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In a paper entitled "Frequency Demultiplication" [5], Van der Pol described

an experiment in which by tuning the capacitor in a neon bulb R-C relaxation

oscillator, driven by a sinusoidal voltage source, "currents and voltages appear

in the system which are whole submultiples of the driving frequency". He noted

that as the capacitance was increased from that value (Co) for which the natural

frequency of the undriven relaxation oscillator equalled that of the sinusoidal

source, the system frequency made "discrete jumps from one whole submultiple

of the driving frequency to the next"(detected by means of "a telephone coupled

loosely in some way to the system"). Van der Pol noted that "often an irregular

noise is heard in the telephone receiver before the frequency jumps to the next

lower value". Interested primarily in frequency demultiplication, he dismissed

the "noise" as "a subsidiary phenomenon". Here, we investigate this noise as an

example of the period-adding route to chaos, first verifying and elaborating on

the work of Van der Pol, and then modelling the circuit dynamics in order to

reproduce the observed phenomena.

2. Experimental Circuit

The circuit we consider is the sinusoidally-driven neon bulb relaxation oscil

lator described by Van der Pol [5] (Rg. 1). A high voltage d.c. supply E (of

approximately 100 V terminal voltage) with large source resistance R (approxi

mately 1 Mfi) is attached to a shunt connection of neon bulb (ALCO type BNE-4R

(with current-limiting resistor removed)) (acting as a current-controlled nega

tive resistance) and capacitor C, forming the basic relaxation oscillator. In

series with the neon bulb is inserted a sinusoidal voltage source E'osinwi (a small

current sense resistor Ra was also inserted in series with the neon bulb to

detect the current flowing in it).
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ABSTRACT

Experimental confirmation has been made on a driven relaxa
tion oscillator circuit, first presented by Van der Pol, of the
period-adding route to chaos. The nonlinear element in the circuit
is a neon bulb, modelled by a three-segment piecewise-linear
current-controlled resistor. A simple nonlinear circuit model has
been used to reproduce in simulations the experimentally-
observed period-adding phenomenon.

1. Introduction

Since the pioneering work of Feigenbaum in 1975 on the period-doubling

transition to chaos [l], many studies of chaotic phenomena in nonlinear dynami

cal systems have appeared [2], suggesting that chaos is in some sense a "new"

discovery. Indeed, period-adding phenomena and the alternating periodic-

chaotic transition sequence [3], were first reported as recently as 1982 [4]. In

this paper, we will examine a simple experimental circuit with a negative resis

tance device, first presented by Van der Pol in 1927 [5], which displays a transi

tion to chaos through an alternating periodic-chaotic sequence, and describe a

nonlinear circuit model of the physical circuit which for the first time, to our

knowledge, has faithfully reproduced the observed period-adding phenomenon.
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In a paper entitled "Frequency Demultiplication" [5], Van der Pol described

an experiment in which by tuning the capacitor in a neon bulb R-C relaxation

oscillator, driven by a sinusoidal voltage source, "currents and voltages appear

in the system which are whole submultiples of the driving frequency. He noted

that as the capacitance was increased from that value (Co) for which the natural

frequency of the undriven relaxation oscillator equalled that of the sinusoidal

source, the system frequency made "discrete jumps from one whole submultiple

of the driving frequency to the next"(detected by means of "a telephone coupled

loosely in some way to the system"). Van der Pol noted that "often an irregular

noise is heard in the telephone receiver before the frequency jumps to the next

lower value". Interested primarily in frequency demultiplication, he dismissed

the "noise" as "a subsidiary phenomenon". Here, we investigate this noise as an

example of the period-adding route to chaos, first verifying and elaborating on

the work of Van der Pol, and then modelling the circuit dynamics in order to

reproduce the observed phenomena.

2. Experimental Circuit

The circuit we consider is the sinusoidally-driven neon bulb relaxation oscil

lator described by Van der Pol [5] (Fig. 1). A high voltage d.c. supply E (of

approximately 100 V terminal voltage) with large source resistance R (approxi

mately 1 MO) is attached to a shunt connection of neon bulb (ALCO type BNE-4R

(with current-limiting resistor removed)) (acting as a current-controlled nega

tive resistance) and capacitor C, forming the basic relaxation oscillator. In

series with the neon bulb is inserted a sinusoidal voltage source Eosmot (a small

current sense resistor Ra was also inserted in series with the neon bulb to

detect the current flowing in it).
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3. Experimental Results

With the signal source zeroed, the natural frequency of the undriven oscilla

tor was set to 1 kHz, by tuning capacitance C to C0. Then a sinusoidal signal of

peak amplitude Eq (7.7 V) and frequency 1 kHz was applied as shown. The result

ing frequency of the voltage pulses measured across i?s was recorded as the

value of the bifurcation parameter C was brought gradually from Co to a much

larger value. As the capacitance is increased, the system at first continues to

oscillate at 1 kHz (where we define the system frequency as the repetition rate

of the neon bulb current pulse pattern) over a wide range of C, until the fre

quency "suddenly" drops to 1000/2 Hz, to maintain that value over a further

range of capacitance. If C is increased still more, the frequency drops to 1000/3

Hz, then 1000/4 Hz, 1000/5 Hz, and so on up to 1000/20 Hz, exactly as reported

by Van der Pol in 1927 [5].

It is a tribute to the remarkable experimental skill of Van der Pol that the

above delicate observations were originally made using no more than a tele

phone !

Figure 2 is a plot of measured system period as a function of the setting of

capacitor C. The shaded areas are those "noisy" regions which warrant further

investigation.

Between each two submultiples of the oscillator driving frequency, a further

rich structure of submultiples is found. At the macroscopic level (the coarse

structure examined by Van der Pol) increasing the value of C causes the system

period to step from T (l ms) to 2T, 3T, 4T,..., where the range of C for which the

period is fixed is much greater than that over which the transitions occur (Fig.

2).
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Examining the "step" transitions more closely, one finds that between any

two "macroscopic" regions where the period is fixed at (n-l)T and nT (n>l)

respectively, there lies a narrower region over which the system oscillates with

stable period (2n-l)T. Further, between (n-l)T and (2n-l)T, one finds a region of

C for which the period is (3n-2)T, and between (2n-l)T and nT, a region with

period (3n-l)T. Indeed, between any two stable regions with periods (n-l)T and

nT respectively, we expect to find a region with period (2n-l)T. Figure 3 shows

an enlargement of the C axis in the region of the T to 2T macro-transition, show

ing the finer period-adding structure. Between T and 2T is a region with stable

period 3T. Figure 4 shows neon bulb current waveforms for orbits of periods T,

2T and between them, an orbit of period 3T (note the reference direction for

Ineon)- Between this and 2T, regions of periods 5T, 7T, 9T,... up to 25T were

detected. A region of period 4T lies between T and 3T, with steps 7T, 10T, 13T,...

up to 25T between that and 3T.

In practice, it becomes difficult to observe higher periods since their win

dows of existence become narrower, so the behaviour becomes more unstable

(stochastic noise in the experimental circuit can throw the solution out of the

narrow window of existence of a high period orbit) and consequently more

difficult to observe.

Transition from one periodic state to another is characterised by a cascade

of period-doubling bifurcations to chaos, followed by recovery to the next

periodic state. Figure 5 shows the frequency spectrum of a period-doubling

transition to chaos. [At lower signal amplitudes, where 2j5,0<(V£n —V0ff) (the

potential difference between the neon bulb's "on" and "off" states), transition

between locked states occurs without period-doubling bifurcations. ]
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4. Computer Simulation

Figure 6 is the circuit of the computer simulation. E is a dc. voltage source

of 100 V terminal voltage. R has value 1 MO. The sinusoidal voltage source has

peak amplitude 7.7 V at frequency 1 kHz. The neon bulb has been modelled by a

current-controlled resistor with three-segment piecewise linear i—v charac

teristic, defined by

v = / (i) = 29.9925 + 5.0005i - 6 | i-7.5 | + 1.0005 | i-15 |

where v is in Volts, and i in /jA (Fig. 7).

A parasitic inductance £s has been included in series with the current-

controlled resistor in the neon bulb model to account for the element's dynamic

behaviour. (The circuit is very sensitive to the value of Z& (chosen to be 1 pH);

too high a value of parasitic inductance reduces the widths of the transition

regions between periods (n-l)T and nT). This inductance is an essential part of

the neon bulb dynamic model since its i—v characteristic is non-monotonic and

current-controlled. Note that the state equation of the circuit does not exist if

Lp is not included [6].

Resistance Rs (current sensing resistor) has been included in the model in

order to reproduce, as closely as possible, the conditions of the experiment; it

has value 50 Q, and may be omitted with little effect on the behaviour of the cir

cuit. Co is approximately 1 nF.

State equations for the circuit are of the form:

0 RC^C TrL RC
: _ l _ Rs . _ f(ii) _ E0sin(ot)

Ip Lp Lp Lp

The circuit has been analysed using a third order Backward Difference integra

tion routine [7], with initial conditions vq —0 and ii = 0.
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Figure 8 shows the period-capacitance plot for our computer simulation of

Van der Pol's neon bulb circuit in which the staircase pattern of transition

between periods T (l ms) and 2T has been reproduced. Stable oscillations with

the indicated periods have been found in the regions marked with solid lines.

Figure 9 shows the output waveforms from simulations for various values of

the bifurcation parameter C, which are qualitatively identical to those of the

experimental circuit. Figure 10 shows a complex waveform for C = 1.26 nF, in

the chaotic regime. Here, the bold vertical lines are the current surges flowing

at intervals through the neon bulb (Some current spikes appear to be of greater

duration than others. An enlargement of the time axis shows that this is not the

case, but because of limited resolution graphics output, the spikes as plotted

must be either one or two pixels wide). The system appears to oscillate with

period T, with intermittent interruptions, returning to quasi-period T oscillation

within a few cycles each time.

Chaotic states contain component waveforms belonging to nearby periodic

states, but of course they appear in an apparently random manner. For exam-

2 3pie, between cycles with rotation numbers -r-andr-; where we define the rotation
3 o

number as the ratio of the number of current pulses to the number ofperiods of

the driving source per system cycle, we obtain the chaotic transition shown (Pig.

11). In each case, the diagram on the left is an enlargement of the correspond

ing time segment (20 - 28 ms) of the neon current waveform on the right. Note

that waveform (b) contains component oscillations of periods 3 and 5, which

appear at random throughout the waveform.

Thus, in our simulation, we have accurately modelled the dynamics of the

system under investigation and have consequently succeeded in reproducing

those period-adding phenomena present in the original circuit.
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5. Discussion

The alternating periodic-chaotic transition sequence, and the forward

period-adding phenomenon observed in Van der Pol's neon bulb circuit also

appear in several other systems [3]. The rotation numbers of the successive

period-adding states are related by a definite law. Kaneko [8] noted that in a

period-adding sequence, any locking with rotation number JL— appears in

principle between lockings ^-and —; where q and j>, and s and r are relatively

prime, and a and /? are strictly positive integers. The sequence of locking states

(devil's staircase) [9] is constructed as follows (for integers n, k, and m):

(this is the macro-level transition sequence investigated by Van der Pol and

corresponds to the T, 2T, 3T,... steps).

1 - 2 - - k ^ (Jb>l)
n—1 2n—1 kn—1 n

between —and —: Here, we can identify q = 1, p—n —1, s = 1, r—n, a = 1,

/?=1.2,3 (A:-l),.. .

fc-1 2A;-1 mk-1 k , .
(fc-l)n-l (A^-l)+(Jfe-l)n-l "" (m-l)(kn-l)+(k-l)n-l ^""*(kn-l) [jri>1)

k—1 k
between ,. > and ., , and so on for each pair of orbits. In this case,

we identify q=k-lp=(k-l)n-l,s=k,r=kn-l,a= 1, and 0= 1,2,3,...,(m-l),... .

Between any two states, we find a self-similar (reproduced qualitatively at

all scales of the bifurcation parameter) staircase of locking states.

Using the definition of rotation numbers given above, Van der Pol's neon

bulb circuit is seen to follow this law exactly.
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Also, our results confirm the observation of Kaneko [4] (from numerical

simulations of a discrete map displaying period-adding phenomena) that the

most stable orbit (having the widest window of existence for variations in C)

between the periodic cycles with rotation numbers ^- and —has rotation

Of 4*s
number * , i.e. a and /? both equal to unity. Further, the uniform period-

adding sequence most easily observed between cycles with rotation numbers

11 k— and — is precisely that sequence with rotation numbers , k =
71 —*"1 71 tC/L ^j.

2,3,4,...; namely, the next level of the self-similar staircase structure.

Whether or not it is feasible to observe a particular period depends on the

region of the bifurcation parameter where the cycle is stable and the stability of

the cycle. Cycles of shorter period are easily observed; those with longer periods

are susceptible to corruption by experimental noise, and are consequently more

difficult to detect in practice. For chaotic states, the waveform contains

periodic oscillations from adjacent periodic states randomly distributed through

the waveform.

The phenomena described above have been observed in Van der Pol's neon

bulb circuit using a variety of bulb types, sinusoidal source amplitudes, d.c. vol

tages and source resistors, nearly sixty years (and half a century of develop

ment in neon bulb technology) after they were first reported; it follows that the

behaviour is robust.

The circuit model described above is characterised by a second order stiff

differential equation (the time constant for the current spike is orders of magni

tude less than the system period). In order to reproduce the results of our com

puter simulations, therefore, one should use a reliable stiff differential equation

solver such as [7]; otherwise, it is unlikely that it will be possible to duplicate the

period-adding phenomena outlined.
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it should be noted that a neon bulb is a very complicated device, yet we

have been able to duplicate its dynamic behaviour over the frequency range of

interest (below 1 kHz) using the simplest possible model [10]. This confirms our

belief that a neon bulb may be realistically modelled at low frequencies by a

series connection of inductance (which we have indicated is an essential com

ponent of the dynamic model) and current-controlled nonlinear resistor.

A third order non-autonomous circuit (with a negative resistance device

synthesised using bipolar transistors) which exhibits period-adding phenomena

has already been reported [3]. Van der Pol's Neon Bulb Circuit is important

because it is described by a second order non-autonomous ordinary differential

equation, and is consequently the system of lowest order capable of exhibiting

the period-adding transition to cfiaos.

6. Conclusion

We have investigated the period-adding route to chaos in the simplest non-

autonomous system, a driven relaxation oscillator circuit with two dynamic ele

ments (described by a second order nonlinear non-autonomous ordinary

differential equation), and have presented a piecewise-linear model of the circuit

for which the experimentally-observed period-adding phenomena have been

reproduced in computer simulations.

Our future goal is to simplify the computer model in order to make a more

detailed analytical analysis of the circuit dynamics, and ultimately to develop a

theory which explains the observed phenomena.
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Flgure Captions

Fig. 1.

Sinusoidally-driven Neon Bulb Relaxation Oscillator.

Fig. 2.

Pulse Pattern Repetition Rate vs. C [Experimental], showing coarse stair

case structure.

Fig. 3.

Pulse Pattern Repetition Rate vs. C [Experimental], showing fine period-

adding structure.

Fig. 4.

Neon Bulb Current Waveforms (Inson) [Experimental]: (a) C = 2.0 nF (Period

T); (b) C = 2.7 nF (Period 3T); (c) C = 3.4 nF (Period 2T).

Fig. 5.

Frequency Spectrum of a Period-Doubling transition to Chaos: (a) C = 2.165

nF; (b) C = 2.170 nF; (c) C = 2.180 nF.

Fig. 6.

Van der Pol's Neon Bulb Circuit - Computer Model.

Fig. 7.

Neon Bulb Characteristics: (a) Measured; (b) Simulated.

Jig. 8.

Pulse Pattern Repetition Rate vs. C [Simulation], replicating the period-

adding structure of the real circuit.
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Fig. 9.

Neon Bulb Current Waveforms (7neon) [Simulated]: (a) C = 1.00 nF (Rotation

Number ^-); (b) C= 1.54 nF (Rotation Number §-); (c) C=2.00 nF (Rotation
1 3

Number —).

Fig. 10.

Neon Bulb Current Waveform in the Chaotic Regime ( C = 1.26 nF ).

Fig. 11.

2
NeonBulb Current Waveforms; (a) C= 1.50nF (Rotation Number ^-); (b) C

1.57 nF; (c) C= 1.60 nF (Rotation Number f}.
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Fig. 5
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Fig. 6 VAN DER POL'S NEON BULB CIRCUIT -
COMPUTER MODEL
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