume at the outset small deformation, and rely essentially on the use
of a floating frame moving with the deformed structure. A complete review of
various types of floating frames can be found in Canavin & Likins [1977]. The
equations of motion resulting from these approaches are nonlinear and extensively
coupled in the inertia terms because of the Coriolis and centrifugal effects as well
as inertia effects due to rotation of the floating frame. By contrast, in Simo &
Vu-Quoc [1985b], we refer the dynamics of motion of the beam directly to the
inertial frame, thus simplifying considerably the inertia operator. The present
paper generalizes these results to the fully three-dimensional case. We note that
application of the present algorithm is also of interest in bioengineering (e.g.,
Mital & King [1979]).

2. Weak form of the governing equations

Notation. Following standard usage, we denote by 50(3) the non-
commutative Lie group of proper orthogonal transformations, i.,e.,

50(3) := {A:R3-R3 linear | ArA = 1 , and det A = 1 } (2.1)

Let *o(3) := { 0 :R3 — R3 linear | O + Or= 0} be the set of all skew-
symmetric tensors. In coordinates, relative to a basis {e,} in R3, we have
0 = 0,y e,® e;- and 0 = 0,- e,-. In matrix notation,

[%] =

0 -03 d2

-o2 e{ 0
W =

let

92

0*

(2.2)

Recall that so(3) is isomorphic to R3 through the relation 0 h=* 0 X h, for any
he R3. Here, 0 6 R3 is the axial vector of 9 6 so(3). We often use.the nota
tion [0 x] := 0. Geometrically, A 6 50(3) represents a finite rotation.
Infinitesimal rotations are linearized rotations about the identity. Mathemati
cally, one speaks of so(3) as the tangent space of 50(3) at the identity 1 € 50(3),
and employs the notation so(3) = 7\50(3). Given any A G 50(3), and any
© € so(3), [0 A] represents an infinitesimal rotation superposed onto a finite
rotation represented by A. The set of all superposed infinitesimal rotations
TA50(3) := { 6 A I for 6 G so(3) }, is referred to as the tangent space at
A £ 50(3). Finally, the straight line e -• e 0 A 6 TA50(3), for e > 0 is mapped
by the exponential map onto the curve e —+ exp [c 0] A.
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J. C. Simo and L. Vu-Quoc

= [E tt ©*] A. G 50(3). We recall that for the case of 0 G so(Z), one has the

following explicit formula often credited to Rodrigues

1 ' 111 2 (PH/2)2
(2.3)

2.1. Description of the rod. Local equations

The motion of a rod deforming in the ambient space R3 is defined through
time I G R+ as follows. First, the current position of line of centroids of the rod
is specified through a map ^0(5, t) :[0, L] X R+ —*• R3. Second, the current
orientation of each cross section Q, GR2 at S£ [0, L], is defined by specifying the
orientation of a moving basis {ti(5, 0}{i=i,2,3}> attached to the cross section, rela
tive to its initial position {E[}/j=lt0 3} at 5G[0, L\. That is, by an orthogonal
transformation A :[0, L\ X R+-* 50(3) such that ^(5, t) = A(5, t) Ej.

The spatial coordinate basis is denoted by {©,}{,•=,1,2,3)1 and plays the role of
an inertially fixed reference basis. The basis vectors are chosen such that
{ti(5,0)}{I=lt2i3} = {E,}{Ia3lt2t3} = {e,-}^^}, for 5G[0,L]. See Figure 2.1.
In coordinates we have A(5,f) = All(5,/) e,-® E!

«

Figure 2.1. Kinematic description of the rod. Material frame {Ei}/i_123},
inertial frame {e,-},^!^^, and cross-section frame {ti}/i=1,2,3}*

The complete system of equations governing the motion of the rod with
configuration space defined by (2.3) is summarized in BOX 1 below. Here
C:= {(<l>0, A) :[0, L] —R3X50(3)} is the configuration space, ft = - QT
defines the spatial curvature of a configuration, i.e., the rate of change of basis
{tj} with respect to the coordinate 5, and W = -Wr is the spatial spin rate, or

January 14, 1986



3-D Finite-Strain Rod: Dynamic aspects 6

the rate of change of the basis {tj} with respect to time t. In addition, u G R3
and w GR3 are axial vectors associated with ft and W respectively, that is,
ft u s 0, and Ww s 0. Finally, n and m are the distributed applied force and
couple per unit reference length of the rod.

BOX 1. Governing equations for the finite-strain rod. Local form

^j|& =O(5,0 A(5,0 , M =W(5,/) A(5,<)

n = A
dr

ds

__ . a#5, r, k) A 30(5, r, /r)
0*

— n + n = A,*0

d , dto ~ T . rT .m + -rrr X n + m = lp w + w X [I, w]
dS dS

The function ?/>(5, r, A") corresponds to the constitutive law relating the strain
measures r and Kto the internal forces n and m. Ap :== Jp0 aTt, is the mass per

unit length of the beam, where p0 is the mass density. If Ip = J rjEi ® Ej is the
inertia dyadic (constant with respect to time) of the cross section in the reference
configuration given by

h •= J«/? [Sa0 1 - Ea® E^] , lafi := fp, XQ Xff dQ (2.4)
n

where (A^, A2, 5) are the coordinates relative to {Ej of a point in the cross sec
tion and 1 := Diag [1, 1, 1] is the unit tensor, then Ip is the time dependent ten
sor defined as 1,(5,0 = A(5,f) lp Ar(5,*).

2.2. Weak form. Inertia operator

Let ^GO, denoted by T+C be the space of kinematically admissible varia
tions (the tangent space to the configuration space O). Thus,
T+C:= { if = (90, ^):[0, L\ -• R3XR3}. Multiplying the spatial form of the
local balance laws in BOX 1 by an arbitrary admissible variation tj G TxC, one
obtains

Giyn[4>, 9) := / {Ap & • i, + [I, w 4- w X(I, w)) .*}dS- G(f, 9) (2.5)
[0,4
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J. C. Simo and L. Vu-Quoc 7

where G{$, 9) is the weak form of the local static equilibrium equations

[o,L\ dr dS OS1 dK dS S
- / (n^ + m-fldS, (2.6)

for arbitrary 9 = (i§0, 1>)€.T+C. For simplicity, we have assumed homogeneous
displacement (Dirichlet) boundary conditions.

3. Covariant implicit time-stepping algorithms

In this section we develop an implicit time-stepping algorithm for the time
integration of (2.5). The novelty of the proposed approach lies in the treatment
of the rotational part which relies crucially on the use of the discrete counter
parts of the exponential map and parallel transport in the orthogonal group
50(3). The algorithm and associated configuration update may be phrased in
either a spatial or a material setting. In the language of rigid body mechanics,
the difference amounts to phrasing the formulation in either spatial or body coor
dinates. The geometric interpretation of the proposed procedure and its imple
mentation are considered in detail.

3.1. Formulation

In line with standard usage, we employ the subscript n to denote the tem
poral discrete approximate of a time-varying quantity at time tn; thus for the dis-
placement field dn(5) = *0(5,y, vn(5) = *0(5,y, an(5) = &(5,y, and for the
rotation field AB(5)=A(5,y, wn(5) = w(5,y, an(5)=w(5,y. The basic
problem concerning the discrete time-stepping update may be formulated as fol
lows. Given a configuration ^n := (dn, AJ G C} its associated linear and angular
velocities, (v„, wn), and linear and angular accelerations (an, an), obtain the
updated configuration #n+1 := (dtt+1, An+1) G C, the associated updated linear
and angular velocities (vn+1, wB+1), and the updated linear and angular accelera
tion (an+j, <*n+i), in a manner that is (a) consistent and (b) stable f with (2.5).

To this end, we proposed the algorithm summarized in BOX 2 below. Note
that the algorithm for the translational part of the configuration, that is
(5, t) —• 4q(S, t) GR3, is the classical Newmark algorithm of nonlinear

t The notion of stability corresponds essentially to well-posedness of the semi-discrete
problem. In the nonlinear case the appropriate concept of stability remains unsettled,
and several notions of stability have been proposed (A-stability, spectral stability, stabili
ty in the energy sense, stiffly-stable methods, etc...). See, e.g., Hughes [1976], or Be-
lytschko & Hughes [1983].
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3-D Finite-Strain Rod: Dynamic aspects 8

elastodynamics (see, e.g., Belytschko & Hughes [1983]). The proposed algorithm
for the rotational part (5, t) -• A(5, t) G 50(3), in its material version, furnishes
the canonical extension of the Newmark formulas to the orthogonal group 50(3).

BOX 2. Covariant implicit time-stepping algorithm

Momentum Balance at tn+l

/ M, a«+i • ?o + An+1 fpB+1 an+l + wVh X(T^i w^J] . ^} dS + G^B+1, t,) = 0

Translation Rotation

d„+i = dn + un A„+i = Anexp[0B]

u„ = hvn + A2 [(I - /?) an + 0 an+1] ff.-AW. +tf [(j-fll. +jX^J
vn+l = vn + * [(1 " 7) a„ + 7 *n+l\ Wn+1 = Wn + A[(1 - 7)An+7Aj

In BOX 2, 0, W, A are elements of so(S) (skew-symmetric tensors) with com
ponents in the basis {Ej}. Their axial vectors are denoted respectively by 0, w,
5F, and are elements of R3. Note that the components of a material object, say
0, in the material basis {Ej} are numerically equal to the components of its spa
tial counterpart, 0 = A 0 Ar in the convected basis {%}. The same property
holds for the associated axial vectors: 0 = A0.

Remark 3.1. For the rotation part, since the inertia dyadic has constant
components in the material basis {Ej}, it is more advantageous to write the
time-stepping algorithm for the rotation part in the material setting, as indicated
in BOX 2. Note that in the spatial setting, the update of the rotation field is
from the left, i.e., An+1 = exp[ 0jAn. Q

Geometric interpretation. Further insight into the nature of the algo
rithm summarized in BOX 2 is gained by examining its^geometric interpretation.
For the translational part, the time-stepping procedure is the standard Newmark
algorithm and takes place in R3. Hence, the exponential map reduces to the
identity, and the parallel transport is simply a shift of the base point. Pictori-
ally, we have the situation depicted in Figure 3.1(a).

For the rotation part, the time-stepping procedure takes place in 50(3). A
given configuration An G 50(3) is updated forward in time by exponentiating the
incremental rotation 0B G so(S) to obtain An+1 = exp [0n] An. Since
0„ = Aj 0n A„, it follows from well known properties of the exponential map
that An+1 = An exp [0B], which is the update formula recorded in BOX 2. Such
a procedure ensures that Att+1 remains in 50(3) in the natural way by making^
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Exponential map

Figure 3.1 Geometric interpretation of the time-stepping algorithm, (a)
Translational part takes place in R3. (b) Rotational part takes place in
50(3). Velocity and acceleration update takes place in the same tangent
space.

use of the discrete version of the exponential map. Note that the step forward in
time of the angular velocity Wn and acceleration AB is performed with their
respective material versions, Wn and A„, in the same tangent space TiS0[3); the
result is then parallel transported to TAn+i50(3). The material time-stepping pro
cedure may be thought of as emanating from the following system

A = A W , W = A (3.1)

A precise consistency argument is given in Lemma 4.1. Q

3.2. Update procedure: Basic setup

The formulae contained in BOX 2 define the velocity (vB+1, wB+1) and the
acceleration (aB+1, an+l) in terms of the incremental field A^n := (un, 0n) from
the base points (vB,wB) and (an, an). Thus, the weak form of momentum bal
ance at time tn+l, Gdyn(j(S, tn+l), ^(5)) = 0, depending on velocity and accelera
tion becomes, by virtue of the time stepping-algorithm, a nonlinear functional of
the incremental field A^B denoted by Gdyn(4n+l, i|). The solution of this non
linear variational equation is accomplished by an iterative scheme of the Newton
type, as follows.

.Assume that j$+1 := (d^, A$+l) is known. By solving the linearized weak
form about 4$+i> one obtains an incremental field &$$+i := (A^B+1, A0^+l).
The basic setup is: Given &+$+l GT^C update ^+l GCto #<£/) GCin a
manner consistent with the time-stepping algorithm in BOX 2. Again the central
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3-D Finite-Strain Rod: Dynamic aspects 10

TA(.)S0(3) Exponents mac

TA(..DS0^

S0(3)

Figure 3.2. Update procedure for rotational part.

issue concerns the update of the incremental rotation. First, making use of the
exponential, one sets

AQ.j = exp[0(;)] AB , Agtf> = expl©^1)] An (3.2)

Note that (3.2) makes sense since 0$ Aa and 0n,+1) AB are both in the tangent
space 7^50(3). Next, making use of the incremental exponential map we have

Aft/) = «p|Ae&,l A&, (3.3)

Again we note that (3.3) makes perfect geometric sense since AO^^A^ is in
the tangent space TAwjSO(Z). Combining (3.2) and (3.3) we obtain the update
formulae in BOX 3. A geometric interpretation of the procedure summarized in
this box is contained in Figure 3.2.

Remark 3.1. The update procedure in BOX 3 applies for »>.l. For
i = 0, the "initial guess" in the Newton process, one sets dj?|t =••<!„ and
AJJh = AB. With this assumption, (v^, w^J and (ajjj,, ag^) are then com
puted by the Newmark formulae given in BOX 2. Alternative starting pro
cedures, such as (an°ji, a^) = (aB, an), often result in spurious behavior (Tay
lor [1985]). Q"

3.3. Exact linearization of the algorithm

We consider the linearization of the temporally discrete weak form
Gdyt&tn+v ?) about a configuration 4$+l = (d$+l, A$+l) GOin a manner that is
consistent with the update procedure summarized in BOX 3. For this purpose,
given an incremental field A^^ = (Au^, 0$+l) in the tangent space at>j?,
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BOX 3Update procedure given A^+i := (Au^, A0$+l) GT^C

Translation Rotation

dfti" = dft, + Auft, Agf?) = exp [AO&d A&,

•ft." =y&i +-fe Au('l, exp [e(-+1)] - exp [AO&,] exp [0«]

a&" = a('l, + JL A»(-i, ^/' =w(ai +^[^')-^|

s^'^i.+^ie"-^]

11

we construct a c«rve of perturbed configurations in C, that is, a map
«- *fti,< = (d'Ai,,, Aft,,<) € C, by setting

d'Ai.. •= *(Ai +«Au'Ai . A&i,, := exP( «AO&il exp[e&,] An (3.4)
We then define the linearized quantities (Mj^i €, tfAJj}., e) at configuration
♦iti € C", as objects in the tangent space J*C given in terms of directional
derivative by the expressions

d
M&i :-

«*a. - i

&
e=0

dQ.Iif=Ana,

A(0 aa(>1 a(0

(3.5)

To proceed further with the linearization of the rotation field, we make use of
representations for AB^lc and A^ in terms of exponential maps starting at AB.
As in (3.2) we have that AJjJ.lfC = exp[GJJj A^+v where 0^ and G<? (or more
precisely G(£AB and GJ?Att) are in the tangent space TASO(Z) at An. Note that
^eL+i (or rnore precisely AG^A^) belongs to the tangent space 7V,) 50(3)
at AJJIj. From this representation, along with (3.5) and (3.2)!, we obtain

exp[ GW ]= exp[ e AG&J exp[ Gjfl (3.6)

With this relation in mind, we record below the main result needed in the exact
linearization of the weak form in BOX 2. This results is the mathematical state
ment of the linearization of the compound rotation 0B'\, which is the axial vector
of G« in (3.6).

Proposition 3.1. The linear part of the compound rotation 0n( is obtained
according to
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3-D Finite-Strain Rod: Dynamic aspects 12

^ = 4 *$< = T(#W) A*&, (3.7)
fl£ €=0

where T: 7^(^50(3) -• TAnSO(Z) is a linear map defined by

^^•••+d3!fefi-»«i-f (3-8)
wi'M e := 0/\\0\\. •

The proof of this proposition is given in appendix I. From (3.7) and the
time-stepping algorithm in BOX 3, we obtain the linearization of the angular
velocity and acceleration about the configuration f$+l. The explicit expressions
are

*W&i = "J Af T(*(0) A#a, , «&, = JL AjT(fl(0) A«a, (3.9)
Consider now the linearization of the weak form Gdyn(j, 9) about the
configuration + s ^n+i- By definition, we have

L[ Gdyn(*M+l, 17) ] = (7^.(^1, 9) + f>Gdyn(*{&v 9) (3.10)
where Gdyn(^+l, q) represents the dynamic out-of-balance force, and SGdyn is
obtained using the above results of linearization as

tG^f&v ») •= scui&i, *) + -L / nMA^i dS
* P [0,I|

+ /*•[-[ A&, {1^1. +4.XT,W&1 }X] (3.11)
1<U| L

+-jj Aft, {T, -A7 (l>&,xl +At [«& ,x]T,} AfT(«a,) dS
Here, <50(^.1,9) comprises the tangent stiffness operator and, in case of follower
load, the tangent load stiffness operator. Detailed expressions for 6G[4$+\, 9) can
be found in Simo & Vu-Quoc [1985a]. The tangent inertia matrix, as obtained in
(3.11), possesses an unusual characteristic with respect to standard structural
dynamics formulations: It is non-symmetric and configuration dependent. This
lack of symmetry concerns only the rotational degrees of freedom and follows
from the fact that the deformation map.^ of the configuration space C takes
values in the differentiate manifold R3X5D(3) rather than in the linear space
R3XR3. The latter typically arises in standard structural dynamics formulations
employing infinitesimal rotation field.
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J. C. Simo and L. Vu-Quoc 13

4. Spatial discretization: Finite element method

In this section, we shall be concerned with the spatial discretization of the
temporally discrete version of the weak form, given in (3.11), employing the finite
element method. Section 4.1 focuses on obtaining the tangent inertia matrix,
which is a basic feature of the present approach to nonlinear structural dynamics.
Detailed expressions for the tangent stiffness matrices are given in Simo & Vu-
Quoc [1985a]. In section 4.2, we establish the convergence property of the pro
posed time-stepping algorithm.

4.1. Tangent inertia matrix

At each configuration 4$+i € Q we introduce a finite dimensional approxi
mating subspace V* C fy;>+1£ so that the the incremental displacements and
rotation field, &+%(S) := (Auft,, Af&i) € fy^Oare interpolated as

•Aufti(S)'S EiV/S) AuijU,, A^(5) = EtfAS)A#J!Ulf (4.1)
7=1 /=d

where Nj[S) denotes the finite element global function corresponding to node /
constructed in the standard manner from the element shape function, and
(Auir;B+1, A0$,+1) are the values of (Au^, A0%) at node /. In the standard
Galerkin finite element method, we let the admissible variation

l(S) = (*I0(S), ${$)) be approximated in V* C T^C in the same manner as in
(4.1). Next, we recall that from a known configuration ^B at time tn, a Newton-
Raphson iterative scheme is employed to solve for the configuration ^B+1 at time
'n+i- At iteration (»), substitution of the above approximations into the linear
ized weak form about the configuration +$+l yields the following spatially
discrete version of the linearized weak form (3.10)

LlGdyn(+Mvi)\ = X>/*(PX*fti) + EK/J(AB, 4®n) A#<jU = 0(4.2a)
/=i I y=i J

for any j|/, where

K/j(A.f #&,) := M^AB, Aft,) + S„(*B'li) + GiJL4&i) + ^Mi) («b)

In (4.2a), P/f^fti) represents the residual or out-of-balance force at iteration (t)
of the Newton-Raphson scheme. The discrete dynamic tangent operator
K/t^An, 4&$.i) coupling node / and node J is the sum of (i) the tangent inertia
matrix M7<XAB, A$+l), (ii) the tangent material stiffness S/j^j/h), (iii) the
tangent geometric stiffness GfA+tf+i), and (iv) the tangent load stiffness due to
follower load L/jfAft,). The incremental displacement and rotation at node J is
denoted by A^B+1 := (Au#B+1, A^B+1).
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From the expression for 6Gdyn(4$+l, 9) in (3.11), it follows that the tangent
inertia operator takes the form

M,j(AB, A&,) =

with

»&" o
O m?AAnl Aft,) € Rsx6 (4.3a)

MY] :- -4t { / A, N^S) JVj(S) dS } Diag[l, 1, 1] (4.3b)
irp [o,i]

miiPHA„ A&,) :- / [-[A<&, {T,^, +wft,X!>« i}X] (4.3c)

+-L A&, {I, - At [I^l.X] + A-y [W&,X]I, } AjT(l&i) N^N^iS

Both m^1^ and m$2* are elements of R3x3. As noted in section 3, the tangent
inertia matrix is non-symmetric and configuration dependent. This property con
cerns only the rotational degrees of freedom as is manifest from the expression for
mtfj2\An, A^j). The submatrix m^1) corresponds to the translational degrees of
freedom and is constant, as usually found in the expression for the consistent
mass matrix when the deformation map takes values in a linear space. We recall
that identical property, i.e., the localized character of this non-symmetry, was
found as well in the tangent geometric stiffness G;/(Simo & Vu-Quoc [1985a]).

4.2. Convergence and accuracy of time-stepping algorithm

The proposed time-stepping algorithm summarized in BOX 2 is proved to be

convergent with second order accuracy when /? = — and 7 = —. In the case

where the deformation map takes values in a linear space, these values of /? and 7
correspond to the trapezoidal rule with established convergence property (Hughes
[1976]).

Lemma 4.1. Assuming that W(0 is twice continuously differentiate, then
the algorithm in BOX 2 is locally at most third order accurate regardless of the
values taken by /?, i.e.,

A(t+h) = A(t) exp[ hW(t) + h2 { (i - (3)A(t) + pA(t+h) } ] + 0(/i3) ,(4.4)

where A(t) := W(t). Q

The proof of this lemma is given in appendix I. With the above result, the
convergence property of the algorithm with 0 = — and 7 = — is established by
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•

% Proposition 4.1. Consider the system of differential equations A= A W,
w = f(W, A) with A e 50(3) and w G R3- Assume that f(W, A) satisfies the
Lipschilz condition in WG«o(3) andA£50(3). The algorithm

A„+1 = A„ exp[ A {W„+1 +WJ ]
_ _ A _ (4-5)W„+1 = W. +J {A„+1 +AJ

is convergent, i.e., wB —• w(fn) andAn —• A(£n) as h —*• 0, and second order accu
rate, provided bothw(tn) andvrn are bounded. Q

Note that this algorithm is a generalization of the trapezoidal rule to treat
the rotation field as expressed in (4.5). The proof of this proposition, given in
appendix I, is readily extended to the time-stepping algorithm for the dynamics
of the three-dimensional rod with /? = —and 7 = —. Let d+ denote the global

vector that contains all the nodal displacement degrees of freedom, and similarly
for v+, w+ concerning the. linear and angular velocities. On the other hand, A+
denotes the block diagonal matrix constituted from the A's at the nodal points.

Proposition 4.2. Consider the discrete nonlinear structural dynamics prob
lem recast as follows

d I + \
dt

d+ I f v+

W+

fi(d+, A+)

f2(w+, d+, A+)

A+ = (AW)+

(4.6)

Assume that fx and f2 satisfy the Lipschitz condition with respect to the argu-
mcnU, then d+ - d+(U AJ - A+(<n), t+ - y+(*J W+ - w+(<„) as A-. 0
with second order accuracy, where dj, AJ, vjj", and wB are obtained from the
time-stepping algorithm described in BOX 2. •

5. Numerical Examples

In this last section, numerical simulations are presented that involve (i) finite
vibration, (ii) fluttering (dynamic instability) due to follower loading, (iii)
dynamic snap-through, and (iv) large over all motions of flexible beam structures.
Owing to a linearization that is completely consistent with the update procedure,
as discussed above, all the numerical simulations exhibit a quadratic rate of con
vergence. The geometric and material properties are selected so that finite defor
mation occurs during the motion. It is emphasized that the deformed shapes in
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all figures reported in this paper are given at the same scale as the geometry of
the structures, i.e., there is no magnification of the deformation.

Example 5.1. Spin-up maneuver of a flexible beam. The beam shown
in Figure 5.1.1 has one end pinned and the other end free. A prescribed rotation
Ht) about the axis e3 is applied at the pinned end as follows

m =

6

15 t +b^ (cosir-x) rad 0 < / < 15 sec

(5.1)
(6t - 45) rad t > 15 sec

The material properties and finite element mesh used in the simulation are given
in Figure 5.1.1. As the beam is spined up from a rest position to a constant
angular velocity, it initially bends backward during the accelerated phase as a
result of inertia effects. Subsequently, when the angular velocity reaches a con
stant value of 6 rad/sec, the centrifugal force tends to straighten the beam; dur
ing this steady-state phase, the beam undergoes small vibration about its nominal
position. Several deformed configurations of the beam and time histories of the
tip displacements relative the rotating frame are given in Figure 5.1.2. An eigen
value analysis performed at the reference configuration f yields a period of
TA = 0.033 for the 4th bending mode in the plane of motion. For most of the

calculation, we use a time step size of h = 0.005 which is about —th of T4. It

should be noted that during the steady-state motion, the effect of centrifugal
stiffening tends to increase the natural frequencies. Thus the time step size
employed would be in fact larger than one-seventh of the period of the 4th bend
ing mode at this stage. This problem was analyzed by Kane et al [1985] and by
Simo & Vu-Quoc [1985b] to demonstrate the ability of their respective formula
tions to capture the centrifugal stiffening effect. Our purpose here is to show that
the fully three-dimensional formulation developed in this paper reduces exactly to
the plane case that was explored .in our previous work, i.e., convergence rate and
numerical results are identically the same in the 3-D case^as well as in the 2-D
case. •

Example 5.2. Right-angle cantilever beam subject to out-of-plane
loading. The right-angle cantilever beam with material properties shown in Fig
ure 5.2.1 is subjected to an out-of-plane concentrated load applied at the elbow.
The magnitude of this applied load follows the pattern of a hat function, as
shown in Figure 5.2.1. The cantilever undergoes finite free vibration with com
bined bending and torsion after removal of the applied load; the time histories of

Note that at the reference configuration, the stiffness and mass matrices are symmetric.
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out-of-plane displacements of the elbow and of the tip are given in Figure 5.2.2.
We note that the amplitude of vibration is of the same order of magnitude as the
length of each leg of the cantilever. Figure 5.2.3 gives the perspective view of a
deformed shape. A linear mode shape analysis of the structure about the refer
ence configuration reveals that the second bending mode of the free-end leg
appears as the 10th mode of the structure, with period Tl0 = 1.6. This period
provides a reasonable estimate for the time step size. Throughout the calcula
tion, we employ a time step size of h = 0.25, which is about —th of Tl0. The

results obtained from a discretization of the cantilever using two elements with
quadratic interpolation are in good agreement with those obtained from using ten
elements of the same type. Q

Example 5.3. Fluttering of a 45-degree bend under follower load.
The static response of the 45-degree bend depicted in Figure 5.3.1 under follower
loading was analyzed in Simo & Vu-Quoc [1985b]. In this example, we consider
the inertia effects on the response of the bend under follower load that ultimately
leads to fluttering (dynamic instability). A follower concentrated force of the cir
culatory type described in (4.10) is applied at the tip of the bend with steady
increase in magnitude at the rate of 100 unit of force per unit of time.
Throughout the analysis, we use a time step size of h = 0.1. Two perspective
views of the deformed shapes are given in Figures 5.3.2 and 5.3.3 to help visual
ize this complex motion. In Figure 5.3.3, we also give the path of the tip in the
static loading for comparison with the response from dynamic loading. The
static loading path is obtained by increments of 50 in the magnitude of the fol
lower load up to a magnitude of 3000. Details of the static analysis has been
reported in Simo & Vu-Quoc [1985a]. From Figure 5.3.3, one can see that ini
tially the dynamic response follows closely the static response. The inertia effects
become gradually more pronounced, leading to the divergence of the two paths;
then subsequently, dynamic instability sets in to cause strong vibrations of the
bend with increasing amplitude and velocity. •

Example 5.4. Out-of-plane dynamic snap-through of a right-angle
frame. The right-angle frame depicted in Figure 5.4.1 was analyzed statically in
Argyris et al [1979] and Simo & Vu-Quoc [1985a]. Here we provide an analysis of
this frame accounting for the inertia effects. The degree of freedom at the
hinged end are translation along the x direction and rotation about the z direc
tion. The apex of the frame is constrained to lie in the y-z plane. Due to the
symmetry of the problem, only half of the frame is modeled employing 10 ele
ments with quadratic interpolation for both displacement and rotation fields.
The value of Young's modulus is 71240, and the value of Poisson's ratio is 0.31.
The magnitude of the applied moment at the hinged end is chosen to have the
same value as the time t. As the magnitude of the applied moment increased, a
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perturbed concentrated force is applied at the apex of the frame to induce a
lateral motion of the apex. When the moment reaches the critical value of about
615, the loading is removed and the frame snaps through dynamically to the
other side as shown in Figure 5.4.2. Figure 5.4.3 reports the time history of the
lateral displacement of the apex. In a static analysis, due to the presence of limit
points, it is essential to employ a judicious combination of arc-length and dis
placement control methods in the numerical solution. In a dynamic analysis, such
special techniques (continuation methods) are avoided since the mass matrix, as
opposed to the tangent stiffness matrix, remains positive definite throughout the
entire analysis. The slenderness of the cross-section of the frame with ratio

etg = 50 causes large amount of twist during the motion. To provide an
thickness

estimate for the time step size, an eigenvalue analysis is performed at the refer
ence configuration. The first two modes that involve torsional deformation of the
leg are the 8th mode and the 11th mode of the structure with period Ts = 0.07
and Tn = 0.03 respectively. Note that since the frame is very flexible in the
out-of-plane direction, frequency modes below the eighth mode are out-of-plane
bending modes. A time step size of h = 0.005 was selected in the numerical
simulation of the dynamic snap-through of the frame. Q

Example 5.5. Free-free flexible beam undergoing large overall
motion. This problem was first analyzed in the plane case in Simo & Vu-Quoc
[1985b]. The beam is initially at an inclined position in the plane (e^eo) as dep
icted in Figure 5.5.1. A spatially fixed force along et is applied at the lower end
denoted by the letter A. Simultaneously, we apply a spatially fixed torque with
components along et and along e2 at end A. The time histories of the magnitude
of these applied force and torque are given in Figure 5.5.1. The applied force
produce the translational motion; the component along e{ of the applied torque
induces the forward tumbling while its component along e2 causes the out-of-
plane motion of the beam. The resulting three-dimensional motion of the beam
follows a periodic "kayak-rowing" pattern. Figure 5.5.2 shows the motion of the
beam during the early tumbling stage; the entire sequence of motion is depicted
in Figure 5.5.3. The traces of end A and end B of the beam are shown in dotted
lines. A side view of the motion in the plane (e2, e3) is given in Figure 5.5.4, and
a perspective view of the entire sequence of motion in Figure 5.5.5. During the
loading stage, finite deformation of the beam is clearly discernible from those Fig
ures. An eigenvalue analysis at the reference configuration of the free-free beam
yields a period of vibration of 1.06 for the second bending mode (the first two
torsional modes appear at lower frequencies). A time step size of h = 0.1 is sub
sequently chosen for the entire analysis. Q
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6. Concluding Remarks

Within the context of a general nonlinear finite-strain rod model, we have
developed an implicit, second order accurate transient algorithm that furnishes a
canonical extension of the classical Newmark algorithm to the rotation group
50(3). The exact linearization of the algorithm and associated configuration
update has been obtained in closed form, with accuracy and convergence charac
teristics precisely stated.

We have demonstrated the generality and effectiveness of the present formu
lation in several numerical examples involving vibration with finite amplitude,
dynamic instability due to follower load, dynamic snap-through fo a thin right-
angle frame, and free-free flexible beam subject to large overall motions and
undergoing infinitesimal or large deformation. The latter example illustrates the
applicability of the proposed formulation to the transient analysis of free-free
flexible beam structures undergoing large overall motions. Since the dynamics of
the motion is referred directly to the inertial frame, this methodology represents
a radical departure from the traditional formulations whereby small deformation
is assumed at the outset, and use of a floating frame that moves along with the
deformed structure is necessary. In the present approach, the dynamic coupling
in the inertia terms that appears by the use of floating frame is exactly accounted
for, and nonlinear geometric effects leading to instability are automatically
included.

We conclude by noting that the ideas developed in this paper carry over
essentially unchanged to the transient analysis of fully nonlinear finite-strain
plate and shell models, since they share with the rod model discussed in this
paper a common characteristic: the deformation map takes values in the
differentiable manifold R3X50(3).
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Appendix I: Proof of Proposition 3.1

In order to proV6proposition 3.1 we need the following preliminary results

Lemma 1.1. The Frechet derivative ofe := 0/||0|| is given by

ii0ii (11}
Proof: By taking the directional derivative of e, in the direction h, and not-

0 + ehing that D||f|| = f/||f||, it follows that ~
de

_ J_

h - {0 • h) 0/||0||J f ,_3 , u _
= —ii/iii , for any h£R3; hence the result. Q

f=o II* + A||

Next, we need to obtain the derivative of the exponential map
exp :rt50(3) — 50(3).

Lemma 1.2. Consider the curve in so(S), e 6 R —* Oe 6 so(3). If
exp :so(S) —* 50(3) is the exponential map, then its derivative is given by

17 expl eJ = TTTsF Ie<' + e< *' ~e' e«l exPl e<l <L2'
tte 1 + \\»A\"
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where

~ tan (||#c||/2)

e< •—ifer1 e< (L3)
and 0€ GR3 is the axial vector ofS€ G«o(3).

Proof: See Simo & Vu-Quoc [1985a]. Q
With these preliminary results at hand, we now proceed to prove the result

concerning the linearization of the compound rotation.

Proof of proposition 3.1. To simplify the notation we omit the subindex
n+1 and the superindex (i) in what follows. The basic relation in BOX 2 then
reads

exp[ ej = exp[ e AG] exp [ O]

Differentiating this expression with respect to e G R and setting e = 0, making
use of Lemma 1.2 and expressing the final result in terms of axial vectors leads to

2 [60+0X S0\ = A0
1 + ll*ll2

where 0€ is given by (1.3) and we have set 0 = 0(
notation, the above equation reads

Y-'(e) a = A$ , where Y-'(6) := , J..^.. [1+8] (1.4)
1 + ll»ll

Inversion of Y_1(0) yields

Y(e) = i i(i + \\ef) i _e + e2] = i [i - e + «® «]

Equivalently, making use of (1.3) we may rephrase this expression as

YW = Lil.^Ljme +l2-JMclt^9] (L5)

, , - tan (||*€||/2)
In addition, by differentiating the expression 0€ = r— 0e with respect

II0JI

. Expressed in operator

to e with the aid of Lemma 1.1, we obtain

60 = Z(S)60, (1.6)

for € = 0, where Z(0) is given by

Z(O) = % e® e.+ —2f8?!Lt [1 - e® e] (1.7)1+ tan2(||0||/2) tan (||*||/2) l J l '
Thus, from (1.4) and (1.6) it follows that

60 = Z(O) Y(B) A0 = T(O) A0

where, from (1.5) and (1.7), T(e) = Z(O) Y(0) is given by
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Appendix II: Convergence and accuracy proofs
Proof of Lemma 4.1. Consider the expressions of A(f-fh) given by the

Taylor series expansion,

and by the proposed time-stepping algorithm

A(t+h) == A(A) = A(0 exp[ KW(t) + h2 {(I - 0)A(t) + 0A(t+h)} ] (H.2)

The consistency and local third order accuracy of algorithm (H.2) follow from the
identities

and

dk ~ dk
s -~ A(t) , for £=0,1,2. (H.3a)

a=o dtr

j3 ~

^4-A(*jf (n.3b)
a=o dr

regardless of the values taken by /?. fj

Proof of Proposition 4.1. Let the error measures on_A_ and w be defined
as e„:=A(g-AB, and c,n := W(*J - Wn. Also let ||W|| := ||w||. From
Lemma 4.1, and the local third order accuracy of the trapezoidal rule in relation
with (4.5)2, i.e.,

w«„+1) - W(g = A (f(w(/„+I), a(*„+i)) +f(w(g, A(g> ]+o(a3) (n.4)
we obtain the following recurrence relations for (k+l and $k+l

(m = &+IA(y(Rt +|Rj) - AJfit + iSj)1+0(A3) (0.5a)

ft+i = ft + - [A(<Hl) - AA+1 + A(<t) - A* ]+ 0(A3) (n.5b)

where we define RA and Sfc to be

R* ~ 4 {W|tH1) +W(y > (n.5c)
St := 4 {Wt+1 +Wt } (n.5d)

Note that in (II.5a), we have expanded the exponential exp[Rj and expfSJ in
R.

series and retained terms up to order A2; higher order terms of the form —- with
k\

bounded norm are lumped together in 0(A3). Next, sum up the relations (II.5a)
and (II.5b) for k = l,...,n to obtain

€»+i = t (MW*i +tR?) - AA- +Is?) ]+0(A=) (n.6a)
1=0

fn+1 = |(A(*n+l) - An+1) +/*£(A(/J - AJ +Q(h2) (H.6b)
2 • ,
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assuming that there is no initial error, i.e., f0 = j0 = 0. Since A = f(W, A)
satisfies the Lipschitz condition with respect to its arguments, taking the norm of
(II.6a-b), we have

II&+1II < EI|A(«(Rl-+iRf)-Ai(S|.+ is?)|| + e1tf (H.7a)

hi n

lk„+ill < -vdl^ill + II&+1II) + ^Edlf.ll + llf.ll) + c2h2 (n.7b)
1=1

where cl and c2 are constants and L is the Lipschitz constant. Now note that

||A(f,.)R,- - A,S,.|| < ||A(«,)|| |R, - S,- + S,- - A'tUAftl
<||R,-S,.|| + ||l-Ar(<1.)A^|||S^|

< jfllft+il +llf.ll) +kKMA\ (H.8a)
and similarly

||A(<,)R? - A,S?|| < |B? - S?|| + ||1 - Ar(t,)A,|| l|S?||
< ||R? - S?|| + A2AT2I|e.|| • (H.8b)

where Kl} K<% are constants. Moreover, we have

IIR? - S?|| < ||R,+ SHI ||R,- - S,|| + ||R,S,- - S,R,||

< AKillfru + f,ll + Ik.- X s,||

< (hKs + }A2Ar,) (|f,+1|| +||fl.||) (ns.c)
in which r,- and s,- are the axial vectors of R,- and of S,- respectively, and K$ is a
constant. In the above inequalities, we have used the assumption that ||w(£n)||
and ||wn|| are bounded. There results

ll^+.ll +llft+Ill < C,(A)A2 +C2(A)£(||CJ| +HftU) (D.9)
1=1

in which Cx{h) = (1 + P[h))'1 is of order 1 when A->0, and F\h) and C2{h) are
some polynomials of h. From (II.9), it follows that

IK«+ill + lk«+ill < h2C{(h) exp[C2(A)] (H.10)
Thus, An—>A[tn) and w„—*>w(fn) as h—>Q and the rate of convergence is of second
order. •

Proof of Proposition 4.2. This proof is similar to the above one, and
hence will not be reproduced. Q
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Figure Captions

Figure 2.1. Kinematic description of the rod. Material frame {Eil/i^os},
inertial frame {e,}l=3it2,3» an<* cross-section frame {tj{1=^0,3}•

Figure 3.1. Geometric interpretation of the time-stepping algorithm, (a)
Translational part takes place in R3. (b) Rotational part takes place in
50(3). Velocity and acceleration update takes place in the same tangent
space.

Figure 3.2. Update procedure for rotational part.

Figure 5.1.1. Spin-up maneuver. Problem data.

Figure 5.1.2. Spin-up maneuver. Several deflected shapes during first
revolution. Time histories for displacement components and section rotation
relative to the shadow beam. Time step size h = 0.005.

Figure 5.2.1 Right angle cantilever beam subject to out-of-plane loading.
Problem data.

Figure 5.2.2 Right angle cantilever beam subject to out-of-plane loading.
Time histories of elbow displacements; Line A: 2 elements, line B: 10 ele
ments. Time histories of tip displcement; Line C: 2 elements, line D: 10 qua
dratic elements.

Figure 5.2.3 Right angle cantilever beam subject to out-of-plane loading.
Perspective view of deformed shape.

Figure 5.3.1 Fluttering of a 45-degree bend under follower load. Problem
data.

Figure 5.3.2 Fluttering of a 45-degree bend under follower load. Perspec
tive view of deformed shape from viewpoint A.

Figure 5.3.3 Fluttering of a 45-degree bend under follower load. Perspec
tive view of deformed shape from viewpoint B.

Figure 5.4.1 Out-of-plane dynamic snap-through of a right-angle frame.
Problem data.

Figure 5.4.2 Out-of-plane dynamic snap-through of a right-angle frame.
Time history of lateral apex displacement.

Figure 5.4.3 Out-of-plane dynamic snap-through of a right-angle frame.
Perspective view of deformed shapes.

Figure 5.5.1 Free-free flexible beam undergoing large overall motions.
Problem data.

Figure 5.5.2 Free-free flexible beam undergoing large overall motions.
Early tumbling stage.

Figure 5.5.3 Free-free flexible beam undergoing large overall motions.
Entire sequence of motion.
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Figure 5.5.4 Free-free flexible beam undergoing large overall motions. Side
view of deformed shapes.

Figure 5.5.5 Free-free flexible beam undergoing large overall motions. Per
spective view of deformed shapes.

January 13, 1986
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Figure 5.1.2. Spin-up maneuver. Several deflected
shapes during first revolution. Time histories for dis
placement components and section rotation relative to
the shadow beam. Time step size h = 0.005.
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Moteriol Properties:
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Figure 5.2.1 Right angle cantilever beam subject to
out-of-plane loading. Problem data.
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Figure 5.2.2 Right angle cantilever beam subject to
out-of-plane loading. Time histories of elbow displace
ments; Line A: 2 elements, line B: 10 elements. Time his
tories of tip displcement; Line C: 2 elements, line D:

ndratic elements.



Figure 5.2.3 Right angle cantilever beam subject to
out-of-plane loading. Perspective view of deformed
shape.
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Figure 5.3.1 Fluttering of a 45-degree bend under fol
lower load. Problem data.
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Figure 5.3.2 Fluttering of a 45-degree bend under fol
lower load. Perspective view of deformed shape from
viewpoint A.



F=I050

Dynamic
case

Static
case

F=3000 . Ss
(static loading) ^ \N\

F=2000

F=500

Figure 5.3.3 Fluttering of a 45-degree bend under fol
lower load. Perspective view of deformed shape from
viewpoint B.
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Figure 5.4.1 Out-of-plane dynamic snap-through of a
right-angle frame. Problem data.
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Figure 5.4.2 Out-of-plane dynamic snap-through of a
right-angle frame. Time history of lateral apex displace
ment.
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Figure 5.4.3 Out-of-plane dynamic snap-through of a
right-angle frame. Perspective view of deformed shapes.
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Figure 5.5.1 Free-free flexible beam undergoing large
overall motions. Problem data.
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Figure 5.5.2 Free-free flexible beam undergoing large
overall motions. Early tumbling stage.
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Figure 5.5.3 Free-free flexible beam undergoing large
overall motions. Entire sequence of motion.



Figure 5.5.4 Free-free flexible beam undergoing large
overall motions. Side view of deformed shapes.
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Figure 5.5.5 Free-free flexible beam undergoing large
overall motions. Perspective view of defooned shapes.
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