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ABSTRACT

We consider the problem of identifying some unknown gain parame

ters in a single input, single output transfer function which is written as

the ratio of proper, stable transfer functions. This technique is a generalisa

tion of currently available techniques of identification which do not use

prior information. It usually involves the identification of fewer parameters

and is faster in convergence and less susceptible to errors caused by the

presence of unmodeled dynamics. Extensions to the discrete time systems

and some multivariable svstems are also covered.
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1.Introduction

We consider the problem of identifying a partially known single input, single output

transfer function. The transfer function to be identified is represented as the ratio of

proper, stable rational functions with unknown gain coefficients i.e. of the form

r(5)= — d.i)
rt

f o(s )~ Z aj f f(s '

with the gi s and fj' s known proper, stable rational functions and j3. . a. s unknown.

Such transfer functions arise in several contexts, typically from the interconnection

of several systems with unknown gains. Classical identification techniques such as those,

for example of Luders and \arendra [10], Goodwin-Sin [ll], Kreisselmeier [12] discuss the

problem of identifying the numerator and denominator coefficients of a transfer function

with no prior information, li is .of course, clear that one could neglect the prior informa

tion embodied in the form of the transfer function (1.1) and identify the plant. However

usage of the particular structure embodied in (1.1 J may result in the identification of a

fewer number of unknown parameters and faster convergence rates as we see in this paper.

The framework of representing transfer functions as the ratio of proper, stable rational

functions, proposed for example in [3.4], has proved useful in the H°° approach to linear

control systems design and it has payoffs in our context as well in studying the effects of

near pole-zero cancellations, unmodeled dynamics on the identification scheme. We will see

the definite benefits of using an identifier incorporating prior information in terms of rapid

Research supported by Army Research Office under grant #DAAG 29-85-K-0072.
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convergence and smaller identification error.

The work reported in this paper was directly inspired by a recent Ph.D dissertation

by Dasgupta [1.2] who considers transfer function of the form (1.1) with the g; s and /, s

polynominals. The advantages of our representation occur in analysing the effects of

unmodeled dynamics on the schemes.

The present paper covers continuous time and discreie time systems. For the discrete

time case, we use different framework-we represent the transfer funciion to be identified

as the ratio of polynomials in r-1.

2 Parameter Identification for Some 'Partially Known' Continuous Time Systems

We consider the problem of identifying a class of 'partially known' single input, sin

gle output, proper, stable transfer functions of the form

goCO+Efrg/G)

/ 0O )-£>,/; U)
T(s)= — (2.1)

.; =1

Here the gj s and f j *s are known, proper, stable rational functions in s and the j8 . a; 's

are unknown, real parameters.

The identification problem is to identify /3, , a from input-output measurements of

the system.

Remarks: 1) Transfer functions of the form (2.1) arise from the interconnection of proper,

stable linear systems, with the unknown parameters representing the coupling or intercon

nection constants.

2) Classical transfer function identification, i.e. identification of a stable plant of the form

T(s )=N (s )/ D(s )= Pl' n :" Pm (2.2)
sn +a]5n~1+...+a,;

with m^n and a,- and j37 unknown, can be stated in terms of the set up of (2.1) by

choosing

sg ,Xs )=0. / 0(s )=
(5 +a •
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and

sm-i

S'(S)=TFTZT i=1-m

.Tt-J

/,(*)=-
(s+aT

with q>0 a positive, real number. Also if m is not known, we may set it equal to n. The

parametrisation of transfer functions as the ratio of proper, stable rational functions is to

our mind an interesting one in view of recent advances using this framework in the litera

ture on robust(non-adaptive) linear control [3.4].

let y(s).u(s) denote the input and output to the plant of equation (2.1). (The initial

conditions of the plant represent exponentially decaying terms which do not change any of

the following discussions, as is well understood in the literature.) Then, after some rear

rangements, we get

;=!....«

Defining

z0(s )=/ 0(s )v (s )—g0(s )u{s )

h,(s)=f ,(s)T(s) j = l....m

hn+,(s)=g,(s ) i=l....m

and the unknown parameter vector 0 0 by

e<.7=(a, an.0i fim)

we get

zoCO=0or

hAs)

K +m & )

u(s)

(2.3)

(2.4a)

(2.4b)

(2.4c)

(2.5)

The vector of signal (h^s ) hn+m (s ))r is denoted w(s ) and its Laplace inverse w(r ) so

that in time domain (2.5) reads ( again modulo decaying initial condition terms.:
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Zo(r)=0/(wU)MO) (2.6)

(* stands for convolution.) By way of notation, we refer to w(t)*u(t) as z(t).

From the form of equation (2.6). it is easy to see how an estimator and equation can

be derived. Let Q(r ) denotes the parameter estimate at time t. Then since zCt) is a vector

of signals obtainable from the input and output by proper stable filtering, as seen from

(2.4), we can construct the error

e(i)=e(t)Tz(t)-z0(t) (2.7)

Using (2.7) and with d>U )=0(?)—0 (, denoting the parameter error, we see that

e(t)=<t>T(t)z(t ) (2.8)

Equation (2.8) is linear in the parameter error so that any one of a number of stan

dard techniques for parameter update (see for eg [ll]) may be used. We summarize two of

the techniques here.

The least Squares Type Algorithm

The parameter update law is of the form (with P(t )e/?(n+'">x(,,+m>)

9U )=-p-\t)z(t)e(t) (2.9)

PU )=z(t)z(t)T P(0)=aIX) (2.10)

It is well known (see. for eg [ll].) that if z is persistently exciting i.e. there exists

ttj. 8>0 such that

s+l

f zzT dt^otyl for any s €R„ (2.11)

then <£-0 as t ~>co. Of course, since z(t) is bounded we in fact have

s+t

Oi2l^J zzT dtZajI ioranys€R+ (2.12)

The result of [7] can be used to give frequency domain conditions on u(t) to guarantee

(2.12). First, we need the following identifiability condition.
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II Identifiability Condition

The system (2.1) is said to be identifiable if for every choice of distinct (n+m) fre

quencies vj v,,^, the vectors w(/v/)€Cn+m(i =l,..../i+m) are linearly independent

Comments; 1) From (2.5), it follows that if an input having (n+m) spectral lines were

applied to the system, we would get

=00riw (yvi) wC/v„ +m )]diag (u (jv j) u{jvn +m)) (2.13)

In turn, the identifiability condition implies that (2.13) has a unique solution for 0O.

2) It is difficult to give a more concrete characterization of identifiability since the com

ponent of w(s) are proper, stable rational functions of different orders. An exception is the

case of classical identification discussed in remark 2 (equation 2.2) in which case it has

been shown in [7] that the identifiability condition holds if N(s) and D(s) are coprime

polynominals.

Using the identifiability condition . we state the following fact easily derived from

[7]:

Under the identifiability assumption II, z is persistently exciting, i.e. it satisfies

(2.12) if and only if the spectral measure of u is not concentrated on less than n-r-m points.

Thus, if there are at least as many frequencies in the input as there are unknown

parameters, the parameter errors converge to zero. Of course, the least squares type algo

rithm (2.9),(2.10) shows rapid initial convergence with asymptotically slow adaptation

(as P(t) gets large). Some form of resetting of P(t) or forgetting is introduced (as in

Goodwin and Sin [ll] pg.62). for example

Pit )=-aP U )+z {t )z (t )T P(0)=al >0 (2.19)

It is then easy to show that the convergence of the parameter error is exponential. It is

important to note that forgetting is not used when z is not persistently exciting to keep P

from going singular
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Projection Type Algorithm

The update laws

or

-6 -

0(/)=-s(r k(r.)

0U )=-
z(t)e(t)

\+zuy zd)

(2.15

(2.16)

are referred to as projection type algorithms. They also yields exponential convergence

when the input is sufficiently rich in the sense discussed above and the assumption 11

holds.

To illustrate the methods of this section, consider the following example

\

•

K*

r————<

.. . <

Fig. 2.1 The Plant of the form of equation 2.1.

Oct. 8 198:



- 7 -

In Fig. 2.1 above. f(s) is known (assumed to be ~ for the simulations of Figures

2.2 and 2.3 ). The form of the closed loop transfer function is

f is ) _ as+b
T+FTT7T T+T

With the parameter k to be estimated. Figure 2.2 shows the parameter error for the

algorithm with the projection type update law (the true value of k=l .) and input u(i)=5

(only one spectral line is needed for identification;.

12. ,

10.

e.

6.

2.

e.

0.04 J 0.08 •or0T 0.12

15.

12.

9.

6.

3.

TTT 0 ,0b 0.09 "0T12

Fig. 2.2 Estimation errors of parameters a and b (above) and c (below) using prior infoi
mation.
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Identification of the closed loop plant without utilizing the structure of the system

requires the estimation of three parameters a.b and c. Figure 2.3 shows the parameter

errors for a, b and c using the input u(t)=3+4sin(4t). Note that the two inputs for figures

2.2 and 2.3 have the same energy. The input for Figure 2.3 is richer than that for Figure

2.2. However, the rate of convergence is much slower (by a factor of approximately 500)

in Figure 2.3. In section 3, we will see that the scheme using prior information also has a

larger robustness margin.
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10.

8.

4.

2.

1-If'/ V\-~\~

50

7.5,

G.25

5.

3.75

2.5

1.25
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Fig. 2.3 Estimation errors of parameters a (upper), b(middle) and c (lower) without using
prior information.
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Spectral Analysis of The Convergence Rates

Though the identifiability condition II guarantees that the parameter errors converge

to zero if and only if the support of the spectrum of input u has at least n+m points, it

does not provide much insight into the connection between the spectral content of the

input and the convergence rate. We will use averaging techniques as developed say in Fu,

et al [8], to facilitate this analysis.

First consider the projection type algorithm (2.15) with slow update law (modeled

by adaptation gain €. a small positive number\

4>=-ezzT(t> (2.17)

Defining the averaged value of zzT to beRz(0)(see [7]) given by

1 S+TRA0)=Km-L f zzT di for any s£R+ (2.18)

(provided it exists- this in turn is guaranteed by assuming z to be stationary, see Fu.et al

[8] for details.) We see that for € small enough the dynamics of (2.17) (including rate of

convergence up to the order of €2 ) are approximated by

0ov=-e^(O)0ol (2.19)

Noting that R, (0) is the integral of the spectral measure of z. we may rewrite an expres

sion for R: (0) in terms of the input spectrum and the function w(s) as

R,(0)=fw{jv)Su(dv)w'(j\> ) (2.20)

where 5t, (dv ) stands for the spectral measure of u. Thus, the convergence rate of (2.19) is

obtained to lie in an interval [A.min(.ff. (0)).A.max(^, (0))]. For optimum convergence, the

spectrum of the input needs to be in the dominant part of w(yv V(yv). Of course, the

expression (2.20) involves parameters of the unknown plant so that it is not easily

approximated.

For the analysis of the slowed-down least squares algorithm, consider with z

assumed to be persistently exciting

4>=-eP~lzzT<t> (2.21)
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P=e(zzT-aP) (2.22)

As before, we may approximate (2.21). (2.22) by the averaged system

la^-eP^^.RAO)^ (2-23)

Pax=€{Rz(0)-aPav) (2.24)

Equation (2.24) may be explicitly integrated to give

Parit )=(/>„,.(0)-i*2(0))<?-**' +-RA0) (2.25)
a a

In turn, using this in (2.23) and noting that Pav(t) converges exponentially to —R2(0).

we see that the tail behavior of (2.23) is

0a, =—eoi<f>av (2.26)

so that the tail convergence rate is a function of the forgetting factor a alone in the

'covariance' equation (2.22) and not the input spectrum!

Effect of Unmodeled Dynamics on Parameter Identification

The set up of the previous section used transfer functions of the form (2.1) with the

/.. and g.'s known exactly. In practice, the /. and g.'s will not be known exactly, but

only approximately. In fact, the transfer functions used to approximate the /, and g;

will generally be low order proper, stable rational functions( neglecting high frequency

dynamics, and replacing near pole-zero cancellations by exact pole-zero cancellations).

Thus, the identifier's model of the plant is of the form

f(s)= ill (3.1)

where T is a proper.stable transfer function and

Kg,—gi)(./w)l<e forall w i=0....m (3.2a)

K/y-/jX/>v)l<E foraZZw j=0....n (3.2b)

We refer to gi~gi as Ag; in the sequel, similarly for A/ >. For example. g} may be of the
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form

gtVUJJUl (3.3)

q(s)where —,—r- represents stable high frequency dynamics and -?-?—r- represents near (stable)

pole-zero cancellations.

The identifier uses the form (3.1) to derive the identifier for the true plant T(s)

which is accurately described by (2.1). Consequently the transfer functions of (2.4) are

replaced by

z0(s )=/ 0Tu -g0u (3.4a)

hj(s)=fjT j=\ n (3.4b)

/in+i(j)=g; i=l...m (3.4c)

It is important to note that £<•• does not satisfy an equation of the form (2.5) i.e. it is not

true that

-a rz0(s)=90

h}(s)

K +m (s)

u(s)

Equation (2.5) is .of course, still valid. The update law (least squares type) is now of

the form (with z,(r )=hj(t )*u(t ),i =l....n +m .)

Q=-p-ll{t)(QT{t)zU)-z0{t))

F=zzT-kP />(0.)=a/X»

(3.5)

(3.6)

We need an expression for z0 in order to study this algorithm. For this purpose we

note tha:

z0(s )=z0(s )+(/ 0(s )-/ 0(s ))T(s )u (s )-Cgo(s )~g0(s))u(s )

=z0(s)+Af 0T(s)u(s)—Ag0u(s)

Also, we have

Oct. 8 1985
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A/2

zis) = zis ) — uis)

Afc,

Using (3.7) and (3.8) we see that equation (3.5) may be rewritten as

§=-/>-!rr7(e(r MoW"1*^ )8(r )

where Sit ) is the Laplace inverse of

Afc,(5)

0or u is )-A/ 0(5 )T(s )uis )+Ag0is )u is )

Afc„ +ro (^)

With 0(r )—Q Q—<j>it ). the parameter error, the error dynamics are given by

4>=-P-1~z~zt<t>-P~lzhit )

P=~zzT-\P P(0)=odX)

(3.8.

(3.9)

(3.10)

(3.11)

The last term in equation (3.10) may be considered as a ( state-dependent) driving

term. If the undriven system is exponentially stable, then using the results of Bodson and

Sastry [13]. the driven system is stable as well. In turn, the undriven system is exponen

tially stable if and only if z is persistently exciting i.e. (2.12) holds for z . We will give

conditions, using the following two lemmas, on the persistent excitation of z in the case

when e is small enough.

Lemma 3.1 Suppose that z ZR"*™ is persistently exciting i.e.

s+t

ot2^J zz7 dt ^tt]

for some aj.ao.S >0 and for all s>0. Then. z+Az is also persistently exciting provided

that

i IAz(-)l l<a,/8)1/2

Proof: z +Az is persistently exciting if for any x €Rn +m of unit norm

ol2'>J \xTiz+Az)\2dt >*{

Oct. 8 1985
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The upper bound on the integral in (3.13) is automatic for some a2' simply because Az is

bounded. For the lower bound, we use the Minkowski inequality to get

s+t 1/2 ,+fc 1/2 s+£, 1/2

if\xTiz+Az)\2dt) Xf \xT z i2 dt) -if\xTAz\2dt)
S ! i

s+l 1/2

^,1/2-(/ !Az \2dt)
s

Z«,i;2-81,2sup\Azi )l (3.14)

The conclusion follows from (3.12).

To establish the norm bounded on error, we need the following lemma due to

Doyle-Gohberg [6].

Lemma 3.2 If G(s) is a proper, n-th order stable rational function with Laplace inverse

g(t). then

CO

f \git)\dt&n sup IG(yw)l (3.15)

Remark: Lemmas 3.2 and 3.2 are to be interpreted as follows:

1) Let zit ) and Az(r ) be the Laplace inverse of (/ {T fnT.g\. . . . ,gni)Tuis) and

(A/ ]7* A/,. T ,Ag i Agm y uis) respectively. From (3.7) it follows that

z=z+Az (3.161

If we assume that the true system in (2.1) satisfies the identifiability condition, then

sufficient richness of the input u (in the sense of section 2) guarantees that z is per

sistently exciting, provided that e in equation (3.2) is small enough.

2) In practice. /, and g, are unknown. We may assume that the nominal plant T satisfies

the identifiability condition. In such a case, equation (3.16) still holds with zit) and

Az(r) given by Laplace inverse of if iT fnT.gi. . . . ,gn )Tuis ) and

(/ jiT—T)....,fniT—T).0 0)Tuis) respectively. Then, we get same result as in remark

1) above.

3) The classical identification can be thought of the special case of that in remark 2) as fol

lows
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^15'"-1 +...+i8/r 1 giS)
TiS )= , 7 r- -2-7 r-

sn +a1sn-1+...+an vis) pis)

=fis)-Lr*^ (3.17)
vis) pis)

As in (3.3). 1/ vis) represents stable high frequency dynamics and qis)/ pis)

represents near stable pole-zero cancellations. Then as pointed out in section 2.

6 is+a)n vis) pis )

/o= * ,n • f)(s)=-,S. \„ J=l n
is +a) is +ot)

For the identifier, both v is ) and qis)/ p is ) are neglected and we have

-m—i

g;is)=- — i=l...m
*' is+a)ri

fjis)= fjis) y=0.1....n

IAg; t <e provided that cancellations are almost perfect and unmodeled dynamics occur at

high enough frequencies.

From the form of Sit ) in (3.9) and lemma 3.2. it follows that there exists a K(m.T)

depending only on suplT(jw)i and m:=maximum order of A/,. Ag, such that

sup I5( • )\t&Kim.T)sup \ui • ) (3.18)

Under the condition that z is persistently exciting, it follows that the parameter errors in

(3.10) converge to a ball with radius of order e(see for example. Bodson and Sastry [13]/'.

To end this section, let us consider the same example discussed in section 2 with

/ is )=—— -1— and / U )=—-^-. The true closed loop transfer function is
5+3 s+5.5 s +3

w . s+5 0.66Is +0.667
Tis ) =

5+5.1 5+1.73

With the parameter k to be estimated. Figure 3.1 shows the parameter errors (for the pro

jection type algorithm and input u(t)=5 same as in the no unmodeled dynamics case). It

takes about 1 second to converge and the resulting closed loop transfer function is

0.6055 +0.605
Pis) =

5+1.605
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The Bode plots of T(s.) and P(s) are compared in Figure 3.3.

20.

16.

12.

8.

A.

0. ^

T72T

9-„

7.5

4.5

1.5

TT0"3 0706 0.09 0712

Intinn ^h"13110" ""T °' parameters aand b^ove) and c(below) using Pr]0r info-mation in the presence of unmodeled dvnamics.
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For the identification of the closed loop transfer function without utilizing the struc

ture of the system, we have used input u(t)=3+4sin(4t) as in section 2. After 5000

seconds of simulation, the system does not converge. Figure 3.2 shows the estimation error

of the parameter c.

30.

20.

10.

•10.

•20.

sTt:

Fig. 3.2 Estimation error of parameter c without using prior information in the presence of
unmodeled dvnamics

a

<f
n

i
t
u

a
e

-1

18

18
rl

i i i i i i j i i i i i 11 J I 11

19* 101 ,2

Fpgquencu (rad/sec)
Fig. 3.3 The Bode plots of T(s) (•«•) and P(s) <'—).
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4 Discrete Time Systems

In this section ,we will deal with discrete time partially known' system. Unlike the

continuous time case, we will use polynomials instead of rational functions for our

analysis.

Consider the discrete time svstem described bv

y(z- )_ ft _niz~1)
"^ doiz-^-ik.diiz-*) d{z~l)

where k, s are unknown parameters, djiz~x) and n,(z-1) are known polynomials in the

unit delay operator z~l.

d0iz-v)=\+d0lz-l+...+dQnz-r-

dj(z ~l)=dilz~l+...+d„ z~n i=l ...i (4.2)

n-, iz _1 )=n,-,r ~l+...+nw. z~m i =0.1 ..i (4.3)

Assume that n (z-1) and rf(z_1) are coprime.

Definition 4.1 A system of the form (4.1) with some unknown parameters is said to be

identifiable if and only if there exist some inputs u(t) such that the unknown parameters

can be uniquely determined based on input-output measurements

Theorem. 4.1 The necessary and sufficient condition for the system 4.1 to be identifiable is

that the following matrix is full column rank.

d ii d-)\ du

D =

Proof; Rewrite 4.1 in the form

11 " 21

d lr d 2,,
—nu —n2\

<*ln

~nlm

[d0(z-1)y(z-1)-n0(z-1)W(z-1)]=2:^kU-1).v(z-1)-n;(z-1)u(z-1)]
7=1

Define

Oct. 8 198.
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/ii(z-1)=rfl(z-1)y(z-1)-n/-(z-1)w(z-1) i=0.1..i

and also define the regressor vector (pit ) and parameter vector 90 by

<t>T it )=(y it -l)....y it -n ),u it -1 )....u it -m ))

90T=ik1,k2...kl)

Then the system can be written as

h0it)=<f>Tit)D90

(4.5)

(4.6)

(4.7)

(4.8)

The necessity may be readily seen, since if D is not full column rank, then any

9 €9o+Null D will give the same transfer function. This situation corresponds intuitively

to the case, in which there exists a 9 =(k i,...kt)T such that

1=1 i=i

Now. we give the proof of sufficiency. By assumption, the sufficient richness of the input

u(t) implies the persistent excitation of (pit) [9], i.e. there exists a>0 and p GZ+, such that

£ (pit )(f>T it )2al for all t0

Thus, following inequality is obtained

T

(

4>Tit0)

4>rit0+p-i)

D)

4>Tit0)

<t>Tit0+p-l)

r„+r-l

D=DT £ <f>U)(t>Tit)D >0
'"=; 0

(4.9)

By linear algebra, we know that the equation 4.8 has unique solution for 9 0. This com

pletes the proof. Q

For the general case, consider the system described by

n0iz ^-j^ainiiz x)
y(z~1)^ ft ^niz-1)
l^F"1)

^(-"O-EMyU-1)
y=i

diz=*)

Assume that the notation and assumptions are same as in (4.1), then corollary 4.2 follows.

(4.10.)
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Corollary 4.2 The necessary and sufficient condition for the system (4.10) to be

identifiable is that the following matrix is full column rank.

D =

d 11 dk i q 0

rflr.- dkn 0 0
0 0 —n n —nn

0 0 _
n lm ~nlr

Let us consider now another type of 'partially known' systems' <?fthe form

y(Z "*)=(* 1^+...+*,-^Mz-1)
dl a i

(4.11)

where n}(z l) and djiz l) are nonzero known coprime polynomials in the unit delay

operator z-1.

n,iz 1)=nnr l+...+nimz

rf,(z-1)=l+rfilz-1+...+rfin

and the kj's are unknown parameters.

Define

/i,(z"1)=^i/(r-1) i=1.2.../

Then it follows that

h,it )-—dnhjit—\)-...—dinhiit—n )+ni}uit-l)+...+ninu(: -m ) i=l...l

so that

y(r)=aM(r) h(it)) =(f>Tit)D9

*/

with

^(r )=(h ,(f -i)...fc j(r -n )....h, it -l)...h, it -n ).u it -1)...«(r -m))

(4.12)

(4.13)



where

-21

-d 11 0

-din 0

6 0

6 o
"11 "21

Z) =
-dn

-din
nn

rank

1 lm n 2m nlm

Theorem 4.3 The necessary condition for system (4.11) to be identifiable is that the

matrix D defined in (4.14) be of full column rank. The sufficient condition for the system

(4.11) to be identifiable is that

Qd2 Qn2
=/ for all z

0 0 dfftj

di=zn+dilzn-1+...+d

kt=ntlzm-1+...+ntm

(4.14)

(4.15)

(4.16)

(4.17)

Proof; The proof of the necessary condition is very clear. Let us prove the sufficiency: A

direct consequence of condition (4.15) is that sufficient richness of input u(t) implies the

persistency of excitation of the regressor vector (pit ). Since

(pit )=A (pi: -l)+bu it ) (4.18)

where A and b are similar to those in [9], and the condition (4.15) guarantees the reacha

bility of the system (4.18). Then persistency of excitation of (pit) follows (see [9]). The

rest of the proof is similar to the proof of theorem (4.1).

We now discuss multivariate extensions. Let us restrict ourself to the system

described bv



y.^-1)

y,^"1)
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nn nu
Kii-j— k u -r-

d 11 . a 1/

"pi
I* •"'^l

"/>/

dpi

uiiz-1)

utiz-1)

where n^ iz x) and dV] iz *) are known nonzero polynomials

ntj (z_1)=nij (l)z"1+...+ny (m )z_m

<*;; (z_1)=l+CflV (l)r_1+...+dy(» )Z_R

kjj s are unknown parameters. Define

and

n;/iyf^^U-l)

0iT U )={hn(t -1)...hi lit -n )...hu it -l)...hu it -n ),

u lit —l)...u lit —m )...u/ it —1)...M/ it —m ))

A =

-dnil) 0

—dnin)

6

0

yi£i(l)

0

-di,il)

—du in)
0

nnim) 0

0 ii/(D

0 nu(m )

The system (4.19) can be written as

yiit>(f>iTit)Di9oi i=l.../>

with

90i=ikn,ki2....ki,)T

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)
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Note that (4.25) is of the form of (4.13). so that we have following theorem resem

bling theorem 4.3.

Theorem. 4.4 The sufficient condition for the svstem (4.19) to be identifiable is that

rank

where

da S> 0"ii ? 0
0 di2 o 0 i/2 0

0 0 du 0 0 hu

=Z for all z and all i

dii=zn+dnil)zn-l+...+diiin)

hij=niJil)zm-1+...+nijim)

(4.26)

(4.27)

(4.28)

Remarks; If dXj and ntJ are coprime for all if . then the condition 4.26 is satisfied.

5 Conclusion

We have introduced a method of identification of a class of partially known', stable,

linear, time-invariant systems. We feel that our framework is particularly amenable to the

study of the sensitivity of the schemes to the presence of unmodeled dynamics. This will

prove to be particularly important when we device algorithms for the adaptive control of

these 'partially known* systems.
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