

Copyright © 1985, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A FLEXIBLE CHANNEL EMULATOR FOR COMMUNICATIONS

PROTOCOL AND ARCHITECTURE RESEARCH

by

Amanda M. Kao and Lester F. Ludwig

Memorandum No. UCB/ERL M85/83

11 November 1985

A FLEXIBLE CHANNEL EMULATOR FOR COMMUNICATIONS

PROTOCOL AND ARCHITECTURE RESEARCH

by

Amanda M. Kao and Lester F. Ludwig

Memorandum No. UCB/ERL M85/83

11 November 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A FLEXIBLE CHANNEL EMULATOR FOR COMMUNICATIONS

PROTOCOL AND ARCHITECTURE RESEARCH

by

Amanda M. Kao and Lester F. Ludwig

Memorandum No. UCB/ERL M85/83

11 November 1985

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A FLEXIBLE CHANNEL EMULATOR FOR

COMMUNICATIONS PROTOCOL AND ARCHITECTURE

RESEARCH

Amanda M. Kao

AT&T Bell Laboratories

Lester F. Ludwig

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

ABSTRACT

This paper describes the design of the programmable 10Mbps physical level

emulation system for the UC Berkeley Protocol Workroom facility. The Fast-TTL

design presented supports flexible linking of 32 node interfaces and can operate from

actual terminal equipment. A wide variety of bus, ring, point-to-point, radio (fixed

or mobile), tree, and many other topologies are easily supported, and gateways

between subnetworks may be freely introduced. The local topological configuration

at each node connection port can be independently specified. Three independent sig

nals (data, code violation status, and carrier) are delayed in ensemble between inter

connected nodes, via programmable bidirectional delays. Each intemode delay is

independently adjustable over a wide range of distances in 10 meter increments and

may be adjusted in real time. A number of fault conditions can also be introduced

in real-time. The operating speed design can be advanced upward towards 100 Mbps

via ECL. gatearray, and space-division techniques, limited by the effects of gate pro

pagation delays.

May 27. 1986

A FLEXIBLE CHANNEL EMULATOR FOR

COMMUNICATIONS PROTOCOL AND ARCHITECTURE

RESEARCH

Amanda M. Kao

AT&T Bell Laboratories

Lester F. Ludwig

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

1. INTRODUCTION

This document discusses the channel emulator system designed for use within the Protocol

Workroom, an experimental communications protocol, architecture, and distributed system research

facility under development at UC Berkeley [l]. Under programmable control of an external master

computer, this hardware system implements functional equivalents to a network's entire physical

layer and associated collision-detection mechanisms. The channel emulator system provides the

synchronous/asynchronous 10Mbps interconnection fabric within the experimental network of this

facility. It supports flexible physical level interconnection of the facility's 32 node interfaces which

may be connected to the Protocol Workroom's emulators [2] or other terminal equipment. The work

discussed in this report is the expansion and implementation of an original design by one of the

authors [3]. The implementation of a preliminary prototype of this design served as the masters pro

ject of the other author [4].

This paper begins with a brief overview of the Protocol Workroom facility and the channel

emulator concept. Section 3 provides a functional description of the channel emulator. Section 4

discusses the architectural organization of the channel emulator, including detailed explanations of

hardware subsystems. Section 5 discusses an optional control panel. Section 6 describes possible

extensions and the current implementation at UC Berkeley.

2. OVERVIEW OF THE PROTOCOL WORKROOM FACILITY

The goal of the Protocol Workroom is to provide a software-controlled hardware facility for

emulation-oriented research in the fields of communication protocols and communication network

architectures. The facility is to be capable of supporting the real-time hardware emulation of a wide

variety of network architectures and protocols, so as to complement the theoretical developmentand

-2-

software simulation techniques currently used in these areas of research. A more detailed discussion

of the overall facility may be found in [l].

Figure 1 illustrates the conceptual architecture of the overall Protocol Workroom facility.

Functionally, it may be viewed as a number of intelligent nodes (each emulatingan intelligent digital

device) connected to two separate communication networks, the experimental and backbone networks.

The experimental network emulates the network whose behavior is under study. Only data and con

trol signals that would be carried over the modeled network are handled by the experimental net

work. All other data communications involved in the operation of the facility (configuration, con

trol, monitoring, and analysis) are handled by the backbone network.

The experimental network consists of two principle subsystems. One of these subsystems is the

physical level channel emulator that is the subject of this paper. The other subsystem is a group of

32 node emulators providing software-defined hardware implementations of link and higher level

protocols of modeled digital devices. The node emulators utilize a number of special hardware sub

systems controlled by stimulus/response state machines and a 68020 to accurately emulate a very

wide variety of protocols in real time at rates up to 10Mbps [2]. The node emulator can be

configured with multiple protocol engines, an elaborate switch fabric, and control provisions to real

ize very flexible multiport entities such as gateways and centralized integrated-services switches.

Together, the node and channel emulators permit extremely flexible control of physical and logical

aspects of the experimental network, facilitating the interactive study of an unprecedented wide

range of network types in real or near-real time. The experimental network operates synchronously

or asynchronously at data rates up to 10 Mbps. It can emulate different (higher) transmission rates

through the use of time-distance scaling. Monitoring occurs both within the channel emulator (colli

sion detection) and node emulators. All monitoring information, however, is collected by the node

emulators; there is no direct monitoring communications between the master computer and the chan

nel emulator. The channel emulator is controlled, however, directly by the master computer.

Figure 2 illustrates the actual architecture that will be used in realizing the facility. Each node

emulator is realized with a Pacific Microsystems 68010 computer connecting to one or more of the

custom protocol engines. The Pacific board within each node emulator is hosted by a cluster-

concentrating Sun. One of these cluster-concentrating Suns also hosts an Omnibyte OB68K230 I/O

board that is used to control the channel emulator. Each protocol engine has a single dedicated con

nection to an interface port on the channel emulator as shown in Figure 2. The multiple-port nodes

that are created by connecting multiple protocol engines to the same Pacific board can be used for

emulating multiple-port entities such as gateways and centralized switches.

-3-

3. FUNCTIONAL DESCRIPTION OF CHANNEL EMULATOR

The channel emulator illustrated at the bottom of Figure 2 is a software-controlled hardware

system, implemented in digital logic, performing the following communications network functions in

either synchronous or asynchronous modes:

1. Separate interfacing with each node port, accepting data, timing, and carrier signals for

transmission from the port while simultaneously presenting received timing, data, carrier detec

tion, and collision monitors to the port;

2. Code violation indications for out-of-band control signals;

3. Support of a wide range of classical, modern, and uninvestigated node connection topologies and

gateway configurations, including multiport nodes;

4. Insertion of programmable propagation delays into the synchronous or asynchronous serial data

streams between any pair of connected nodes;

5. Real-time insertion of a wide variety of local and global fault conditions;

6. Simultaneous support of a variety of collision detection schemes at each node site; and

7. Distribution of global timing reference for synchronous operation and for system-context time-

stamps in monitoring records.

The channel emulator thus provides for the flexible logical emulation of a wide class of physical

layer networks. Further, through the incorporation of very long delay times, it also permits

geometricstretching for time-distance scaled modeling of high-bandwidth networks. The key concept

in this system is that there is no analog encodingof transmitted data, no physical transceiver, and no

physical medium involved in the interconnection of nodes. Instead, the entire physical layer and

associated collision-detection functions are precisely emulated by a centralized hard-wired logic sys

tem. A sequence of command instructions is used to program the channel emulator's configuration

and parameters. These instructions can be modified during an experiment in real-time. In the Proto

col Workroom facility, these commands are provided by an I/O board hosted by oneof the Suns. An

important remark is that the channel emulator can function as a meaningful research and develop

ment tool outside its original application within the Protocol Workroom. In fact, almost any sort of

terminal equipment can be used with the channel emulator to study that equipment's performance in

different network topologies and under various operating conditions. Such applications aresuggested

by Figure 3.

-4-

4. ARCHITECTURE OF CHANNEL EMULATOR

The channel emulator transports four classes of 10 Mops serial bit streams between the ports

connecting to the external nodes. It also introduces operations on these four classes of signals so as

to emulate the behavior of specified physical level systems. The four classes of signals are termed

data, violation, carrier, and timing. These are routed and processed as a four-bit wide signal stream

throughout the channel emulator. The timing signal provides the periodic timing reference defining

the clock periods for the other three signals. The data signal carries the actual serialized data stream,

while the violation signal provides an additional identical but independent path for a second data sig

nal. This second signal can be used to signify the occurrence of code violations which are used in

some protocols for out-of-band control signals. The carrier signal indicates whether the node it ori

ginates from is in a transmission state or not. As a result, this signal can be interpreted as indicating

the validity of the other three signals. When the carrier is high, the corresponding data, violation,

and timing signals are carrying active information. When the carrier is low, these signals are viewed

as being in an idle state. Thus the transmit carrier signal means "transmit this information" while

the received carrier means "this data has arrived". In addition to these functions, the carrier signal is

critical to internal operation of the channel emulator. Carrier signals are used to arbitrate timing

sources during asynchronous operation, determine collisions, and make directional indications for

received signals in bus topologies.

An important feature of the channel emulator implementation is that the data and violation sig

nals are low when the carrier is low. If this behavior cannot be guaranteed by the node equipment,

additional logic circuitry such as that shown in Figure 4 can be added to force this condition. (Note

that such a circuit introduces a few nanoseconds of delay due to gate propagation.) With this

behavior assured, all possible collision points for data, violation, and carrier signals can be imple

mented as simple OR-gates. This concept will be illustrated later. Timing signals must be arbitrated

among the candidate sources at the collision points, however, in order for the channel emulator to

function properly after a collision occurs. The arbitration is controlled by the status of applicable

carrier signals as will be explained later in this document.

A high-level view of the architecture used to implement the channel emulator is illustrated in

Figure 5a. Figure 5b illustrates an expansion of the block diagram of Figure 5a showing the specific

treatment of the four signal classes. Note that in Figure 5 the Tap blocks have been turned on their

side and enlarged into large rectangular solids whose node interface port resides behind them.

Beyond this level of detail the channel emulator consists of a control system, and submodules within

the illustrated blocks. The submodules are termed cells. The overall architecture is now discussed in

-5-

more detail.

The entire channel emulator is controlled by a single control system consisting of a centralized

controller and a control bus. The remainder of the channel emulator is organized with respect to the

four categories of blocks as illustrated in Figure 5a. The Tap blocks provide the link between each of

the node interface ports and the rest of the channel emulator. Each Tap block has one node interface

port and two other types of ports to the rest of the channel emulator. These two other types of

ports are termed path 1 and path 2. All three ports carry both transmitted and received signals for

data, violation, carrier, and timing. Path 1 provides the principal connection between the Tap blocks

and the rest of the channel emulator. It is employed in every topology supported by the the channel

emulator. Path 2 is employed only for a few topologies, such as the bidirectional bus. folded buses,

radio, passive tree topologies, and in an optional failure-recovery mode for counter-rotating rings.

The precise usage of this second path will become clear in later discussion.

The Delay-Input-Routing blocks. Delay blocks, and Delay-Output Routing blocks together form

an interconnection fabric for the transport of signals among the Tap blocks. A mathematical view of

this function in terms of a Boolean matrix operator is shown in Figure 6. The two Routing blocks

connect the Tap block with any of the delays in any of the Delay blocks in the channel emulator.

Broadcast transmission is naturally supported in the Delay-Input Routing block. The Delay-Output

Router block provides special circuitry to support multiple-source broadcast reception.

The number of blocks required to support a given number of nodes varies with the types of

topologies to be supported. An N-port channel emulator supporting up to M interconnections from

each node requires M delay blocks with N Tap. N Delay-Input, and N Delay-Output blocks. For a

K-node bus. ring, double ring,and full-connectivity radio network M must be at least 2(K-l). K. 2K.
2

and K . respectively. The channel emulator design discussed in this paper sets N=32 and M=64,

allowing the support of up to 32 node bus networks and ring networks as well as full-connectivity

radio networks up to 8 nodes. The blocks are divided into cells, some of which are programmable, as

indicated:

* Tap Block:

o Control bus cell:

o Topology/fault cell for data, violation, and carrier signals (programmable);

o Topology/fault cell for timing signals with clock arbitration (programmable);

o Collision detection cell (optional):

* Delay-Input Routing Block:

-6-

o Control bus cell;

o Path 1 routing cell (programmable):

o Path 2 routing cell (programmable);

* Delay Block:

o Path 1 delay cell (programmable) with control bus interface;

o Path 2 delay cell (programmable) with control bus interface;

* Delay-Output Routing Block:

o Control bus cell;

o Path 1 data/violation/carrier "masked-OR" cells (programmable);

o Path 1 clock arbitrator cells (programmable);

o Path 2 data/violation/carrier "masked-OR" cells (programmable);

o Path 2 clock arbitrator cells (programmable).

These various blocks and the cells comprising them are described in the sections that follow. Also

included is a discussion on the realization of subnetworks, gateways, and tree topologies.

4.1. Centralized Controller

This controller is responsible for establishment and real-time modulation of the channel emula

tor configuration and operational modes. It receives external commands from the facility's master

computer or other external controlling device and translates these into sequences of state assignment

commands which are put onto a controller bus. The controller bus is monitored by special cells

within every other block in the system. In the Protocol Workroom the Centralized Controller is

implemented with a user-wired Omnibyte OB68K230 Multibus I/O controller card. This card is

fitted with custom output circuitry in its provided user-wired area, and is hosted by one of the

cluster-hosting Suns. For applications outside the Protocol Workroom, any other arrangement capa

ble of sequentially transmitting a sequence of control words onto a bus can be used. Note that since

each subsystem within the channel emulator examines the address of each command sent over the

control bus the actual sequence of commands can be listed in any order.

4.2. Control Bus

This unidirectional bus carries commands from the I/O controller block within the channel

emulator to all blocks within the channel emulator. Each block in the channel emulator includes a

Control Bus interface cell which compares the address on the control bus with its own unique

address and. upon a match, loads a value into a latch within that cell. The information stored in this

latch is used to configure that cell. The bus is formed from four sub-busses: a two-bit block-type

-7-

sub-bus, a log(N) bit block-index sub-bus specifying a particular block within the specified type, a

sixteen-bit value sub-bus setting the state of the cell, and a one-bit load-command sub-bus carrying a

load signal that loads the selected block with the value obtained from the value bus. Table 1 sum

marizes the organization and addressing for the N=32. M=64 case. Note the interpretation of the

value sub-bus information varies from block-type to block-type.

To support the programming of a 32-node channel emulator, a total of 26 bits are needed. Five

bits are used for the block-index. Four bits are used to select the proper block within each index

using the demultiplexing scheme shown in Table 1. Sixteen bits are needed for the value bus to pro

gram cells within the blocks. One bit is needed for the load-command signal that is used to signify

that new address and value sub-bus quantities are valid and can be latched. Together, a 26-bit bus is

required for programming the system. This bus can be read by every block in the system. In the

Protocol Workroom facility, the Omnibyte OB68K230 I/O Board is custom adapted to provide

sequences of 25-bit words and an appropriately timed load command. In this manner the master

computer can transmit a configuration file to the channel emulator for both pre-experiment set-up

and real-time modification.

Each block contains a cell or other provision which monitors the controller bus for commands

issued to its particular block from the channel emulator's centralized controller. Recall that the con

trol bus is comprised of four sub-busses: a block-type sub-bus, a block-index sub-bus, a value sub-

bus, and a load-command sub-bus. The block-type and block-index sub-busses are constantly moni

tored by the Control Bus cell for the unique address of that cell's block. When the appropriate

address is observed, the load-command sub-bus loads the current state of the value sub-bus into an

internal 16-bit latch. The word in this latch sets the states of the programmable cells within each

block. Each block contains a magnitude comparator which is used to determine whether the block

has been selected or not by comparing its block address with the block-type and block-index sub-

busses. If the block determines that it has been selected, the signal on the load-command sub-bus is

used to strobe the internal latch. Depending upon the specific cell, the word length actually used is

between 6 and 16 bits in length. Note from the list in the beginning of Section 4 that some of the

blocks contain cells that are not programmable.

43. Tap Blocks

These blocks provide the link between the nodes of the network and the interconnection fabric.

These blocks take the signals received from the Delay Output Routing block and derive signals

transmitted to the node interface and the Delay Input Routing block. The circuitry used to derive

these signals is programmable and is controlled by information taken from the channel emulator's

-8-

control bus. This signal derivation circuitrysupports the following functions:

* Routing and selection among inputs, outputs, and internal elements;

* Collision emulation and detection;

* Clock arbitration;

* Fault condition emulation;

* Global time reference distribution.

The routing and selection functions permit a wide range of tap arrangements and local physical

level phenomenon to be directly implemented. Clock arbitration is used to select between candidate

timing sources in asynchronous operation. Fault conditions can be introduced and modulated in real

time. The global time reference is used for monitoring and is also employed as the system time base

for synchronous operation.

Each Tap block is comprised of a number of cells: a control bus interface cell, a three-bit wide

topology/fault cell (for data, violation, and carrier signals), a topology/fault cell with clock arbitra

tion functions (for timing signals), and an optional collision detection cell. Each cell is described in

this section.

43.1. Node Emulator Interface Cell

The node emulator interface provides the connection between each node and the channel emula

tor. Figure 7 illustrates the lead assignments for each node emulator interface port. A common

ground lead is used as a return for each of the logic signal leads identified below. Balanced-line

transmission circuits can also be used. A transmit and receive lead are provided for each of the data

and code violation signals. A transmit carrier lead is provided for the node to indicate its transmis

sion status and a receive carrier lead is included for the incoming carrier signal. An additional lead is

used specifically for the bidirectional bus topology to indicate directional-sense of the carrier.

Directional-sense is important only in the case of a bidirectional bus configuration. This lead is

ignored by the node emulator in all other cases. Two more leads are included for local timing; one for

transmit timing, and another for receive timing. Two leads are provided for global timing signals

which are transparently broadcast to all node emulators. One signal is the global 20MHz clock used

for global time stamps and for synchronous operational modes. The other signal is a subharmonic

signal from a synchronized K-bit master counter which is used to synchronize the K-bit global time

counters in each node and to increment the counter for bits K+l and above. Details of the global

time stamp system are explained in [3]. Finally, two optional collision detection leads can be pro

vided. One lead is based on comparing transmit and receive data (data discrepancy), while the other

compares transmit and receive carrier signals. If the two optional collision detection leads are not

-9-

brought out in the interface, but ratherrealized in the node hardware, then a 25-pin connector can be

used at the node interface to support balanced lines for the eleven remaining logical signals.

43.2. Topology/Fault Cells

These cells determine the handling of signals to be received and transmitted by a node to realize

a number of different network topologies. Also supported in these cells are the real-time introduc

tion of topological and transceiver faults. Circuitry is included to support the following

configurations (in addition to many other possible configurations):

1. Bidirectional bus (BB);

2. Unidirectional ring (UR):

3. Folded bus [two versions. FBa, FBb)]:

4. Counter-rotating ring using two ports (CRR);

5. Counter-rotating ring failure-recovery mode (CFR);

6. Unidirectional bus pair with physical level head-end (UBP):

7. Collision Star with head-end. dual-frequency radio (fixed and mobile) (S):

8. Full-connectivity radio (fixed and mobile)(R);

9. Gateways (G);

10. Multi-port centralized switches and other point-to-point connections (PP);

11 Passive trees (PT):

12. Trees of subnetworks (ST).

Most of these network and subnetwork topologies and their features are well known. A few com

ments are added below for clarification of terms.

Physical level head-ends are used in unidirectional bus pair topologies and dual-frequency radio

networks where routing, reservation, and contention resolution is handled in a centralized fashion by

a key node. In general they are nodes that perform centralized protocol controlling functions. They

also are commonly used as gateways where they perform additional functions such as message rout

ing. An illustration of a bus network employing a head-end is shown in Figure 8a. Note that colli

sion stars with head-ends and dual-frequency radio networks have identical topologies; the

equivalent topology is illustrated in Figure 8b. A full-connectivity radio topology is shown in Figure

8c.

Gateways are used in practical communications systems as a means to connect independent net

works together. In the Protocol Workroom, these and centralized multiple-port switches are

- 10 -

implemented by multiport configurations of node emulators. Channel emulator support of these

entities requires the use of more than one port per node site. For a gateway, each of these ports

resides in a different sub-network emulated by the channel emulator. An example of a gateway con

nection linking two emulated networks is shown in Figure 8d. From a given subnetwork, a port con

necting to a gateway node operates as any other node site within that subnetwork. Thus the connec

tion of the relevant networks is accomplished transparent to the channel emulator. For a centralized

switch, the channel emulator implements simple point-to-point connections between the multiple

port node and the other nodes it connects to. This is shown in Figure 8e. Thus the channel emulator

handles multi-port centralized switches as a point-to-point network.

It is possible to realize wide ranges of hierarchical networks by using gateways to interconnect

subnetworks. Each subnetwork can be any kind of topology. An example of how to realize a given

hierarchical topology with the channel emulator is illustrated in Figures 9a-c. Note that the node

assignment in the realization is arbitrary. Figure 9a shows the tree configuration to be realized. In

Figure 9b. this configuration is divided into subnets, and the nodes are numbered for easy reference.

It can be seen from this diagram that gateways will occur at node location numbers 2. 5. and 7. In

Figure 9c. the topology of each of the above subnets is denned and the gateway nodes are identified.

This diagram shows an example consisting of a variety of subnet topology types: a star with head

end (A), a ring (B), a unidirectional bus pair (C), and a bidirectional bus (D). Note that the gate

ways are physically handled by the channel emulator as two separate nodes; it is the node emulator

that treats gateways as if they were a single node. From this diagram, one can determine the neces

sary interconnections required of the channel emulator in order to realize the tree. Using this pro

cedure, it is possible to construct a wide range of tree topologies and hierarchical networks by linking

combinations of subnetworks in this manner.

Passive trees occur in the ISDN passive bus and passive CATV distribution systems. They are

distinguished by having a tree topology of interconnected cables with non-neglectable lengths. Figure

10a illustrates a passive tree network, while Figure 10b illustrates an emulating circuit configuration.

The topology/fault cells also include provisions for emulating real-time faults within the sys

tem. These fault conditions are generated either by pseudo-random binary noise sources or pro

grammed combinations of high and low logical values. The incorporation of these options allows for

the introduction of a variety of fault conditions at any point in the channel emulator.

The global and local implementation levels of the topologies listed above are illustrated in Fig

ures lla-f. (Note Figures lib and lie do not use a head-end; see Figure 8a for a bus topology

employing a head-end.) Each of these diagrams shows the global interconnection of Tap blocks on the

-11-

left and a logic circuit realization emulating the Tap block operations for each of the data, violation,

and carrier signals on the right. The logic circuit realizations illustrated are identical for the data,

violation, and carrier signals. Thus three copies of the illustrated circuit are needed within each Tap

block. The design of the channel emulator's topology/fault cell for each of the data, code violation,

and carrier signals is simply a generalization of these logical realizations with the inclusion of fault

conditions. More complex circuitry is required for timing signals due to the need for clock arbitra

tion. This will be discussed in Section 4.3.4.2.

43.2.1. Topology /fauU ceU for data, violation, and carrier

An illustration of the circuit used for the data, code violation, and carrier topology/fault cells is

shown in Figure 12. The same circuit is repeated once for each of these three signals. The total

topology/fault cell thus consists of these three copies, each sharing the same 9-bit configuration com

mand. Each of the three copies consists of 8-to-l data selectors and logical-OR gates. The method

used in determining the possible selections for each of the multiplexers is summarized in Table II.

This Table was constructed by systematically investigating each type of topology and determining

the signal outputs of each of the multiplexers. These outputs are denoted in Figure 12 as Node RCV.

Path 2 XMT. and Path 1 XMT. For example, by observing the local signal propagation for a bidirec

tional bus (Figure 11a). it follows that Path 2 XMT is the logical "OR" of Path 2 RCV and Node

XMT (Path 2 RCV + Node XMT). Path 1 XMT is the logical "OR" of Path 1 RCV and Node XMT

(Path 1 RCV + Node XMT). and Node RCV is the logical "OR" of Path 2 RCV. Path 1 RCV. and

Node XMT (Path 1 RCV + Path 2 RCV +Node XMT). Similarly, for a folded bus (Figure lib), the

Path 2 XMT and Node RCV outputs of the Tap block are both simply Path 2 RCV while the Path 1

XMT output is the logical "OR" of Path 1 RCV and Node XMT (Path 1 RCV + Node XMT). In this

way, the outputs for each of the supported topologies can be determined. The resulting options are

listed in Table n. Note here that radio network transmit and receive signals require only routing of

interface signals to the Delay-Input and Delay-Output Routing blocks since all necessary logical

operations are provided by these blocks. Finally, note from Figure 10b that passive trees require

path 2 to be used as a "feedback" provision; this is also supported. These selections and extra

options which emulate fault conditions (forced logical "1". forced logical "0". and pseudo-random

noise) were used to obtain the design shown in Figure 12. Note that gateways require no special

treatment since each gateway port is completely characterized by the type of subnetwork it resides

on.

-12-

43.2.2. Topology /fault cell for timing

The topology/fault cell for the timing signal is less straight-forward and is shown in Figure 13.

It features clock arbitrator functions in order to provide the correct timing for network signal propa

gation and for the receiving nodes. Depending on the topology emulated, timing signals can be

received from either the node interfaceor from external timing signals provided by the Delay-Output

Routing block. The decision is determined by the chosen topology and in several cases also by the

status of the carrier signal from the node associated with the Tap block. The local carrier signals are

employed in clock arbitration functions used to resolve collisions. These are discussed below.

Clock arbitration functions are employed to realize a truly asynchronous interconnection

environment. Three separate clock arbitrator functions are required: one for the receive timing at the

node and one for each direction of data transmission. The derived timing they provide is used for

three purposes:

1. Receive-data timing for the local node interface;

2. Clocking of subsequent delay cells in the network for carrier signal propagation;

3. Provision of timing reference for deriving received timing in subsequent blocks.

There are two cases to consider; these are distinguished by whether the given node is in a colli

sion state or not. If there is no collision, the local transmit carrier signal can be used to determine

whether the received timing is from the preceding block timing reference, or from the local node. If

the node is not transmitting (i.e.. no carrier signal is present), the clock arbitrator will choose the

timing from the preceding block. However, if a carrier signal is present, the timing transmitted by

the local node is selected. If the node is in collision state (as determined by the status of external

and local carrier signals), data will be ignored by the local node and hence receive timing will not be

needed for that particular node. A well-defined timing signal is needed, however, to propagate sig

nals through subsequent delay cells. The clock arbitrators are designed to provide this signal. A pre

cise emulation would have the clock arbitrator choose the timing associated with the node whose car

rier signal arrived first so that the effective propagation velocity of the carrier "wavefront" is con

stant. If timing sources were suddenly switched, the resulting phase change in the timing would

cause the delay cells to effectively creat an instantaneous change in propagation velocity. Note, how

ever, that the detection of which of two asynchronous events first occurs can only be approximated

by logic circuitry. Within some sufficiently small time interval any circuit will see the two events as

being simultaneous with respect to its reaction time. A default will have to be chosen, resulting in a

timing phase change should the default be the wrong choice. A high-speed RS flip-flop circuit could

-13-

be used to minimize this error. If a one bit-period maximum error is permissible, the flip-flop can be

omitted by simply wiring in the default directly. This is the approach presented in this paper. The

performance of this approximation is felt to be acceptable for foreseeable protocol studies and may be

modified if needed without major rewiring. In particular, a major simplification results if the default

is chosen to be the local timing source. In this case, the decision can be based on the local carrierand

implemented precisely as it needs to be for non-collision states. As a result, the same circuit can be

used for both cases under this minor approximation. The resulting functional schematic of such a

clock arbitrator is shown in Figure 14.

The clock arbitration function described is combined with routing circuitry similar to that of

Figure 12, resulting in the design illustrated in Figure 13. All IC's shown are 8:1 data selectors. ICs

1,2,3. and 4 perform clock arbitration functions through manipulation of one or more of their

address lines by various carrier signals. ICs 1 and 2 derive the XMT timing signals for path 1 and

path 2 respectively. Each has two address lines, A. and Ay. which are controlled by information

stored in the value sub-bus latch. Each (A*. A~) ordered pair is interpreted as follows:

00 Arbitrate between Node XMT and Path RCV timing sources;

01 Node XMT only;

10 Path RCV only ("feedback");

11 Logic "0" ("no signal").

Address line Aq is controlled by the Node XMT Carrier signal. IC 3 performs the clock arbitration

function for the Node RCV timing based on the activity of the Node XMT carrier. Path 1 RCV car

rier, and Path 2 RCV carrier signals. IC 4 is identical in function to IC 3, but with path 2

suppressed. This permits path 2 to be used for feedback purposes without interfering with

"node'V'path 1" arbitrations. The outputs of ICs 3 and 4 are presented to IC 5 along with direct

connections to Path 1 RCV. Path 2 RCV. and fault conditions. IC 5 selects one of these to obtain the

Node RCV timing signal. Table III summarizes the usage and addressing of this topology/fault cell

for the various example topologies. Note a sixth 8:1 selector could be included whose function is like

that of IC 4 except with path 1 suppressed rather than path 2. This makes the usage of path 1 and

path 2 completely interchangeable. This is attractive because the rest of the channel emulator is

completely symmetric with respect to paths 1 and 2.

43.3. Control bus cell

This cell consists of a 16-bit latch and the wiring shown in Figure 15. The latch is strobed

according to the addressing arrangement of Table I. The 16-bit word stored in the latch is used to

program the entire block. Nine bits are used to program the topology/fault cells for data, code

-14-

violation. and carrier signals. Since the topologies and operations on these signals are identical, the

same nine bit word is used for each of the three identical circuits. The remaining seven bits are used

to program the topology/fault cell for the timing signal.

43.4. CollisionDetection Cell (optional)

The optional collision detection cell provides the optional logical provisions to detect data

discrepancies and carrier collisions. Although the Protocol Workroom node emulators will include

the two gates required to derive collision detection signals from the data and carrier signals available

at the interface, other stand-alone applications of the channel emulator may find it convenient to

have collision detection signals provided at the interface. The circuit used to detect data discrepancies

is the "EX-OR" of the Node XMT data and Node RCV data signals. When the output value is a logi

cal 1. a data discrepancy has occurred. Data discrepancy detection is used in bidirectional bus topolo

gies like Ethernet. An EX-OR circuit for the violation signal is also suggested. An overall data

discrepancy signal can then be derived from "OR"-ing these two "EX-OR" results. A more useful

collision detection mechanism often provided by physical level interfaces is the detection of multiple

active carrier signals. To detect a carrier collision, the Node RCV and Node XMT carrier signals are

logically "AND"-ed. If the "AND" output here is a logical 1. then a carrier collision has occurred.

4.4. Delay-Input Routing Block

The Delay-Input Routing blocks shown in Figure 5 are simply a collection of 2N 4-wire 2N:1

data selectors wired to operate as a unidirectional crossbar switch. For the 32 port channel emulator,

each cell in this block consists of a 4-wire 64:1 data selector. This results in a collection of four sets

of 64 64:1 data selectors wired as a stack of four 64x64 crossbar switches. This is equivalent to four

copies of a collection of the arrangement shown in Figure 16. These four copies combined with the

control cell form the entire Delay-Input Routing system shown in Figure 5a. (Note also that each of

the four planes in Figure 5b are exactly the circuit shown in Figure 16.)

The state of each 64:1 multiplexer is controlled by a 6-bit command. The corresponding multi

plexers in the four copies each get the same command. Thus the state of the entire Delay-Input

Routing block is specified by a set of 64 6-bit words. These commands are carried over the value

sub-bus as the first six least-significant bits and latched via the arrangement of Figure 15 in accor

dance with the addressing scheme outlined in Table I. Note that separate block-type addresses are

used for path 1 and path 2. Even though these could have been combined to share a 12-bit subset of

the value sub-bus. separate addressing was used to maintain programming consistency as illustrated

in Table I.

-15-

4.5. Delay Blocks

These blocks are used to introduce programmable delays between nodes to simulate the propa

gation time introduced by a transmission medium. Each block consists of 2 identical delay cells, one

for path 1 and one for path 2. Each delay cell propagates three binary signals in parallel with

matched programmable delay. One of these signals represents the data stream, another represents the

code violation status while the third signal represents the carrier. The timing signal is also handled

by the delay cells as suggested by Figure 5b. but in a different manner as will be discussed. Each

delay cell can have two stages, one of which is optional. First, a RAM-based delay is used to intro

duce the bulk of the delay in 1024 increments, each equivalent to 20 meters of cable at 10Mbps.

Since current bipolar RAM technology prevents access cycles of less than 25ns. this circuit cannot

operate faster than 10Mbps. Therefore, a optional 20MHz interpolator circuit implementing a half

clock-period of delay can be included . This circuit can offset the bulk delay in increments

equivalent to either 0 or 10 meters of cable, thus doubling the resolution of the delay cell.

The architecture of the RAM-based delay cell design is illustrated in Figure 17. In the design, a

1024x1 bit RAM supporting high-speed read/write switching is used to implement a bucket-brigade

like delay. A pair of counters with synchronous load capabilities are used to realize two rotating

address pointers with an adjustable offset. A 2-to-l multiplexer alternates between the outputs of

these two counters, sequencing the read and write addresses that are issued to the 25ns IK bit RAM.

The RAM delay cell uses the actual timing signal accompanying the data, violation, and carrier sig

nals to insure accurate sampling. The resulting system implements a programmable delay clocked

with respect to the provided 10 MHz timing signal, adjustable in 100ns steps. As a result, the reso

lution (step size) of the RAM delay corresponds to that of one bit period. This time step is 100ns for

the 10Mbps rate, corresponding to approximately 20 meters of cable. Logic gates required for topol

ogy switching are expected to introduce an approximately 50ns delay which forms the minimum

intemode delay, corresponding to 10 meters of cable. For the 10 MHz clock assumed, this gives a

possible range of intemode delays corresponding to separations of between 10 and 20.490 meters in

20 meter increments. The result of including the interpolator circuit into the delay scheme allows

for a range of intemode delays corresponding to separations of between 10 and 20.500 meters in 10

meter increments. For a 32-node network, this delay range per node can give an effective network

length in excess of 640Km for use in time-distance scaling of high-bandwidth networks. When

time-distance scaling is used to simulate higher transmission rates, the resolution is enhanced by the

scale factor (e.g.. increments areone meter for scaling to 100Mbps). The long delays are also directly

useful in the study of geographically large networks. In addition to protocol studies, this capability

-16-

also permits study of synchronization problems in communications and power systems.

The interpolator circuit requires a timing signal of 20MHz. The 20 MHz clock must be syn

chronized with the 10Mbps timing signals from the transmitting node. The timing signals required

for the operation of the RAM delay and interpolator must be provided by clock arbitrators as dis

cussed previously. Thus, to include interpolators, each node must actually transmit a 20 MHz and

10 MHz timing signal and the existing timing circuitry must be copiedto carry this faster timing sig

nal in parallel with the original one. This adds considerably to the overall complexity of the channel

emulator. (Note that noting can be gained by using divide-by-2 counters since a phase synchroniza

tion signal would then be required and this signal needs the same treatment required for a separate

clock signal.) The interpolator circuit consists of a D flip-flop with bypass provisions used to imple

ment a selectable 0 or 50ns delay increment and an EX-OR gate acting as a controllable invert/non-

invert element. A diagram of the interpolator's incorporation within the delay system, including the

source of the timing signals, is shown in Figure 18.

It is noted that a special provision must be included for mobile radio topologies. When the

separation distance between a pair of nodes changes, there is a change in the number of delay stages

needed. It is reasonable to assume the mobile nodes will be moving sufficiently slowly that all such

changes will be limited to at most one step per transmission. To prevent the introduction of extrane

ous bits or the dropping of bits in the propagation paths, changes that would occur during transmis

sion are deferred to after that transmission is completed. Increments and decrements to the pointer

separation may be realized at the programming level by interrupting the clock to the appropriate

counter when the appropriate carrier signal is low. Increment and decrement commands may be gen

erated asynchronously at any time. These commands must be latched until an appropriate version of

the carrier falls low. For an increment command, the write counter clock is interrupted for one clock

period when the incoming carrier signal falls low. For a decrement command, the read counter clock

is interrupted for one clock period when the delayed carrier signal falls low.

4.6. Delay-Output Routing Block

Star, radio, and point-to-point topologies are not neighbor-oriented (as are bus and ring topolo

gies). An enhanced interconnection system is provided in the Delay-Output Routing block to easily

realize these topologies. This 64x4-signal system is capable of supporting radio networks of up to 8

nodes and independent collision-protocol stars terminating on any of the 32 nodes.

The design of the collision star with four nodes is shown in Figure 19a. It is realized by logi

cally "OR"-ing all node transmit-data lines and broadcasting the result to all node receive-data lines.

This logical operation is reproduced two more times, once each for the code violation and carrier

-17-

signals. The number of nodes actually functional within the system is determined through the logi

cal "AND"-ing of the inputs from each node with an enable signal. In this way. one can set the

number of active nodes in a star topology to anywhere between 1 and 32.

The design of a full-connectivity radio network using four nodes is shown in Figure 19b. For

radio topologies with N nodes, the superposition of N primitive stars is required. These primitive

stars are similar to the collision-protocol star circuit except that each node requires its own collection

of N-l delayed signals from the other N-l nodes and its own private logical "OR"-ing of these

received signals. Since there are N(N-l)/2 possible bidirectional paths between N given nodes, there

is a total requirement of N(N-l) delay cells to support full duplex N-node radio topology. Since the

32-node facility contains 64 delay cells, provisions are made to support only up to 8-node radio net

works (which will use 56 delay cell switch non-zero delay values). As above, the number of func

tional nodes used in the system is determined by the logical "AND"-ing of the inputs from each node

with an enable signal.

A flexible switching arrangement can be used to implement bus and ring interconnections as

simply point-to-point links between Tap blocks. Point-to-point connections are simply realized using

data selector functions. Note this facilitates the emulation of systems involving several independent

subnetworks.

To be able to realize these three classes of topologies in a flexible manner each of the data, viola

tion, carrier, and timing signals are separately handled by independent copies of the configuration

shown in Figure 20a. Note that each block can selectively access the path 1 and path 2 inputs to each

Tap block. Each of the cells represents an identical functional element that uses an AND-gate

"mask" to block the introduction of signals from paths not relevant to the topology local to the node

associated with that cell. For the data, violation, and carrier signals, each cell represents a "Masked-

OR" cell shown in Figure 20b. This cell uses an AND-gate mask to block signal paths not relevant to

the local topology of the associated node and logically "OR"s the remaining signals. Note that if the

mask blocks all but one path, the cell behaves as a simple data selector. The cell is used in this mode

for all topologies other than radio, collision stars, and passive trees. In these topologies several possi

ble signals can collide at the same point. The OR gate implements the collision mechanism, just as

was done in the Tap blocks. For the timing signals, all the cells are the "Masked-Clock Arbitrator"

cell shown in Figure 20c. This system is similar in function to the clock arbitrators within the Tap

blocks. They differ from those in the Tap blocks in that they do not handle local timing signals and

up to 64 clock signals can be involved rather than at most 2. A similar arbitration approximation is

also made. An AND-gate mask is used to pass only relevant carrier signals to a priority encoder.

-18-

The priority encoder selects the most significant address of the carrier signals that are high and passes

this address to the data selector that chooses the timing source. The approximation thus is the use of

a hard-wired priority to arbitrate clocks rather than use of the first arriving high carrier. The

approximation is especially attractive because of the remarkable circuit simplification and the surpris

ingly short (< 5nsec) propagation delay for existing priority encoder chips. Note that if the mask

blocks all but one path, the cell behaves as a simple data selector. The resulting approximation is the

same (a maximum of one bit period error) and high speed flip-flop circuits can be used to improve the

approximation if desired.

Note that each block has cells for both path 1 and path 2 data, violation, carrier, and timing sig

nals. All four of these cells associated with the same block and path are configured by the same 64-

bit mask. As a result, the circuitry can be reduced by one-fourth by sharing the AND-gate mask

used for the carrier cells with the clock arbitrator cells if layout permits.

5. OPTIONAL DISPLAY PANEL

A display panel can be added to the channel emulator to permit visual monitoring of the

behavior of the channel emulator. Such visual monitoring is most useful when the network is run in

slow motion so that the propagation of carrier wavefronts can be visually followed. The panel can

also be extremely useful in system debugging and in testing the integrity of configurations. For

full-speed operation, pulse-width expanding circuits can be added to capture the occurrence of rare

events, such as collisions on a lightly loaded network. The panel can also be made to include stand

alone demonstration features so that the operational principals of various physical level architectures

can be illustrated without the need for node equipment. This can be done by simply including a

very simplified node simulator circuit generatingeffective signals for transmission as controlled by a

single panel switch.

A possible display layout for one node on such a panel is shown in Figure 21. In this approach

each node display is divided into three distinct parts: a group of LEDs that monitor different condi

tions concerning the channel emulator, a collection of seven-segment displays that indicate the

configuration of each block, and a section of controls that provides control of a simplified node simu

lation for use in stand-alone operation. A set of LEDs is used to visually follow the propagation of

signals from node to node, as well as signal routing within the node. This would be used primarily

when the network is run slowly (at 1-10 Hertz, for example). A pulse-stretching switch can be

included with these LEDs to aid capture of instantaneous events, such as collisions and carrier

activity, at high timing speeds. Numerical displays can be included in the panel to show the status

of the delay cells and topology switching cells. For the topology/fault switches for data, code

-19-

violation. and carrier signals, a display may be associated with each of the data selectors contained

within the cell. The displayed numbers will be associated with the condition selected on each multi

plexer. These displays provide orientation during demonstration and also serve as a diagnostic tool

to determine whether each topology/fault cell has been properly programmed.

In order to operate as a stand-alone unit for internal debugging or demonstration, it is necessary

to independently generate the signals that would ordinarily be supplied by the node emulator exter

nal to the channel emulator. Therefore, provisions are made for the simulation of a simple internal

node emulator. This node emulator would provide the data, code violation, carrier, and timing sig

nals. A switch that chooses between internal stand-alone operation or external operation in conjunc

tion with the node emulator can be included.

6. EXTENSIONS AND UC BERKELEY STATUS

Values of N and M other than N=32 and M=64 can be implemented almost directly from the

material presented in this paper. The major consideration is simply the modification of the address

ing organization shown in Table 1. Designs with large values of N and M require care due to the need

to minimize propagation delay. This need reflects the effective transparency required by the switch

ing and routing functions in the channel emulator as each 100 nsec of delay translates into 20 meters

of cable.

An important remark is that the design can be refined for high-speed operation. As many new

node equipments will have protocol operation speeds in excess of 10 Mbps, the real-time support of

higher bit-rate emulations of channels is attractive. ECLand GaAs gate array technology can be used

to increase the speed of operation and reduce propagation delay in the combinatorial logic. Space-

division techniques can be used to increase the speed of the delay cells and other circuitry. A

100Mbps design has been outlined using these techniques for an interested research institution. Two

final enhancement remarks are given. The first is that the delay cell interpolator circuitry can be

expanded with additional D-flip flops to increase cable-length resolution. In addition, it is also very

straightforward to add external processors to enhance real-time operation, such as simulating mul-

tipath and fading channel conditions in radio links.

Currently, prototype hardware has been assembled for the support of four nodes. This system

is currently being tested and debugged. The VLSI group within EECS at UC Berkeley is studying

implementation of a chip set realizing the blocks comprising the facility. A number of industrial

research and development laboratories are actively reproducing adapted versions of the system with

UC Berkeley guidance.

-20-

7. ACKNOWLEDGEMENTS

Special thanks are extended to Professor M. Graham for the inspiring suggestion of using logic

circuiting to emulate Ethernet systems and to Professors P. Varaiya and J. Walrand for their sugges

tions, encouragement, support, and editorial review. Thanks are also extended to I. Ketvirtis. R. Hill.

M. Handler, and O. Awom for their work in the construction of the prototype. Finally, we thank

Bell Communications Research, the National Science Foundation (Grant ECS-8118213/85-06337).

JSEP (Grant F49620-79-0178). MICRO. AT&T Bell Laboratories. National Semiconductor, and an

anonymous donor for their generous grants and donations.

8. REFERENCES

[l] A. Fawaz. D. Giralt. and L. Ludwig. "The Protocol Workroom: An Experimental Protocol and

Distributed System Research Facility For UC Berkeley". ERL M85-82. 1985. UC Berkeley EECS

Department.

[2] A. Fawaz. L. Ludwig. M. Peck. "Node Emulator Architecture for the UC Berkeley Protocol

Workroom Facility". ERL M85-84. September 1985. UC Berkeley EECS Department.

[3] L. Ludwig. "Channel Emulator for the Protocol Workroom". Protocol Workroom Document No.

85-1. version 1. June 1985. UC Berkeley EECS Department.

[4] A. Kao. "Channel Emulator for the Protocol Workroom". Master's Thesis. August 1985. UC

Berkeley EECS Department.

TABLE I ADDRESS ORGANIZATION

NAME

(4 BITS)
BLOCK TYPE AND

PATH SELECT

(5 BITS)
BLOCK INDEX USE OF VALVE BUS

TAP BLOCK
HQ.I

0-31 9 BITS FOR D/V/C

7 BITS FOR TIMING

DELAY INPUT
BLOCK

PATH1«"1M

PATHE«"2"

0-31 6 BITS FOR SELECTION

DELAY BLOCK GROUP 1«"3"

GROUP 2«"4H

0-31 (LSB) 1 BIT FOR
INTERPOLATOR

10 BITS FOR DELAY
VALUE

DELAY OUTPUT

BLOCK

PATH 1 "V-V
PATH2•'9"-,,^2,,

0-31 16 BITS FOR 1/4 OF

MASK

TABLE A TOPOLOGY/FAULT CELL FOR DATA, VIOLATION, AND CARRIER

TOPOLOGY NODE INTERFACE RCV PATH 1 XMT PATH 2 XMT
9-BIT

ADDRESS

BB {P1 RCV)+(P2 RCV)+(N XMT) (P1 RCV) + (N XMT) (P2 RCV) ♦ (N XMT) 101 011 101

UR/CRR (PI RCV) (N XMT) (GND) 100 110 111

FBo/FBb (P2 RCV) (P1 RCV) + (N XMT) (P2 RCV) 111 011 100

EAST CFR (P1 RCV) (GND) (N XMT) 100 111 110

WEST CFR (P2 RCV) (N XMT) (GND) 111 110 111

UBP NODE (P2 RCV) (P1 RCV) + (N XMT) (P2 RCV) 111 011 100

UBP
HEAD END

(P1 RCV) (GND) (N XMT) 100 114 110

S NODE (P2 RCV) (N XMT) (GND) 111 110 111

S HEAD END (P1 RCV) (GND) (N XMT) 100 111 110

R (P1 RCV) (N XMT) (GND) 100 110 111

PP (P1 RCV) (N XMT) (GND) 100 110 111

PT J (P1RCV) (N XMT) (P2 RCV) 100 110 100

TABLE HI TOPOLOGY/FAULT CELL FOR TIMING

TOPOLOGY

NODE INTERFACE
RCV. TIMING

PATH 1
XMT TIMING

PATH 2
XMT TIMING

7 BIT

ADDRESS

•

NODE
CARRIER

HIGH

NODE

CARRIER

LOW

NODE

CARRIER
HIGH

NODE

CARRIER

LOW

NODE
CARRIER

HIGH

NODE

CARRIER

LOW

BB

UR/CRR

(N XMT)

(P1 RCV)

(ARB RCV)

(P1 RCV)

(N XMT)

(N XMT)

(P1 RCV)

(N XMT)

(N XMT)

(GND)

(P2 RCV)

(GND)

011 00 00

001 01 11

FB

EAST CFR

(P2 RCV)

(P1 RCV)

(P2 RCV)

(P1 RCV)

(N XMT)

(GND)

(P1 RCV)

(GND)

(P2 RCV)

(N XMT)

(P2 RCV)

(N XMT)

010 00 10

001 11 01

WEST CFR

UBP NODE

(P2 RCV)

(P2 RCV)

(P2 RCV)

(P2 RCV)

(N XMT)

(N XMT)

(N XMT)

(P1 RCV)

(GND)

(P2 RCV)

(GND)

(P2RCV)

010 01 11

010 00 10

UBP HEAD
END

SNODE

(P1 RCV)

(P2 RCV)

(P1 RCV)

(P2RCV)

(GND)

(N XMT)

(GND)

(N XMT)

(N XMT)

(GND)

(N XMT)

(GND)

001 11 01

010 01 11

S HEAD END

R

(P1 RCV)

(P1 RCV)

(P1 RCV)

(P1 RCV)

(GND)

(N XMT)

(GND)

(N XMT)

(N XMT)

(GND)

(N XMT)

(GND)

001 11 01

001 01 11

PP

PT

(P1 RCV)

(P1 RCV)

(P1 RCV)

(P1 RCV)

(N XMT)

(N XMT)

(N XMT)

(N XMT)

(GND)

(P2 RCV)

(GND)

(P2 RCV)

001 01 11

001 01 10

*.:

SYSTEM
decomposition:

BACKBONE

SYSTEM

1 1

MASTER
COMPUTER

(SUN)

DATABASE
COMPUTER

(VAX-11/750)

/-.,..,

1

/

1

NODE
1

NODE

2

'

PROG.
LINK

LAYER

PROG.
LINK

LAYER

1

I/F I/F

1

PROGRAMMABLE PHYSf

LAYER AND ARCHITECT

NODE
EMULATORS

CHANNEL

EMULATORS

functional

decomposition:

interactive
control/monitor/analysis/
software development

BACKBONE NETWORK

MESSAGE GENERATION

EXPERIMENTAL NETWORK

FI6URE 1 CONCEPTUAL ARCHITECTURE OF THE FACILITY

SUN MASTER
FILE

SERVER

ETHERNET
CONT. BOARD

DATABASE
VAX 11/750

ETHERNET
CONT. BOARD

i 1 / ETHERNET

ECA6E1

/ I I • 1 f tlMtKNtl

«r a I I I I : r AACCAGE il

MULTIBUS

A I
I/O

DECODER
BOARD

ETHERNET

CONT.
BOARD

PACIFIC
68010

SUN
HOST

PACIFIC
68010

/• y/

CUSTOM
68020/

STATE MACH.

CUSTOM

66020/
STATE MACH

ITU L

ETHERNET
CONT.
BOARD

/!/• i
PACIFIC
68010

9UN
HOST

• •

I
•/MULTIBUS

PACIFIC
68010

/ \M 7^
I /

CUSTOM

68020/
STATE MACH.

CHANNEL EMULATOR

CUSTOM

68020/
STATE MACH.

CUSTOM

66020/
STATE MACH.

:>
OPTIONAL
MONITOR/

DEM
PANEL

FIGURE 2 ACTUAL ARCHITECTURE REALIZING THE FACILITY

PROTOCOL
WORKROOM

NODE
EMULATOR 1/

i ii ii

CONFIGURATION
FILE

TTTn

OTHER
TERMINAL

EQUIPMENT

]-—(TRIVIAL INTERFACE ADAPTER)

OPTIONAL
MONITOR/

DEMONSTRATION
PANEL

FIGURE 3 CHANNEL EMULATOR AS AN AUTONOMOUS R&D TOOL

XMIT

DATA

XMIT

VIOLATION

v

\J \J

XMIT XMIT

DATA VIOLATION

XMIT XMIT

CARRIER TIMING

v V

XMIT XMIT

CARRIER TIMING

FROM NODE

EQUIPMENT

INTERFACE

TO CHANNEL

EMULATOR

INTERFACE

FIGURE 4 OPTIONAL LOGIC CIRCUIT FORCING THE
NECESSARY IDLE CONDITION IN THE CASE
WHERE IT CANNOT BE PROVIDED BY NODE
EQUIPMENT AT THE INTERFACE

NODE
INTERFACE

I
TAP BLOCK *1

NODE
INTERFACE

TAP BLOCK #32

A A

PATH1

X32

PATH 2PATH 2

PATH1 PATH 2 PATH1

PATH1

PATH 2

DELAY-INPUT ROUTING BLOCKS

n
4 I DELAY BLOCKS W

I I
DELAY-OUTPUT ROUTING BLOCKS

FIGURE 5a CHANNEL EMULATOR ARCHITECTURE

OELAY INPUT ROUTING BLOCKS:

64:1 CLOCK SELECTOR x64
64:1 CARRIER SELECTOR x64
64:1 VIOLATION SELECTOR X64
64:1 DATA SELECTOR X64

OELAY BLOCKS:

PATH 1

PATH 2

DELAY CELL

DELAY CELL

X32

X32

DELAY OUTPUT ROUTING BLOCKS:

64:1 MASKED CLOCK ARBITRATOR "64
64:1 CARRIER MASKED-OR K64
64:1 VIOLATION MASKED-OR X64
64:1 DATA MASKED - OR X64

figure st channel emulator architecture showing details of signal paths b block

OUTPUTS OUTPUT-ROUTING DELAYS INPUT-ROUTING INPUTS

01

'J.0
B

2N
(2NXM) 0 t

M
(MX2N)

2N

ELEMENTS OF ASB MATRICES ARE 1 OR 0. A HAS AT MOST ONE

"l" PER ROW

ELEMENTS OF D DIAGONAL MATRIX ARE DELAY OPERATORS

SK€{z9 z-,1z-2...z-°max}

ELEMENTS OF INPUT a OUTPUT VECTORS ARE BINARY SIGNALS

FROM a TO TAP BLOCKS

SCALAR MULTIPLICATION DENOTES LOGICAL "AND" NOTATING A
ROUTING FUNCTION

SCALAR ADDITION DENOTES LOGICAL "OR", NOTATING A
COLLISION FUNCTION

MATRICES A a B CAN BE VIEWED AS UNIDIRECTIONAL
CROSS-BAR SWITCH CONFIGURATIONS

FIGURE 6 OPERATOR VIEW OF CHANNEL EMULATOR
INTERCONNECTIONS

Ill

111

13
li
Old

A V A V

D-CONNECTOR PIN

ASSIGNMENT

a y ♦ ♦ Y ♦ t a

© ©

DATA

© © © © © © ® ® ®

REC TRAN REC TRAN CLK RST

JL JL J l

CODE GLOBAL
VIOLATION TIME

R

A A
R R

DIR
SENSE

JL

TIMING CARRIER

©

• A A m
T CARR DATA SG

JL J

COLLISION

DETECT
(OPTIONAL)

FIGURE 7 NOOE EMULATOR/CHANNEL EMULATOR INTERFACE

GATEWAY
CONNECTIONS

a. NETWORK EMPLOYING A GATEWAY

b. COLLISION STAR WITH HEAD ENDOR DUAL'FREQUENCY
RADIO NETWORK

C FULL CONNECTIVITY RADIO NETWORK

FIGURE 8

NODE
1

d. GATEWAY ANO SUBNETWORKS

MULTIPORT
NOOE2 AS

NODE
2

PORT 2"

NODE
3
x

NODE
2

PORT 4

GATEWAY

NODE
' 4

NODE
EMULATORS

PORT1 PORT 3
T"'

PORTS

fti

TAP
BLOCK

1

TAP
BLOCK

2
I

TAP

BLOCK

3

SUB
NET

1

TAP
fBLOCK

4
r

SUB
NET

#2

INTERCONNECTION FABRIC

TAP
BLOCK

5
T

1CHANNEL
EMULATOR

«. CENTRALIZED SWITCHWITH ONLY POINT -TO-POINT CONNECTIONS

CHANNEL EMULATORJ

FIGURE 8 CONTINUED

FIGURE 9 HIERARCHICAL OR
ACTIVE TREE
NETWORKS

NODE!

'? d5 dS d4

t

I
NODE 2

I
t <*6

^_r

t

NODE 3

t

I

t

I
NODE 4

X"
d2t

I

HEAD-END
NODE(5)

Cpath 2 provides feedback J
NODE I/f i NODE i/f 2 / NODE i/f 3 / NODE i/f 4 NODE i/f 5

i < / < / < Li

D-| « d-j + d2

D2 • d^ + dj + d4

D3 • d<| + d3 + d5+ d6

D4= d., + d3+ d5 + d7
(b)

FIGURE 10 PASSIVE TREES

0. BIDIRECTIONAL BUS (BB)

P1 RCV>

P2XMT

P1 RCV>

P2XMT4-

£>i—>«
o

XMT

Aw

T R

•O

A

T R

< P2 RCV

♦ M XMT

< P2 RCV

FIGURE 11 «-f GLOBAL AND LOCAL TOPOLOGY
CONFIGURATIONS! LOCAL CONFIGURATIONS
ARC FOR DATA,VIOLATION, OR CARRIER
SIGNALS

d UNIDIRECTIONAL RtNG

"Tr
P1 XMT

R T

P1RCV> PI XMT

REGULAR
MODE

P2RCV
•. UNIDIRECTIONAL BUS MIR

33®
P2XMT*"

fO

r^
HEAD
END

RCV>"

P2XMT*-

f. COUNTER-ROTATING RING
USING 2 PORTS

PI RCV}

PtXMT

♦ A
R1 T1 TE m

T R

T R

MEAO
END

+P1XMT

ir
DEAD RODE:

PI RCV > •PI XMT

Pt WIT*♦—| OR r-<

A 1 A 4
T2 R1 T1 W

rptucv

DIRECTION

/FOR CARRIER^ y^\
\ ONLY I

PATH1 PATH 2

RCV

NODE

CONTROL
o1

PATH 1 MXH 2

I XMT 1

FIGURE 12 TAP/FAULT CELL FOR DATA, VIOLATION, AND CARRIER

NODE XMT TIMING
V

NODE XMT CARRIER

PATH1 PATH 2

-RCV CARRIER—1

NODE RCV TIMING

PATH1 PATH 2
L-RCV TIMING

T
olO

©11

o12

o13

©14

©15
•16

PATH1 PATH 2

I-XMT TIMING—

FIGURE 13 TOPOLOGY/FAULT CELL FOR CLOCK

CONTROL

J

"si *

LOCAL

TRANSMIT
CLOCK

FROM
PRECEDING

BLOCK CLOCK

REFERENCE

fSELECT

LOCAL

CARRIER
DETECT

TO
SUBSEQUENT

BLOCK CLOCK

REFERENCE

TO
DELAY
CELL

FIGURE 14 CLOCK ARBITRATOR CIRCUIT

E

+

l

1

Z
3
4

5

6

T
8

9_

T
Z
3
4

5

6
7

8

1

Z
3

4

5

6

7
8

9

10
11
12

13
14
15
16

DATA

VIOLATION

CARRIER

TIMING

16 BIT VALUE SUB-BUS LATCH

FIGURE 15 CONTROL BUS CELL WIRING TO TOPOLOGY/
FAULT CELLS WITHIN THE TAP BLOCK

64:1 DATA SELECTOR CIRCUIT~J,OUT

6
/

rfr

/

'-'.

t
s

/

t-L

i
/

/

AAAAAAAA
PATH 12121212

PORT 12 3 4

DELAY
BLOCK 1

GROUP
1

7 OUT

DELAY
BLOCK 1

GROUP
2

^
OUT

DELAY
BLOCK 32

GROUP
1

AA
PATH.12

PORT 32

OUT

ADELAY
BLOCK 32

GROUP
2

FROM OUTPUTS OF TAP BLOCKS

TO
INPUTS

OF
DELAY

CELLS

FIGURE 16 DELAY-INPUT ROUTING BLOCK. THIS IS REPEATED
ONCE EACH FOR DATA. VIOLATION. CARRIER. AND
TIMING SIGNALS

"INITIALIZE" >

'LENGTH'

INPUTS:

DATA>

VIOLATION >

CARRIER >

TIMING >•

t>

JR/W

25 nsec RAM (3 BIT-WORDS)

WRITE
ADDRESS

COUNTER

RESET

,PRESET

COUNTER

READ
ADDRESS

TV t

IN OUT

OUTPUTS:

DATA

VIOLATION

^CARRIER

♦ TIMING

FIGURE 17 ARCHITECTURE OF RAM-BASED DELAY CALL

20 MHt S,
aOCK IN '

CARRIER IN

DATA IN

CODE
VIOLATION
IN

10 MHt v
CLOCK IN r

(20 MHi)

D F-F

7"

D F-F

ST"

D F-F

5E>

MUX

I

MUX

i

MUX

I

RAM-BASED

9-BIT WIDE
DELAY

CELL

|-DELAY-)

LSB MSBA

10MH2

CLOCK
IN

gO 2* 2^°

DELAY VALUE (10't OF METERS)

FIGURE 18 DELAY CELL CIRCUIT WITH INTERPOLATER

^ 20 MHt
^ CLOCK OUT

♦ CARRIER OUT

♦ DATA OUT

CODE
♦ VIOLATION

OUT

10 MHi
CLOCK OUT

o. STAR TOPOLOGY

NODE A

NODE NODE

NODE D

b. FOUR NODE RADIO TOPOLOGY. DECENTRALIZED

nil Hli MM

FIGURE 19

DETAILS OF BLOCK ILLUSTRATED
FIGURES 21B-C

/ DETAIL

'aunt

i
*

LL

t a

t.

• • •

y

7

7

7

i AAAAAM JLi
FROM OUTPUTS OF DELAY CELLS

TO
INPUTS
OF TAP

SWITCHES

FIGURE 20o DELAY-OUTPUT ROUTING BLOCK

/SIGNALSN

64

1-

/CARRIERSN

64 -

1-
TIMING #

SOURCES \
IN

64-

• • •

1 64
(MASK)

/SIGNAL\
VOUT)

(b) CIRCUIT FOR CODE,VIOLATION,
AND CARRIER

r\
PRIORITY

ENCODER

64:1

SELECTOR

_(Ti«NG>
V OUT /

(c) CIRCUIT FOR TIMING

FIGURE 20 CONTINUED

tap 1;

RCV

XMT

PATH1

OD

Ov

Oc

Od

Ov

Oc

nCLK

POST

OD

Ov

Oc

Od

Ov

Oc

nCLK
MARB

PATH 2

OD

Ov

Oc

Od

Ov

Oc

IOCLK

COLLISION DISPLAY

o
W"** DATA

i

CARRIER
DISCREP COLLISION

TAP CONFIGURATION

DELAY 1-

•
SOURCE

DELAY VALUE

MODE 6
INT SIMULATOR

EXTERNAL

NODE SIMULATOR

6
CLK FREQ ADJ

6
CLK RANGE

/ DEBUG

LPLE°i3^M0
/ XMT

CARRIER: 0 IDLE
® DATA o

<§) VIOLATION o

OOOOOOOO PATH 1
12345678 SOURCE

OOOOOOOO PATH 2
12345678 SOURCE

DELAY 2

•
SOURCE

DELAY VALUE

FIGURE 21 SAMPLE OPTIONAL CONTROL PANEL
SEGMENT. FOR THE M«2N CHANNEL
EMULATOR, THIS SEGMENT IS REPEATED
N TIMES

	Copyright noticE 1985
	ERL-85-83

