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Nonlinear Theories in Dynamic Analysis

The Role of Nonlinear Theories in Dynamic Analysis
of Rotating Structures

J.C. SIMO
Applied Mechanics Division,
Stanford University, Stanford, CA 94305.

L. VU-QUOC
Structural Engineering and Structural Mechanies Division,
University of California, Berkeley, CA 94720.

Abstract

It is explicitly shown that modeling of the influence of centrifugal force on the bending
stifiness in fast rotating structures necessitates a geometrically nonlinear theory. Explicit partial
differential equations (PDE) of motion are derived to demonstrate how linear structural theories
result in an unphysical loss of bending stiffness. This loss is quadratic with the angular velocity of
revolution. Such a spurious destabilizing phenomenon, however, should not be attributed to a
fundamental flaw in linear theories, but merely expresses the inadequacy of geometrically linear
formulations to account for nonlinear geometric effects. The correct set of linear PDE’s is
obtained as a consistent first order linearization of the fully nonlinear theory.

1. Introduction

Recently, it has been pointed out by Kane, Ryan & Banerjee [1986] (KRB)
that existing approaches to the dynamics of flexible bodies necessitate fundamen-
tal modification in order to capture the centrifugal stiffening effect in fast rotat-
ing beams. Our purpose is to show that

() Accounting for the stiffening effect in fast rotating structures requires a
higher order (geometrically nonlinear) theories, hence necessarily nonlinear in the
strain measures. A hierarchy of beam theories, from the linear to a fully non-
linear formulation, can be systematically developed by successive approximations
in terms of a small perturbation parameter (e.g., Truesdell & Noll [1965], page
219).

(ii) Current approaches based on linearized strain measures are not, by
design, conceived to capture such a stiffening effect, nor to account for any other
nonlinear phenomena involving change in stiffness due to axial loading. In fact,
use of a geometrically linear beam theory in the modeling of a fast rotating beam
leads to a spurious loss of bending stiffness, which is quadratic with the angular
velocity. This effect was numerically documented in Kane, Ryan & Banerjee
[1985]. Herein, this phenomenon is quantified analytically by providing the
relevant partial differential equation of motion for the transverse vibration.

(iii) The KRB approach may be viewed as a reparametrization of a higher
order beam theory of the von Karman type, along with a subsequent truncation
of nonlinear terms. Specifically, in the case of a beam, the axial displacement
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field is replaced by the elongation along the line of centroids, with the net result
of rendering the stiffness matrix identical to that of a linear Timoshenko beam.

This approach, however, ignores the effect of axial forces other than those coming
from inertia effects.

(iv) A set of linear partial differential equations of motion is derived as a
consistent first order linearization of the nonlinear theory. These linear PDE’s
capture correctly the action of the centrifugal force on the bending stiffness, and
in fact, for the von Karman type model, are the exact counterpart of the KRB
discrete approach. However, by contrast with the KRB approach, the Galerkin
spatial discretization of these PDE’s is straightforward. In addition, explicit
expressions of the linear semi-discrete equations of motion in the present context
are given.

(v) In cases where modeling of the above nonlinear geometric effects is
desired, the use of a fully nonlinear beam or plate theory does not involve more
computational effort than the use of a higher order nonlinear theory. In fact, by
referring the dynamics of the beam directly to the inertial frame, the inertia
operator becomes linear, hence simplifying considerably the task of integrating of
the equations of motion.

For simplicity in the exposition, but without loss of generality, we shall con-
sider the model problem a rotating beam whose motion is restricted to a plane.
The result obtained in this paper can be generalized without difficulty to the
three-dimensional motion. After considering in detail the developments pertain-
ing to a fast rotating beam, we show that the conclusion obtained in this one-
dimensional case essentially carry over without modification to the more general
case of a plate.

2. Consistent higher order theories

Model problem and notation. Consider the rotating beam shown in Fig-
ure 1. Let {O; e;, e;} be the inertial frame with base point O € R? and ortho-
normal basis vectors {e,, e;}. Let (Xj, X;) denote the coordinates along e, and
e,, respectively. The domain of the undeformed beam with length L and depth d

is B:= [0, L] X[- %, i;-] C R®. Here we consider the case where one end of the

beam is attached to the origin O, and the other end free. The motion of the
beam is assumed to be restricted to the plane (e[, e,), with a prescribed angle of
revolution ¥. Points in the undeformed (reference) configuration, are denoted by
X = X e; + X, e,. In addition, we introduce a floating frame {O;a,, a,} that
follows the rigid body motion of the beam, often referred to as the shadow beam,
or the locally attached frame (Canavin & Likins [1977]). The position vector of
the deformed line of centroids is given by

X, = [X; + (X, Y] ay(8) + uw(X,, &) as(t), (12)
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where u; and u, designate the displacement components along the axes a, and a,
of a material point initially located at position (X a,) on the line of centroids.
Since the motion is assumed to be planar, we have e; = t3 = a;. The orien-
tation of a cross section is defined by a moving frame {t,, t,, t;} such that

! a8 cosa -sina O
to} =AT{ a,!, where A:=|sina cosa 0]. (1b)

where a denotes the rotation of the beam cross section with respect to the float-
ing frame {a,, a,}. The deformation map is thus given by

X=X, + X2 tz (10)

Higher order beam theories, including the geometrically linear theory, can be
systematically obtained by successive approximations of the strain measures for
the fully linear theory.

2.1. Fully nonlinear theory. Within the scope of planar motion con-
sidered in this paper, a fully nonlinear dynamic beam theory accounting for finite
strain — shearing, extension and bending — is given by the system of partial
differential equations of motion (Simo & Vu-Quoc [1985])

Al -bu-29 -9 (G + ) Ny-a,V
An[.&2+$("{l+u!)+2$:‘!"]’2“2)l -A V::'*'a’zN =0 (2)
Lia+9) M;+T,V-T. N

where A, denotes the mass per unit reference length, and I, the mass moment of
inertia of the cross section. The superposed ‘“‘dot” indicates derivative with
respect to time £, while the notation ( . ),, corresponds to the first derivative with
respect to X;. In (2), (N, V, M) represent the axial force, shear force, and bend-
ing moment relative to the local frame {t,, ts, t5}, respectively, with (T'y, Ty, &)
being their respective conjugate strain measures such that

N=EAP1 r] l+ul,, 1
V= GAT,, and { Ip{:= AT U, =0 (3)
M= El« K @, 0

where A is the orthogonal matrix defined earlier in (1b). Recall that, since the
function 1 is prescribed, TZ’ and 7 are known functions. We note that the above
definition of the strain measures (I'y, 5, «) is unique in the sense that the result-
ing reduced expended power of the beam is identical to the exact stress power of
the three-dimensional continuum theory. The static version of equations (2) was
developed in Reissner [1972] for the planar problem, and in Reissner [1973,1981],
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Antman [1974] from the three dimensional case. The dynamic case along with
the development of a computationally suitable paramatrization is treated in Simo
[1985]. Successive approximations to the nonlinear theory can be constructed via
standard power series expansion in terms of a ‘“small” parameter ¢ > 0. The
series expansion of the strain measures defined in (3) are given up to second order

by
Fye 1+ey, (u, - (s - a)?
To} :=Ale )T} €up, =¢ llg': ap + — -2a uy,; + O(e%)(4)
K, €a,; 0

In what follows, we denote the first order (¢) approximation to the nonlinear

strain measures by (T,, Ts, %), and the second order (¢2) approximation by
- (F,F,R); for example, Ty = u,, and T, = u,, + [(1,,) - (1, - @)?]/2. Clearly,
(Ty, Ty, X) are the usual strain measures employed in the linear Timoshenko
beam theory.

2.2. Linear (first order) beam theory. The equations of motion
corresponding to a geometrically linear beam theory are obtained simply by
retaining the first order approximation in (4):

Al -Du-29 -9 (X + u)] N,
A+ +u)+2dy-Pw)i-{ V, =0 (53
Ip(z;’{'.'l’) M:,'FV

where the first column corresponds to the inertia operator, and the second
column to the stiffness operator. In (5a), the internal forces (N, V, M) are given
by the usual linear constitutive law

V=GA,T,=GA,(n,- a) (5b)
M=EIR = Ela,,

To see the effect of centrifugal force on the bending deformation of the beam, we
differentiate (5a); and make use of (5a), to obtain the equation of motion for the
transverse displacement,

At + Elty 0y - A, 0Py = 24,9 4y, (6)

in which, for simplicity, we have made the assumption of steady state revolution
(¥ = 0) and negligible shear deformation, U, = a + Of¢). The destabilizing
effect due to the use of linear beam theory mentioned earlier can now be clearly
identified: The term (-4, ¥* ) induces a loss of stiffness; which is quadratic in
the angular velocity of revolution . This observation is indeed corroborated by
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the numerical experiments in Kane et ol [1985, Figure 8]. Note that only the
transverse component along a, of the centrifugal force in the shear equation (5),,
represented by the term (-3¢ ), is transferred to the bending equation (5a);.
The contribution of the axial component along a; of the centrifugal force,
represented by the term [¢? (X + )], on the other hand, exerts no influence on
the bending. It should be noted here that this term is in fact of order 1, while
the term (- u,) is of order e. Thus, from a physical standpoint, the loss of
stiffness results precisely from this partial transfer of the action of centrifugal
force to the bending equation. Moreover, there is a value of the angular velocity
of revolution that renders the stiffness matrix singular.

2.3. Second order beam theory. A second order theory can be con-
sistently derived by retaining second order terms in the approximation to the
strain measures, according to

] 1

Pl u,,, a u?,z - -2-02

of=1wu,-ef+] -eu, |. (7)
r a 0

In addition, the second order approximation to the equations of motion (2) now
takes the form

A fo -V u-29 - 97 (X + u) N, (@ B,
A+ X+u)+2du-Pw);-1 V. 1+ M. (=0, (8
LE+9) M.+v| |-LV+T, N

where N= EA Fl, V= GA, Fz and M= EI a,,. To obtain the equation
governing the transverse vibration u,, we proceed as follows: (i) Make use of (8),
to express N,, in terms of the a, component of the inertia force, (ii) Substitute
the result iato (8)s and solve for '17,, , and (iii) Differentiate (8); and make use the
expression for 7,, obtained previously in (i1). Observe that the procedure is
analogous to that employed in the first order approximation. The only crucial
difference here is that the axial component of the inertia force along the axis a, is
now transferred to the bending equation due to the presence of the term (a N),,
in (8),. This term accounts for the contribution to the transverse momentum of
the axial (along a,) forces in the beam. Again, as in previous section, neglecting
higher order terms O(e®) in the final equation, considering constant angular velo-

city of revolution, and assuming for simplicity negligible shear deformation, one
obtains

Ap.;lﬁ + EI u?,:zzz + Ap QZ’Q(XI “2,: - u"..) =-2 Ap J) ;‘1 (9)
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Note that equation (9), resulting from the foregoing second order approximation,
is substantially different than its counterpart equation (6), which results from the
first order approximation to the nonlinear theory. Now both components of the
centrifugal force are completely transferred to the bending equation: The term
(A,,z/'):" X} u,) in (9) dominates the term (4, 9? u,) — the latter is the only term
present in (6) — and appropriately accounts for the stiffening effect due to centri-
fugal force. Conceptually, the transferring of the action of axial load to the
bending equation is analogous to the effect of axial force in the linearized buck-
ling analysis (e.g., beam-column equation); the only difference being the dynamic
origin of the axial loading.

2.4. Consistent linear partial differential equations. We shall obtain
the first order partial differential equations governing the motion of the beam by
consistent linearization of (8). Before truncating the terms of order €2, it is cru-
cial to note that the term (o N,;) in (8), is actually of first order (¢), and not of
second order (¢%). It follows from the equation for axial vibration (8), that

a N, =-a (4,9 X)) + Ofe) (10)

and therefore must be retained in the first order approximation to the nonlinear
equations of motion (8). After regrouping terms according to their nature, we
obtain the following linear PDE’s

A, 24, ¥ U ~EA 8,2~ A, (PP w1 + ¥ w) A, P X

Al +1 24,34 ) +{ -GA (-0 + 4, (P u-Pu+PXa)={-4,TX%

LG 0 —El ¢,s; - GA, (u; - @) L%
(11)

where the 4 columns correspond respectively to the inertia, gyroscopic, material
stifiness and geometric stifiness, and inertia force due to revolution effects.

The Galerkin spatial discretization of the linear PDE's (11) is standard. For
completeness, we shall simply- give, without derivation, the expressions of the
matrices resulting from applying a Galerkin finite element method. Such pro-
cedure has been applied to the spatial discretization of a fully nonlinear beam
model (Simo & Vu-Quoc [1985,86]). Upon defining the following quantities,

d:=(u, w, o), I:= DiaglA, A, L], (12a)
. d “
— 0 0
X,
0-10 g
g:=2A449¢|1 00|, ¥:=| 0 — -1 (12b)
4 X,
000 ;
0 0 —
d
i X |
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-2 - 0
C := Diag[EA, GA,, El], By:=A,| ¥ -9 (#*X)|, (12)
0 0 0
and introducing the discretization,
d(Xht) = Zy)[Nl(Xl) ll ql(t) ’ with 1 := Diag[]-v 1, 1] (13)

I=1
the resulting linear semi-discrete equations of motion can be written as
Mq+Dq+[S+G]q=P (14a)

where M designates the mass matrix, D the gyroscopic matrix, S the material
stiffness matrix, G the dynamic geometric stiffness matrix, and P the applied
force; q denotes the vector of all generalized coordinates. It is easy to verify that
the following expressions for the (3X3) submatrices coupling the generalized coor-
dinates q; to q; hold

M= O{L [N(X)) 1] « T [NfX)) 1] dX; (14b)
D= IO{L][N/(XI) 1]+ g [N{X)) 1] dX, , (14c)
Sy = m{qw [N{X;)) 1]« C ¥ [NfX)) 1] dX, , (14d)
G = IO{LI[N,(X,) 1]« B, [N{X;) 1] dX; . (14e)

Observe the non-symmetry of the matrices in (14), except for the mass matrix M
and the material stiffness matrix S. In addition, we note that the geometric
stiffness G comes from purely dynamic origin.

In what follows, we shall interpret the KRB approach in the context of a
similar setting.

3. The Kane-Ryan-Banerjee approach

We shall re-examine the discrete approach proposed in Kane, Ryan & Baner-
jee [1985] and, by deriving the appropriate PDE, show that this approach essen-
tially amounts to a re-parametrization of a nonlinear structural model of the von
Karman type. These authors consider a potential energy function given by

Il:= f [EA(s,,)? + GA(u, , - a)® + EI(a,,)z] dX;, (15a)

(0.L]
where s3,, denotes the partial derivative of the elongation of the center line with
respect to X, and is given by
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X .
S(Xls t) = {V J(le t) Xm - -l ’ J(le t) = [(l + ul,z)z + (7‘2,:)2] ’

and  8,(X;,8) = /(1 + u,)* + (u,)* - 1 (15b)

The essential feature that distinguishes expression (15a) from its counterpart in
the linearized theory is the use of s,, instead of T, = 4, , in the contribution of
the axial strain to the potential energy II of the system. By the change of vari-
able, o = 7(X)) := X, + y(X], {), the elongation s(X,, {) given by (15b) can be
recast into the form

R ol owE Y)Y 2]'2"
0= [ [1+l 2 Pw-x, o

where we have assumed the boundary condition #(0, {) = 0. Relation (186) is the
one essentially used in Kane ef al [1985] with an additional assumption that
(7 Y0),f) = uy(0,t). On the other hand, the kinetic energy of the system is
given by

K= %lofL]A,, {ln-dwl+[w+d (X +w)?}dx

+ % J L+ 9 dx (17)
[0, Z]

It should be noted that the same expression for K holds in the nonlinear theory.
The Lagrangian of the system is given by L := K - II. Note that {u;, uy, a} are
the independent variables in L. However, in place of #;, Kane et al choose to
select the elongation s(X,, t) of the line of centroids as independent variable. The
basic variables in the KRB approach are thus (s, u, ), u; being implicitly
defined in terms of (s, u,) using the nonlinear relation s,, = VJ - 1, where Jis in
turn defined in terms of (u;, u,) by (15b). An explicit expression of the resulting
system of PDE’s is difficult to obtain because of the complexity of the inertia
operator. These authors proceed numerically and derive linear semi-discrete sys-
tem of equations, Mq + Dq + Kq = F by first introducing the discretization

(X, 8 = ,ZVBINu(Xx)q 14¢)

w(X, ) = lz":INzl(Xl)qz,(t). (18)

alX), t) = ,ilNal(Xl)q ad?)
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where N;{(X;) are prescribed independent basis functions, such as the eigenfunc-
tions of a cantilever beam, and then linearizing the resulting nonlinear inertia
operator. Recall that in discretizing (168), the additional assumption that

ous(7 o), ¢ v
2T 900 % Naydo)aadt) is made
do =1 '

To show that the KRB approach outlined above amounts to employing a
geometrically nonlinear theory, we obtain below the system of governing PDE's
in the variables (u;, 5, @). Making use of Hamilton’s principle along with the
expression (15b) for s,, in terms of (u;, u,) we obtain, after standard manipula-
tion, the system

1
Ay oD ua=2 9 o 9% (X + u) EAIA-TH (4wl
Ay o2+ % (X + w) + 29 4 - 9% w) -] GA, (vas - @)z~ EA[(1- T ®) 0 ],{ =0(19)
Lx+79) Ela - GA,(u; - @)

It should be noted that equations (19) are nonlinear in the stiffness operator, and
closely related to the von Karman second order model. Conceptually, by using
relation (15b), one could recast this system of equations in terms (s, uy, a). To
see this, we introduce the perturbation parameter ¢ > 0. Assuming that
{u;, u5, a} are of order ¢, by expanding (X, t) in powers of ¢, we find

e = [+ €0, 4+ (T - 1= e+ S (1,04 O (20)

Thus s,, agrees with the consistent second order strain T 1 only if shear deforma-
tion is of second order, i.e., 4y, = a + O(¢). In addition, we have the following
expansions

-1 2 o
(L= 05 (L4 eu)) =€ u, + S () + OF) (21a)
-1 o
EA[1-JP)ewn ], =€ EAu,, wm, + OF) (21b)

The term (21b) is precisely the one responsible for the transfering of the axial
force acting on the beam to the transverse equilibrium.

Since the direct contribution of the axial component along a, of the centrifu-
gal force to the transverse equilibrium given by (EA u,,,, @) is absent from the
KRB approach — here (s, uq, @) are chosen as independent variables — the ques-
tion arises as to how centrifugal stiffening is accounted for in this formulation.
This is accomplished through the inertia operator by expressing u, and #; in
terms of (s, us) and their derivatives with the aid of the nonlinear relation (16).
Upon introducing the discretization (18), the resulting discrete nonlinear inertia
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operator is then linearized to obtain the linear semi-discrete equations of motion.

Remarkably enough, we obtain from equations (19) exactly the same PDE's
for the transverse vibration (9) after some manipulation similar to what described
in Section 2.3. This result therefore shows that the use of the nonlinear von Kar-
man type model can also appropriately account for the action of the centrifugal
force to the transverse vibration as manifest in the expression for the first order
dynamic geometric stiffness. From the expansion (21b) of the term

1

(BA[(1- J %) U 4],z) in (19), and from the equation for axial vibration (19),, we
note that this term is in fact of first order (€), similar to (10), i.e.,

EA[(1- J%) € t,), =€ 4,9 X; 15, + O?) . (22)

Note that instead of a in the consistent approximation from fully nonlinear
theory, we obtain u,, in this von Karman type model. This is valid only when
shear deformation is of second order, i.e., 4, = a + Of¢). We then arrive at the
following linear PDE'’s,

A% ~24, ) u, —EA ty- A, (PP uy+ P w) A, ,},2 X,

A+ 24,9 4 -GAs (ups-a)s+ A, (P 8 -9 o + 9P X, w5) -A, ¥ X,

L 0 -El a,;; - GA, (u,; - ) LY
(23)

as a first order consistent linearization of (19). This system is entirely equivalent
to the KRB discrete approach. The only difference, as noted above, is that the
dynamic geometric stiffness operator B, in (12c) must now be redefined as

’- _,&2 _;& 0
Bg == Ap ;2) ["12)2 + w.' ] 0 ’ (24)

A X,
| 0 0 0

and hence a slight change in the dynamic geometric stiffness matrix G in (14e).
The other matrices — mass, gyroscopic, material stiffness — remain the same as
obtained in Section 2.4. One can easily verify the correspondence of the terms in
the discrete equations of motion resulting from the linear PDE’s (23) to those
given in Kane et al [1985]. In addition, when there is no dynamic effects, the
linear model governed by the PDE’s (23) reduces exactly to the Timoshenko
beam theory. It should be pointed out, however, that the choice of s,, and
(2 , - @) as axial and shear strain measures does not agree with the consistent
second order strain measures I‘1 and Fo unless us , = & + O(€) (negligible shear
deformation).
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4. Extension to plate formulation

As a direct application of the foregoing discussion, we shall extend the
results to the case of a plate undergoing three-dimensional rotating motion.
Again, for clarity, we assume that the axis of revolution of the plate passes
through an inertially fixed material point of the plate. The dynamics of this
revolution is completely prescribed a priors; the orientation the axis of revolution,
however, need not be fixed with respect to the inertial frame.

Model problem and notation. Consider the material frame
{0; E,, Es, E;} with base point O € R? and an orthonormal basis {E;}. Let the
inertial frame be {O; e,, e,, 3} such that e, = E;, for k=1,2,3. Coordinates
with respect to {Ej} are denoted by (X, X, X3); coordinates with respect to {e;}
are denoted by (z,, 25, z;). The domain of the undeformed plate is defined to be
B:= Qx[%, %] with O € B and such that a point X € B has coordinates

(%, X)) EQCR? and X€E[, g Consider now a floating frame

{O;a,, a,, a3}, attached to the deformed plate, and whose dynamics with respect
to the inertial (material) frame {E;} is completely prescribed by an orthogonal
matrix Q(¢) such that af{) = Q(¢) E. The map t—Q(f) in fact describes the
rigid body rotation of the (undeformed) plate about the origin O. The deforma-
tion of the plate relative to the floating frame {a;} is then given by

x=xo+X3t3

X = ¥ [X, + u (X, X, )] 2, + uy(Xy, X, 8) 35,1 (25)
y==1,2

t3(X), Xa ) = A(X), Xy, ¢) ag(t)

where (v, 45, u3) are the displacement components of a point X € B; t3 desig-
nates the normal to the deformed plate, and A an orthogonal transformation.

Consistent second order strain measures. It can be shown that up to
second order, the two-dimensional counterpart of the one-dimensional strain
measures in (7) are given by

F,,,g = U5 + % Uz U3 5~ -“1? (ug, — @) (v35 - @p) , (26a)
Tap=(u35-ap) - v, 50, (26b)

Ko = g » | (26¢)

for 4, # = 1,2, where we have used the notation Uy g = %(u.,ﬂ + ug,). Note

that the strain measures in (26a) reduces exactly to the in-plane strain measures

3 In what {ollows, subscripts in greek letters take values in {1,2}, while subscripts in roman letters take values
in {1,2,3}.
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of the von Karman plate model,
= 1
Fig=thet+ 5 %y %s, (27)

with the assumption of negligible shear deformation, u3 3 = ay + Ofe). This is
entirely analogous to the one-dimensional case of the beam considered in previous
sections. Further, we recall that the first order strain measures are I‘,,p = Ul gp
1’33— U3 5 — g, and K, 53 = Kg.

Constitutive laws. The elastic material internal forces 1\7 i-’ and
moments M. 4 are related to the strain measures (26) by a functlonal relatlon
analogous to that of classical small deformation plate theory. That is, one
assumes

- Ed -

Nyg= - [v F p 0y + (1= V) Tg] (28a)
V,=GA,T;, (28b)

i Ed

A‘!.h@ W— [V Fpp 5,7}9 + (1 I/) K..’p] : (280)

Here, E represents the Young's modulus, v the Poisson’s ratio, G the shear
modulus, and A, may be taken to be -‘id The same relationship holds for the

first order internal forces N., V and mternal moments M. 8 in terms of the first
order strain measures ([.4, ﬁ,,n, .,p)

Equations of motion. One can show that following system partial
differential equations, analogous to (8), furnish the consistent second order
approximation to the fully nonlinear equations of motion

F;'inertm N By + (a )7,6 =0,
Fipertis — Vg~ oy Nphg = 0, (20)
. t- EER =R — — — — -
Tg™ = Mgy y = Vg =Ty Vi + Tyy Ngy =0
where Fitertie .— pinertis 5. denotes the inertia operator for the translational part
of the equations of motion, and T*™*™¢ .= T8 3. the inertia operator for the
rotational part. To evaluate Fi™¢e apd T¥"¢™s ope proceed as follows. Let

u = vu; a; thus x, := X_ a, + u, and define the angular velocity of the floating
frame {a,} relative to the inertial frame as
e v
w:= w; a;, suchthat Q=Qw, (30a)
where w is a skew-symmetric tensor with components relative to {a;} given by
0 W3 Wo
v v v
w=uw;3,®a;, and [y]=|w3 0 -w (30b)
-wp w0
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Let L be the linear momentum per unit of mid-surface area. Using the kinematic
assumption (25) it follows that

Li= [ [ +X3b] dz=A4,[0+wXx,] (31a)

[‘%» %]

where A, now denotes the mass per unit of undeformed area, and a superposed
“7"" represents time differentiation keeping fixed the floating frame {a;}. The
inertia force Fi™¢™4 js then given by

0 0 . . v
Finertio — [, = Athvl + wXx, + 2wXu + wX(wXx,) . (31b)

Similarly, the couple T*¢™ js obtained from the angular, momentum per unit of
mid-surface H:= [ (x-x,) X x dX; as T™™¢=H. The expression for
["%v %]
Te"ere is conveniently expressed in terms of the vector @ := a., a, that defines
the infinitesimal rotation of the normal t; of the plate. Note that a3 =0, i.e.,
there is no rotational degree of freedom along the axis a; in the classical
Mindlin-Reissner plate theory. In addition, let J , denote the inertia dyadic of a
transverse (undeformed) fiber of the plate: r := X; a,;, where X; € [—%, %] By

definition, we have

J,= [ (IrfP1-r®r dG= £l_;_s_ 1-2a;0a4]. (32b)

[‘%v '%l
It can be shown that the rate of angular momentum H takes the form
Tertis —He= [T, (@ + wXa +w) + (@ + w)xJ, (& +w)], (32a)

The second order equations of motion for the plate are now completely defined.

Next, we derive the counterpart of equation (9) that governs, to first order
approximation, the transverse vibration of the plate. This approximation is sys-
tematically obtained exactly as in Section 2.3. We first note that the term
(o, Nﬂ,,,ﬁ) in the shear equations (29), is of first order as a result of the centrifu-
gal terms in the equations for in-plane forces (29);. We recall that this term
allows an appropriate account for the action of the centrifugal force on the bend-
ing of the plate. For steady state revolution and negligible shear, the transverse
vibration of the plate is governed, up to first order, by the linear PDE

A, i+ DAY uy - (X, w, wg - [W]PXy] ug 5
A (W ud) g =-w b wy - 2wy w-wp uy)  (33a)

D= —EE (33b)
12(1 - v~)
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with A denoting the Laplacian operator. A complete analogy with equation (9)
. should be observed: The term [A, (u? + wd) ug] gives rise to an unphysical loss
of stiffness, quadratic with the angular velocity, when linear plate theory is used;
a complete account for the action of the centrifugal force is realized up to the
first order with the additional term [X w, wy - ||w||2X5] u3 g when second order
plate theory is employed. These two terms form the dynamic geometric stiffness
operator for the fast rotating plate.

Conceptually the second order theory governed by (26),(28) and (29), with
Ferertis and T given by (31) and (32) respectively, can be treated numerically
by standard finite element procedures. From a computational standpoint the
main issues concerns the development of the appropriate spatial discretization.

5. Conclusion

The present work demonstrates the limited range of application, and even
inadequacy, of linear structural theories to model physically relevant situations.
Our discussion shows that even for extremely stiff beams for which linear theories
are expected to be valid, a high enough angular velocity of revolution will predict
a physically inadmissible destabilization effect. Fully nonlinear models, on the
other hand, are able to account for situations more general than that discussed
herein. Efficient computational procedures based on the use of such theories have
been recently developed, Simo & Vu-Quoc [1985]. In the context of a general
three-dimensional finite-strain rod model, we refer to Simo & Vu-Quoc [1986a] for
static analysis, and to Simo & Vu-Quoc [1986b] for the dynamic analysis of flexi-
ble rods performing large overall motions.

Acknowledgements. This work was performed under the auspices of the
Air Force Office of Scientific Research. L. Vu-Quoc was supported by grant
No. AFOSR-83-0361. This support and the encouragement from Professors
K.S. Pister, E. Polak, and R.L. Taylor are gratefully acknowledged.

References

Antman, S.S., [1974], "Kirchhoff problem for nonlinearly elastic rods,” Quat. J.
Appl. Math. Vol XXXII, No.3, 221-240.

Antman, S.S., and K. B. Jordan [1975], "Qualitative aspects of the spatial defor-
mation of non-linearly elastic rods,” Proc. Royal Society of Edinburyg,

Kane, T.R., R.R. Ryan, and A.K. Banerjee [1985], "Dynamics of a beam
attached to a moving base,” AAS/AIAA Astrodynamics Specialist Confer-
ence, paper AAS 85-390, Vail, Colorado, August 12-15.



Nonlinear Theories in Dynamic Analysis 16

Laskin, R.A., P.W. Likins, and R.W. Longman [1983], "Dynamical equations of
a free-free beam subject to large overall motions,” The J. of the Astronauti-
cal Sciences, 31(5), 507-528.

Reissner, E., [1972] "On a one dimensional finite strain beam: The plane prob-
lem,” J. Appl. Math. Phys., Vol. 23, pp. 795-804,

Reissner, E., [1973], "On a one-dimensional large-displacement finite-strain beam
theory,” Studies sn Applied Mathematies, 52, 87-95.

Reissner, E., [1981}], ”On finite deformations of space-curved beams,” ZAMP, 32,
734-7T44.

Simo, J.C. [1985], "A finite strain beam formulation. Part I: The three dimen-
sional dynamic problem,” Comp. Meth. Appl. Mech. Engrg., 49, 55-70

Simo, J.C., and L. Vu-Quoc [1985a], On the Dynamics of Flezible Beams under
Large Overall Motions—The Plane Case, Electronics Research Laboratory
Memorandum No. UCB/ERL M85/63, University of California, Berkeley,
August. (Submitted for publication to J. Appl. Mech).

Simo, J.C., and L. Vu-Quoc [1986a], "On a finite-strain rod model: Computa-
tional aspects,” Comp. Meth. Appl. Mech. Engng., (in press).

Simo, J.C., and L. Vu-Quoc [1986b], On the Dynamics of Finite-Strain Rods
Undergoing Large Motions — The Three-Dimensional Case, Electronics
Research Laboratory Memorandum No. UCB/ERL M86/68, University of
California, Berkeley, January. (Submitted for publication).

Truesdell, C., and W. Noll [1965], The nonlinear field theories of mechanics,”
in Handbuch der Physics, Vol. III/3, Springer Verlag, Berlin.



T(t) Reference(Initial)

Configuration
R TR

1

A0

Figure 1. Basic kinematics. Floating and inertial
frames.



	Copyright notice1986
	ERL-86-10

