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Abstract

Optimizing observations is an important issue in the control of systems whose state is
partially observed. This paper presents a general theorem for the computation of the
optimal solution to discrete-time stochastic control problems, when the decision makers
have the additional possibility of choosing at each step among different sets of observa
tions on the system, each set incurring a different cost. Dynamic programming is
employed to determine the optimal observations and controls. The result is applied to the
special cases of: (i) finite-state controlled Markov chains, and (ii) linear Gaussian systems
with a cost function quadratic in the states and controls.

Keywords: stochastic optimal control, observation selection, partial state information,
dynamic programming, controlled Markov chains. LQG.

1. Problem statement

We consider the problem of the optimization of discrete-time stochastic systems,

where at each step two consecutive decisions must be taken: (i) a decision on what type of

observation to make on the system, and (ii) a decision on what control action to exert.

The cost criterion depends on the state and these two control actions. We shall only con

sider finite-horizon problems.

Our aim is to present a general theorem for systems of the form:

*k+1 = /* (x/c >mk ,uk,wk ). (1.1a)

yk = hk (xk , mk , vk ). (1.1b)

for k ^0. with initial condition x0. x0, w0, .... v0, ... , are mutually-independent

* Research supported by the U.S. Army Research Office contract DAAG29-82-K-0091, and by a scho
larship from the Natural Sciences and Engineering Research Council of Canada.
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random variables defined on an underlying probability space. Their probability distribu

tions on Rn , Rn , and Rm. respectively, are known. xk € Rn is the state. mk and uk are

control variables taking values in M C.R1 and U CRm. In particular, mk parametrizes

the observation equation (1.1b), where yk € Rp is the observed process.

Let

h '•= bo> . . . ,y* . mo. • • • >™-k . "o. • • >uk } (1.2)

denote the information available to the decision maker at step k. k ^ 0. By convention,

I-\ =0. At each step k. the values of the control actions mk and uk are determined by

feedback in the following way:

m* =g*1(/*-i) €M, (1.3)

"t =gJt2(^-i.m,.y,) €£/. (1.4)

Let the control strategy be denoted by g = (g*, g2), where g' = {g0 , . . . , gjv-i }. and let

G denote the set of all admissible strategies. We define

/(g ) := E8[ £ ck (xk .mk.uk) + cN(xN) ] (1.5)
*=o

to be the cost function associated with the control strategy g. The superscript g in the

expectation emphasizes the fact that the stochastic processes x , m, u , and y become well-

defined only when g is given.1 We want to find an optimal strategy g* € G, i.e.. a stra

tegy satisfying (a.s.)

/(£*) = /' := inf 7(g). (1.6)

mk is an additional control variable parametrizing the observation equation. The

choice among different sets of observations can be as simple as deciding whether or not to

observe, in which case card (M ) = 2. For the sake of generality, we shall also allow the

1 In the following, we will use the two notations Esck (xk ,mk,Uk) and E Ck (xf. m|, w|) in
terchangeably.
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possibility that the state equation depends on mk. For example, in section 5, we consider

linear Gaussian systems where the matrix Ck in yk = Ckxk + vk and the variances of the

processes w and v depend on mk. Another point is that at each step k, the decisions on

mk and uk are made sequentially, and therefore uk is allowed to depend on mk . whereas

the converse is not true. In short, this problem corresponds to optimizing the trade-off

between the increased performance resulting from better observations (via better state

estimates) and the higher cost of making better observations.

2. Information state for the system

We are dealing with a stochastic control problem with partial state information. We

want to determine a suitable information state (in the terminology of Kumar and Varaiya

[l]), or sufficient statistic (in that of Bertsekas [2]). for the system (1.1). i.e.. a function of

Ik that possesses the Markov property.2 For simplicity, we assume that densities exist.

Let p0(x0) denote the probability density (p.d.) of the initial condition x0, and. for a given

control strategy g. let p$\k-\(xk I Ik.x) and p$\k(xk I Ik_lt mk ,yk) denote the condi

tional p.d. of xk . given Ik _j and Ik-i U {mk , yk }. respectively.

Lemma 2.1 : p§\k-i (• I Ik-i) is an information state for (1.1). It does not depend expli

citly on g (and therefore we can drop the superscript g ). There exists a function Sk such

that

Pk +iu- (• I h ) = Sk [ pk it_/• I Ik _i). mk ,yk,uk ]. (2.1)

with initial condition />0|-i = />o- Sk can be broken into two functions *A and % :

pk\k(\ Ik-i,mk,yk) = Qtiptit-xi'l h-i).mk.yk ] ; (2.2)

Pk +i I* (• I Ik) = %[ pk \k (• I Ik -i, mk . yk ). mk ,uk ] . (2.3)

2 The organization of this paper and the proofs it contains were inspired by the treatment of standard
stochastic systems (no mk in (1.1)) in [l], chapters 2 to 6.
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Proof: Given in the Appendix. •

The dynamics of the information state are illustrated in Figure 2.1.

Pk ia-i('I h-i) Pk i*('I h-i>™-k .y*) />*+!!*(• I /*)

-fc> Qi. > %

mk yk mk uk

Figure 2.1 - Information State

For simplicity, we shall often denote pk\k-\(\ Ik-\) by pk\k-\. and, similarly,

Pk \k (' I h-i* mk . yk ) by pk \k . Observe that although the functions pk \k-i and pk \k do

not depend explicitly on g, the processes x ,m,u .and y. and consequently Ik , do depend

on g. For this reason, it will sometimes be necessary to write 7/_j in the arguments of

pk \k-\ and pk \k to emphasize the strategy considered. Observe also that (2.2) and (2.3)

imply that

Pk +iit +i(*' h >mk +1. yk +1) = Tk +1[ pk lk (• I Ik _1# mk . y4 ), m^ , uk . mk +1, yA. +1 ] , (2.4)

and so Pt+m+i is not an information state, because, due to the explicit dependence of xk

on mk via (1.1a). mk has to appear as an argument in Tk+1. even though it is already in

Pk \k •

3. Optimal control

The sequentiality assumption for the decisions on mk and uk suggest that the optimal

strategy g could be determined by a dynamic programming algorithm, where the dynamic

programming equation (d.p.e.) would contain two nested minimizations. From Lemma

2.1, we expect that restricting attention to separated strategies is sufficient. Such strategies

are of the form:

mk = g/(A-i) = gkKpk i*_i) € M ; (3.1)
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"* = gk2Uk-i, mk.yk) = gk2(pk I* -i. mk ,yk) = gkHpk \k ,mk)€U . (3.2)

The following theorem shows that these claims are true. P denotes the set of all probabil

ity densities on Rn . We define the cost-to-go from step k

Jk(g):=E[ Zck(x$.mi.u!) + cN(xfr) I I^x ]. (3.3)
j=k

Theorem 3.1: Definerecursively the functions Vk (/>), 0 < k ^ N, and p € P, by:

Vjv(/>) :=E[cN(xN) I pN\N-i = /> ] : (3.4)

V*0>) := inf £[ infE{ck(xk .m.u) + V4+1(*[/»t u.. m, u ]) I pk ik , m}

I A i*-i =/>] • (3.5)

(a) Consider any g 6 G . Then

V*(/>*u-i(-l #-,)) 0*(g) a.s., 0 <* ^A? . (3.6)

(b) Let g* be a separated policy such that for all 0 ^k ^N—l and for all p € P. gk(p)

achieves the infima in (3.5). Then

V*(fti*-i(-l//li ))=/*(*') a.s.. O^k *N. (3.7)

and g* is optimal. In particular, V0(/>0) = /* a.s.

Proof: (a) The proof is by induction. Consider any g € G. (3.6) is true with equality for

k — N, because

JN(g) = E[cN(x0 I /JU]

= JCN{X )pN\N-\(x I /#_! )<fx
x

= Vn(Pn\n-i('\ /£-i)). (3.8)

by definition of Pn\n-\> and from (3.4). Now. suppose that (3.6) is true for k +1. We

show that it is true for k . thus proving (a). Using successively the smoothing property of

conditional expectations, (3.3), and the induction hypothesis, we get
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N-l

Jk (g ) = E* [ck {xk ,mk,uk) + Eg{ £ cj(*j ,mj ,uj) + cN (xN ) I Ik } \ Ik _J a.s.
j=k+l

= E*[ck {xk ,mk.uk) + Jk +1(g ) I Ik _2]

>E* [ck (xk ,mk,uk) + Vk +1(pk +1]k (• I Ik )) I /t_J a„y.

= £«[£«{q(x4,»itllft)+ V*+i(ft+n*(-l Ik) I 4} I /*_,] a.s. (3.9)

But. by Lemma 2.1. we can replace the information sets by information states in (3.9):

Jk(g) >ES[E&{ck(xk,mk.uk) + Vt+1&t[pk\t('\ Ik-i> mk , yk), mk ,uk) I pk\k.mk) I Ik-X] as.

= E*[E* {ck {xk .mk,uk) + Vk +1(% [pk lk , mk . yk ]. mk .uk) I pk \k . mk } I />t U_J

^^C^^.jM //_,)). (3.10)

the last inequality holding by (3.5).

(b) Again, we use induction to prove (3.7). First, we observe that (3.8) implies that (3.7)

is true for k = N. Next, we repeat the development in (a), but with the given g* in place

of g. However, the two inequalities in (a) now become equalities: (3.9). by the induction

hypothesis, and (3.10). because, by assumption, gk achieves the infima in (3.5) for all

p € P. This proves (3.7). To show the optimality of g*. we set k = 0 in (3.7) and (3.6)

to get

Kg') = V0(/>(*0)) ^J(g) a.s., for all g 6 G. (3.11)

D

Remarks: (i) Observe that the Vk+1 term could be removed from the inner conditional

expectation in the d.p.e. (3.5).

(ii) (2.2) implies that, for each fixed m, the outer conditional expectation in (3.5) is an

integral over yk.
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The argument of the value function Vk in (3.5) is a function, meaning that finding

the optimal g* is computationally difficult. In the next two sections, we consider two spe

cial cases where the problem is more amenable because the information state is finite-

dimensional.

4. Special case D finite-state controlled Markov chains

Consider a Markov chain whose state process x takes values in a finite set

S = {l,2,...,5}. and whose transition-probability matrix P(m, u) can depend on two

different controls m and u:

[P(m, u )]ij = Py(m , u ) := Prcb (xk +l=j I xk =i , mk =m, uk =u ). (4.1)

Let the observed process y € S be described by the output probability

Pj(i, m ) := Prcb (yk =j I xk =i, mk —m ). (4.2)

These probabilities do not depend on k. It is convenient to define the S X S matrix

D(m . j ) by

Dim , j) := diag[PjU,m)]i=1 s . (4.3)

Let Probtit-id I /*-i) and Prcbk\k(i \ It-i.mk.yt) be the probabilities that

xk = i. given the respective information sets. Since the state space is finite, these probabil

ities are completely described by the 1x5 row-vectors:

w* i*-i(4-i) := [Probk n.jCl I Ik.x) Probk |4_j(5 I /ft_i)]; (4.4)

Tk \k Ut -l. mk,yk) := [Probk \k(l I Ik _lf mA.. yk ), . . . ,Pr^. u (5 I Ik _i.ni*. y* )] • (4-5)

To simplify the notation, we shall often omit writing the arguments of these two proba

bilities. Also, irk \k-\(j ) will denote the jth component of vk \k-\.

We write recursive relations for irk\k and irk+1\k. The initial condition is

7T0i_i = 7r0, the given law of the initial state. It can be shown (cf: proof of Lemma 2.1,

(A.8) and (A.ll)) that the functions 4>t and % in (2.2) and (2.3) have the following
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expression:

f. >. TT* \k-idk-1) D(m* ,yk) fA£\tt* ,t (/*_!. mk . y* ) = ^ . , . : (4.6;
w* l* -iU* -i) u\mk , y* )1_

w* +i I* (A ) = t* i* (A -i. »»* . y*) p(m* . «* ) • ^4-7)

l_in (4.6) is the 5x1 column-vector (1 l)r.

We now write the complete expression of the d.p.e. (3.5). Consider ir € II, the set of

all IX 5 probability row-vectors. Then, (3.4) and (3.5) become:

VNM= £<*(*) w(i). (4-8)
«es

Vk (7r) = inf E [ inf {Tck (i. m.u)irk \k(i) + VA+1(w4 i* P(m . _ )) } I irk \k-X = ir].(4.9)

Let «4 = gk2*(irk \k . m) = gk*(irk \k-\.m.yk) achieve the inner infimum. We evaluate the

conditional expectation in (4.9):

VkW= inf E [ £c* (i,m,uk)Trklk(i) + Vk+1(irklk P(m,uk)) I irk lk _2 = tt]
>€M r€S

since

, 7T D(m , yk )
~ inL7 I L.ck(i.m,uk) ——j -—(i)

m€My* its 7rD(m.y*)i

+ Vft+1(—— ^l-P(m._;))]7rD(m.yA.)l^ . (4.10)
it u{m . yk ) l_

Prcb (yk I irk lk _!=-»•, m) = £iVo2> (y* \ i.m )Prob (xk =i I irk u. _1=7r) (4.11)
i€S

= ^(J.mMi)
i€S

= 7rD(m.yi.)l. (4.12)

where in (4.11) we have used (3.1).
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5. Special case II: linear Gaussian systems

Consider the case where (1.1) is of the form:

xk+1 = Akxk + Bkuk + wk , (5.1a)

y* = Ck(mk)xk + vk , (5.1b)

with x0 ~~ N(x0Z0). wk —N(0,Qk(mk)). and vk —N(0, Rk (mk )). Consider a cost-

function quadratic in the states and in the controls u :

N-\

Jig ) := E8[ £ (x[Mk xk + u[Nk uk + ck (mk )) + xjjMNxN] . (5.2)

(Here, we make the usual symmetry and positive (semi-)definiteness assumptions on

Mk , Nk , Qk . and Rk .) We mention at this point that Aoki and Li [3] have studied a ver

sion of this problem where the decision makers select the total number and the spacings

between each observation, which is quite different from our formulation. Also, their

model has no w term in (5.1a).

The derivation of the Kalman filter remains valid when the matrices Ak . Bk . and Ck

are random, provided that they are measured at time k, i.e., that they are in Ik , and that

they are independent of the noise variables (e.g., [l]). In our case, once mk is chosen, all

the parameters in (5.1) that depend on it can simply be regarded as time-varying, with the

important difference that their time variation can be altered. However, that decision is

based on past information, namely. Ik-\. It follows that the p.d. /^-m* and pk \k defined

in section 2 are Gaussian, and therefore the information state ^+11* is two-dimensional.

In fact, this remains true if Ak and Bk also depend on mk .

Consider a fixed feedback strategy g and the corresponding processes

x ,m,u, and y .3 Then, using the notation

Pk +11* (** +1 I A ) ~~-W ( xk+11* , Zk +i \k ) (5.3)

3 For simplicity, we omit writing the superscript g for these processes.
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Pk \k (xk I Ik_lt mk . yk ) —N( xk \k , Zk ]k ) . (5.4)

the Kalman filter equations corresponding to (2.2) and (2.3) are:

xk \k - xk \k _i + Lk (yk —Ck (mk )xk i^—i) (5.5)

xk+i\k =Akxk\k + Bkuk (5.6)

E* i* = E* i/t-i ~ Lk Ck (mk )E* i*-i (5.7)

£*+iu = Ak £* \kA[ + Qk (mk ) (5.8)

where

Lk '= E* \k -iCk (mk )T[Ck (mk )Zk \k-iCk (mk )r + Rk (mk )]-1 . (5.9)

The interesting feature of this special case is that, due to the quadratic form of the

cost and the fact that only Rk in (5.1a) depends on mk . the certainty-equivalence principle

still holds and the value function has a partially-closed form. This is not true for linear

Gaussian systems in general, and this was our motivation for these extra assumptions.

More precisely, it can be shown, by substituting (5.10) in (3.5), that

V* (xk \k-l. E* \k-i) = x[\k-XPk xk |*_! + Wk (Zk \k _i) , (5.10)

0 ^ k ^ N. Pk is determined by solving the standard backward Riccati equation

Pk = M, + A[Pk+1Ak - K[(Nk + B[Pk+1Bk )Kk . (5.11)

0 ^k <N, with final condition P^ = M^. Kk is the deterministic optimal control gain

Kk := -[Nk + BTkPk+lBkY*BlPk+iAk . (5.12)

i.e., uk = Kkxk \k = gk*(xk \k ). Pk and Kk do not depend on m and that they can be com

pletely determined beforehand. The other part of Vk has no closed-form solution and

must be solved recursively as follows:

Wk (Z) = inf [ck (m ) + Trace{MkZ + lk(Z.m )(Pk -Mk )}

+ Wk +1(Ak *A[+Qk (m )-Ak lk (L. m )A[)] . (5.13)
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with final condition WN(Z) = Trace{M^Z}, where we have defined

lk (Z. m ) := ZCk (m )r[Ck (m )ZCk (m )T + Rk (m )]~lCk (m )Z . (5.14)

The optimal sequence m* can be determined beforehand, but it depends on Pk . and conse

quently the Riccati equation must be solved first. If M is finite with card (M ) = n . then

at step k , the domain of Z in (5.13) can contain up to nk values.

As in the standard LQG problem, the control u has no learning role, but the control

m has one, since it can influence the estimation covariance of the state. Clearly, if Ak or

Bk were dependent on mk . Vk would possess no separation property as (5.10) exhibits,

even with a quadratic cost. Thus, uk* would in general also depend on E*|*-i> meaning

that it too would have a learning function.

Finally, we point out that the problem in this section was also treated by Deissenberg

and Stoppler [4] for the special case when card (M ) = 2, corresponding to the decision:

observe / do not observe. However, the value function considered in that paper does not

have the estimation covariance matrix Zk \k^ as an argument, and therefore the solution

does not have the clear recursive form of (5.10) and (5.13), which also provides for more

computational efficiency.
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Appendix - Proof of Lemma 2.1

The independence of all the noise variables in (1.1) and the fact that the values of m

and u are measured imply that

p8(xk+1 I xk.Ik) = p(xk+1 I xk . mk , uk ) . (A.l)

p8 (yk I xk,mk,Ik_1) = p {yk I xk . mk ) , (A.2)
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where the densities on the right-hand sides do not depend on the strategy g, but only on

the values of m and u.

We now establish the precise form of the recursive relations (2.2) and (2.3).

g r it ^ Pg(yk \ xk,Ik_1,mk)p8(xk.Ik_1.mk)
Pi\k(xk I Ik-1.mk,yk)= — (A.3)

PgUk-\.mk.yk)

p(yk I xk , mk ) p8(xk , Ik-i. mk )

fpg (xk , Ik -i. rnk . yk )dxk
(A.4)

where (A.3) follows from Bayes* rule, and (A.4) by using (A.2). But

p8 (xk . Ik -i,mk, yk ) = p8 (yk I xk , It -\.mk) p8 (xk , Ik _lt mk ) (A.5)

= p (yk I xk , mk ) p8 (xk I Ik _lt mk ) p8 (Ik_lt mk ) (A.6)

by (A.2). Substituting (A.6) in (A.4).

p r \ r \ P^k \ xk,mk) p8(xk I 7*_i. mk)
Pi \k(xk I Ik_i, mk , yk ) = -x (A.7)

J P(yk I xk . mk ) p8 (xk I Ik _!. mk )dxk

p(yk I xk.mk)pi\t-i(xk I h-i)

fp (yk Ixk.mk)p$\k _! (xk I Ik -x)dxk
(A.S)

because mk is a function of Ik-i (see (1.3)) and xk only depends on mk via A-i- (A.8) is

of the form given in (2.2). Next,

Pi+i \k (xk +i 14) = fp8 (xk +1 I xk . Ik ) p8 (xk I Ik )dxk (A.9)
xm

=fp (xk +1 Ixk,mk, uk ) p8 (xk I /* _!. m^. ,y* .uk )dxk (A. 10)
xk

- fp (xk +1 I xk .mt. uk ) />/ u. (^. I Ik _lf mfc . y* )rfxA. . (A.ll)

(A.10) is a consequence of (A.l). (A.ll) is true because xk does not depend explicitly on

uk but only through Ik-i U{mk,yk), of which uk is a function (see (1.4)). (A.ll)

corresponds to (2.3). pk \k and pk+i\k do not depend on g because the functions 4> and ¥
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of (A.8) and (A.ll) do not, and the initial condition is />§i_i —Po (recall that /_i = 0)

and is therefore independent of g. D
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